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ABSTRACT
Diagrams are an essential means of capturing and communi-
cating information in many different domains. They are also
a valuable part of the early design process, helping us ex-
plore ideas and solutions in an informal environment. This
paper presents a new approach to sketched symbol recogni-
tion that preserves as much of the visual nature of the symbol
as possible. Our method is robust to differences in drawing
style, computationally efficient, and achieves excellent per-
formance for several different domains.
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INTRODUCTION
Diagrams are an essential means of capturing and commu-
nicating information in many different domains, as well as
a valuable part of the early design process, helping us ex-
plore ideas and solutions in an informal environment. With
the growing popularity of digital input devices like Tablet
PCs and Smartboards, there is increasing interest in build-
ing systems that can automatically interpret freehand draw-
ings. However, many challenges remain in terms of recog-
nition accuracy, robustness to different drawing styles, and
ability to generalize across multiple domains. The ideas we
present here attempt to bridge part of the gap between how
people naturally express diagrams and how computers inter-
pret them today.

We will begin by looking at some of the challenges in rec-
ognizing freehand sketches. Figure 1 shows six symbols
taken from a dataset of electrical circuit diagrams. As we
can clearly see, these symbols exhibit a great deal of intra-
class variation due to local shifts, rotations, and non-uniform
scaling. In addition to these types of visible differences, two
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seemingly similar symbols can be drawn differently at the
stroke level. For example, the strokes may differ in their or-
der and direction and may exhibit artifacts like over-tracing
(drawing over a previously drawn stroke) and pen drag (fail-
ing to lift the pen between strokes).

Besides these kinds of low-level variations, drawings can
also differ at the conceptual level. This occurs when there
are multiple acceptable ways of drawing the same symbol.
Take the three resistors on the top row of Figure 1 for in-
stance. They were all drawn with different numbers of ridges
but all belong to the same resistor category. Low-level and
conceptual variations present a major challenge for sketch
recognition systems [17].

This paper presents a new approach to sketched symbol recog-
nition based on visual appearance. This is in contrast to
much of the work in the literature, which focuses on indi-
vidual strokes and their temporal and spatial relationships.
This emphasis on visual properties allows our method to be
less sensitive to stroke order and direction, improving ro-
bustness and accuracy. We also present a new trainable sym-
bol recognizer that is invariant to rotation and local defor-
mations, making our approach more tolerant to the types of
visual variations seen in Figure 1. The result is a more robust
symbol recognizer that is better able to handle the range of
drawing styles found in freehand sketches.

On-line Shape Recognition
Some of the earliest work in sketch recognition [19] focused
on single stroke gestures, or glyphs. Symbols are recognized
based on simple features such as the angle of the gesture or
the area of the bounding box. Long et al. [15] developed
an approach that analyzes the similarity between gestures to
help developers design ones that will not be easily confused
by the computer. While this early work has led to practi-
cal applications like the Graffiti handwriting system used by
Palm, a major limitation of these approaches is the restric-
tions they place on how each symbol can be drawn.

Another common approach to sketch recognition focuses on
structural shape descriptions. Here the base vocabulary is
typically composed of geometric primitives such as lines, el-
lipses, and arcs. One work [6] modeled these primitives and
the relationships between them as graphs, with recognition
posed as a graph isomorphism problem. Shilman et. al. [20]
used a hand coded visual grammar to describe shapes in the
domain. Recognition is then treated as a visual parsing prob-
lem. Alvarado and Davis [2] proposed using dynamically
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Figure 1. Six symbols from a dataset of electrical circuit diagrams.
They illustrate the types of variations found in freehand sketches.

constructed Bayesian networks to parse a sketch, employing
both top-down and bottom-up interpretation. Hammond and
Davis [9] developed a language that described, among other
things, the composition of a shape, and used it to do shape
recognition.

A third approach, closer in spirit to what we do here, fo-
cuses on the visual appearance of shapes and symbols. Olt-
mans and Davis [17] proposed a visual parts-based approach
to on-line sketch recognition. They build a library of parts
(represented as oriented histograms of gradients) and use
these parts to describe and distinguish between the differ-
ent symbols in the domain. Shilman and Viola [21] pre-
sented a visual system for detecting and recognizing sym-
bols in diagrams and equations. Their approach links indi-
vidual strokes into a proximity graph, searching for symbols
among spatially connected subgraphs using a Viola-Jones-
like detector. Kara and Stahovich [11] developed a train-
able, hand-drawn symbol recognizer based on pixel-based
template matching and multiple similarity metrics.

