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Abstract

In this thesis I explore a novel representation for characterizing a graph’s fine grained
structure. The key idea is that this structure can be represented as a distribution
of the structural features of subgraphs. I introduce a set of such structural features
and use them to compute representations for a variety of graphs, demonstrating their
use in qualitatively describing fine structure. I then demonstrate the utility of this
representation with quantitative techniques for computing graph similarity and graph
clustering. I show that similarity judged using this representation is significantly
different from judgements using full graph structural measures. I find that graphs
from the same class of networks, such as email correspondence graphs, can differ
significantly in their fine structure across the institutions whose relations they model,
but also find examples of graphs from the same institutions across different time
periods that share a similar fine structure.
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Chapter 1

Introduction

1.1 Problem description

This thesis presents a novel method for representing the structure of graphs based on

the structural features of their constituent subgraphs and demonstrates its utility as

a tool for network analysis.

From social networks in Facebook to connectivity maps of neurons, scientists in a

broad range of disciplines are faced with the challenge of analyzing the structure of

networks. Such an analysis is crucial in explaining processes occurring in the systems

they model, such as the spread of STIs in a network of sexual partners or the flow

of information through a network of social acquaintances. Network structure is typ-

ically modeled using graphs, where vertices model the objects of interest and edges

model the relations between those objects, and in this thesis I will frequently refer

to the structure of a network when I mean the structure of the graph that models

it. Even with state of the art tools for visualizing graphs, making judgements about

network structure is challenging, particularly for graphs having more than a hundred

vertices. For example, fundamental questions, such whether two graphs are struc-

turally identical, are hard to decide visually and are suspected to be computationally

intractable. In this thesis I will be particularly concerned with the question of what

the structural patterns of the local neighborhoods centered around any given vertex

in a graph are and how these patterns vary across the graph’s vertices. This local
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structure I call the “fine grained structure” or simply “fine structure” of a network.

The key problem this thesis addresses is how this structure can be characterized, and

once characterized, how can it be compared across graphs.

In this thesis I present a useful and compact representation for the structure of

graphs. By useful I mean that it quantifies features of a graph that are of interest for

network analysis and which reveals the homogeneity or heterogeneity of fine structure

across a graph. This allows for tasks such as computing structural similarity or graph

clustering. By compact I mean that the representation renders the fine structure of

a graph more amenable to visualization and analysis by humans than visualizations

produced by standard graph layout algorithms, scaling well to graphs with hundreds

or thousands of edges.

1.2 Approach

My approach to analyzing a graph proceeds by introducing a set of features, namely

leadership, bonding, and diversity, which summarize structural properties of a network

that are motivated by concerns in social domains [32]. The graph’s structure is repre-

sented by the distribution of these features computed for subgraphs centered on each

vertex in the graph. The granularity of the representation can be controlled by vary-

ing the radius of these subgraphs, and I show that choice of granularity has a strong

impact on the structural properties revealed. I also demonstrate that performing a

multi-scale analysis by comparing distributions across radii can be informative.

Visualizing the distribution of subgraph features reveals the homogeneity and

heterogeneity of a graph’s fine structure and allows the characterization of the graph

by the proportion of subgraphs that are more or less dominated by the above three

features. These visualizations reveal elements of local structure that are hard to

detect by inspection of an image of a graph’s vertices and edges. I show and discuss

distribution visualizations for graphs from a wide variety of domains.

With graphs represented as distributions of the structural features of their sub-

graphs it is possible to compute the earth mover’s distance between distributions for

16



two graphs, giving a measure of their structural similarity [33]. I demonstrate that

this technique for judging similarity yields intuitive results by showing that graph

self-similarity decreases with increasing edge permutation. Similarity computed in

this way can be used to cluster graphs based on their fine grained structure using

standard clustering algorithms, a technique which I demonstrate and which reveals

both similarities and dissimilarities between graphs from the same domain, as well as

interesting some cross domain similarities.

1.3 Outline of thesis

This thesis proceeds with the following structure:

Chapter 2 introduces the formalism for describing graphs that will be used through-

out this thesis, gives an overview of structural features of graphs common in the

network science literature, and reviews previous approaches to graph structure com-

parison.

Chapter 3 reviews the three key structural features, leadership (L), bonding (B),

and diversity (D), used in the fine structure representation. For a variety of networks

I give examples of the joint L, B, and D (LBD) scores that describe them, and

present them via a simplex visualization that I will use throughout the thesis.

Chapter 4 introduces LBD distributions, which represent the fine grained struc-

ture of graphs, and are this thesis’ key contribution. I discuss the computation of

these distributions and give examples of LBD distributions for three sets of graphs:

manually constructed graphs designed for didactic purposes, graphs derived from

human and non-human social networks, and graphs derived from networks of other

kinds.

Chapter 5 demonstrates using the earth mover’s distance between the LBD dis-

tributions of two graphs to judge their structural similarity. I discuss results obtained

for computing the similarity between the graphs introduced in chapter 4 and use this

similarity measure to cluster graphs based upon the similarity of their fine grained

structure.
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Chapter 6 summarizes my key findings, namely that a focus on fine grained struc-

ture does indeed reveal important differences between graphs that a full graph ap-

proach does not, that the technique introduced in chapter 5 is a reasonable measure

of structural similarity, and that evidence for fine structure similarity between graphs

modeling a common process across institutions or domains is weak, yet there is evi-

dence of such similarity in graphs generated across different time periods within the

same institution. I then suggest future work in developing graph representations

based on the distribution of the structural features of their subgraphs, extensions of

leadership, bonding, and diversity, and new directions suggested by the similarity and

clustering results.
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Chapter 2

Background

2.1 Graphs

Systems taking the form of networks are typically modeled by mathematical objects

called graphs, composed of vertices, which model objects in the network, and edges,

which model the relations between these objects [17]. In this section I will intro-

duce some basic concepts from graph theory that will be useful for discussing graph

structure.

Formally, a graph G is a pair of sets, G = (V, E), where V = {v1, ..., vn} are the

n vertices of the graph and E = {e1, ...em} are the m edges of the graph. Each edge

e ∈ E is itself a pair (u, v) ∈ V × V , indicating that the relation modeled by the

edge holds between u and v. If (u, v) ∈ E then the vertices u and v are said to be

adjacent or, equivalently, they are neighbors. The degree of a vertex in a graph is the

number of vertices to which it is adjacent. Edges in a graph can be directed, that is

e1 = (u, v) is distinct from an edge e2 = (v, u), however in this thesis I will deal only

with undirected graphs, in which such edges are equivalent to each other.

The order and size of a graph are, respectively, the number of vertices, |V |, and

edges, |E|, in the graph. A walk in a graph is a sequence of vertices and edges such

that each edge joins the vertices that immediately precede and follow it. A path in

a graph is a walk in which no vertex is repeated. The length of a walk or a path is

the number of edges ocurring in it . Walks and paths are often referred to as k-walks
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or k-paths when they contain k edges. A cycle is a path with only one repetition,

namely the first and last vertices are the same. A k-cycle is a cycle with k edges. A

3-cycle is also called a triangle.

The distance between two vertices in a graph is the length of the shortest path

between them and such a path is called a geodesic. The diameter of a graph is the

length of the longest geodesic between any two vertices in a graph. The radius of

a graph is the shortest distance such that there is some vertex for which all other

vertices in the graph are within that distance of it. The mean geodesic distance

between any two vertices in a graph is called the characteristic path length (CPL) of

the graph.

A component of a graph is a maximal subset of its vertices such that a walk

exists between each pair of vertices. If a graph contains only one component it is

said to be connected. A graph G
� = (V �

, E
�) is said to be a subgraph of G = (V, E)

if V
� ⊆ V and E

� ⊆ E. Such a subgraph is additionally an induced subgraph if

for every pair of vertices u, v ∈ V
�, (u, v) ∈ E

� if and only if (u, v) ∈ E. Two

graphs G and G
� are isomorphic if a bijective function f : V → V

� exists such

that (u, v) ∈ E ⇐⇒ (f(u), f(v)) ∈ E
� for all u, v ∈ V . Intuitively, two graphs

are isomorphic if a vertex mapping scheme can be found that preserves adjacencies

between vertices.

Several special classes of graphs will be of interest in this thesis, namely dipoles,

trees, complete graphs, stars, regular graphs, bipartite graphs, and Erdős-Rényi ran-

dom graphs [17, 31, 10]. Dipoles are graphs consisting solely of two vertices joined by

one edge. Trees are connected graphs that contain no cycles. Complete graphs are

graphs in which there is an edge between every pair of vertices. A star contains one

central vertex that is adjacent to all other vertices and no other vertices are adjacent

to each other. A k-star is a star with k vertices. A regular graph is one in which

all vertices have the same degree. A k-partite graph is one whose vertices can be

separated into k disjoint sets such that no two vertices in the same set are adjacent.

