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Abstract
Two dozen networks are analyzed using three parameters that attempt to capture
important properties of social networks: leadership L, member bonding B, and diversity
of expertise D. The first two of these parameters have antecedents, the third is new. A
key part of the analysis is to examine networks at multiple scales by dissecting the entire
network into its n subgraphs of a given radius of two edge steps about each of the n
nodes. This scale-based analysis reveals constraints on what we have dubbed “cognitive”
networks, as contrasted with biological or physical networks. Specifically, “cognitive”
networks appear to maximize bonding and diversity over a range of leadership
dominance. Asymptotic relations between the bonding and diversity measures are also
found when small, nearly complete subgraphs are aggregated to form larger networks.
This aggregation probably underlies changes in a regularity among the LBD parameters;
this regularity is a U-shaped function of networks size, n, which is minimal for networks
around 80 or so nodes.

1.0 Overview
         One of the ways science advances is to discover non-trivial relations
among measurements of an entity, which then give insights into the nature of
that entity. Classic examples include: (a) the PV/T relation between
pressure, P, temperature, T, and the volume, V, of a gas, (b) the Strahler
number, Ni/(Ni+1) which characterizes the branching structure of rivers or
trees, or (c) supply-demand relations. In the study of social networks, these
kinds of discoveries of parametric relations are rare (but see Barabasi &
Albert 2002, Watts & Strogatz 1998, Newman, 2003). Using a multi-scale
analysis, we report three new properties that are characteristic of one
important class of social networks.

Although our specific measurement parameters might be questioned, they
were chosen to have relevance to the building of “cognitive” social
networks, as contrasted with networks such as the spread of infectious
diseases or telecommunications infrastructure. Two of the three parameters
chosen are closely allied with previous measures. These choices, however,
are not the key issue. Rather, can these parameters lead to the discovery of
new properties characteristic of a class of social networks? Will these
discoveries of new relationships lead to insights about the structure of social
networks?
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We proceed first by presenting the LBD parameters, using the evolution of a
half-dozen small “start-up” groups of 10 to 30 individuals to gain the basic
insights (Richards & Wormald, 2009). Then about two dozen small
networks (50 – 500 nodes) are examined. Part of this latter analysis entails
breaking down the network into smaller components. These components
resemble the small groups. The next step is to aggregate these components to
form a larger network. This analysis shows that there are two distinct
processes involved in the network formation, with each process having quite
different relations among parameters. Finally, we make the conjecture that
as networks are increased further in size to 1000 or 106 nodes, a third,
stochastic process comes into play.  Hence, network analysis must be
conducted at multiple scales.

2.0 The Representation
Let Gn be an unlabeled graph with n vertices. Each vertex vi of Gn

corresponds to a group member (i) and each undirected edge e(i,j) indicates
a symmetrical relationship between two group members. Each individual
will have at least one relation to another. We assume that Gn will be a
connected graph. This characterization is very simple, and can easily be
augmented using directed edges, for example. If Gn is not stationary, but is
evolving, we so indicate by Gn

+ .
Unfortunately, even with our simple characterization, the number of

different graphical forms explodes rapidly as the number of vertices
increases. A group of only 8 individuals has over 10,000 different possible
graphs for reciprocal relationships; for 12 individuals, there are over 100
billion; for 16 members the number explodes to O[1023]. Hence detailed
representations such as pictures of graphs, matrices, or edge lists quickly
become impractical for network classification. Consequently, a common
strategy is to focus on a few key parameters that capture regularities or
which define classes of graphical forms. Over the past decade or so, popular
choices have included degree distributions, edge probabilities, characteristic
path lengths, clique number, diameter, chromatic numbers, or spectral
coefficients – plus others more esoteric (Read & Wilson, 1998, Newman,
2003).  In the area of social networks, such choices have led to distinctions
such as random graphs (Bollabas, 2001), scale-free or multiscale graphs
(Barabasi, 2002; Kasturirangan, 1999), small world graphs (Watts &
Strogatz, 1998), peer-to-peer graphs (Bourassa & Holt, 2003) and p* graphs
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(Anderson et al. , 1999.) Almost all of these parameterizations are applied to
characterize large-scale graphs (>>1000 nodes) and are of limited value for
small group studies (< 100 nodes.) One notable exception are motifs that
appear as induced subgraphs in large networks (Milo et al, 2002; Stoica &
Prieur, 2009; Wolfram, 2002) or the studies of subgraph cascades (Leskovec
et al, 2007; Watts, 2002). Our proposal follows these leads, identifying three
types of subgraphs that capture important characteristics of small group and
network formation.