Handwriting Recognition
Unlike most of the work in the preceding section, we de-
signed our recognizer to handle handwritten characters as
well as graphical shapes. This is important because letters
and digits are often an essential part of many sketched dia-
grams. They may appear either in annotations (e.g., in elec-
trical circuits) or as part of the underlying structure (e.g., in
chemical diagrams).

An early motivation for this paper came from the observa-
tion that off-line handwriting recognizers, which operate on
scanned images, perform very well despite the fact that they
lack any information about pen trajectories. For example,
current state-of-the-art techniques are able to achieve error
rates in the range of 0.5% on a corpus of 70,000 scanned
digits [14]. While a direct comparison between on-line and
off-line handwriting recognition is difficult, a survey of past
literature seems to suggest that off-line methods [13, 12]
perform as well as, or even better than, on-line ones [4, 3,
7]. This raises an interesting question: can advances in off-
line handwriting recognition, computer vision, and machine
learning be adapted to make better on-line sketch recogniz-
ers?

OUR APPROACH
Following this intuition, we designed our approach to pre-
serve as much of the visual properties of the symbol as pos-

sible. At the same time, we try to exploit the extra informa-
tion we have about the temporal nature of the strokes.

The key contributions of our method are:

• It represents symbols as feature images rather than as tem-
porally ordered points. This allows our approach to be
more robust to differences in drawing style.

• It proposes a set of visual features for on-line symbol
recognition that captures stroke properties like orientation
and endpoint location.

• It introduces a classification technique that is computa-
tionally efficient and invariant to rotation and local defor-
mations.

• It exceeds state-of-the-art performance on all of the datasets
we evaluated. These include digits, common diagram shapes,
and electrical circuit symbols.

Symbol Normalization
The first step in our approach is symbol normalization, which
reduces the variation between symbols and eliminates dif-
ferences in sampling, scale, and translation. This improves
the robustness of our recognizer and makes the classification
task easier.

Because on-line strokes are typically sampled at a constant
temporal frequency, the distance between neighboring points
in a trajectory varies based on the speed of the pen. This pro-
duces more samples in corners or regions of high curvature,
where the pen is typically slower. In order to make calcula-
tion about stroke direction more reliable, we resample each
stroke at a constant spatial frequency.

Next we try to remove differences in scale and translation.
A traditional solution to this problem is to transform all of
the symbols so that they have the same bounding box dimen-
sions, but we found this technique to be sensitive to outliers
caused by pen drag or stray ink. In response, we normalize
each symbol by translating it so that its center of mass is at
the origin, and scaling it horizontally and vertically so it has
unit standard deviation in each axis.

Feature Representation
A key part of our approach is how we convert the on-line
strokes into a set of low resolution feature images, seen in
Figure 3. We begin by computing five features at each point
in the pen trajectory, four concerned with stroke orientation
and one concerned with stroke endpoints.

• The four orientation features correspond to four reference
angles, at 0, 45, 90, and 135 degrees. They represent how
nearly horizontal, vertical, or diagonal the pen stroke is
as each point in the symbol. The feature values are cal-
culated as the difference between the stroke angle and the
reference angle, and vary linearly between 1.0 (if the two
are equal) and 0.0 (if they differ by more than 22.5 de-
grees).
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Figure 2. System Overview: First, a set of feature images representing the 4 orientations (top) and the endpoints (bottom) are extracted from the
online stroke trajectory. Next, these images are smoothed and down-sampled to improve performance and increase tolerance to distortions. Finally,
the images are compared against all of the prototypes in the training set using IDM.

0  45  90  135  END 

Figure 3. Feature Images: The set of five feature images generated
from the input symbol. The top row shows the original image and the
bottom row shows the smoothed image.

• The endpoint feature identifies the location of endpoints in
the symbol. It is equal to 1.0 if the point is at the beginning
or end of a stroke and 0.0 otherwise. While using end-
point information introduces more sensitivity to stroke-
level variations, it helps us distinguish between symbols
like “3” and “8”, which look similar but usually differ in
the location and number of endpoints.