2-partite graphs are also called bipartite graphs. Erdős-Rényi or Poisson random

graphs are graphs constructed by starting with a vertex set V , selecting a coin weight

20



p in the range [0, 1], flipping the coin once for each possible edge position, and adding

the edge if the coin comes up heads.

The two most common data structures used to represent graphs are adjacency

matrices and edge lists. An adjacency matrix for an undirected graph is a |V |× |V |

matrix in which an entry (i, j) is 1 if i �= j and vi is adjacent to vj, otherwise the entry

is 0. Specifying i �= j forbids a vertex from having a self-connecting edge. The matrix

representation makes computations such as finding all paths of a given length easy,

but can be wasteful of memory for graphs with few edges. The edge list representation

simply stores V and E as lists. This representation trades computational efficiency

in some algorithms for reduced memory requirements.

2.2 Structural features of graphs

Over the past decade there has been a convergence of interest in graph structure

across fields, resulting in a rich literature on structural features of graphs across

many domains. In this section I will review a selection of these features.

Edge probability or network density, pE(G) is a commonly used macro feature of

graphs [24]. It is the proportion of possible edges in a graph that actually appear in

it and is given by the equation:

pE(G) =
2× |E|

|V |(|V |− 1)
(2.1)

A common feature of social networks studied by sociologists and social psycholo-

gists is their tendency towards triadic closure or transitivity [38]. In an acquaintance

network, this is the degree to which people who share a mutual acquaintance are

themselves acquaintances. A measure of this, called the fraction of transitive triples,

and also one of several features called the clustering coefficient [24], is widely used in

the sociological literature and for undirected graphs is is given by the equation:

C(G) =
6× triangles in graph

2-paths in graph
(2.2)
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A clustering coefficient variant introduced by [39] instead defines triadic closure

locally, computing a clustering coefficient for each vertex:

Ci(G) =
triangles connected to vi

3-stars centered on vi
(2.3)

With Ci = 0 in the case that the denominator is zero. Recall that a 3-star is

two non-adjacent vertices connected to a third vertex, which is the center of the star.

The mean clustering coefficient across all vertices can then be taken as an indicator

of triadic closure across the whole graph. The distinction between local and global

graph structure will feature prominently in the graph representation presented in this

thesis.

The notion that some vertices and edges are more important than others has

led to various centrality features being proposed throughout the literature. One

example is betweenness centrality, which is the number of geodesics between a graph’s

vertices that run through a given edge or vertex [23]. The distribution of betweenness

centrality in a graph has implications for its resilience, with graphs with high-skewed

distributions being vulnerable to disruption through the removal of key vertices or

edges. If edges represent flows of resources, the high betweenness centrality of an

edge can also indicate a bottleneck [36].

Over the last decade the degree distribution of graphs has been of great interest to

researchers [4, 3, 8]. A graph’s degree distribution is a histogram of the degrees of each

vertex in the graph. A key finding across domains as diverse as citation networks and

metabolic networks has been that the degree distribution of many networks follows a

power law, with the number of vertices in a graph having degree k being proportional

to 1
kc for some constant c [3]. This contrasts with the binomial distribution associated

with Erdős-Rényi random graphs, in that the number of high degree nodes is sub-

stantially larger than would be the case in a random graph [10]. Networks with power

law degree distributions are called scale free networks and models of their formation

have been well developed [3, 8]. The key contribution of research in this area has been

to show that preferential attachment processes, where new vertices being added to
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a graph form edges preferentially with vertices with a high degree, thus causing the

high degree vertex’s degree to become yet higher, robustly predict power law degree

distributions under a wide range of variations. The ubiquity of this feature, combined

with the intuitive appeal of the models explaining it, make it an outstanding example

of success in network structure analysis.

A variety of methods for detecting communities in social networks using structural

features have been proposed. These include using hierarchical clustering based on

vertex-vertex connection strength [11], detecting the borders of communities via edges

with high betweenness centrality [15], spectral techniques [26], and comparing the

density of edges within proposed communities to that of the graph as a whole [25].

Despite the interest in this topic, a lack of ground truth data for communities in

social networks has made evaluating these techniques challenging.

Motif analysis [22, 37], computes the frequency of the occurrence of small induced

subgraphs, called motifs, and uses this analysis to judge the significance of the ap-

pearance of these motifs by comparison with their frequency in Erdős-Rényi random

graphs. This gives a characterization of a graph’s structure in terms of its statisti-

cally significant subgraphs. A key question for this kind of analysis is what particular

graphs these motifs should be. This question will be influential in the development

of the graph representation presented in this thesis.

2.3 Graph similarity

Relevant to understanding a network is whether its graphical form is similar to that

of another network. For example, will a graph describing scientific collaborations

be similar to the graph of an email network engaged in the development of Linux?

Alternatively, we may have a theory of the graphical form of optimal organizational

structure, and want to know how much an actual example deviates from this ideal.

In both cases, judging graph similarity is key.

Consider two graphs A and B that are identical, except for a single edge absent

in B. A natural way to think about judging their similarity would be to count the
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number of changes that would have to be made to transform one graph into the

other. This count is called the edit-distance and allows us to judge that a third

graph C, missing two edges relative to A, is less similar to A than B is to A [6].

Unfortunately the problems with edit-distance are twofold. First there are many

possible kinds of edit operations, including edge addition and subtraction, and vertex

addition and subtraction, and it’s not clear how to weight these changes against one

another. Additionally, to judge that an operation has in fact transformed one graph

into the other involves solving the problem of detecting graph isomorphism, which

has no known polynomial time solution. It’s clear that we will have to accept some

level of approximation in any similarity measure for the sake of tractability.

Graphs are often informally compared using the full-graph structural features dis-

cussed in section 2.2 and by distributions of local features such as vertex degree,

vertex centrality, or motif appearances. These kinds of comparisons are often pre-

sented in tabular form or as visualizations of distributions, usually with the intent

to illustrate qualitative differences rather than to compute a quantitative similarity

value.

Some researchers have approached graph similarity using spectral analysis, where

edit-distance is approximated by the difference in the spectrum of eigenvalues between

the laplacians of graph adjacency matrices [29, 21]. This was demonstrated in [29]

by cloning graphs, randomly permuting their copies, and showing that their spectral

distance increases as a function of the amount of permutation. Spectral techniques

have two weaknesses however, the first being the existence of relatively rare isospectral

graphs, which share eigenvalues despite having quite different structure and therefore

can erroneously be judged similar. More relevant for this thesis is the difficulty of

interpreting graph spectra as an abstraction of social phenomena. Ideally for the

social network domain we would like to design a similarity measure that judges graph

similarity based on some set of socially motivated features.

Graph kernels have become a popular approach to comparing graph structure.

They are a broad class of functions that map pairs of graphs, (G, H), to a typi-

cally high dimensional inner product space [5]. This form of manipulation known as

24



the kernel trick is used extensively in machine learning techniques such as Support

Vector Machines [34]. Such techniques can, in turn, be used to construct classifiers

which separate graphs into classes which are in some sense self-similar. Graph kernel

techniques range widely, but two illustrative examples are exhaustive pairwise iso-

morphism testing on all subgraphs of G and H, which is NP-hard to compute [14],

and more efficient methods based on subtree comparison [35].
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Chapter 3

Summarizing graph structure

In section 2.2 I reviewed a range of features that have been used to measure aspects

of graph structure. Because this thesis will be largely concerned with the structure

of graphs derived from social network data, I have selected three features to use in

the graph representation presented here that are socially motivated. These features,

first introduced in [32], are characterized as leadership (L), bonding (B), and diversity

(D) . This thesis will use LBD triples to represent undirected graphs as points in

the LBD feature space. In this section I review these features and present examples

of L, B, and D values computed for various graphs.

3.1 Leadership

Leadership is a measure of the extent to which the edge connectivity of a graph is

dominated by a single vertex [12]. It is given by equation 3.1, in which |V | is the order

of the network, di is the degree of vertex i and dmax is the maximum degree of any

vertex in the graph. It is the mean difference between the degree of the highest degree

vertex and that of each other vertex in the graph. Leadership is maximal (i.e 1) in a

star graph (one vertex of degree |V |− 1 with all other vertices of degree 1) and zero

for regular graphs, in which all vertices have the same degree (e.g. a complete graph

or a ring). In equation 3.1 the denominator is the maximal sum, which normalizes L

to [0, 1]. In an acquaintance network a high leadership indicates that a small number
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of people are connected to a much larger proportion of others than the average group

member, whereas a low leadership indicates that most people are equally connected.