The main proposal is that the evolution of a network or group Gn
+ ->

G+
n+1 entails the interplay of leadership, team building, and diversity in

expertise.  These attributes are particularly relevant in start-ups. First, the
start-up needs the initial visionary leadership, plus a few other founding
members to create the seed. But at some point, additional expertise is
needed, such as legal aid, venture capital financing, or special talents for
product development, etc. (Page 2007). All together, bonding among these
members creates a successful start-up that functions smoothly as a highly
motivated team. In sum, the team has leadership, there is a range of different
talents, and critically, close alignments are present among team members.
Each of these three factors can be associated with different types of
subgraphs, which in turn can be used to parameterize the group structure.
Accordingly, we define the following three parameters:

2.1 Leadership L: This parameter is a measure of the extent to which the
edge connectivity in a network is dominated by one (or more) vertices
Hence the parameter L is based on vertex degree, di, with vertice(s) having
the highest degree dmax taken as the leader(s). Consider the “star” subgraph
Sk , with one dominant vertex and k-1 vertices all of degree one. If Gn = Sk,
the leadership index for Sk is defined to be “1”.  Following Freeman (1978),
the leadership score for any graph is then given by:

             L = (dmax − dii=1

n∑ ) / ((n − 2)(n −1)) 1.

where di  is the degree of vertex vi .  This relation sums the difference in the
degree of a vertex with respect to the maximum degree in Gn, and normalizes
this sum by the maximum possible sum, ((n −1

i=1

n∑ ) −1) = (n − 2)(n −1)  which
is derived from the case when Gn = Sn.
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Fig 1: Subgraphs that capture the key properties of groups and their evolution. Left: Graphs
with maximal or near-maximal values of the L, B, D parameters. Right: Graphs revised with
an edge addition (green) or deletion (red), with new L, B, D values.

An obvious weakness of the leadership index is that for graphs with directed
edges, such as hierarchical trees Tn, the dominant vertex may not be the
vertex with the maximum degree. Such situations are common in military or
business organizations. In these cases, the leadership measure could be
revised to count the total of the in-degree for each vertex, accumulated over
the subtrees.

2.2 Bonding B: As team building increases, group members find similar
interests. These alignments are new bonds, which are represented as new
edges between vertices in Gn

+. With increasing connectivity, if vertex vk is
joined to both vertices vi and vj, then in social networks the likelihood
increases that vi and vj are also joined. (In other words, if the friend(s) of
your friend(s) is also your friend(s), then you belong to a tightly bonded
clique.) A popular measure for this clustering is the number of triangles
about each vertex, normalized by the maximum achievable by a graph with
the same number of (directed) paths of length 2:

B = 6 * (# triangles) / (# paths _ length _ two) 2.

with the factor “6” needed to correct for the number of (directed) paths
associated with any triangle (Newman, 2003.) Note that if Gn is the fully
connected graph Kn, then bonding B is maximal with value “1”, whereas for
the “star” graph Sn or for any tree Tn, the bonding will be zero.  Hence when
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L is one, B will be zero, and vice versa. This interdependence among these
two parameters, and also the third parameter D described below, suggests
that a useful dimensionality reduction in the representation is possible, as
will be seen shortly.

Other definitions of bonding could be used. For example, the number
of triangles could be calculated (and normalized) locally about each vertex
and summed over all vertices. (This is the clustering coefficient used by
Watts & Strogatz, 1998) A table by Newman (2003) compares the values of
three versions of “clustering coefficients”, showing high correlations over
most of their ranges. For our study, the definition (2) typically used in
describing social networks appears to be the most sensitive to the different
types of observed small group evolution effects.

2.3 Diversity (or heterogeneity) D: The “bow-tie” illustrates our diversity
measure (Fig 1.) The minimum unit is the dipole K2 consisting of two
connected members forming a partnership or “mini-team”.  Diversity
emerges when two such dipoles are separated by a minimum of two edge
steps, which we call disjoint dipoles. Diversity increases with an increasing
number of such pairs of disjoint dipoles. Note that this measure is related to
Granovetter’s (1973) weak ties, and is high when centrality indices are high
(Newman, 2005).  To obtain the diversity measure, the number of pairs of
disjoint dipoles in Gn with n ≥ 4  is normalized using the count of the
number of induced squares in the complete bipartite graph KF[n/2], C[n/2] as
follows:

 D =Sqrt[(# disjoint _ dipoles) / (1
2
* n
2
(n
2
−1))2 ]               3.

It is clear that each pair of independent dipoles in a graph corresponds
precisely to an induced square (i.e. a closed path of length 4 with no
diagonals) in the complement of the graph. This number is maximized, over
all graphs on n vertices when n is even by the complete bipartite graph
(Schelp & Thomason, 1998). (Note that when n is odd, the Floor(F) and
Ceiling(C) of n/2 apply.) The square root in the definition is used to bring
the measure into a more appropriate range for comparison between graphs
that are of the density we will be considering, but does not change the
maximum possible value of D, namely “1”.  (In the results to follow, we
computed the denominator in expression (3) rounded to the nearest even
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integer. This procedure was a convenient approximation for cases when n
was odd.)

Again, like the L and B parameterizations, other measures related to our
diversity measure have been proposed. For example, Caldarelli et al (2004)
also count 4-cycles, but in the graph Gn, not its complement. More relevant,
are centrality measures. When centrality is high for sparse graphs, so will
diversity be high. Although the motivation may differ, the intent is to unveil
hidden, higher-order properties of complex networks, including aspects of
“weak, distal ties”.