The result is an ordered sequence of feature values, five for
each sample point in the pen trajectory. In order to preserve
the visual nature of the original input, we render these five
features onto five 24 by 24 feature grids. The horizontal and
vertical dimensions of the grid span 2.5 standard deviations
of the original symbol’s space in each direction. We can
think of these grids as feature images, where the intensity of
a pixel is determined by the maximum feature value of the
sample points that fall within its cell. For example, the inten-
sity of the 0-orientation image is high in regions where there
are nearly horizontal segments. This representation resem-
bles the annotated images used by LeRec [5] for handwriting
recognition, but to our knowledge this is the first time it has
been applied to sketched symbol recognition.

Smoothing and Downsampling
The next stage applies a smoothing and downsampling pro-
cess to the feature images to increase tolerance to local shifts
and distortions. First we apply a Gaussian smoothing func-
tion to each feature image that “spreads” feature values to
neighboring pixels. This ensures that small spatial defor-
mations in the symbol correspond to small changes in the
features. We also downsample the images by a factor of 2
using a MAX filter (each pixel in the downsized image is the
maximum of the four corresponding pixels in the original).
This further reduces sensitivity to small shifts and improves
runtime performance.

Recognition
For the symbol recognition task we combine nearest neigh-
bor template matching with an image deformation model
(IDM) that increases robustness to small translations and de-
formations. In this model, we allow every point in the input
image to shift within a 3x3 local window while attempting
to form the optimal Euclidean (L2) match to the prototype
image. The individual shifts are independent, so computing
this displacement mapping is computationally efficient. To
avoid overfitting we use image patches instead of single pix-
els, shifting 3x3 sections of the input image at a time. An
illustration of this process is shown in Figure 4.

The distance between two feature images I1 (the input im-
age) and I2 (the template image) is thus given in equation
(1):

D2 =
∑
x,y,c

min
Dx,Dy

(I1(x+Dx, y+Dy, c)−I2(x, y, c))2 (1)

where c indexes the 5 feature maps and Dx and Dy represent
pixel shifts.

This image deformation model is similar to the one proposed
by Keysers et al. [12] for off-line character recognition.
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Input Image  Prototype Image 

Figure 4. Image deformation model with local context matching. Each
point in the input image can shift within a local window to form the
best match to the prototype.

Here, we extend their approach to on-line symbols using the
orientation and endpoint features described above.

We compare our IDM against four benchmarks:

• Pixel Nearest Neighbor (PIXEL): A baseline nearest neigh-
bor classifier that uses the Euclidean distance between the
raw intensity images (no feature extraction).

• Feature Nearest Neighbor (NN): A nearest neighbor clas-
sifier that uses the sum of squared Euclidean distance from
all five feature images.

D2 =
∑
x,y,c

(I1(x, y, c) − I2(x, y, c))2 (2)

• Hausdorff Nearest Neighbor: A nearest neighbor classi-
fier that uses the Modified Hausdorff similarity metric.
This technique has been applied previously to sketched
symbol recognition and object matching [11, 8]:

H(A,B) = max(h(A,B), h(B,A)) (3)

where

h(A,B) =
1

Na

∑
a∈A

(min
b∈B

||a − b||) (4)

• SVM: A Support Vector Machine trained on the 720 fea-
ture values from the five 12x12 feature images. Multi-
class classification is implemented using a one-vs-one ap-
proach, combining the output from the full set of pairwise
classifiers. We evaluate SVM performance using linear
and Gaussian RBF kernels.

Feature Reduction using Principle Component Analysis
Even though the feature images we proposed are low reso-
lution, they still produce 720 individual features values for
each symbol. This is a large space in which to perform
matching and classification, especially if we are computing
similarities among thousands of examples. To improve run-
time performance we first index the images using their first
N principle components. We can then use this reduced fea-
ture set to compute approximate nearest neighbors based on
the distance metric given in equation (4):

Figure 5. A hierarchical clustering dendrogram for a set of resistors.

D̂2 =
∑

n

(v1(n) − v2(n))2 (5)

where vi(n) represents the n-th principle component of the
i-th image.

Hierarchical Clustering
One shortcoming of the nearest neighbor classification is the
need to match against all of the training examples during in-
ference. To reduce the computational requirements we in-
troduce a hierarchical data structure that re-organizes and
condenses the set of examples. First, we apply complete-
link agglomerative hierarchical clustering to all of training
examples in each class. This process starts with each ex-
ample in its own cluster, then progressively merges the two
nearest clusters based on Euclidean distance. This contin-
ues until there is only one cluster per symbol class. Figure 5
illustrates this process.