L =

�|V |
i=1(dmax − di)

(|V |− 2)(|V |− 1)
(3.1)

3.2 Bonding

Bonding has already been presented in section 2.2 under the name of clustering coef-

ficient and is given by equation 3.2. Because this term is ambiguous in the literature I

have followed [32] and adopted the name bonding for the sake of clarity. The motiva-

tion behind bonding is that this ratio measures the proportion of triadic closures that

actually exist in a graph relative to the number that could exist. Bonding is maximal

(i.e. 1) for a complete graph, but zero for any graph with no triangle subgraphs (e.g

trees or bipartite graphs). In an acquaintance network a high bonding means that if

two people are share a mutual acquaintance, then it is likely that they themselves are

acquainted.

B =
6× triangles in graph

2-paths in graph
(3.2)

3.3 Diversity

Diversity, given by equation 3.3, is a measure based on the number of pairs of dipoles in

a graph whose end vertices are not adjacent, and hence are disjoint. A normalization

is imposed by the maximal count, which occurs for the complement of the complete

bipartite graph and the square root of the ratio scales the measure into a range

similar to L and B [32]. D = 0 for |V | < 4 and possible values lie in the range [0, 1].

Diversity is high in graphs that are not densely connected, such as rings, but also

in graphs where separate graph regions are joined by a relatively small number of

bridging edges. In an acquaintance network a high diversity indicates that separate

communities exist, where people from one community have no direct ties with people
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Leadership:

Bonding:

Diversity:

L = 1.0

B = 1.0

D= 0.76

Figure 3-1: Canonical examples of graphs with high leadership, bonding, and diversity
scores. Highlighted vertices are a “leader”, a member of a clique, and the end points
of two disjoint dipoles.

in another, whereas a low diversity indicates that people are generally all connected

to one another.

D =

����disjoint dipoles in graph

( |V |
4 ( |V |

2 − 1))2
(3.3)

Figure 3-1 shows canonical examples of graphs with high L, B, and D scores,

namely a star, a complete graph, and a “bow-tie”. Further discussion of L, B, and

D can be found in [32].

3.4 Analyzing graphs using leadership, bonding,

and diversity

I analyze 18 graphs in this thesis, broken down into three classes. The first are graphs

constructed for didactic purposes to demonstrate using LBD distributions to charac-

terize graph structure for graphs whose structure is well understood. The second are

graphs constructed from social data, including friendship networks, scientific collab-
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orations, and email correspondence. The third are graphs formed from other kinds

of relational data, from co-occurances of words in text to neural connectivity maps.

Table 3.1 summarizes the semantic content behind the non-constructed graphs, giving

the objects and relations that vertices and edges in the graphs represent. Addition-

ally, table 3.2 gives some key summarizing features for each of the graphs, including

their LBD scores. It is important to note that where the original edge data for these

networks was directed I have abstracted it to be undirected, where edges may have

originally been weighted this too has been abstracted away, and likewise where ver-

tices had class labels. Thus there is necessarily a loss of structural information in the

analysis presented in this thesis which must be considered in any of the results that

follow. Edge direction has been abstracted from the C-Elegans and PolBlogs graphs.

Edge weights have been abstracted from the C-Elegans and Lesmis graphs. Vertex

labels have been abstracted from the AdjNoun, PolBlogs, and PolBooks graphs.

Table 3.1: A summary of the semantics for the edges and vertices of each graph.

Graph Vertices Edges Source

LosAlamos Scientists Collaboration on a paper [28]
Karate Club members Friendship [41]

Dolphins Dolphins Significant time in proximity [20]
Enron Enron employees One email exchanged each way [7]

Santa Fe Scientists Collaboration on a paper [15]
JJATT Terrorists Known association from court records [2]

Linux 2001 (Jan) Kernel mailing list members Email exchanged either way [16]
Linux 2008 (Jan) Kernel mailing list members Email exchanged either way [16]

Bright Words Reported in free association [28]
Lesmis Characters in Les Miserables Co-appearance in scene [18]

PolBooks Books Purchased together [19]
AdjNoun Adjectives and nouns Co-occurence in David Copperfield [26]
Football College football teams Match played [15]

C-Elegans Neurons Neural connectivity [40]
PolBlogs Political blogs Hyperlink between blogs [1]

Together, L, B, and D summarize a graph’s structure along three socially moti-

vated dimensions. Plotting graphs in this space is a first step in determining which

graphs are similar to one another. In this thesis I follow the convention introduced
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Table 3.2: Summarizing features for the analyzed graphs. The asterisk indicates
that the PolBlogs graph is not connected and the reported values are for its largest
component.

Graph |V | |E| pE Diameter CPL L B D

Binary Tree 127 126 0.0157 12 8.3510 0.0082 0.0000 0.0435
Tree Clique 62 496 0.2623 10 5.2512 0.2541 0.9945 0.2570
Erdős-Rényi 115 598 0.0912 4 2.2632 0.0768 0.0853 0.2110
Los Alamos 30 78 0.1793 4 2.0598 0.6946 0.3683 0.2923

Karate 34 78 0.1390 5 2.4082 0.3996 0.2557 0.2402
Dolphins 62 159 0.0841 8 3.3570 0.1164 0.3088 0.1959
Enron 143 623 0.0614 8 2.9670 0.2377 0.3591 0.1455

Santa Fe 116 174 0.0261 15 6.6576 0.1681 0.2200 0.0683
JJATT 263 998 0.0290 13 5.8750 0.1362 0.4905 0.0744

Linux 2001 302 749 0.0165 7 3.1614 0.2510 0.1534 0.0333
Linux 2008 447 2122 0.0213 6 2.7919 0.3435 0.1929 0.0393

Bright 54 175 0.1223 5 2.5947 0.2257 0.3770 0.2634
Lesmis 77 254 0.0868 5 2.6411 0.3972 0.4989 0.1755

PolBooks 105 441 0.0808 7 3.0788 0.1627 0.3484 0.1877
Adj-Noun 112 425 0.0684 5 2.5356 0.3799 0.1569 0.1320
Football 115 613 0.0935 4 2.5082 0.0120 0.4072 0.2355

C-Elegans 297 2148 0.0489 5 2.4553 0.4066 0.1807 0.1106
PolBlogs 1490 16715 0.0151 8* 2.7375* 0.2210 0.2260 0.0327

in [32] of transforming LBD scores into points on the 2D (1,1,1) plane which I will

call the lbd simplex. This is done by normalizing the L, B, and D scores for a graph

by the sum of these scores, yielding the normalized scores l, b, and d, which are

then plotted in the simplex. This gives a qualitative sense for which features are

proportionally dominant for a given graph. For instance graphs close to the b = 1

and d = 1 corners of the simplex have high L and B relative to D. Figure 3-2 shows

the l, b, and d scores for each of the graphs analyzed in this thesis. Throughout this

paper I make use of simplex visualizations like this to present LBD data for ease of

exposition and will often supplement these with plots of the distributions of values

to help disambiguate cases where information is lost due to the transformation and

give a better sense of the density of points. Additionally, points in the simplex will

be colored according to their position in lbd space, with the red, green, and blue color

components corresponding to l, b, and d respectively.
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b 0

d 0
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Linux 2008
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AdjNoun

Los AlamosLesmisKarateBinary Tree

Erdos-Renyi

Bright

PolBooks

Football

Tree Clique
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Enron
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PolBlogs

Linux 2001

Dolphins

lbd Simplex

Figure 3-2: lbd scores for each graph plotted in the simplex. A graph’s position in
the simplex indicates the relative magnitude of its L, B, and D scores.

A key thing to note in figure 3-2 is that some graphs, namely Binary Tree and

Football, are dominated by one particular score. The reason for this will become

clear in the next chapter, but has to do with their structural homogeneity. D scores

tend to be low in general for non-constructed graphs, which is reflected in the fact

that every such graph appears in the d < 0.5 region of the simplex. This is a result

of D being sensitive to the ratio of the size of a graph to its order and the fact that

most of the non-constructed graphs are quite sparse. A final key point to note is

that there is no distinctive region in which only graphs from social data appear. One

may naively expect that some distinctive property of social phenomena might lead to

social networks having common macro-level structure, but measured in terms of LBD

scores this is not the case. This lack of structural distinctiveness for social networks

will be a recurring theme throughout the rest of this thesis.
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Chapter 4

LBD distributions

4.1 Motivation

The LBD representation of a graph gives a summary of properties of the graph as a

whole. But consider the case of a graph with multiple structurally distinct regions,

an extreme example of which might be a series of complete subgraphs joined together

in a chain by bridging edges. Ideally a representation would be fine grained enough to

distinguish between this kind of graph and another graph without this fine structure

that happens to map to the same region in LBD space. More generally, one would

like a representation that reveals features of the fine structure of a graph and can

answer such questions as whether the local subgraphs centered on any given vertex in

the graph are homogenous or heterogenous across the full graph. The graph described

above is an example of a graph with heterogenous fine structure, whereas a ring is a

canonical example of a homogenous graph.