2.4 The L, B, D  simplex: The interdependence of the L, B, D
parameterizations have already been noted (see also Fig 1.)  Without
excessive loss of information, we can project the L, B, D values onto their
<1,1,1> plane as follows:

l = L/(L + B + D)
b = B/(L + B + D)             4.
d = D/(L + B + D).

Figure 2 illustrates. Here the simplex has been divided into nine parts, with
the interior triangle roughly corresponding to some common types of graphs.
The interior triangles near each vertex correspond to regions of dominance
of one parameter. For example, if l >> b, d, then the region abuts the l = 1
point and includes variations on star-like subgraphs Sn. Similarly, near b = 1,
we find the complete graphs Kn, and near d = 1 are rings Rn (i.e. graph
cycles) or “umbels” Un. The latter are extreme cases of sparse graphs where
clusters of small complete graphs are linked through one central vertex.



7

Fig 2: Regions of some familiar graphs are indicated on the projection of L, B, D onto the
1, 1, 1 plane. Kn = complete graph; Sn = star graph; Rn = ring. The blue circle indicates the
terminal equilibrium location of evolving small groups.

Also shown on the plot by a blue circle is the approximate equilibrium location
for small groups. Note that this location is on the leadership side of the d, l
bisector through b = 1, roughly on the partition l > b,d. and well to the right of
the region of small Erdös-Rényi random graphs. (The random graph area
illustrated is for 20 vertex graphs of varying probabilities; as n increases, the
region moves toward l = 0.)

3.0 Small Group Representation (and Evolution)
Small groups are defined here as a collection of less than 100 individuals

or agents. As mentioned, they are typically formed by one or two individuals,
who then enlist other colleagues for support and expertise. Using the LBD
representation, the observed evolution of a typical small group is shown in Fig
3.  These are averaged results for six small groups, described in more detail
elsewhere (Richards & Wormald, 2009).

The left panel of Fig 3 shows the L, B , D values for several stages of the
group development indicated at the top of the figure. (The numbers at the
bottom show the group size.) Although these curves represent a simplification
over the actual graph structures, the dynamics is obviously still complex



8

Fig 3. An example of how L, B, D  and l, b, d vary in the evolution of a small group. In the left panel the size
of the group is shown on the bottom line. The red spiral on the right panel shows typical small group
evolution, averaged over six small groups. The green curve shows the positions of 20 vertex random graphs
with edge probabilities as indicated.

(Dorogovtsev & Mendes, 2003). As a further simplification, we show these
same data replotted on the l, b, d simplex in the right panel of Fig 3. Now we
see a regularity in the evolution in the form of a counter-clockwise red spiral.
Elsewhere, we have shown that this regularity cannot be modeled using a
probabilistic evolution for recruiting and bonding of new members. Such
probabilistic models yield a smooth clockwise arc from l = 1 upward toward b
= 1, joining the green curve, which indicates loci for Erdös-Rényi random
graphs.

 An important point emerges from the small group study:  the evolution is
complex, but seems to move from l = 1 in a counter-clockwise spiral toward
an equilibrium point where b ~= d < l. This “final” location is along the b = d
divider of the simplex.  This result is a characteristic that also appears in
subgraph components of larger networks.

4.0 Small Networks
    We consider networks having roughly 50 to 500 nodes to be small. Table 1
lists the collection analyzed here, along with some of their parameters. (See
Appendix 1 for more details.) Fig 4 presents a encapsulated summary showing
the range of network positions in the lbd simplex. In the table, as well as in the
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Figure 4. Illustration of the variability of LBD indices for different Social networks. For clarity, the raw
LBD values have been projected onto the 111 plane (ie normalized by their sum.) The red numbers refer to
“cognitve” networks; the green numbers are pseudo-trees or artificial constructions. The blue line indicates
the range of Erdös-Rényi random graphs with edge probabilities as indicsated ( n= 100.)

simplex, we have distinguished between the “cognitive” or  more interactive
social networks (red numbers in Fig. 4) and those which might be considered
“passive” or constructed (green numbers) – such as infectious diseases or more
clearly, networks of trees without graph cycles etc (or with very few three-
cycles). Networks generated by preferential attachment with one link only
between a new and old node would be in this latter class.

     Note first that all our “social” networks have  lbd values that fall in the upper
half of the simplex, above the line b = d. Below this dividing line are various
forms of “pseudo”-trees, with varying degrees of complete graphs as
components. (Strict trees will be located on the b = 0 edge of the simplex.) By
construction, we can create networks that occupy arbitrary positions below the b
= d divider – for example by adding “buds” of complete graphs to trees, thus
moving the network position for a strict tree upward from the b = 0 boundary.
However in the class of “interactive” social networks we have studied, this lower
half of the simplex below b = d appears unoccupied. This implies that for social
networks, B >= D, as was seen for the small group equilibrium point.

