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Abstract

This paper studies the reception zones of a wireless network

in the SINR model with receivers that employ interference

cancellation (IC). IC is a recently developed technique

that allows a receiver to decode interfering signals, and

cancel them from the received signal in order to decode its

intended message. We first derive the important topological

properties of the reception zones and their relation to

high-order Voronoi diagrams and other geometric objects.

We then discuss the computational issues that arise when

seeking an efficient description of the zones. Our main

fundamental result states that although potentially there

are exponentially many possible cancellation orderings, and

as a result, reception zones, in fact there are much fewer

nonempty such zones. We prove a linear bound (hence

tight) on the number of zones and provide a polynomial

time algorithm to describe the diagram. Moreover, we

introduce a novel parameter, the Compactness Parameter,

which influences the tightness of our bounds. We then utilize

these properties to devise a logarithmic time algorithm to

answer point-location queries for networks with IC.

1 Introduction

1.1 Background and Motivation Today wireless
networks are embedded in our daily lives, with an ever-
growing use of cellular, satellite and sensor networks.
Thus, the capacity of wireless networks, i.e., the max-
imum achievable rate by which stations can communi-
cate reliably, has received an increasing attention in re-
cent years [11, 18, 14, 10, 4, 2, 12]. The great advantage
of wireless communication, the broadcast nature of the
medium, also creates its biggest obstacle, interference.
When a station wants to decode a message (i.e., a sig-
nal) sent from a transmitter, it must cope with all other
(legitimate) simultaneous neighboring transmissions.
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Roughly speaking, two basic approaches to han-
dle interference dominated the research community for
many years [9]. One of the approaches was to use or-
thogonalization. By using time-division (TDMA) or fre-
quency division (FDMA), the degrees of freedom in the
channel can be divided between the participating trans-
mitters. This generates an independent channel for each
transmitter. The second approach was to treat the in-
terference as noise. This way, together with the ambient
(or background) noise, the interference disrupts the sig-
nal reception and decoding abilities. For the signal to
be safely decoded, the Signal to Interference & Noise
Ratio (SINR) must be large enough.

Due to the increasingly large number of users, the
achievable rate or utilization of wireless networks has
become the bottleneck of the communication. There-
fore, one of the main challenges for wireless network
designers is to increase this rate and try to reach the ca-
pacity of the network. In a sense, both of the aforemen-
tioned approaches treat interference in wireless commu-
nication as a foe, and try to either avoid it or over-
come it. This paper focuses on a relatively recent and
promising method for efficient decoding called interfer-
ence cancellation (IC) [1].

The basic idea of interference cancellation, and in
particular successive interference cancellation (SIC) is
quite simple. First, the strongest interfering signal is
detected and decoded. Once decoded, this signal can
then be subtracted (“canceled”) from the original signal.
Subsequently, the next strongest interfering signal can
be detected and decoded from the now “cleaner” signal,
and so on. Optimally, this process continues until all
interferences are cancelled and we are left with the
desired transmitted signal, which can now be decoded.
SIC is similar in spirit to several well known algorithms
like the Gram-Schmidt process [21], solving triangular
systems of linear equations, and fountain codes [5]. It
should be noted that without using IC, every station can
decode at most one transmitter (i.e., the strongest signal
it receives). In contrast, with IC, every station can
decode more transmitters, or expressed dually, every
transmitter can reach more receivers. This clearly
increases the utilization of the network.



Interference cancellation is fairly well-studied from
an information-theoretic point of view. In fact, it is
the optimal strategy in several scenarios, such as strong
interference [19, 6], corner points of a multiple access
channel [7, Chapter 14], and spread spectrum commu-
nication (CDMA) [22], and it constitutes a key building
block in the best known bounds for the capacity of the
interference channel [9]. Nevertheless, to the best of
our knowledge, reception zones under interference can-
cellation (areas in which transmitters can be decoded),
as well as algorithmic issues for large networks, are a
virgin land yet to be explored.

In this paper, we initiate the study of the topo-
logical properties of the reception zones in the context
of IC setting, discuss the computational issues arising
when trying to compute these reception zones or answer
queries regarding specific points, and devise polynomial-
time algorithms to address these problems. This is done
by extending SINR diagrams [3] to the setting of sta-
tions that can apply successive interference cancellation.
The SINR diagrams of a wireless network of n trans-
mitters s1, s2, . . . sn partitions the plane into reception
zones H(s1),H(s2), . . .H(sn), one per station, and the
complementary region of the plane where no station can
be decoded, is denoted H(∅). In [3], SINR diagrams
have been studied for the specific case where all stations
use the same transmission power, i.e., uniform power.
It is shown there that the reception zones have some
“nice” properties, like being convex (hence connected)
and fat. In [13] it was established that for a nonuniform
power setting, the reception zones are not necessarily
connected, but are (perhaps surprisingly) hyperbolically
convex in a space with dimension higher by one than the
network’s dimension.