Similar to work on degree distributions and motif analysis which measure the local

connectivity and the presence of local subgraph structure across a graph respectively,

the fine structure of a graph can be represented as a distribution of LBD values.

A graphs’ LBD distribution is a normalized histogram of the LBD scores of all

the induced subgraphs centered on each of its vertices. The distribution has a scale

parameter, namely the radius, r, of the subgraphs, which controls the coarseness of

the analysis. For example, to compute the r = 1 LBD distribution for a graph,
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we iterate over every vertex in the graph, computing an LBD score for the induced

subgraph formed by the vertex, its neighbors, and all the edges connecting them.

Normalizing the histogram counts by the size of the graph then yields a distribution

over LBD scores, where the normalized value of each bin gives the proportion of the

graph’s subgraphs that have LBD scores in that bin’s region. Note that as the radius

of the LBD distribution approaches the diameter of the graph, the histogram will

converge to a spike on the LBD score of the full graph, since each induced subgraph

will eventually contain all of the graph’s vertices and edges.

An LBD distribution can be thought of as an abstraction of the distribution of

motifs produced by motif analysis. Any given motif has an associated LBD value,

but some motifs will map to the same value; for instance all star graphs, regardless

of size, map to L = 1, B = 0, D = 0. An LBD distribution then is akin to a motif

distribution which generalizes across classes of motif based on their LBD scores.

4.2 Method

In this chapter I will present LBD distributions computed for each graph in the sets

introduced in section 3.4. For each graph I have computed the distribution of LBD

scores for the induced subgraphs centered on each of the graph’s vertices and present

these data as a normalized histogram for each feature dimension L, B, and D, along

with lbd simplex plots containing a point for each vertex’s subgraph. To demonstrate

the effect of the scale parameter, r, on the representation I present and discuss the

results at radius 1, 2, and 3.

The first set of graphs, the constructed graphs, is intended to show clearly how

fine structure is revealed through this analysis by focusing on graphs that have well

understood structures. For the second and thirds sets, the social and other graphs

respectively, the structure is less clear cut and the analysis is necessarily more con-

servative and qualitative. Throughout this section I will be particularly concerned

with the r = 2 distributions, which, as I will discuss later, offer a good compromise

between fine granularity and representativeness. For each graph I include a visual-
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ization of its vertices and edges using the GEM algorithm from [13], along with the

r = 2 lbd simplex, and I highlight the key features of the graph’s LBD distribution

across radii. In each simplex visualization the full graph’s lbd location is represented

with an asterisk as a point of reference. For reasons of space, the LBD distributions

and lbd simplex visualizations at radii other than 2 are only included with the main

text for the constructed graphs. The remainder can be found in appendix A.

4.3 Constructed graphs

4.3.1 Binary Tree

Figure 4-1: Binary Tree graph.

The Binary Tree graph is a 127 vertex binary tree with a depth of 6. The full

graph’s low absolute D score reflects this feature’s sensitivity to the ratio of a graph’s

size to its order. Viewed in relative terms though, the D score dominates its B and

L scores, with no triangles and the almost half the vertices sharing the maximum

degree of 3.
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Figure 4-2: LBD distributions and lbd simplex for the Binary Tree graph at radius 1.
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Figure 4-3: LBD distributions and lbd simplex for the Binary Tree graph at radius 2.
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At r = 1 there are only two kinds of subgraph, the dipoles centered on leaves in

the tree, and the 3-stars centered on all other vertices except the tree’s root, which

is the center of a 2-star. This is clearly visible in the simplex, where the point in

the center represents the dipoles and the point at the lbd-tuple (1, 0, 0) represents the

stars. The distinction is also clearly seen in the distribution of L, with the 0 and 1

bins each containing half of the vertices. B and D scores are all 0 as expected at this

radius.
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Figure 4-4: LBD distributions and lbd simplex for the Binary Tree graph at radius 3.

All of the subgraphs centered on leaves become 3-stars at r = 2, and the previous

stars now become trees themselves. These trees will differ across the graph, depending

on the depth of their central vertex, which controls the relative number of degree 1,

2, and 3 vertices in the local subgraphs, which in turn controls their L scores, as well

as the number of disjoint dipoles, which controls their D scores. This can be seen

in the L histogram where the score of around 0.3 for the graph centered on the full

tree’s root can be seen, as well as the scores of around 0.2 for the subgraphs around

its immediate children. The remaining two bins represent the subtrees rooted higher

and lower in the tree. Of the 96 subgraphs with D = 0, 64 are the stars rooted at

the tree’s leaves, and the remainder are the subgraphs rooted at the parents of the
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leaves, whose branches are not deep enough to form a 4-path.

As the local neighborhood subgraphs grow in size we see their L scores decrease

as the proportion of vertices sharing the maximum of degree 3 grows. At r = 3 the

subgraphs centered on the leaves have changed from stars to trees, hence no L = 1

subgraphs remain. Conversely we see D increase as the number of disjoint dipoles

grows with the size of the subtree graphs, however this trend is fought against by the

normalization of D which also grows with the square of the graph size, leading to the

low score for the full graph mentioned previously. r = 3 is the maximum radius at

which D = 0 local subgraphs exist, with those subgraphs being the ones centered on

the leaves.

4.3.2 Tree Clique

Figure 4-5: Tree Clique graph.

The Tree Clique graph is a 62 vertex graph, combining a binary tree, as in the

previous example, with a complete graph. The binary tree section is a 31 vertex binary

tree with a depth of 4. Joined to one of the tree’s leaves by a single edge is a 31 vertex

complete graph. Due to influence of the complete graph, the combined graph has an

edge probability of 0.2541 which is the highest among the graphs analyzed in this

thesis. Its full graph B score is dominant due the the presence of the complete graph.

Its D score is also relatively high due to the graph’s large size and the fact that most
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dipoles in the complete graph are disjoint from those in the tree. Finally, its L score

reflects the fact that vertices in the complete graph have very high degree relative to

the vertices in the tree, but are on a par with each other.
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Figure 4-6: LBD distributions and lbd simplex for the Tree Clique graph at radius 1.

At r = 1 there are 4 classes of subgraph. The dipoles at the leaves of the binary

tree, which can be seen as the lbd-tuples at (0, 0, 0) in the simplex. The neighborhoods

of the non-leaf vertices in the tree form stars, seen at (1, 0, 0). Within the complete

graph B is maximal, whereas L and D are 0, resulting in the (0, 1, 0) points in the

simplex. Finally, the subgraph centered on the vertex within the clique which links

to the tree is an outlier, with only one node not having a degree of 31 like the rest of

the clique, resulting in an L score of around 0.06, and B score just below 1. This can

be seen both in the histograms and the simplex.
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Figure 4-7: LBD distributions and lbd simplex for the Tree Clique graph at radius 2.
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Figure 4-8: LBD distributions and lbd simplex for the Tree Clique graph at radius 3.
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As the local subgraphs expand their radii, the complete graph’s vertices connect

with the vertices in the tree, seen in the low-yet-increasing L scores. As with the

standard binary tree, the subgraphs centered on the leaves at this point form stars,

giving them lbd-tuple scores of (1,0,0) and the non-leaves come to include other ver-

tices whose degrees are equal to the maximum degree nodes in their subgraph, driving

their L scores down. A clear division in B exists between those subgraphs which con-

tain the full complete graph and those which do not. The non-zero D scores belong

to subgraphs close to the root of the full tree. In the simplex, 3 neighborhoods can

be distinguished: the subgraphs containing the clique in the top of the simplex, the

leaves at the bottom right, and the vertices near the root at the mid-bottom.

The 3 neighborhoods are again distinguishable in the scatterplot at r = 3. Those

centered on the 14 leaves of the tree have B = 0, D = 0 and L of around 0.4. This

places them in the bottom right of the simplex. The subgraphs around vertices near

the complete graph are again at the top of the simplex, although descending as their

B scores decrease relative to their L and D scores from branching out further into the

rest of the tree. The subgraphs not yet in contact with the clique and not centered on

the leaves appear at the bottom of the simplex, with their relative D scores increasing

as in the standard binary tree case.