5.0 Constraints on L, B, D relations:
     Social networks aside, obviously our L, B, D parameters are not independent.
For example, L is maximal for the “star” like tree that has no triangles (3 cycles.)
Hence B=0. But as edges are added to the star graph, triangles are formed, and
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Num    Graph   Vertices/Nodes   v   e             Edges  Ref.
   1   Seed+       Start-up    6    7       Collaboration    34
   2 SmallGroup      Start-up (avg)   25   42       Collaboration    34
   3 LosAlamos         Scientists   30   78       Collaboration    31
   4   Karate     Club Members   34   78         Friendship    42
   5   Enron    Employee email   37   50    Email exchange      9
   6 LesMiserable       Characters*   40  105 SceneCoappearance    18
   7   HIV     Core Group   40   56         Friendship    32
   8   Bright             Words   54   175      Free associations    31
   9  Dolphins       Dolphins   62  159    Time in proximity    22
 10   Enron     Employee email   79  147   Email exchange     9
 11  PolVotes      Senate 2009   99  356    Same Votes   19
 12  PolBooks            Books  105   441   Purchased together    20
 13  Adj-Noun  Adjectives & Nouns  112   425     Co-occurence in

DavidCopperfield
   27

 14   SantaFe       Scientists  116  174       Collaboration   13
 15   Enron   Enron Employees  143  623      Email exchange     9
 16    JJATT       Terrorists  263  998     Known associate     3
 17 C.Elegans         Neurons  297 2148  Neural connection    40
 18 Linux2001 Kernel mailing list members  302  749      Email exchange    14
 19 Linux2008               ditto  447 2122             ditto    14
 20 PolBlogs    Poltical Blogs 1490 16715   Blog Hyperlinks      1

    “Non-Cognitive”
 21 BinaryTree        Binary tree  127   126
 22 InfxDisease        HIV spread  250   266    transmission   32
 23  Football College football tournament  115   613     Match played   13
 24 SmallWorld       Ring seed 1000 10^3
 25 Barabasi_2       Multi-scale (2 attach)  500  982    PrefAttach     5
 26 Barabasi_5       Multi-scale (5Attach)  500 2422    PrefAttach     5
 27 Erdös-Rényi    Random graph (eP=0.1)  100   524
 28 Erdös-Rényi    Random graph (eP=0.4)  100  2083
 29 BuddedTree    Tree + Triangle buds  109  110
 30 RandomTree  100    99

Table 1. Networks analyzed. See Appendix 1 for more details. (* Two co-appearances were
required to eliminate random co-occurrences in scene.)
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the lbd position will move upward toward B=1 to the location of complete
graphs with all vertices of the same degree and L = 0. Similarly, if edges are
removed from the complete graph (where B=1) such that all vertices continue to
have equal degree, then the revised graphs will lie along the L = 0 boundary and
eventually the graph will morph to a ring located at D = 1, with both  B and L =
0. What we seek, then, are relations among the LBD parameters that are not a
trivial consequence of the innate dependencies among the parameters.

Specifically, the role of the b=d divider in the Simplex should be a property of
the networks, not a trivial consequence of innate dependencies among the
parameters. Similarly, the mean positions of the set of “social” networks in Fig 4
seem to be somewhat regular. To a crude approximation (red dashed line) this
locus is b = 0.75(1 –l) (4/3). This result is clearly a potential network property,
and will be discussed in a later section. To understand this approximation,
however, we need to proceed first by breaking up the network into small
subgraphs,  noting the position of these subgraphs in the lbd Simplex, and then
showing the effects of linking subgraphs into a larger network.

5.1. Fine structure of a network
     Consider the small graph in Fig 5 centered about the circled node. This graph
exemplifies a subgraph of a much larger network. One node and its edges have
been highlighted in green. Note that all vertices lie at most one-edge step from
the center node. Hence our subgraph has radius 1.  Rather than computing LBD
values for the full network, we can gather additional information by the
distribution of lbd values for all n subgraphs. Although these data can be
gathered for subgraphs of various radii up to the diameter of the full graph, we

Fig 5. Example of an induced subgraph of radius 1 about a (circled) node.
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limit the subgraphs to those with radius 2. (This choice is the smallest needed to
yield good estimates of the parameter D.)  For each full graph, we now proceed
to plot the lbd values of its n subgraphs, obtaining a scatter plot on the Simplex.
These locations indicate the fine structure of the network for the chosen radius.

       Using a radius of 2 for the subgraphs, Fig 6 (right) shows this fine-structure
scatter for two quite different social networks, Linux-01 and JJAT. (More
examples are shown in Appendix 3.) Not surprisingly, the scatter is large.
However, two important observations consistent over other social networks are
illustrated: (1) the full graph lbd values typically lie above the radius 2 scatter (*
in Fig 4), and (2) the lower boundary of the scatter tends to hug the b = d

Fig 6. Radius 2 subgraph scatter plots for Linux01 (top) and JJAT Networks (bottom). See
Table 1 for network descriptions. Full graph lbd value is indicated by *. Note that almost all
points lie above the b = d divider.

divider. These observations demonstrate that small subgraphs (or small groups)
have a structure that differs from that which characterizes the entire network and
which is more typical of small groups. (Note: LBD calculated for a subgraph
will still find the maximum degree node, hence the maximal degree nodes may
appear in more than one subgraph.) Thus we have one process characteristic of
small groups, and a second that presumably arises from how the small groups
are linked to form very large networks.