When adding SIC to SINR diagrams, the resulting
structures, denoted SIC-SINR diagrams, become much
more complex to present. However they can reveal the
benefits of the cancellation method. An example of
this idea is illustrated in Figure 1. In all three parts
of the figure we have a network with two transmitters
s1, s2 and two receivers (or points in the plane) r1, r2,
with the requirement that r1 needs to decode the signal
transmitted by s1 and r2 needs to receive the signal of
s2. All four nodes are ordered on a line with a special
configuration similar to the known example given in
[16]. This example, known as “nested links”, shows
that in order to achieve the requirements, a nonuniform
power assignment must be used by the two transmitters,
thus demonstrating that the capacity (achievable rate)
of nonuniform power assignments is higher than that of
uniform power assignments. Indeed, Figure 1(a) shows
zones H(s1) and H(s2) for s1 and s2 respectively, which
satisfy r1 ∈ H(s1) and r2 ∈ H(s2). As mentioned, it can

be proved that these two demands cannot be satisfied
when both s1 and s2 transmit with the same power.
An SINR diagram with a uniform power assignment
is shown in Figure 1(b). Note that here, r1 /∈ H(s1),
but r1 ∈ H(s2). In contrast, when SIC is possible at
r1, it can first decode s2. Afterward it “cancels” s2
from its interference and then decode s1. Therefore,
with SIC the two demands can be satisifed once again,
even with uniform powers! The SIC-SINR diagram
presented in Figure 1(c) illustrates this by showing an
additional zone, H(s2, s1), the zone in which stations
with SIC can decode s1 after “canceling” s2. Note
that, as explained later, H(s2, s1) is the intersection of
two convex shapes, H(s2) and H∗(s1), where the latter
(shown as an empty circle) is the reception zone of s1
if it had transmitted alone in the network. One clearly
sees that the total reception area of s1 with SIC is much
larger than without SIC. In Subsection 1.3 we present an
even more compelling motivating example, that shows
the following.

Observation 1.1. There exists a wireless network for
which any power assignment requires n time slots to sat-
isfy all the demands, while using SIC allows a satisfying
schedule using a single time slot.

Despite the importance of IC, not much is known
about its complexity. The goal of this paper is to
take a first step towards understanding it, by studying
reception maps under the setting of SIC. The starting
point of our work is the observation that under the SIC
setting, reception zones are no longer guaranteed to be
convex, fat or even connected. This holds true even for
the most “simplified” settings where stations transmit
at the same power level and are aligned on a straight
line (one dimensional map). The zones are also not
hyperbolically convex as was shown in the nonuniform
power settings without IC [13]. Moreover, while for
SINR diagrams without IC there is a single polynomial
that represents each of their reception zones, with IC,
the reception zone of each transmitter may depend on
the cancellation order, which can lead to an exponential
number of polynomials and cells. If this is the case, then
even drawing the diagram might prove to be infeasible.

1.2 Our Contributions The study of SIC-SINR
reception maps raises several immediate questions. The
first is a simple “counting” question that has strong
implications on our algorithmic question: What is the
maximum number of reception cells that may occur in
an SINR diagram of a wireless network with n stations
where every point in the map is allowed to perform
SIC? Is it indeed exponential? We address this question
in two different ways. Initially we re-explore the
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Figure 1: (a) Nonuniform power assignment where for i = 1, 2, receiver ri is in the reception zone H(si) of
transmitter si. (b) In every uniform power assignment, r1 is not in the reception zone of s1. (c) In a uniform
power setting but with interference cancellation, station r1 may be in the reception zone H(s2, s1) of transmitter
s1, i.e., it could decode transmitter s1 after canceling transmitter s2.

intimate connections between wireless communication
and computational geometry methods like higher-order
Voronoi diagrams [20, 17]. In particular we use a
bound on the number of cells in ordered order-k Voronoi
diagram [17] to upper bound the number of reception
zones by O(n2d), where n is the number of transmitters
and d is the dimension. In the general case this bound
is not tight, but interestingly we were able to tie the
number of reception zones to a novel parameter of
the network, named the Compactness Parameter, and
achieve a much tighter bound when the compactness
parameter is high enough. The compactness parameter
is a function of the two most important parameters
of the wireless network model, the reception threshold
constant β ≥ 1, and the path-loss parameter α > 0,
and its value is CP = α

√
β. We then prove that when

CP ≥ 5, the number of reception zones is linear for any
dimension! These bounds allow us to provide an efficient
scheme for computing the cancellation order that gives
the reception zones and therefore allows us to build and
represent the diagram efficiently.

