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Abstract. Intelligent rooms are responsive environments in which human ac-
tivities are monitored and responses are generated to facilitate these activities. 
Research and development on intelligent rooms currently focuses on the inte-
gration of multiple sensor devices with pre-programmed responses to specific 
triggers. Developments in intelligent agents towards intrinsically motivated 
learning agents can be integrated with the concept of an intelligent room. The 
resulting model focuses developments in intelligent rooms on a characteristic 
reasoning process that uses motivation to guide action and learning. Using a 
motivated learning agent model as the basis for an intelligent room opens up the 
possibility of intelligent environments being able to adapt both to people’s 
changing usage patterns and to the addition of new capabilities, via the addition 
of new sensors and effectors, with relatively little need for reconfiguration by 
humans. 

1 Introduction 

Developing intelligent rooms, such as The Sentient in the Key Centre for Design 
Computing and Cognition at Sydney University pictured in Fig 1, has been dominated 
by the development of specific triggers and responses that require a great deal of con-
figuration. In their seminal papers on IE design, Brookes [1] and Coen [2] argued that 
a key design goal for developing IEs is to enable them to adapt to, and be useful for, 
everyday activities. Since these papers were published there has not been any pub-
lished attempt to address the question of how to go about developing such a self-
adapting IE. In addition, Brookes and Coen’s group at MIT found that configuring 
new sensor and effector systems to allow their IEs to produce useful behaviours was 
time consuming and labour intensive. If an IE could learn from its patterns of usage 
and learn for itself how to manipulate its sensors and effectors usefully both of these 
issues could be addressed. 

 



Fig. 1. The KCDCC’s intelligent environment, The Sentient 

A motivated learning agent, recently introduced by Singh et al [3], is an agent that 
is self-motivated to learn. Self-motivated learning provides a good basis for an intelli-
gent room because we want these environments to be driven to adapt to the installa-
tion of new sensors and effectors and changing usage patterns. In this paper we bring 
together ideas from intelligent environments and computational models of motivation 
to develop a intrinsically motivated intelligent room. 

2 Intelligent Environments 

An IE is a physical space for living or working in that is agent controlled and can 
bring computational power embedded within it to bear in a manner that helps users of 
the environment perform their daily tasks. The term Intelligent Environment has not 
been universally adopted and IEs also go under other names such as Jeng’s [4] Ubiq-
uitous Smart Spaces. An IE would necessarily need to be able to sense what is hap-
pening inside of it and respond to it with effectors - whether lights, projectors, or 
doors - in order to exhibit intelligent behaviour and help users. 

IE research could be regarded as a sub-field of ubiquitous computing in as much as 
a major aim of ubiquitous computing is to seamlessly integrate computers into every-
day living. IEs have several specific design requirements. Brooks [1] and Coen [2] 
have argued that IEs should adapt to, and be useful for, ordinary everyday activities; 
they should assist the user, rather than requiring the user to attend to them; they 
should have a high degree of interactivity; and they should be able to understand the 
context in which people are trying to use them and behave appropriately. An IE is es-
sentially, as Kulkarni [5] suggests, an immobile robot, but its design requirements dif-
fer from those of normal robots, in that it ought to be oriented towards maintaining its 
internal space rather than exploring or manipulating its environment. 

MIT’s intelligent room prototype e21, shown in Fig 2, facilitates activities via a 
system called ReBa, described by Hassens et. al. [7] which is the context handling 
component of the room. ReBa observes a user’s actions via the reports of other agents 
connected to sensors in the room's multi-agent-society and uses them to build a higher 
level representation of the user’s activity. Each activity, such as watching a movie or 
giving a presentation, has an associated software agent, called a behaviour agent 
which responds to a user action and performs a reaction, such as turning on the lights 
when a user enters the room. Behaviours can then layer on top of one another based 
on the order of user actions, acknowledging differences in context such as showing a 
presentation in a lecture setting versus a showing one in an informal meeting. Al-
though ReBa can infer context in this way, it cannot adapt to new ways of using the 
room. In order for an entirely new context to be created, ReBa’s behaviour agents 
must be pre-programmed to recognize the actions of the user and take an appropriate 
action. It does not self-adapt to new usage patterns. Furthermore, when new sensors 
are added to the room, the existing rules must be modified manually if they are to take 
advantage of the new sensor information. Our model, by contrast, uses a domain in-



dependent mechanism to learn behaviours rather than having the behaviours imple-
mented as part of the agent 