Claim 1. If a network maximizes both B  and D , then the lbd scatter for its
subgraphs of radius >=2 will lie in the upper half of the Simplex, with the lower
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boundary of the scatter often hugging the b =  d divider (with only a few
exceptions.)

Proof Sketch: The approach is to specify the graphical form when D is maximal, showing
that B must also be maximal for that class of graph. As the maximal graphical form is
perturbed, disjoint dipoles will be reduced (decreasing D), and the number of paths of
length 2 will increase (decreasing B.) Because D decreases slightly faster than B, the ratio
B/D is seen to increase.

Preliminaries: Consider the graph Gn and its complement !Gn. Then the number
of disjoint dipoles in Gn is the number of 4-cycles (induced squares) in !Gn.
(This can be seen easily by noting that the complement of an induced square is a
pair of disjoint dipoles.) The Gn with the maximum number of 4-cycles is !Gn =
Kn/2,n/2, namely the complete bipartite graph. (see proof in Schelp & Thompson,
1998.) Hence the maximum number of disjoint dipoles for any Gn is ((n/2)C2)

2=
((1/2)(n/2)(n/2 – 1))2, where the Floor and Ceiling is used for odd n.  Note that
this is the denominator of the normalized D.

Consider next the complement of the complete bipartite graph !Kn/2, n/2.  This layout
has the maximum number of disjoint dipoles. For any !Kn/2, n/2, both parts of this
(unconnected) graph are complete graphs (see Fig 5.) Hence not only is D=1 but
B=1 also, hence b = d.

Case 1: We require our networks to be connected. Joining the two components of
!Kn/2, n/2 with a single edge j will create a connected graph of diameter 3, and will
reduce both B and D. Specifically, a single link will increase the paths of length 2
by 2(n/2 –1) and eliminate (n/2 – 1)2 disjoint dipoles (see Fig 5.) More generally,
for j links, the paths of length 2 will increase by 2 j(n / 2 −1)  and the disjoint
dipoles will be reduced by (n

2
− j)2 )

k=1

n/2

∑ . For this first case with n > 5,

new values for D and B will be:
               D = Sqrt[(n/2C22 − j(

n
2
−1)2 + ( j( j −1) / 2)) / n/2C22]                   5a.

alternately,
                D2 =1−16 j /n2 + 32 j( j −1) / (n2(n

2
−1)2)                                  5b.
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         Fig 5. Revisions of complement of complete bipartite graph

similarly,
                B = 6n/2C3 / (6n/2C3 +2 j(

n
2 −1))                                             6a.

or,
                1/B2 = (1+2 j / (n2 (

n
2 − 2)))

2                                                     6b.

Neglecting the fourth-order terms in n,  the (D/B)2 ratio becomes

                (D /B)2 = (1+16 j / (n(n−2))(1−16 j /n2)                                7a.

                              (1−16 j /n2)2                                                           7b.

which goes to 1 for all j << n as n increases. but is less than 1 otherwise (See
Table 2 for small j, n exceptions.)  Hence generally, B > D for case 1.

Case 2. In addition to adding links between single nodes in the halves of !Kn/2,n/2,
several linking edges could emerge from one node and join different nodes in the
other half of !Kn/2,n/2. Each of these cases will form a triangle, thus increasing the
triangle count at the same rate as the path 2 count. B will be only marginally
affected. However, the number of disjoint dipoles will continue to decrease as in
case 1. Hence B/D ~> 1. (See Table 2.)

Case 3. Let one edge link the halves of !Kn/2, n/2 to create a minimal connected
graph. Then proceed to delete edges. Clearly the limiting case is a tree with one
edge connecting two “star-like nodes” with (n/2 – 1) vertices of degree one.
Because there are no triangles, the lbd location is on the b = 0 boundary.
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Intermediate edge deletions will lie between this location at b = 0 and the b = d
divider. (See “non-cognitive” examples in Fig. 4.)

Case 4.   First one vertex is taken to cover both halves of !Kn/2,n/2 (i.e the limiting
configuration of Case 2.)  Then edges are removed equally in both halves of
!Kn/2, n/2.  The number of edges removed is either 25% or 50% of n.