The second question has a broader scope: Are there
any “nice” properties of reception zones that can be es-
tablished in the SIC settings? Specifically, we aim to-
ward finding forms of convexity satisfied by reception
cells in SIC reception maps. Apart from their theo-
retical interest, these questions also have considerable
practical significance, since having reception zones with
some form of convexity might ease the development of
protocols for various design and communication tasks.
We answer this question by using the key observation
that zones are intersections of convex shapes giving us
some “nice” geometric guarantees.

The third question is of algorithmic nature. We
consider the point location task, where given a point p ∈
Rd and a station si, one wants to know whether p can
receive si using SIC. Applying the trivial computation
in O(n log n) time, one can compute the set of stations
that p receives under the SIC setting. However, if the
number of queries is large, an order of O(n log n) per
query might be too costly. To approach this problem
we use the guarantees of the first two questions and
present a scheme for answering point location queries in
logarithmic time.

We believe that the questions raised herein, as well
as the results and techniques developed, can make a
major contribution to the evolving topic of wireless
topology and what we may refer to as computational
wireless geometry.

The rest of the paper is organized as follows. In
Section 3, we establish the basic properties of SIC-
SINR diagrams and show its relation to the higher-order
Voronoi diagrams. We then derive a tight bound on
the number of connected components in the reception
map of a given station under SIC. Section 4 describes
how one can construct SIC-SINR reception maps in
polynomial time. Finally, Section 5 considers the point-
location task and provides an efficient construction of a
data structure that answers point-location queries (with
predefined approximation guarantees) in logarithmic
time.

1.3 Motivating Example: Interference Cancel-
lation vs. Power Control The following motivating
example illustrates the power of interference cancella-
tion even in a setting where all stations use the same



power. Consider a set of n communication requests L =
{(si, ri) | i = 1, ..., n} consisting of transmitter-receiver
pairs embedded on a real line as follows. The n receivers
are located at the origin and the set of transmitters are
positioned on an exponential node-chain, e.g., si is posi-
tioned on xi = 2i/α, see Fig 2. Since all receivers share
the same position, without SIC, there exists no power
assignment that can satisfy more than one request si-
multaneously, hence n time slots are necessary for sat-
isfying all the requests. We claim that by using SIC,
all requests can be satisfied in a single time slot even
with a uniform power assignment. We focus on a given
receiver rj and show that it successfully decodes the sig-
nal from sj after successive cancellations of the signal
Si for every i < j. Using the notation of Section 2.2,
let Ai = 〈d, Si = {si, . . . , sn}, 1,N ≤ 1/2n, β = 1, α〉
denote the network imposed on the last n − i stations,
whose positions are 2(n−i)/α to 2n/α. Note that

SINRAi(si, rj) =
1/2i∑n

j=i+1 1/2j + N
≥ 1

for every i ≤ n. We therefore establish that there
exists an instance L = {(si, ri) | i = 1, ..., n} such that
any power assignment for scheduling L requires n slots,
whereas using SIC allows a satisfying schedule using a
single time slot.

So far, the literature on capacity and schedul-
ing addressed mostly nonuniform powers, showing that
nonuniform power assignments can outperform a uni-
form assignment [16, 15] and increase the capacity of a
network. In contrast, examples such as Fig. 2 illustrate
the power of interference cancellation even with uniform
power assignments, and motivate the study of this tech-
nique from an algorithmic point of view. Understanding
SINR diagrams with SIC may play a role in the devel-
opment of suitable algorithms (e.g. capacity, scheduling
and power control), filling the current gap between the
electrical engineering and algorithmic communities with
respect to SIC research.

r1, r2, . . . , ri
s1 s2 si

0 2
1
α 4

1
α 2

i
α

Figure 2: The power of interference cancellation. Any
power assignment requires n time slots to schedule these
n requests. Using SIC, all requests are satisfied in a single
time slot (even when using uniform powers).