 

Fig. 2. MIT’s Intelligent Room Prototype e21, from [6] 

Other researchers have taken approaches to designing environments that are not 
explicitly agent-based. Both the University of Illinois’ Gaia [8] and Stanford Univer-
sity’s Interactive Workspace Project [9] have taken a more OS-based approach, de-
veloping Active Spaces and Interactive Workspaces respectively, which focus on the 
role of the room as a platform for running applications and de-emphasizing the role of 
the room as a pro-active facilitator. The specification of an action in these systems is 
is triggered by the user and the behaviour is programmed as an applications devel-
oper. Gaia’s context service provides the tools for applications developers to create 
agent-based facilitating applications, and the overall model is reactive rather than 
adaptive. Georgia Tech’s Aware Home Research Initiative plans on incorporating an 
infrastructure for developing context-aware applications [10], but so far no systems 
exist which allow IEs to self-adapt to new usage patterns. We believe that a motivated 
agent-based approach is necessary to allow for this kind of adaptivity. 

3 Motivated Learning Agents 

In AI literature an agent is anything that can be viewed as perceiving its environment 
through sensors and then acting within its environment using effectors on the basis of 
this sensor input. Agent models have a lot in common with IEs: both are described as 
having sensors for monitoring their environment and effectors for making changes to 
the environment. A variety of agent models have been developed over time with dif-
fering ways of mapping sensor input to effector output, from simple rule-based reac-
tive agents through to complex cognitive agents that try to maintain, and reason about, 
an internal model of the world. The question then is, what kind of agent model would 
be a suitable basis for an IE? 

An IE needs to be driven to assist users, adapt to changes in its configuration, adapt 
to changing uses of the IE, and understand context. Drives of this kind have been 



modelled by the concept of motivation in agent research, leading to several different 
varieties of motivated agent models. Norman and Long [11, 12, 13] developed a mo-
tivated agent model where motivation was modelled by the temporal urgency of tasks 
to be completed in order for a motivated agent-controlled warehouse to fill orders. 
Part of the model is shown in Fig 3, which illustrates how the motivation component 
directed the reasoning process to create new goals for the agent. 

 

Fig. 3. Norman and Long’s motivation model, from []. 

Beaudoin and Sloman [14] developed a simulation of a robot nursery in which a robot 
nursemaid implementing a motivated agent model was shown to effectively prioritise 
tasks using a sophisticated model of motivation that included logical propositions, 
temporal urgency, and levels of insistence. In their design of an agent-controlled wa-
ter filtration plant, Aylett et al. [15] explicitly extended the role of motivation in their 
agent model to planning, which showed promise despite the relatively simplistic mo-
tivation model used. Kasmarik et al [16] experimented with a domain independent 
model of motivation and used it as a trigger for reinforcement learning in different 
domain applications. 

The requirement for adaptivity in an IE suggests drives towards learning how to 
behave and how to utilize sensors and effectors, which are themselves instances of the 
more general drive of curiosity. Saunders and Gero [17] modelled curiosity computa-
tionally as a process that internally generates reinforcement signals that reward the 
discovery of novelty. They then modelled novelty as the property of being similar 
enough to other entities of the same class so as to be recognisable as part of that class, 
but different enough from the norm of that class’ form to be unusual. Computation-
ally, novelty was modelled using a self-organizing map that categorized entities pre-
sented to the curious agent. The further from the centroid of a class that the new en-
tity’s properties lay in the map, the more novel it was considered, but if it were more 
than a certain threshold away from the centroid the degree of novelty fell off follow-
ing a Wundt curve, shown in Fig 4, representing dissatisfaction with an entity’s 
“strangeness”. 



 

Fig. 4.The Wundt curve. Motivation rises and then falls off as novelty increases. From [16]. 