4.3.3 Erdős-Rényi graph

Figure 4-9: The Erdős-Rényi random graph.
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As discussed in chapter 2, an Erdős-Rényi random graph is constructed by se-

lecting a graph order, a coin weight, p, and then flipping a coin with that weight for

each possible edge position in the graph and adding an edge there if the flip comes

up heads. As such, a particular set of parameters defines a whole family of random

graphs of which the graph presented here is one example with |V | = 115 and p = 0.1.

These random graphs are well studied and their full graph LBD scores have previ-

ously been found empirically to cluster in a region of LBD space occupied by the

graph presented here [32]. They tend to be bonded in proportion to their p parameter,

since for each 2-path the probability of triadic closure is by definition p [24]. L tends

to be low and D relatively high, due to the low probability of disproportionately high

degree vertices and the high size to order ratio respectively.
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(d) LBD Simplex

Figure 4-10: LBD distributions and lbd simplex for the Erdős-Rényi graph at radius
1.

At r = 1 two thirds of the subgraphs have non-zero D scores, which as we will

see is quite uncommon. This means that there must a large number of 4-paths in

the subgraphs at r = 1. The high L scores imply that most of the subgraphs are

dominated by one or two vertices with higher degree than those of the rest of the

subgraph and from the points at (1,0,0) in the simplex it can be seen that some stars
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exist. The range of of L and B indicates a heterogenous set of subgraphs.

0.2 0.4 0.6 0.8 1.0

0.05
0.10
0.15
0.20
0.25
0.30
0.35

(a) Leadership
0.2 0.4 0.6 0.8 1.0

0.1
0.2
0.3
0.4
0.5
0.6

(b) Bonding

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

(c) Diversity

l � 0

b � 0

d � 0

l � 1

b � 1

d � 1

�

(d) LBD Simplex

Figure 4-11: LBD distributions and lbd simplex for the Erdős-Rényi graph at radius
2.
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Figure 4-12: LBD distributions and lbd simplex for the Erdős-Rényi graph at radius
3.
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Because of the CPL of just over 2 and diameter of 4 the subgraphs converge

to common LBD scores very quickly. At r = 2 we can see that the majority of

subgraphs contain a large proportion of the full graph, and hence have very similar

LBD scores. D jumps up as more 4-paths are formed and disjoint sections of the

graph are connected, L drops as the dominant vertices are connected and compete

with one another for maximum degree, and B stabilizes near the 0.1 score which

would be expected given p = 0.1.

By r = 3 the vast majority of subgraphs contain the full graph, causing the LBD

scores to completely converge to the full graph score. The outlier path that gives the

graph its diameter of 4 has no effect on the LBD distribution.

4.4 Social graphs

4.4.1 Los Alamos
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�

Figure 4-13: Los Alamos graph and r = 2 simplex.

The r = 1 subgraphs are highly bonded and several cliques exist as is visible in the

(0,1,0) points in the simplex. Leadership scores range widely in r = 1 neighborhoods,

but converge to a high score as subgraph radii increase, dominated by the central

node that can be seen in the graph visualization. The low diameter leads to a near

convergence to full graph LBD scores by r = 3. Even at r = 2 the majority of
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subgraphs are homogenous, lying close to the full graph lbd in the simplex.

4.4.2 Karate
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�

Figure 4-14: Karate graph and r = 2 simplex.

The high bonding of r = 1 subgraphs shows the existence of cliques, which must

be small since their contribution to B is quickly overcome as r increases. A core of

highly connected vertices results in a high skewed L distribution at r = 2. The low

graph diameter and CPL leads to a quick convergence to the full graph LBD scores.

4.4.3 Dolphins
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Figure 4-15: Dolphins graph and r = 2 simplex.

The high number of (0,0,0) points in the r = 1 lbd simplex indicates dipoles on
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the edge of the graph. The wide range of L and B scores at r = 1 and r = 2 indicate

heterogenous fine structure across the graph. The cloud of points around the center

of the lbd simplex indicates an even trade off between L, B, and D scores for the

r = 2 subgraphs.

4.4.4 Enron

l � 0

b � 0

d � 0

l � 1

b � 1

d � 1

�

Figure 4-16: Enron graph and r = 2 simplex.

Fine structure is again very heterogenous across r = 1 and r = 2 subgraphs, with

a very wide range of LBD scores. At r = 2, subgraphs balance B and D scores with

L varying widely in proportion as can be seen from the cluster of points across the

center of the simplex. At r = 3 these L scores begin to converge.

4.4.5 Santa Fe

The broad range of LBD values across all three r values is to be expected for a graph

with such a high CPL. The lbd scores in the simplex fall within a similar range for

both r = 2 and r = 3, which is likely due to the high CPL causing the subgraphs to

only slowly merge with one another. B and D distributions stay relatively constant

across radii, whilst L scores drop.
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Figure 4-17: Santa Fe graph and r = 2 simplex.

4.4.6 JJATT
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Figure 4-18: JJATT graph and r = 2 simplex.

The high CPL of the graph gives it similar convergence properties to Santa Fe, but

highly clustered subgraphs result in higher B scores across all three radii. Intuitively

this matches what might be expected of the terrorist groups this graph represents.

LBD scores vary widely across all three radii, with two modes in L at r = 2.
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(a) Linux 2001 (b) Linux 2008
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(d) Linux 2001

Figure 4-19: Linux 2001 and 2008 graphs.

4.4.7 Linux 2001 and 2008

The distributions for the two Linux graphs are very similar, with the key difference

being the flatter distribution of L scores at r = 2 in the 2008 subgraphs compared

to the 2001 subgraphs that have higher L scores. This suggests that in 2001 email

correspondence was dominated by some key individuals, but over time the load has

been spread across several people. In both cases at r = 1 and r = 2 there are a broad

range of subgraph structures, which converge at r = 3.

4.5 Other graphs

4.5.1 Bright

Although the r = 1 subgraphs have relatively heterogenous structure, the r = 2

subgraphs have a narrower range of LBD scores than many of the other graphs in

this set, indicating an above average degree of fine structure homogeneity. This is
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Figure 4-20: Bright graph and r = 2 simplex.

also reflected in the r = 2 lbd simplex by the relatively tight cluster of points around

the middle, showing the r = 2 subgraphs have a roughly similar trade off between L,

B and D scores. By r = 3 the low CPL has lead to a near convergences of LBD

scores.

4.5.2 Lesmis
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Figure 4-21: Lesmis graph and r = 2 simplex.

A broad range of LBD scores exist at r = 1 with a significant number of dipoles

and several cliques, visible from the (0, 0, 0) and (0, 1, 0) scores in the simplex and the

zeros in for all three scores along with the ones for B respectively in the distributions.

At r = 2, three different characteristic levels of B can been seen in the distributions,

as well as two modes for L and D, which manifests as three distinct clusters of points
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in the simplex. These heterogenous regions have largely merged at r = 3, but a

spread of L scores can still be seen.

4.5.3 PolBooks
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Figure 4-22: PolBooks graph and r = 2 simplex.

A heterogenous r = 1 LBD distribution but a relatively homogenous r = 2

distribution can be seen in this graph, with B and D distributions having dominant

modes and L varying the most. This is reflected in the tight clustering of points in

the r = 2 simplex around the L axis, which becomes even tighter at r = 3 as the

subgraphs converge towards the full graph LBD score.

4.5.4 AdjNoun

At all three radii the subgraphs of this graph show L scores distinctly more dominant

than B and D. At r = 2, B and D have distinctive low modes, whilst L has a very

wide spread, including some markedly high scores. At r = 3 the L scores of the

subgraphs converge to the full graph’s lower LBD score, but dominance of L in the

subgraphs relative to B and D is clearly visible in the simplex.
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Figure 4-23: AdjNoun graph and r = 2 simplex.

4.5.5 Football

This graph is particularly interesting due to its dramatic shift between r = 1 and

r = 2. At r = 1, the subgraphs have a spread of relatively high leadership scores

and high bonding. This is due the the structure of the Football competition in the

graph, where many of the subgraphs are groups of teams playing each other in local

competition. Some vertices of these subgraphs are victors and therefore play more

games, leading to the high L scores. At r = 2 the victors play each other, so their

high degrees cancel each other out and lead to the drop in L scores visible in the L
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Figure 4-24: Football graph and r = 2 simplex.
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distribution. At r = 3 most subgraphs contain the full graph and converge to the full

graph LBD score.