2 Preliminaries

2.1 Geometric notions We consider the d-
dimensional Euclidean space Rd (for d ∈ Z≥1).
The distance between points p and q is denoted by
dist(p, q) = ‖q−p‖. A ball of radius r centered at point
p ∈ Rd is the set of all points at distance at most r
from p, denoted by Bd(p, r) = {q ∈ Rd | dist(p, q) ≤ r}.
Unless stated otherwise, we assume the 2-dimensional
Euclidean plane, and omit d. The maximal distance
between a point p and set of points Q is defined as
max(dist(p,Q)) = maxq∈Q{dist(p, q)}. Analogously,
the minimal distance between p and Q is defined
as min(dist(p,Q)) = minq∈Q{dist(p, q)}. The hy-
perplane HP (qi, qj), for qi, qj ∈ Rd, is defined by
HP (qi, qj) = {p ∈ Rd | dist(p, qi) = dist(p, qj)}.
Given a set of n points Q = {qi ∈ Rd}, let
the corresponding set of all

(
n
2

)
hyperplanes be

HP (Q) = {HP (qi, qj) | qi, qj ∈ Q}. A finite set Υ of
hyperplanes defines a dissection of Rd into connected
pieces of various dimensions, known as the arrange-
ment Ar(Υ) of Υ. The basic notions of open, closed,
bounded, compact and connected sets of points are
defined in the standard manner (see [3]).

We use the term zone to describe a point set with
some “nice” properties. Unless stated otherwise, a zone
refers to the union of an open connected set and some
subset of its boundary. It may also refer to a single
point or to the finite union of zones. A polynomial
F : Rd → R is the characteristic polynomial of a zone
Z if p ∈ Z ⇔ F (p) ≤ 0 for every p ∈ Rd.

Denote the area of a bounded zone Z (assuming it
is well-defined) by area(Z). A nonempty bounded zone
Z 6= ∅ is fat if the ratio between the radii of the smallest
circumscribed and largest inscribed circles with respect
to Z is bounded by a constant.

2.2 Wireless Networks and SINR We consider a
wireless network A = 〈d, S, ψ = 1,N , β > 1, α〉, where
d ∈ Z≥1, S = {s1, s2, . . . , sn} is a set of transmitting
radio stations embedded in d-dimensional space, ψ is a
mapping assigning a positive real transmitting power ψi
to each station si, N ≥ 0 is the background noise, β > 1
is a constant serving as the reception threshold (to be
explained soon), and α > 0 is the path-loss parameter.
The signal to interference & noise ratio (SINR) of si at
point p is defined as

SINRA(si, p) =
ψi · dist(si, p)

−α∑
j 6=i ψj · dist(sj , p)−α + N

.

When the network A is clear from the context, we
may omit it and write simply SINR(si, p). Let Ad′
be a network identical to A except its dimension is
d′ 6= d. In our arguments, we sometimes refer to an



ordered subset of stations,
−→
Si = (si1 , . . . , sik) ⊆ S.

Denote the last element in
−→
Si by Last(

−→
Si). When the

order is insignificant, we refer to this set as simply
Si = {si1 , . . . , sik}. The wireless network restricted to a
subset of nodes Si is given byA(Si) = 〈d, Si, ψ,N , β, α〉.
The network is assumed to contain at least two stations,
i.e., n ≥ 2.

2.3 SINR diagrams (without SIC) The funda-
mental rule of the SINR model is that the transmission
of station si is received correctly at point p /∈ S if and
only if its SINR at p reaches or exceeds the reception
threshold of the network, i.e.,

SINR(si, p) ≥ β.

When this happens, we say that si is heard at p. We
refer to the set of points that hear station si as the
reception zone of si, defined as

HA(si) = {p ∈ Rd − S | SINRA(si, p) ≥ β} ∪ {si} .

(Note that SINR(si, ·) is undefined at points in S and
in particular at si itself.) Analogously, the set of points
that hear no station si ∈ S (due to the background noise
and interference) is defined as

HA(∅) = {p ∈ Rd − S | SINR(si, p) < β, ∀si ∈ S}.

An SINR diagram

H(A) =

( ⋃
si∈S
HA(si)

)
∪HA(∅)

is a “reception map” characterizing the reception zones
of the stations. This map partitions the plane into n+1
zones; one for each station HA(si), 1 ≤ i ≤ n, and the
zone HA(∅) where none of the stations is received. It is
important to note that a reception zone HA(si) is not
necessarily connected. A maximal connected component
within a zone is referred to as a cell. LetHA(si, j) be the
jth cell in HA(si). Hereafter, the set of points where the
transmissions of a given station are successfully received
is referred to as its reception zone. Hence the reception
zone is a set of cells, given by

HA(si) = {HA(si, 1), . . .HA(si, τi)},

where τi = τi(A) is the number of cells in HA(si).
Analogously, HA(∅) is composed of τ∅(A) connected
cells HA(∅, j). Overall, the topology of a wireless
network A is arranged in three levels: The reception
map is at the top of the hierarchy. It is composed of
n reception zones, HA(si), si ∈ S and HA(∅). Each
zone HA(si) is composed of τi(A) reception cells. The
following is from [3].