They then set out to investigate the utility of this model by using it to simulate the 
formation of cliques in artistic communities [18], to explore the design space of a 
simple architectural problem [19], and to provide a richer social force model of hu-
man crowds in museums [17]. Their agent models lacked a deep reasoning process 
but were nevertheless motivated agents, and this model of curiosity as a motivation 
could be applied to more complicated agent models, such as that which would be re-
quired to provide an IE’s functionality. 

Curiosity by itself is not enough to bring about adaptivity; learning must be a 
component too. Schmidthuber [18] and Singh et al [3] have developed agent 
prototypes that are motivated by their own models of curiosity. Schmidthuber 
developed an agent with a co-evolutionary learning strategy using a highly 
idiosyncratic model of curiosity that showed promising empirical results in 
performing exploration when compared with other learning strategies. Singh et. al.  
developed a model of an intrinsically motivated reinforcement-learning agent 
illustrated in Fig 5. Inspired by a psychological definition of intrinsic motivation, 
which is being motivated to do something because it is inherently enjoyable, they 
developed a learning algorithm in which the learner is rewarded internally for 
discovering new properties of its domain. They also gave the agent the capacity to 
build incrementally upon the list of actions that it discovered it could undertake in its 
domain and allowed them to be chained together into more complicated actions. A 
comparison between their prototype and a regular reinforcement learning agent 
showed that it was significantly faster at learning new behaviours. The most 
interesting feature of the prototype that they built was that the agent was able to learn 
new behaviours relatively quickly with no human intervention at all. The successes of 
Schmidthuber and Singh et al.’s motivated learning agents suggest that a motivated 
learning agent model could be a viable solution to providing the adaptivity required 
for an IE.  



 

Fig. 5. Singh et. al.’s intrinsically motivated reinforcement learning model. From [3]. 

4 Intrinsically Motivated Intelligent Room 

Combining the ideas in IEs with motivated learning agents leads to a model for an in-
trinsically motivated intelligent room. Motivation can play a valuable role in the agent 
model for an intelligent room generally, not just in learning, because it provides a 
model for the pro-active characteristics that are desirable in IEs. We present a moti-
vated agent model for an intelligent room that combines a self organising map for 
characterising the clusters of events in the room, with the characteristic Wundt curve 
being used to identify interesting novel events, and data mining capabilities to find 
patterns of behaviour in the states of the room that correspond to a selected interesting 
event. This model is shown in Fig 6. The model assumes two significant entities: the 
world and the agent. The world is described at any point in time by the data that can 
be sensed in the intelligent room. The agent has sensors to sense the state of the 
world, effectors to change certain aspects of the state of the room, a memory of world 
states and events, and a reasoning process that includes motivation, action, and learn-
ing. 



 

Fig. 6. The intrinsically motivated intelligent room model. 

4.1 The World State 

The motivated learning agent exists within a specific world. The state of the world is 
the basis for agent’s interaction with the world; therefore it becomes the basis for con-
figuring sensors and effectors and adapting to new behaviour patterns. The world state 
at time t, W(t), is characterised as a partitioned tuple of sensor inputs, which are in 
turn represented as attribute-value pairs such as PRESSURE_PAD=ON. One side of 
the partition represents inputs from sensors without associated effectors, such as a 
pressure pad in the floor. The other side of the partition represents inputs from sensors 
that do have associated effectors, such as a sensor attached to a light switch which can 
be both activated manually by a human operator and automatically by the room itself. 
A world state representation W(t) will therefore take the form: 

W(t) ::= <senseData> 

<senseData> ::= “(” <senseOnly> “|” <senseEffect> “)” 

And an example of such a representation is: 

W(0) = (PRESSURE_PAD=ON | LIGHT_DIMMER_INTENSITY=0.5, 
DESK_LAMP=ON) 

This distinction is relevant because the intention is for the motivated agent to learn 
behavioural rules via data mining, so any relevant rule must include changes in the ef-



fectable sensor data part of its sufficient conditions. For instance a rule such as the 
following would represent a behaviour that the IE would not have the capacity to en-
act since it does not have the effectors necessary to achieve it: 

IF SENSE = (PRESSURE_PAD=ON) THEN EFFECT = 
(PRESSURE_PAD_4=ON) 