4.5.6 C-Elegans
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Figure 4-25: C-Elegans graph and r = 2 simplex.

The subgraphs at r = 1 in this graph have a very heterogenous structure, with

LBD scores ranging very widely, but at r = 2 the majority of the variance in these

scores is in their L values, with B and D having very distinctive modes. This spread

of L scores dramatically converges however at r = 3.

4.5.7 PolBlogs

This graph contains isolated vertices, cropped from the visualization, which can be

seen in the (0, 0, 0) scores in the center of the simplex at all three radii. The subgraphs

are heterogenous at r = 1 and r = 2 in all three dimensions, particularly L and B,

which show wide variation. At r = 3 however, the LBD scores of the subgraphs

converge to a relatively small region in spite of the graph’s high CPL.
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Figure 4-26: PolBlogs graph and r = 2 simplex.

4.6 Discussion

These results show clearly that graphs with similar full graph LBD scores can have

quite different fine structure. Consider AdjNoun and PolBooks, both of which have

full graph LBD scores in a similar range. At r = 1 these graphs are widely different,

with AdjNoun containing many more stars as a proportion of its subgraphs than

PolBooks. Alternatively consider two graphs in a similar region of the lbd simplex

such as Santa Fe and Lesmis. The distribution analysis shows that the LBD scores,

and therefore the structure, of their local subgraphs are widely different, despite their

full graph LBD scores having similar relative proportions. The LBD distribution

representation therefore fills a gap in the full graph LBD representation of structure.

For the majority of graphs analyzed, the scale of the analysis, r, has a strong

impact on the distribution of LBD values observed and by extension the graph’s

fine structure. The clear exception is for graphs with high CPLs such as Santa Fe,

in which increasing the radius of the subgraphs analyzed introduces relatively few

new vertices and edges, resulting in only gradual changes in fine structure. For every

graph there is a dramatic shift in subgraph structure between r = 1 and r = 2, due

to including many more edges that can contribute to higher D scores and make stars,

complete graphs, and isolated dipoles far less prevalent structures. In this sense r = 2

is more informative about graph fine structure than r = 1, preserving information

about small neighborhoods, whilst being a large enough radius to let LBD scores
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respond to connections between linked neighborhoods.
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Chapter 5

Graph similarity and clustering

5.1 Motivation

Since the LBD distribution of a graph summarizes its fine structure, we can compare

the LBD distributions of two graphs to judge their similarity. Visualizations of LBD

distributions can be qualitatively compared to give a broad coarse grained feel for

the similarity of two graphs, but visualizing the joint distribution is challenging due

to its 4 dimensional structure (L, B, D, and frequency), leaving us to rely on the

strategies such as the one presented in the previous chapter, inspecting distributions

for each dimension separately and projecting the data into a lower dimensional space.

A quantitative comparison of LBD distributions is computationally feasible however.

By computing the earth mover’s distance [30, 27, 33] between two LBD distributions

a single value can be derived that summarizes the similarity of fine structure between

two graphs. In this chapter I demonstrate this method and use it to perform ag-

glomerative graph clustering, building a hierarchy of graphs based on the similarity

of their fine structure.

5.2 Method

In performing a fine structure comparison there are some choices and tradeoffs to

be made. One is what subgraph radius to consider for the distributions. In the
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extreme case one could compare two graphs where the radius of the comparison is

the diameter of one graph, but much smaller than the diameter of the other. This

would reveal little interesting about the relationship between the two. For much so-

cial network analysis, researchers are interested in ego-centric subgraphs with a social

network, which corresponds to a radius 1 analysis, or perhaps radius 2 if they are

interested in an analysis of the structure of the subgraphs including friends of friends

[38]. As discussed in the previous chapter, radius 2 is a reasonable compromise be-

tween preserving information about small neighborhood structure, whilst responding

to connections between linked neighborhoods.

An issue which was not mentioned in chapter 4 is whether or not to make the LBD

space discrete when computing distributions. Previously LBD distributions were

discretized into histogram bins without much thought for how large those bins ought

to be. The choice of the granularity of this discretization will impact any comparison,

since coarser discretizations may place distinct LBD scores in the same bin. For this

thesis I chose a compromise between abstraction and fidelity by discretizing LBD

space into 0.2 unit length cubes with the result that some graphs may be judged

more similar than in the non-discretized case. The results suggest however that the

discretization process does not introduce an unreasonable amount of noise.

Another concern relates to the question of what kind of comparison of fine struc-

ture we want to make. The construction of LBD distributions presented in the

previous chapter weights each LBD bin’s contribution in the representation by the

proportion of subgraphs in the full graph that fall into that bin. An alternative con-

struction could be simply a vector of each LBD value occurring in the graph. The

distinction here is that in the former representation proportion is important, whereas

in the latter mere presence is important. Consider for instance the case where two

graphs are being compared and one is a subgraph of the other, much larger graph.

In this case perhaps the presence-based representation may be more appropriate for

comparison than our proportional representation. This consideration makes clear

that in comparing LBD distributions we are comparing the relative proportions of

the features of the graphs’ fine structure. An upshot of this approach is that because
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the distributions are normalized, a comparison between two graphs of different sizes

is possible, whereas in a presence-based representation this may add complications.

I perform a fine structure comparison by choosing a subgraph radius, r, and

computing histograms, with bin sizes of 0.2, of the LBD scores of the radius r induced

subgraphs in each graph. I then normalize the counts of the histogram bins by dividing

by the number of vertices in each graph, yielding two LBD distributions. I compute

the earth mover’s distance between these two distributions using Euclidean distance as

the ground distance. Finally I normalize by the maximum distance in the discretized

space and subtract the result from 1 to yield a similarity measure in the range [0, 1].

Armed with a method for judging graph similarity by fine structure features, I

use it to find classes of graph that have these features in common using a clustering

approach. There are many choices of clustering algorithm available, so I have opted

for the generality and simplicity using average-link hierarchical clustering following

the method in [9]. In this agglomerative approach to clustering one computes the

pairwise similarities of all the graphs in the set to be clustered. Initially each graph

is in its own cluster. At each step ones then merges the two clusters for whom the

mean similarity is highest, resulting in a hierarchy of graph clusters.

5.3 Similarity results

To demonstrate that this similarity measure produces intuitively plausible results, I

followed the example of [29] and computed the similarity of a representative set of

the graphs from the previous chapter to permutations of themselves. I parameterized

these permutations by a noise factor ranging in 0.1 increments from 0 to 0.8 and

randomly permuted that proportion of edges in the original graph. The similarity

as a function of permutation averaged over ten trials for a variety of graphs can

be seen in figure 5-1, which demonstrates, as hoped, that this similarity measure

judges graphs to be less similar to their permutations as the degree of permutation

increases. Note however the case of the Erdős-Rényi random graph. This is the top

line in the plot, almost coincident with the top of the figure. The consistent high
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Figure 5-1: Radius 2 self-similarity. Ordinate: fraction of edges permuted; abscissa:
earth mover’s distance similarity measure.

similarity score shows that permuting a random graph does not necessarily make it

dissimilar to itself. This is because the construction of Erdős-Rényi random graphs

leads them to have characteristic fine structure properties at r = 2, namely low

leadership, bonding, and diversity. Note also that there is a lower bound for each

graph on self-dissimilarity caused by permutation, which is related to how close the

original graph’s LBD distribution is to the region typical of Erdős-Rényi random

graphs.

Figure 5-2a shows the pairwise similarity between each graph in the social and

other graph sets computed with r = 2. By contrast, 5-2b shows the similarity between

the graphs judged by the inverse of normalized distance between their full graph

LBD scores. From these results it is clear there is a qualitative difference between

similarity judged at the full graph level and similarity judged at the fine structure

level. This is particularly visible in the distinctive dissimilarity of the football graph

from other graphs in the set, judged by the fine structure analysis which has discovered

the structural regularities in the graph that result from the generative process of
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match-making that forms it and gives it the locally homogenous structure discussed

in the previous chapter. This quantitatively confirms the general conclusion drawn

at the end of the previous chapter, namely that two graphs can have a similar global

structure, judged by their full graph LBD scores, and yet have quite dissimilar fine

structures.

5.4 Clustering results

Figures 5-3a and b show dendrograms for the results of the clustering using the radius

2 and full graph similarties respectively. Recall that each graph is initially assigned to

a cluster by itself and these clusters are merged in order of greatest average similarity

between cluster members. Clusters are represented by horizontal lines and their

merging is represented by vertical lines connecting the lines of the merged clusters.