Lemma 2.1. ([3]) Let A = 〈d, S, ψ = 1,N , β > 1, α〉 be
a uniform power network. Then HA(si) is convex and
fat for every si ∈ S.

We sometimes refer to the wireless network A induced
on a subset of stations Sj ⊆ S. The reception zone
of si in this induced network is denoted by HA(si | Sj).
When A is clear from context, we may omit it and write
H(si) and H(si | Sj).

2.4 Geometric diagrams in Rd Throughout the
paper we make use of the following diagrams.

Hyperplane Arrangements. Given a set of Υ of n
hyperplanes in Rd, the arrangement Ar(Υ) of Υ dissects
Rd into connected pieces of various dimensions. Let
τA(Υ) denote the number of connected components in
Ar(Υ). The following facts about Ar(Υ) are taken from
[8].

Lemma 2.2. ([8]) (a) τA(Υ) = Θ(nd).
(b) Ar(Υ) can be constructed in Θ(nd) time and main-
tained in Θ(nd) space.

Given a set of n points S ⊂ Rd, we define Ar(S) to be
the arrangement on HP (S) = {HP (si, sj) | si, sj ∈ S},
the set of all

(
n
2

)
hyperplanes of pairs in S. Ar(S) has

an important role in constructing SINR − SIC maps,
as will be described later on.

Corollary 2.1. τA(S) = Θ(n2d).

Voronoi diagrams. The ordinary Voronoi diagram on
a given set of points S tessellates the space in such a way
that every location in the space is assigned to the closest
point in S, thus partitioning the space into cells, each
consisting of the set of locations closest to one point
in S (referred to as the cell’s generator). This forms
the ordinary Voronoi diagram, consisting of Voronoi
edges and vertices. Let Vor(si) denote the Voronoi
cell of si given a set of generators S. Let Vor(si | Sj),
for Sj ⊆ S, denote the Voronoi cell of si in a system
restricted to the points of Sj .

Avin et al. [3] discuss the relationships between
the SINR diagram on a set of stations S with uni-
form powers and the corresponding Voronoi diagram
on S. Specifically, it is shown that the n reception
zones HA(si) are strictly contained in the correspond-
ing Voronoi cells Vor(si). The following lemma sum-
marizes these relations. Let A = 〈d, S, 1,N , β ≥ 1, α〉.

Lemma 2.3. ([3]) HA(si) ⊆ Vor(si) for every si ∈ S.

Higher order Voronoi diagrams. Higher order
Voronoi diagrams are a natural extension of the or-



dinary Voronoi diagram, where cells are generated by
more than one point. They provide tessellations where
each region consists of the locations having the same
k (ordered or unordered) closest points in S, for some
given integer k.

Order-k Voronoi diagram. The order-k Voronoi di-
agram V(k)(S) is a set of all non-empty order-k Voronoi

regions V(k)(S) = {Vor(S
(k)
1 ), . . . ,Vor(S

(k)
m )}, where

the order-k Voronoi zone Vor(S
(k)
i ) for an unordered

subset S
(k)
i ⊆ S, |S(k)

i | = k is defined as follows.

Vor(S
(k)
i ) = {p ∈ Rd | max(dist(p, S

(k)
i ))

≤ min(dist(p, S \ S(k)
i ))} .

This can alternatively be written as

(2.1) Vor(S
(k)
i ) =

⋂
s∈S(k)

i

Vor(s | S \ S(k)
i ∪ s) .

Note that V(1)(S) corresponds to the ordinary Voronoi
diagram and that any V(k)(S), for k > 1, is a refinement
of V(1)(S).

Ordered Order-k Voronoi diagram. Let
−→
Si ⊆ S

be an ordered set of k elements from S. When the
k generators are ordered, the diagram becomes the
ordered order-k Voronoi diagram V〈k〉(S) [17], defined
as

V〈k〉(S) = {Vor(
−→
Si)},

where the ordered order-k Voronoi region Vor(
−→
Si),

|
−→
Si| = k, is defined as

Vor(
−→
Si) = {p ∈ Rd | dist(p, si1) ≤ dist(p, si2) ≤ . . .

≤ dist(p, sik) ≤ min(dist(p, S \ Si))}.

Alternatively, as in [17],

(2.2) Vor(
−→
Si) =

k⋂
j=1

Vor(sij | S \ {si1 , . . . , sij−1
}) .