Table 2 shows some results. Note first that over the situations explored, the B/D
ratios hover near 1, with only the two serious exceptions indicated in bold. (Note
these are for small n.)  In contrast, the l,b values indicated in brackets can
change dramatically. This implies that manipulations of  !Kn/2, n/2 are robust to
changes in B/D, but are very sensitive to the parameter L, which can undergo a
wide variation depending upon the size n and the manipulation. If we had not

                                                 Added Links
      n            1         25% n       50% n

Case 1       8  0.92  [0.08, 0.44]  0.91  [0.06, 0.45]  1.22 [0.00, 0.55]
    16  0.98  [0.03, 0.48]  0.99  [0.02, 0.48]  1.02 [0.00, 0.51]
    32  1.00  [0.02, 0.49]  1.00  [0.01, 0.49]  1.01 [0.00, 0.50]

Case 2       8      ditto  0.96  [0.16, 0.41]  1.10  [0.28, 0.38]
    16        “  1.00  [0.13, 0.43]  1.02  [0.28, 0.39]
    32        “  1.00  [0.12, 0.44]  1.00  [0.22, 0.39]

                                                Dropped Edges
Case 3       8     one link  0.79  [0.16, 0.37] 0.69  [0.24, 0.31]

    16     one link 0.98  [0.06, 0.47] 0.98  [0.08, 0.45]
    32     one link 1.00  [0.01, 0.49] 1.00  [0.02, 0.49]

Case 4      8    covered 1.16  [0.37, 0.34] 1.50  [0.48, 0.31]
   16    covered 1.02  [0.26, 0.37] 1.03  [0.29, 0.36]
   32    covered 1.00  [0.13, 0.43] 1.00  [0.04, 0.42]

Table 2. B/D ratios and l,b values (in brackets) for !Kn/2, n/2 with links added (Case 1 & 2) or
edges dropped equally from each n/2 complete graph (Case3).  Case 4 drops edges as in Case
3, but also assigns one vertex to cover n.
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keyed the manipulations to !Kn/2, n/2, then obviously one can expect a variety of
B/D ratios rather than those hovering near 1.

To summarize the above, if social networks strive to maximize both B and D on
a local basis (ie small groups or induced subgraphs of small diameter), we
expect that without edge deletions, the distribution of lbd values will hug the B =
D locus, with most of the exceptions lying above that locus as the subgraphs
depart more dramatically from the maximal bipartite case. If edge deletions are
allowed, the lbd values will fall below the b = d  divider – a result not observed
for social networks. Hence we have a formal basis for the subgraph locations
illustrated  in Fig 4.

Fig 7. Two examples of loosely linked small complete subgraphs to create a larger network.

6. 0 Aggregating Small Groups.
      Consider  two complete graphs Kn/2 , that are linked by j edges. Clearly as j
increases to the maximum of (n/2)2 links, the merge will result in the complete
graph Kn with B = 1 and D = L = 0.  Similarly, if we have g complete subgraphs
of order Kn/g, increasing the number of links again will eventually result in B ->
1. Hence for a network consisting of linked dense subgraphs (see Fig 6), we
might expect the full graph LBD values to move toward B away from the b = d
divider.

Claim 2: A network formed by linking a set g of complete subgraphs of size
(order) k, with the number of links j = g-1 and with at most two links per
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subgraph, will result in an lbd location for the network closer to b = 1 than the
mean of the pairs of linked subgraphs. (Note: the network is a chain of groups.)

Corollary: If the number of links per subgraph j << k, then all such trees of
complete subgraphs (of order k) will satisfy Claim 1. (Note: Trees that form a
“star” with one central hub, for example, are disqualified.)

Proof (asymptotic condition): Let k be the order (i.e. size) of each complete
subgraph, g be the number of groups, and n = kg be the order of the network.
Then if j << k <<n, we can ignore the effect of the links j if n is very large
(see Proof of Claim 1.) The number of disjoint dipoles will be (kC2)2 gC2 and
                      D = Sqrt[(kC2)2 gC2)/ ( (n/4)((n/2)-1) )2 ]                              8.

For the bonding index, B, again if j << k << n, then for large n we can ignore
the minimal reduction in paths of length two, and B ~ 1. Hence, solving for
(4), we obtain

          B/D = g/81/2.                                                                                      9.

The intuition behind these results is that for weakly linked, dense subgraphs,
B will be minimally affected by the links, but D will fall dramatically as g
increases, due to the power of the denominator in (8).

Fig 8. B/D values for a group g (4, 6, 8, 12) complete graphs of order k, linked in a chain.
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    Fig 8 shows empirical results for networks having groups of 4, 6, 8, and 12
complete subgraphs, linked to form a chain. The asymptotes are 1.6, 2.3, 3.0,
and 4.4 respectively. These results also hold for groups of complete graphs
that form trees, with the “star” disqualifier mentioned in the corollary.

In summary, linking or merging operations on dense small groups can
typically be expected to increase B/D for the full network, as compared with
the mean scatter of its subgraphs, thus moving the full graph lbd location
upward in the simplex as illustrated in Fig 4.

7. Regularities in L, B, D relations

      Referring again to the simplex in Fig. 4, we see a crude relation among
social networks, roughly captured by the dashed red line. If indeed all these
points in the simplex fell exactly on this red line, then we would infer that
there was a non-planar surface in the 3D LBD space that cuts through the
<1,1,1> plane on which the simplex lies. A simple example of this kind of
regularity is the green line in the simplex that is the projection of the string of
LBD values for a 100 node Erdös-Rényi random graph as edge probability p
is varied. If the number of nodes were included as an additional parameter for
these random graphs, then there would be a surface in LBD with the two
variables, n, p. (See also Appendix 2.) Hence, for our “cognitive” social
networks, the rough clustering of points about the red line suggests at best a
surface in LBD space that must be parameterized by at least two variables.