The horizontal axis gives the similarity value at which the merging took place. The

names of the graphs drawn from social data are shown in red. Again, a key point is

that the results are different, showing that similarity in fine structure and full graph

structure are not equivalent. As an illustrative example of this, consider C-Elegans

and Linux 2008. The full graph clustering considers these two graphs to be similar,

placing them in the same cluster at a high similarity threshold of 0.94, but the fine

structure clustering does not, only clustering them at a threshold of 0.80. Their

full graph LBD scores are close, but looking at their r = 2 LBD distributions, the

subgraphs of Linux 2008 have a more restricted range of L scores and a broader range

of B scores, leading Linux 2008 to be clustered with Linux 2001 over C-Elegans.

Looking at the clusters formed by the fine structure analysis it is interesting to note

that they often contain a graphs from a mix of different domains, for instance Bright, a

semantic network, and PolBooks, a graph of book co-purchases, have the most similar

fine structures. Other clusters are more homogenous, for instance the two Linux

graphs are placed in the same initial cluster, which suggests that there is consistency

in the way that email correspondence on the Linux mailing list is structured over

time. AdjNoun, a semantic network, and C-Elegans, a neural network, are the only
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Figure 5-2: Radius 2 and full graph similarities.
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two graphs that are judged as being more structurally similar to each other than to

any other graphs in the set in both the full graph and fine structure analyses. This

judgement stems from the fact that in both cases the LBD distributions of the r = 2

subgraphs of these graphs balance bonding and diversity against one another whilst

having a high-skewing spread of leadership scores.

The dissimilarity of the Football graph from all other graphs, judged by its fine

structure, is again due to a combination of its small radius, which leads to its radius

2 subgraphs being relatively homogenous, and the fact that there is low variation in

the degree of its vertices, which leads to low leadership scores that are uncommon

in other graphs such as social networks, which tend to contain more variation in

connectivity. These considerations lead it to be placed in a cluster by itself in the fine

structure analysis, whereas the full graph clustering does not respond to its unusually

homogenous fine structure.

Interestingly, neither measure judges the collaboration networks Santa Fe and Los

Alamos to be particularly similar in structure. Although the fine structure analysis

places them in the same cluster hierarchy, they are still judged to be significantly

different. In the case of fine structure, this is most likely because the small number

of vertices in the Los Alamos graph makes its distribution much more sparse along

the leadership axis than the Santa Fe graph, even though the bonding and diver-

sity scores fall in a similar range. At the full graph level, the differences are even

more pronounced, with the Los Alamos graph having a much higher leadership and

bonding than Santa Fe. Together these suggest that the idiosyncratic characteristics

of a particular group of collaborators are more crucial to the formation of a graph’s

structure at both a macro level and in its fine structure than the mere fact that the

graph represents people collaborating on papers as opposed so some other activity

such as corresponding via email.

It is also interesting to note that both analyses make very similar judgements

about the higher level clustering of the graphs. Both methods judge that there is

one hierarchical cluster containing JJATT, Dolphins, Enron, PolBooks, Bright, and

Lesmis and another containing AdjNoun, C-Elegans, PolBlogs, Karate, Santa Fe,
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Figure 5-3: Hierarchical clustering dendrograms based on radius 2 and full graph
similarity. Vertical connections show the similarity at which clusters are merged in
the hierarchy. The names of graphs generated from social data are shown in red.

and the two Linux graphs, with some disagreement about the placement of Football

and Los Alamos, which are in a sense exceptional due to either their homogenous

structure or small size. At the fine structure level these cluster distinctions seem to

be related to the tightness of the spread along the leadership dimension, but at level of

similarity at which these two clusters are finally merged the intra-cluster similarities

are themselves quite low, making a general characterization of the distinct clusters

hard.

Finally, note that in the fine structure clustering the majority of the graphs drawn

from social data are placed together in one homogenous cluster. The excluded graphs

are JJATT, which exhibits unusually high B scores in its subgraphs, Dolphins, which

is not from human social data, and the Enron email graph. By contrast the clustering

based on full graph LBD scores produces clusters that are very mixed with respect

to the source of their graph data.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In chapter 4 I introduced LBD distributions as a representation of fine grained struc-

ture in graphs. Using this representation to analyze a variety of graphs revealed that

graphs could have similar full graph LBD scores or have LBD scores that stood in

the same ratios to one another, and yet have fine structures that are widely different.

This means the LBD distribution representation reveals more about the structure

of a graph than is apparent by looking at its macro level features. Furthermore I

showed that for some graphs the scale at which fine structure is considered matters a

lot for their LBD distribution. The range of LBD values in almost all graphs changes

dramatically between r = 1 and r = 2 due to the increasing role of D and the re-

duction in the number of stars and isolated dipoles. I argued that r = 2 is a fruitful

scale for analysis, because it is the smallest radius that is still large enough to detect

structural features such as bridges between communities in a social network. I also

analyzed a number of graphs for whom the LBD scores of their subgraphs converges

only slowly to the full graph LBD score, namely graphs with large relative CPLs.

This empirical result makes sense when we consider that for graphs with high CPLs

we should expect that each increase in radius causes the subgraphs being analyzed

to only modestly increase in size, and therefore we shouldn’t expect changes in their

LBD scores to be as dramatic as for graphs with lower CPLs.
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I demonstrated in chapter 5 that the earth mover’s distance between two LBD

distributions is a reasonable approximation of edit distance, and therefore graph

similarity, by comparing graphs against permutations of themselves. An interesting

side result was that this was not true for Erdős-Rényi random graphs and I argued

that the reason for this was that edge permutation merely transforms one such random

graph into another instance of a random graph. Since a subgraph of such a random

graph is itself random, and it has previously been demonstrated empirically that such

graphs have a characteristic range of LBD values, we should not be surprised that

these r = 2 subgraphs likewise have a characteristic range of LBD values.

One might naively think that there could be fine structure features that charac-

terize networks of social interactions generally, or some class of social interactions

such as email exchanges specifically. The results of chapter 5 provide some weak

evidence to support this idea, but the results are inconclusive. Whether this is even

a reasonable expectation is unclear, given that the processes represented by edges

and vertices in graphs of social data can be quite different. Even when two graphs

purport to represent the same attributes, such as a friendship tie, the methods by

which they are constructed can be quite different, with implications for the resulting

graph structure.

With these caveats in mind, I nevertheless demonstrated that average-link hier-

archical clustering on r = 2 LBD distribution similarity forms a homogenous cluster

of graphs derived from social data, but this result was weakened by the fact that

several graphs derived from social data fell outside of the cluster, in particular the

Enron graph. The Enron and Linux email correspondence graphs were judged to have

widely different fine structures, which argues against there being a characteristic fine

structure for email networks across institutions. However, the fact that the two Linux

email networks were judged highly similar suggests that even if email correspondence

data in general lacks a characteristic fine structure, it may still be the case that the

correspondence data within institutions can have a characteristic fine structure that

is largely time invariant.

By contrasting the clustering results based on fine structure with those based on
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full graph structure I demonstrated that there are significant differences in judgements

of similarity depending on the granularity of the structural comparison. This provided

quantitative evidence for the qualitative argument that I posed in chapter 4, namely

that analysis of fine structure is not redundant in the face of information about full

graph structure; it reveals structural information that is not merely equivalent to that

derived from a full graph analysis. I also pointed out that clustering based on fine

structure created clusters that were more homogenous than those based on full graph

structure with respect to whether or not their network data came from social sources.

6.2 Future work

6.2.1 Graph structure

Some of the graph data analyzed in this thesis was originally directed, but was con-

verted to undirected graph data in order to be able to measure L, B, and D. This

transformation results in a loss of information about graph structure and can lead to

counterintuitive results. For instance, a graph may be judged to be highly bonded

when in fact many nodes within the graph are unreachable from others along the di-

rected edges. A natural extension of this work would be to develop versions of L, B,

and D which take edge direction into account. These directed versions could then be

used to generate higher fidelity LBD distributions, which better reflect the directed

graph structure.

Another direction could be to take the idea of characterizing graph structure by

the features of subgraphs and apply it with a completely different set of structural

features. In this thesis I chose L, B, and D because of their social dimension, but one

could imagine features measuring other structural dimensions such as reachability or

centrality. The general framework of decomposing a graph into subgraphs with a

chosen radius, measuring the distribution of the structural features of those graphs,

and then comparing those distributions between graphs is easily extensible in this

way.
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The fact that Erdős-Rényi random graphs have empirically been found to lie in

a relatively constrained region of LBD space has been noted both in this thesis and

previously, but as yet there is no formal analysis of why this observation should be so.