Note that each Vor(
−→
Si) is an intersection of k convex

shapes and hence it is convex as well.
The following claim is useful for our later arguments.

Lemma 2.4. For every
−→
Si,
−→
Sj ⊆ S such that

−→
Si *

−→
Sj there exist sk1 , sk2 ∈ S, such that the hyperplane

HP (sk1 , sk2) separates Vor(
−→
Si) and Vor(

−→
Sj).

Proof. We focus on the case where Vor(
−→
Si) 6= ∅ and

Vor(
−→
Sj) 6= ∅. Let m denote the first index such that

sim 6= sjm . First consider the case where m = 1. Then

Vor(
−→
Si) ⊆ Vor(si1) and Vor(

−→
Sj) ⊆ Vor(sj1), so

HP (si1 , sj1) separates the zones and the lemma holds.

Otherwise, assume m > 1 and let
−→
S∗ = {s∗1 , . . . , s∗m−1}

denote the longest common prefix of
−→
Si and

−→
Sj . Let

X0 = Vor(
−→
S∗), X1 = Vor(sim | S \ S∗) and X2 =

Vor(sjm | S \ S∗). First note that by Eq. (2.2),

Vor(
−→
Si) ⊆ X0 ∩ X1 and Vor(

−→
Sj) ⊆ X0 ∩ X2. In

addition, X0, X1 and X2 are convex. Next, observe
that X1, X2 correspond to distinct Voronoi regions in
the system of points S \ S∗ and therefore X1 and X2

are separated by HP (sim , sjm). The lemma follows. �

3 SIC-SINR Diagrams in Uniform Power
Networks

In this section, we first formally define the reception
zones under interference cancellation, forming the SIC-
SINR Diagrams. We then take a first step towards
studying the properties of these diagrams. We elaborate
on the relation between the SIC-SINR diagram and
the ordered order-k Voronoi diagram, and use it to
prove convexity properties of the diagram and to bound
the number of connected components in the SIC-SINR
Diagrams. We then define the Compactness Parameter
of the diagrams and use it to achieve tighter bounds on
the number of connected components.

3.1 SINR diagrams with SIC Let A = 〈d, S, ψ =
1,N , β > 1, α〉. We now focus on the reception zone of
a single station, say s1, under the setting of interference
cancellation. In other words, we are interested in the
area containing all points that can decode s1 after
successive cancellations. To warm up, we start with
the case of a single point p ∈ Rd and ask the following
question: does p successfully receive s1 using SIC?

Let
−→
Sp = {sp1 , . . . , spk} correspond to the set of sta-

tions S ordered in nonincreasing order of received signal
strength at point p up to station s1, i.e., EA(sp1 , p) ≥
EA(sp2 , p) ≥ · · · ≥ EA(spk , p), where spk = s1. To re-
ceive s1 correctly, p must cancel the signals Spi of sta-
tion spi , for i < k, in a successive manner. It therefore
follows that p successfully receives s1 following SIC iff

(3.3) p ∈ H(spi | S \ {sp1 , . . . , sp(i−1)
}),

for every i ≤ k. The reception zone of s1 in a wireless
network A under the setting of SIC is denoted by
HSICA (s1), or simply HSIC(s1) when A is clear from the
context. It contains s1 and the set of points p obeying
Equation (3.3), i.e.,

HSIC(s1) = {p ∈ Rd − S | p satisfies Eq. (3.3)}.



We now provide a more constructive formulation
for HSIC(s1), which becomes useful in our later argu-

ments. Let
−→
Si ⊆ S be an ordering of k stations. Let

H(
−→
Si) denote the reception area of all points that re-

ceive Last(
−→
Si) correctly after successive cancellation of

si1 , . . . , sik−1
. Formally, the zone H(

−→
Si) is defined in an

inductive manner with respect to the length of the or-

dering
−→
Si, i.e., number of cancellations minus one. For−→

Si = {sj}, H(
−→
Si) = H(sj). Otherwise, for k > 1,

H(
−→
Si) = H(

−→
Si \ sik) ∩H(sik | (S \ Si) ∪ sik) ,

or,

(3.4) H(
−→
Si) =

k⋂
j=1

H(sij | S \ {si1 , . . . , si(j−1)
}) .

The following is a direct consequence of Eq. (3.4).

Corollary 3.1. Let
−→
Si ⊆ S, |

−→
Si| = k. Then

H(
−→
Si) ⊆ H(si1 , . . . , si(k−1)

) ⊆ H(si1 , . . . , si(k−2)
)

⊆ . . . ⊆ H(si1) .