Fig.9 Left: length of LBD vector v vs. “cognitive” network size. Right: ratio r vs. network
size. Note the abscissa is an ordinal scale. Position 11 corresponds to n = 100.
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A quick check is to examine the lengths of each of the LBD vectors in Table 3
(Appendix 1). For example, if all of these length vectors are (roughly) equal,
then the points for “cognitive” social networks all lie on a spherical surface
about LBD = 0. The left panel of Fig 9 plots these vectors versus the ordinal
position of network size (n). Note that the vector lengths decrease to about
ordinal position 11, which corresponds n = 100, and then become roughly
constant. Hence we infer a regularity associated with “cognitive” social
networks that is dependent on n.

Given the importance of the B/D constraint discussed in sections 5 and 6, plus
the fact that this ratio appears to change with L (i.e. increasing B decreases L,
or vice versa), a potential form for a cognitive social network regularity based
on three variables could be:

                             f (L)g(B / D) = h(n)                                                       10.

where now n is included to satisfy the relation seen in Fig. 9 (left). Further
support for (10) is seen in the pair-wise angular relations between the LBD
vectors (not shown), which suggests that the decrease in vector length for n <
100 is correlated primarily with the L scores, which are high for small groups.

In the right panel of Fig 9, we plot one form of (10), namely

                          r = L(B / D)1/2 = h(n)                                                         11.

We see that this ratio decreases up to ordinal position 11 ( n = 100 ),  and then
rises, requiring a non-monotonic function for h(n). This result confirms that
small “cognitive” social networks appear to have a character different from
larger ones, consistent with empirical studies and proposals by Dunbar (1992).

8. Discussion

Our most striking result is that “cognitive” social networks appear to share
parametric properties that are different from non-social networks, such as
biological, physiological or physical patterns. This observation rests on our
particular choice of parameters (L,B,D) to characterize graphs and has not
previously been documented. Figures 2 and 4 illustrate. In the first case, all
social networks have LBD values that lie above the b=d divider. This result
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can be modeled by assuming that social networks tend to maximize B and D
in the presence of L, which leads to B >= D as shown by Eqn 7b.

The second property of social networks is seen when the mean LBD values for
subgraphs of radius 2 were compared with the LBD values for the full
network. Then we can infer that B* >= B2.  where B* and B2. are respectively
the values for the full and radius 2 cases. A related result is when small dense
subgraphs are weakly linked to form a larger network. Then B/D increases to
an asymptote for large n.

Finally, we show that at least two processes underlie “cognitive” social
networks, depending upon their size (Fig 9.) For small networks ( n < 100 ),
the ratio r = L(B / D)1/2  decreases and then subsequently rises. For contrast,
Appendix 2 shows the behavior of Erdös-Rényi graphs, which have known
parameterizations of n, p. Unlike Erdös-Rényi graphs, for “cognitive” social
networks, we do not yet know how the ratio r will behave for very large
networks with n >>1000. Our expectation is that a stochastic element would
need to be added for haphazard encounters, introducing a process more like
that seen for Erdös-Rényi or scale free graphs.  To address these issues, we
propose modifying the use of the LBD parameters to emphasize their scale
aspects. For example, subgraphs of radius 2 are clearly useful, but the full
network LBD values seem unreasonable, both due to the large number of
required “friends” and also to the potentially large number of edge steps
among nodes. Social contacts rarely extend more than 4 edge steps, except by
haphazard encounters. Hence limiting the maximum radius to 4 about which
LBD is calculated (perhaps with an added random jump) might be a plausible
strategy.  If the network is homogeneous, then the radius 4 restriction should
not be penalizing. This strategy would also tend to equalize the locality of the
L, B, and D calculations, which are currently dominated by B.  The process
that differentiates large networks would then be tied principally to the
haphazard jumps over nodes that touch a previously unforeseen individual
(either via the web, or by a chance encounter.)
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Appendix 1: Table 3. Additional Details for Networks [r=L(B/D)1/2]

Num    Graph   Vertices/Nodes  eP Dia.  Cpl.   L   B   D  r
   1   Seed+   Initial Start-up .47   2  2.3  .8 .43 .33 .91
   2 SmallGroup     Start-up (avg) .14   4  2.4 .45 .36 .21 .59
   3 LosAlamos         Scientists .18   4  2.05 .69 .37 .29 .80
   4   Karate     Club Members .14   5  2.4 .40 .26 .24 .42
   5   Enron    Employee email .075   7  3.4 .24 .24 .15 .30
   6 LesMiserable       Characters* .135   4  2.71 .26 .63 .30 .38
   7   HIV     Core Group .072  10  4.8 .11 .26 .18 .13
   8   Bright             Words .12   5  2.6 .23 .38 .26 .28
   9  Dolphins       Dolphins .08   8  3.36 .12 .31 .26 .13
 10   Enron     Employee email ,048   7  3.3 .17 .23 .11 .24
 11  PolVotes      Senate 2009 .072   8  4.1 .13 .24 .17 .15
 12  PolBooks            Books .08   7  3.1 .16 .35 .19 .22
 13  Adj-Noun Adjectives&Nouns .07   5  2.5 .38 .16 .13 .42
 14   SantaFe       Scientists .026  15  6.7 .17 .22 .07 .30
 15   Enron   Enron Employees .06   8  2.9 .24 .36 .14 .38
 16    JJATT       Terrorists .03  13  5.9 .14 .49 .07 .37
 17 C.Elegans         Neurons .05   5  2.5 .40 .18 .11 .51
 18 Linux2001 Kernel mailing list .017   7  3.2 .25 .15 .03 .52
 19 Linux2008               ditto .021   6  2.8 .34 .19 .04 .74
 20 PolBlogs    Poltical Blogs .015   8  2.7 .22 .23 .03 .61