4.2 Sensation 

In the sensation process, sensor input from the world is converted into a form suitable 
for performing reasoning and learning. The new world state W(t) is stored in the set S 
of all world states sensed by the agent. The sensation component also records events 
or changes in the world state. An event is represented as Delta(t), the changes in sen-
sor inputs between W(t) and W(t-1). Delta(t) takes the same form as W(t), a parti-
tioned tuple, but the values of the tuple represent the change in value between W(t) 
and W(t-1) with numeric values being  calculated as normalized differences and 
nominal elements being 0 if no change occurred and 1 if one did occur. For example: 

W(0) = (PRESSURE_PAD=ON | LIGHT_DIMMER_INTENSITY=0.5, 
DESK_LAMP=ON) 

W(1) = (PRESSURE_PAD=OFF | LIGHT_DIMMER_INTENSITY=0.8, 
DESK_LAMP=ON) 

Delta(1) = (PRESSURE_PAD=1 |LIGHT_DIMMER_INTENSITY=0.3, 
DESK_LAMP=0) 

The sensation component is also responsible for handling sensor faults in order to pro-
tect the integrity of the world representations so that reasoning and learning processes 
are not adversely effected by hardware faults. 

4.3 Motivation 

The intelligent room is expected to respond to human actions within reasonable time 
bounds, therefore it is desirable to only perform learning when it is useful to do so. 
Since the problem of self-adaptivity centers upon adapting to novel usage patterns and 
novel sensor and effector inputs from newly installed sensors and effectors, “useful” 
times to learn here correspond to times when novel world states occur. Responding to 
novel world states is governed in this model by a motivational model of curiosity. 

The motivation component of the agent model directs attention to action or learn-
ing as appropriate. The motivation component is a model of curiosity similar to the 
Saunders and Gero model outlined in section 3, which maps Delta(t) to a motivational 
intensity, I(t). This is done via a comparison between Delta(t) and previous Delta(t')s, 
where t' < t, using a self organizing map and Wundt curve as in the Saunders and 
Gero model. If I(t) is greater than a required threshold, then the curiosity’s intensity 
triggers the learning component of the agent model, otherwise the action component 
of the agent is triggered. 



4.4 Learning 

Because it is inappropriate for an intelligent room to experiment with changes in the 
state of the room, learning must rely upon drawing inferences from previously experi-
enced world states without being able to effect the environment during the learning 
process. The aim of the learning component of the agent model is to infer a set R of 
behavioural rules from the set of stored world data S and then store R in memory for 
the action component to utilize. Such behavioural rules will be of the form: 

Rule ::= IF SENSE = <window> THEN EFFECT = <action> 

Where <window> is a tuple of <sensor-data> and <action> is a tuple of at-
tribute-value pairs consisting only of effectable sensor data. Such rules are formed by 
considering the changes in world state within a given time window and constructing 
rules to enact equivalent changes when sufficient support and confidence levels exist 
for such a rule to be derived. Data mining techniques such as Generalised Sequential 
Pattern (GSP) mining can find these rules from the memory of world state tuples. 

4.5 Action 

The action component of the agent model maps the most recently sensed world state 
W(t) and previous world states within a given time window to a rule from the set of 
behavioural rules R to be executed by the IE’s effectors. It then sends the appropriate 
commands to the IE’s effectors to enact the changes in the world dictated by the rule 
selected. 

4.6 Memory 

The sensation, motivation, learning, and action components all require information 
about earlier states of the world, and all bar action update that information. This ne-
cessitates a memory component for storing previous worlds states, deltas, and behav-
ioural rules. The various kinds of interactions with memory are outlined in the sec-
tions on the specific components and Fig 7 provides a diagrammatic summary. 



 

Fig. 7. Interactions between the reasoning and memory components of the model. 

5 Conclusions 

A model for an intelligent room based on an intrinsically motivated learning agent 
moves us closer to an adaptable intelligent environment. Our initial tests with this 
model include sensor data that identifies different behaviours associated with the loca-
tion of people in the room (the pressure pads) and the state of the electric devices in 
the room (lights, projectors, applications being projected). Given this kind of data, 
behaviours can be learned that are based on patterns of use, rather than on the identi-
ties of the individuals in the room. The validation of this model is a test of its adapt-
ability, that is, can the room change its behaviour when new sensors or effectors are 
added without requiring additional programming. 
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