The fact that, as shown in this thesis through the results on permutation of random

graphs, such graphs additionally have characteristic LBD distributions is yet more

motivation for a formal analysis of the structural properties of random graphs with

respect to L, B, and D.

Throughout this thesis I have visualized LBD distribution data by presenting

the distribution of values for each dimension independently. This was a compromise

because of the difficulty of visualizing the distribution of joint LBD values. Presenting

a point cloud of the ratios of these values in the lbd simplex went some way to

giving a qualitative feel for this data, but it still remains challenging for humans to

process. A more compelling visualization method would make LBD distributions

more informative and useful.

6.2.2 Graph similarity and clustering

In chapter 5 I identified clusters of graphs with similar features in their fine structure.

The natural question then is what specifically is this common structure and how does

it arise? In the case of the Linux email graphs it is reasonable to suggest that

their similarity is due to a common generative process that produced them. Further

suggestive evidence for fine structure similarity being tied to a graph’s generative

process comes from the result obtained for Erdős-Rényi random graphs, where the

random edge permutation transformations did not significantly impact the similarity

of the original graph to its transformation. A key direction for future research is

a statistical analysis of the outcomes of different generative processes for graphs in

terms of their LBD distributions.

The fine structure comparison in chapter 5 gave evidence that the process mod-

eled by graphs representing the same phenomena, for instance email correspondence

graphs, can lead to quite idiosyncratic graph structure. One might expect that if

the Enron and Linux correspondence graphs model a similar generating process, then
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their fine structure should be similar too, but in fact neither their fine structure nor

their full graph structure is similar, which suggests that dissimilarities in the organi-

zational structures of Enron and the Linux kernel developers are more crucial factors

in the formation of the graphs than the mere fact that the graphs represent email cor-

respondence. The specific nature of these idiosyncrasies and what they reveal about

the efficiency, centralization, or other characteristics of the underlying organizations

that produce the data in these graphs is a topic for future work.

Despite finding dissimilar fine structure between email graphs, clustering on fine

structure revealed a cluster containing the majority of the graphs in the set derived

from social data. Although a weak result, it bears consideration that automatic

classification of graphs into social and non-social could potentially be done using fine

structure, assuming that this similarity result holds beyond the set of graphs presented

in this thesis. Less speculatively, the similarity of the two Linux graphs suggests that

it may be possible to automatically distinguish distractor graphs from graphs of social

data, such as email correspondence, generated by the same organization at different

points in time.
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Appendix A

LBD distribution figures

This appendix presents L, B, and D distributions at radius 1 through to 3 for each

graph studied in this thesis, along with simplex visualizations showing the relative

magnitudes of each of those scores to one another for each subgraph. In each simplex

visualization the full graph’s lbd location is represented with an asterisk as a point

of reference. I have made the data for the Bright, Enron, JJATT, Linux 2001, Linux

2008, Los Alamos, and Santa Fe graphs available on the web at http://people.

csail.mit.edu/owenm/netdata.html. The remainder of the graphs appearing in

this thesis can be found in Mark Newman’s collection of network data at http:

//www-personal.umich.edu/~mejn/netdata/.
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Figure A-1: LBD distributions and lbd simplex for the Binary Tree graph at radius
1.
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Figure A-2: LBD distributions and lbd simplex for the Binary Tree graph at radius
2.
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Figure A-3: LBD distributions and lbd simplex for the Binary Tree graph at radius
3.
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Figure A-4: LBD distributions and lbd simplex for the Tree Clique graph at radius
1.
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Figure A-5: LBD distributions and lbd simplex for the Tree Clique graph at radius
2.
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Figure A-6: LBD distributions and lbd simplex for the Tree Clique graph at radius
3.

73



0.2 0.4 0.6 0.8 1.0

0.05
0.10
0.15
0.20
0.25
0.30
0.35

(a) Leadership
0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

(b) Bonding

0.2 0.4 0.6 0.8 1.0

0.05
0.10
0.15
0.20
0.25
0.30
0.35

(c) Diversity

l � 0

b � 0

d � 0

l � 1

b � 1

d � 1

�

(d) lbd Simplex

Figure A-7: LBD distributions and lbd simplex for the Erdős-Rényi graph at radius
1.
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Figure A-8: LBD distributions and lbd simplex for the Erdős-Rényi graph at radius
2.
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Figure A-9: LBD distributions and lbd simplex for the Erdős-Rényi graph at radius
3.
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Figure A-10: LBD distributions and lbd simplex for the Los Alamos graph at radius
1.
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Figure A-11: LBD distributions and lbd simplex for the Los Alamos graph at radius
2.
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Figure A-12: LBD distributions and lbd simplex for the Los Alamos graph at radius
3.
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Figure A-13: LBD distributions and lbd simplex for the Karate graph at radius 1.
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Figure A-14: LBD distributions and lbd simplex for the Karate graph at radius 2.
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Figure A-15: LBD distributions and lbd simplex for the Karate graph at radius 3.
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Figure A-16: LBD distributions and lbd simplex for the Dolphins graph at radius 1.
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Figure A-17: LBD distributions and lbd simplex for the Dolphins graph at radius 2.
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Figure A-18: LBD distributions and lbd simplex for the Dolphins graph at radius 3.
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Figure A-19: LBD distributions and lbd simplex for the Enron graph at radius 1.
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Figure A-20: LBD distributions and lbd simplex for the Enron graph at radius 2.
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Figure A-21: LBD distributions and lbd simplex for the Enron graph at radius 3.
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Figure A-22: LBD distributions and lbd simplex for the Santa Fe graph at radius 1.
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Figure A-23: LBD distributions and lbd simplex for the Santa Fe graph at radius 2.
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Figure A-24: LBD distributions and lbd simplex for the Santa Fe graph at radius 3.
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Figure A-25: LBD distributions and lbd simplex for the JJATT graph at radius 1.
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Figure A-26: LBD distributions and lbd simplex for the JJATT graph at radius 2.
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Figure A-27: LBD distributions and lbd simplex for the JJATT graph at radius 3.
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Figure A-28: LBD distributions and lbd simplex for the Linux 2001 graph at radius
1.
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Figure A-29: LBD distributions and lbd simplex for the Linux 2001 graph at radius
2.
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Figure A-30: LBD distributions and lbd simplex for the Linux 2001 graph at radius
3.
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Figure A-31: LBD distributions and lbd simplex for the Linux 2008 graph at radius
1.
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Figure A-32: LBD distributions and lbd simplex for the Linux 2008 graph at radius
2.
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Figure A-33: LBD distributions and lbd simplex for the Linux 2008 graph at radius
3.
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Figure A-34: LBD distributions and lbd simplex for the Bright graph at radius 1.
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Figure A-35: LBD distributions and lbd simplex for the Bright graph at radius 2.
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Figure A-36: LBD distributions and lbd simplex for the Bright graph at radius 3.
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Figure A-37: LBD distributions and lbd simplex for the Lesmis graph at radius 1.
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Figure A-38: LBD distributions and lbd simplex for the Lesmis graph at radius 2.
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Figure A-39: LBD distributions and lbd simplex for the Lesmis graph at radius 3.
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Figure A-40: LBD distributions and lbd simplex for the PolBooks graph at radius 1.
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Figure A-41: LBD distributions and lbd simplex for the PolBooks graph at radius 2.
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Figure A-42: LBD distributions and lbd simplex for the PolBooks graph at radius 3.
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Figure A-43: LBD distributions and lbd simplex for the AdjNoun graph at radius 1.
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Figure A-44: LBD distributions and lbd simplex for the AdjNoun graph at radius 2.
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Figure A-45: LBD distributions and lbd simplex for the AdjNoun graph at radius 3.
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Figure A-46: LBD distributions and lbd simplex for the Football graph at radius 1.
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Figure A-47: LBD distributions and lbd simplex for the Football graph at radius 2.
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Figure A-48: LBD distributions and lbd simplex for the Football graph at radius 3.
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Figure A-49: LBD distributions and lbd simplex for the C-Elegans graph at radius
1.
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Figure A-50: LBD distributions and lbd simplex for the C-Elegans graph at radius
2.
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Figure A-51: LBD distributions and lbd simplex for the C-Elegans graph at radius
3.
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Figure A-52: LBD distributions and lbd simplex for the PolBlogs graph at radius 1.
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Figure A-53: LBD distributions and lbd simplex for the PolBlogs graph at radius 2.
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Figure A-54: LBD distributions and lbd simplex for the PolBlogs graph at radius 3.
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