 “Non Cognitive”
 21 BinaryTree        Binary tree .016  12  8.3 .008  0 .04  0
 22 InfxDisease        HIV spread .009  24  8.4 .076 .03 .02 .09
 23  Football  College football .094   4  2.5 .01 .04 .24 .004
 24 SmallWorld      Ring seed .02   5  3.3 .006 .54 .06 .02
 25 Barabasi_2    Multi-scale .008   7  3.9 .078 .02 .02 .08
 26 Barabasi_5    Multi-scale .02   5  2.8 .115 .05 .05 .12
 27 Erdös-Rényi    Random graph 0.1   3  2.2 .06 .11 .25 .04
 28 Erdös-Rényi    Random graph 0.4   2  1.6 .14 .40 .41 .14
 29 BuddedTree   Triangle Buds 0.02  11  9.9 .065 .029 .05 .05
 30 RandomTree 0.02  11  10.5 .05   0 .05   0
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Appendix 2: Random Graph LBD regularity

Consider only large n, which allows the binomial degree distribution to be
approximated by a Gaussian.  The approximations for L, B, D are as follows,
using n = 100 as the example.

L:  Let dmax  be the maximum degree for the Erdös-Rényi graph with edge
probability p and order (size) n. The variance in the degree distribution is
np(1− p) .  For n = 100, take the upper limit for the tail of the zero-mean
Gaussian at t = 0.495. This occurs for 2.7 standard deviations. Hence

 dmax  2.7i(100p(1− p))
1/2 +100p . To sum (dmax − di )  over i = [1, n,] note the

Gaussian is symmetrical about 100p. Hence

                   
 
L =

1
n2

(dmax − di ) =
2.7
100

i(100p(1− p))1/2∑                      12

                      = 0.27(p(1− p))1/2                                                           13

Note that the only “free” parameter is the number of standard deviation units
(2.7). This parameter for determining dmax  can be eliminated if necessary (see
Palmer pg xx.)

B:  The value for large random graphs will be p (Newman, 2003) This can
easily be derived. The number of triangles is p3 nC3 , which is divided by the
number of two paths, namely p2 nC3 .

D.  For large random graphs, the diameter is two if 0 < p <1. (Bollabas, 2001).
The only subgraph with disjoint dipoles with diameter 2 is the bow tie (Fig 1.
) More directly, the probability of two pairs of edges is p2 , and the probability
that the 4 vertices are otherwise not connected is (1− p)4 . We have nC4 such
pairs. Hence from Eqn 3,

               D = ((p2 (1− p)4 nC4 ) / (n
4 / 64))1/2                                     14a.

                   = ((64n4 p2 (1− p)4 ) / 24n4 )1/2 = 2.71/2 p(1− p)2             14b.
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where again, a reminder that the 2.7 parameter arises from the setting to
determine is set to determine dmax for 100 nodes.

Note for large n, B and D are independent of n, whereas L  is not (because of
the dmax  condition.   Hence

                 r100 = L(B / D)
1/2 = (2.7 /10)(p(1− p)1/2 ip1/2 / (2.71/2 p1/2 (1− p)) .

                      = 2.71/2 (p / (1− p))1/2 / 10                                               15.

Table 3 below shows the monotonic relation between r  and p for n = 100.

EdgProb     L     B     D maxDeg      r   model

   10   0.06   0.11   0.25   17   0.04   0.05

   20   0.11   0.20   0.37   37   0.08   0.08

   40   0.14   0.40   0.40   51   0.14   0.13

   60   0.13   0.60   0.26   73   0.20   0.20

   80   0.11   0.81  0.082   91   0.35   0.32

   90   0.06   0.91   0.02   95   0.41   0.49

Appendix 3:  Examples of Scale-based analysis of “cognitive” social
Networks

For each simplex, the full graph lbd location is indicated by an asterisk. The
colors simply indicate the node type closest to each point. The histograms
show distributions of raw LBD values. See Macindoe (2010) for further
details. Part of the raw network data are available at
http://people.csail.mit.edu/owenm/netdata.html. The balance are in Newman’s
collection at http://www.personal.umich.edu/mejn.netdata/
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Appendix 4: Examples of scale-based analyses of “non-cognitive” social
networks.
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