Finally the reception zone of s1 under SIC is given as
follows. Let COj denote the collection of all cancellation
orderings ending with sj , namely,

COj = {
−→
Si ⊆ S | Last(

−→
Si) = sj}.

Then

(3.5) HSIC(s1) =
⋃

−→
Si∈CO1

H(
−→
Si) .

The reception zone

HSIC(s1) = {HSIC(s1, 1), . . .HSIC(s1, τ
SIC
1 )}

is a set of τSIC1 cells. Note that the region of unsuc-
cessful reception to any of the points, namely, H(∅),
is unaffected by SIC. This follows by noting that SIC
only affects the set of points p ∈

⋃
H(si) \ S. In other

words, the successive signal cancellation allows points
p ∈ Rd \ S to “migrate” from the reception zone of
station si to that of station sj . However, points that
hear nobody can cancel none of the signals. Overall,
the topology of a wireless network A under SIC is ar-
ranged in three levels: The reception map is at the top
of the hierarchy. It is composed, at the next level, of
n reception zones, HSIC(si), si ∈ S and H(∅). Finally,
at the lowest level, each zone HSIC(si) is composed of
τSICi reception cells.

Throughout the paper we consider a uniform power
network of the form A = 〈d, S, ψ = 1,N , β > 1, α〉.
Avin et al. [3] established that reception zones of
uniform power maps are fat and convex. However, once
signal cancellation enters the picture, the convexity (and
connectivity) of zones is lost even for the simple case
where stations are aligned on a line; see Figure 3 for an
illustration of the SIC-SINR map of a 3-station system.
In this section, we derive a bound on the number of
connected cells in the zone HSIC(s1) and show that
each of these cells is convex. In addition, we establish a
relation between SIC-SINR diagrams and a generalized
form of Voronoi diagrams.

3.2 Higher-order Voronoi diagrams and SIC-
SINR maps To understand the structure and the
topological properties of SIC-SINR reception maps, we
begin our study by describing the relation between SIC-
SINR reception maps and ordered order-k Voronoi dia-
gram. Specifically, we prove that every SIC-SINR zone
is composed of a collection of convex cells, each of which
is related to a cell of the higher-order Voronoi diagram.
To avoid complications, we assume our stations are em-
bedded in general positions.

Toward the end of this section, we establish the
following.

Lemma 3.1. For every two reception cells HSIC(s1, i)
and HSIC(s1, j), there are distinct orderings
−→
Si,
−→
Sj ∈ CO1 such that HSIC(s1, i) ⊆ Vor(

−→
Si)

and HSIC(s1, j) ⊆ Vor(
−→
Sj).

For illustration of these relations, see Figures 3 and 4.
We begin by describing the relation between a

nonempty reception region H(
−→
Si) and an nonempty

ordered order-k polygon.

Lemma 3.2. H(
−→
Si) ⊆ Vor(

−→
Si), for β ≥ 1 .

Proof. By Lemma 2.3, H(sj | S′) ⊆ Vor(sj | S′).
Therefore by Eq. (3.4) it follows that

H(
−→
Si) ⊆

k⋂
i=1

Vor(sij | (S \ {si1 , . . . , sij−1
})

= Vor(
−→
Si) ,

where the last inequality follows by Eq. (2.2). �

We now show that reception regions in HSIC(s1)
that result from different cancellation orderings corre-
spond to distinct connected cells, which will establish
Lemma 3.1.

Lemma 3.3. Every two regions H(
−→
S1),H(

−→
S2) ⊆

HSIC(s1) correspond to two distinct cells.
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Figure 3: SIC-SINR reception map in R1 for a 3-station network aligned on a line. The first line of colored segments
corresponds to reception zones with no cancellations. The second line of segments in each figure represents the
added reception cells by signal cancellation. HSICAd=1

(s1), HSICAd=1
(s2) and HSICAd=1

(s3) are in middle, light and dark grey
respectively.
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Figure 4: Reception map of HSICAd=2
(s1) and ordered order-k Voronoi diagram (for k ∈ [1, 3]). (a) SINR map with no

cancellation. Shown are H(s1), H(s2) and H(s3). (b) Intermediate map of HSICAd=2
(s1): Reception cells of s1 following

at most one cancellation. (c) Final map of HSICAd=2
(s1): Reception cells of s1 following two cancellations.

Proof. By Eq. (3.5), HSIC(s1) is the union of H(
−→
Si)

regions for
−→
Si ∈ CO1, i.e., where Last(

−→
Si) = s1. By

Lemma 3.2, H(
−→
S1) ⊆ Vor(

−→
S1) and H(

−→
S2) ⊆ Vor(

−→
S2).