The result of this clustering process is a tree-like structure
with the largest clusters at the top and progressively smaller
sub-clusters below as we traverse down each branch. For
each cluster and sub-cluster, we extract a representative pro-
totype (or cluster center). This is defined as the instance that
is the most similar (i.e., has the minimum average distance)
to all of the other examples in the cluster. In addition to the
cluster center, we also store the radius r of the cluster, the
maximum distance between the center and any of its mem-
bers.

During inference, we first compare the input symbol to the
central prototype of each cluster, starting with clusters at the
top level of the hierarchy. We then choose the best clus-
ter center and recursively descend down that branch of the
search tree. The algorithm keeps track of the best match
distance encountered so far, while at the same time discard-
ing clusters that cannot possibly improve on this best match.
Assuming our metric follows the triangle inequality, the best
possible match in cluster c is the distance to the cluster cen-
ter dc minus the cluster radius rc. If dc−rc is worse than the
distance to the best match, we can safely discard the cluster.
The process stops when there are no more clusters to expand.

If we are interested in finding the N-nearest neighbors we
need to make a few modifications to the above method. First,
instead of keeping track of only the best match, we store a
list of N-best matches. Second, we discard clusters if dc−rc
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A B C

Figure 6. Example symbols from the three different evaluation
datasets: A) pen digits, B) common diagram shapes, and C) electrical
circuit symbols.

is greater than the worst of the N-best distances so far.

Coarse-to-fine Reranking
Even with the hierarchical search strategy described above,
performing the IDM matches can require several seconds per
symbol on a training set size of about 1000. To improve per-
formance even further, we first apply a fast approximate rec-
ognizer to produce an N -best list of nearest neighbor candi-
dates. Then, in the second stage, we rerank those candidates
using the slower, more exact recognizer. In our implementa-
tion we use the hierarchical search strategy and PCA feature
reduction to quickly find the best candidates for reranking1.

Rotational Invariance
The recognition process described so far is robust to differ-
ences in translation, scale, and local deformation. To make
our recognizer invariant to rotation, we generate and match
rotated versions of the test symbol to each of the training
examples. In our experiments we use 32 evenly spaced ori-
entations from 0 to 360 degrees. For the hierarchical classi-
fier, we perform rotation matching only at the top levels2 to
improve performance. For the lower level comparisons we
reuse the best rotation from the parent cluster. Similarly,
in the coarse-to-fine classifier, we reuse the optimal rota-
tion from the approximate recognizer in the more expensive
reranking stage.

EXPERIMENTAL RESULTS
We evaluated performance of our method on three diverse
datasets: handwritten digits, diagram shapes, and engineer-
ing symbols, and given comparisons of our method (in bold)
against the benchmarks described earlier, as well as other re-
sults reported in the literature (in italics). Note that for the
IDM and NN based methods we use hierarchical clustering
and coarse-to-fine reranking to improve runtime speed.
1In our implementation we use the first 128 principle components
and rerank the first 10 nearest neighbor candidates. These param-
eters were chosen empirically; significantly lower values degrade
accuracy while higher values do not seem to offer any improve-
ment.
2We use the top 64 clusters for each category

Pen Digits
This dataset contains about 10,000 isolated on-line digits
[1]; a sample is shown in Figure 6A. This corpus consists
of 7,494 training examples and 3,498 test examples. The
30 writers of the training examples are independent of the
14 writers of the test examples, so the results also suggest
how well our system would be able to generalize to new
users. Here we compare our approach against two bench-
marks from the on-line handwriting recognition community.
Note that for this experiment we omit rotation invariant tech-
niques since we do not expect rotations to be an issue.

Method Accuracy
SVM-RBF 99.4%
IDM 99.2%
SVM-Linear 99.1%
NN 98.9%
Eigen-Deformation [16] 98.2%
Hausdorff 97.6%
PIXEL 97.1%
Alimoglu et. al. [1] 97.0%

Table 1. Comparison of recognition results for the Pen Digits dataset.

The results in Table 1 show that our approach is able to out-
perform both previous benchmarks. Compared to the ap-
proach in [16], our method is able to reduce the relative error
rate by 56%. Here the SVM-RBF model did slightly better
than the IDM model, but at the cost of much greater com-
putational complexity (see table 4, below). The mistakes on
this dataset are displayed in Figure 8.

HHReco
The HHReco dataset [10] consists of 7,791 diagram shapes
(e.g., boxes, callouts, etc) like those shown in Figure 6B.
The examples were collected from 19 different people, each
of whom drew at least 30 examples per category. In each
of our cross validation trials our system was tested on the
examples from one user after it was trained on data from all
of the other users.

Method Accuracy
IDM+Rotate 98.2%
Zernike Moments [10] 96.7%
IDM 95.2%
NN 95.1%
SVM-RBF 95.0%
Visual Parts [17] 94.4%
Hausdorff 93.0%
SVM-Linear 92.3%
PIXEL 92.2%

Table 2. Comparison of recognition results for the HHReco common
shapes dataset.

On this dataset the best method is IDM+Rotate, which achieves
an accuracy of 98.2%. Compared to the 96.7% accuracy re-
ported by Hse et al. [10], the next best external benchmark,
our method provides a 45% reduction in relative error rate.
Comparing the performance of the IDM and IDM+Rotate
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classifiers, we see that rotation invariance is an important
feature for this corpus.

Electrical Circuits
The Electrical Circuits dataset contains 1,012 examples of
circuit components like the ones shown in Figure 6C. Un-
like the previous two cases, these symbols were extracted
from full sketches and exhibit a larger range of variations
and styles. The symbols themselves are also more complex
than those in the other two domains, on average containing
a larger number of strokes and sub-components.

Method Accuracy
IDM+Rotate 96.2%
IDM 93.9%
SVM-RBF 91.9%
NN 91.2%
SVM-Linear 90.1%
Visual Parts [17] 89.5%
Hausdorff 79.9%
Zernike Moments [10] 76.9%
PIXEL 75.9%

Table 3. Recognition accuracy for the electrical circuit dataset.

For this dataset our method achieves an accuracy rate of
96.2%. This represents a 64% relative error reduction over
the best published benchmark of 89.5% [17]. The errors
made by our method are displayed in Figure 9.

Runtime Performance
We have also evaluated the relative performance of the dif-
ferent classifiers presented in this paper and determined the
average time required to classify one symbol in the Pen Dig-
its dataset on a 2.4 Ghz machine. As Table 4 shows, the
IDM method achieves very good runtime performance, able
to process over 100 symbols per second on this corpus. We
also see that hierarchical clustering and reranking provide
over two orders of magnitude in speedup over the unopti-
mized version of IDM. This is essential if our eventual goal
is to achieve real time recognition.

Method Runtime
SVM-Linear 2.4 ms
IDM (Hierarchical+Rerank) 8.1 ms
NN (Full) 40.8 ms
SVM-RBF 90.3 ms
Hausdorff 750 ms
IDM (Full) 3952 ms

Table 4. The average time required to classify a symbol in the Pen Digits
corpus using the different methods described in the paper.

DISCUSSION
This work focused on developing a fast, accurate, and ro-
bust sketched symbol recognizer that is designed to work in
multiple domains. However, symbols in real sketches, like
in Figure 7, are typically not drawn in isolation; neighbor-
ing symbols may be touching and multiple shapes may be

drawn using the same stroke without lifting the pen. A com-
plete recognition system will need to address the problems
of symbol detection and segmentation, extracting valid sym-
bols from messy sketches.

Although we did not look at these problems explicitly in this
paper, previous works have successfully used the output of
an isolated symbol recognizer to guide detection and seg-
mentation [18, 17, 21]. We believe that accurate and robust
low level recognition is essential for high level understand-
ing. In future work we will explore how the techniques pre-
sented in this paper can be applied to the problem of full
sketch recognition.

CONCLUSION
We have presented a new visual approach to on-line sym-
bol recognition. Unlike much of the previous work in this
area, we model each symbol using annotated feature images
rather than temporal sequences or stroke primitives. As a
result, our method is less sensitive to variations in drawing
style that affect stroke order and direction. It also uses a clas-
sification technique that is robust to rotation and local defor-
mations, further increasing accuracy. Finally, the method we
proposed is computationally efficient and is able to exceed
state-of-the-art performance for all the domains we evalu-
ated, including handwritten digits, common diagram shapes,
and electrical circuit symbols.
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