Due to Claim 2.4, Vor(
−→
S1) ∩ Vor(

−→
S2) = ∅ and hence

also H(
−→
S1) ∩H(

−→
S2) = ∅. The lemma follows. �

Next, this relation between the SIC-SINR reception
maps and ordered order-k Voronoi diagram is used to
establish the convexity of cells and to bound the number
of connected components in the zone.

Convexity of SIC-SINR cells. We first show that
the reception cells of HSIC(s1) are convex.

Lemma 3.4. Every reception cell HSIC(s1, i), i ∈
[1, τSICi ] of HSIC(s1) is convex.

Proof. Due to Lemma 3.3 it is enough to show that

every nonempty H(
−→
Si) is convex. Let k = |Si| and let

Xj = H(sij | S\{si1 , . . . , si(j−1)
}). By Lemma 2.1, Xj is

convex for every j ≤ k and therefore by Eq. (3.4), H(
−→
Si)

is an intersection of k convex and bounded shapes, hence
it is convex (and bounded) as well.

Number of connected components. In this subsec-
tion, we discuss the number of connected components

in SIC-SINR diagrams. Toward the end of this section,
we exploit the relation between SIC-SINR diagrams and
high-order Voronoi diagrams to establish the following.

Lemma 3.5. τSICi = O(n2d), for every si ∈ S.

Without loss of generality we focus on station s1. By
Lemma 3.3, every two distinct orderings correspond
to distinct reception cells (though it might be empty).
Since the number of distinct orderings of length n − 1
is (n − 1)! (i.e., the size of CO1) and each of those
orderings might correspond to a distinct cell, it follows
that the number of connected cells inHSIC(s1) might be
exponential. Fortunately, the situation is much better

due to Lemma 3.1. An ordering
−→
Si is defined as a

nonempty cancellation ordering (NCO) if and only if

Vor(
−→
Si) is nonempty. Partition the collection ofNCO’s

into sets NCO1, . . . ,NCOn as follows. An ordering
−→
Si

is in the set NCOj if and only if it is an NCO and in

addition Last(
−→
Si) = sj . The following lemma shows that

there are only polynomially many orderings in NCOj .

Lemma 3.6. (a) |NCO1| = O(n2d).
(b) |NCO1| = Ω(n2) for d = 1.

Proof. To derive an upper bound on NCO1, proving



claim (a), we use the diagram of Ar(S). We claim that
any given cell f ∈ Ar(S) intersects with at most one

high-order Voronoi region Vor(
−→
Si), where

−→
S i ∈ NCO1.

(The proofs of the following two claims will appear in
the journal version of the paper.)

Claim 3.1. Let f ∈ Ar(S). Then there exists at most

one
−→
S i ∈ NCO1 such that f ∩Vor(

−→
Si) 6= ∅.

This, together with Cor. 2.1, establishes part (a) of
Lemma 3.6. To see part (b) we provide a construction of
an n-station wireless network in R1 that has Ω(n2) cells
corresponding to NCO1. Consider a set of n points S
where si is positioned on xi. The following claim defines
a sufficient condition on the points x1, . . . , xn so that
|NCO1| = Ω(n2).

Claim 3.2. If x2 > x1 and xi+1 > xi + xi−1 − x1 (for
every i ≥ 2), then |NCO1| = Ω(n2).

This establishes claim (b) of Lemma 3.6. �

We are now ready to complete the proof of Lemma 3.5.

Proof. By Lemma 3.1 and Eq. (3.5), a cancellation
ordering might correspond to a distinct cell in HSIC(s1)
only if it is in NCO1. Therefore the lemma follows
immediately by Lemma 3.6. �

3.3 A Tighter Bound on the Number of Con-
nected Components In this section we introduce a
key parameter of a wireless network, termed the Com-
pactenss Parameter of the network, and establish a
tighter bound on the number of connected components
in the diagram under a certain condition on this param-
eter. For a wireless network A = 〈d, S, 1,N , β, α〉, the
Compactness Parameter of A is

CP(A) = β1/α.

In what follows, we show that in the SIC-SINR model,
this parameter plays a key role affecting the complexity
of the resulting diagram. In particular, it follows that
when α→∞, both CP(A)→ 1 and the number of com-
ponents gets closer to the bounds dictated by the high
order Voronoi diagram. However, for a certain thresh-
old value of CP(A) the situation is guaranteed to be
much better, as discussed in the coming sections. Our
results motivate further study of the compactness pa-
rameter, towards better understanding of the dynamics
of the SINR diagram as a function of its compactness.

Toward the end of this subsection, we establish the
following.

Lemma 3.7. If the compactness parameter of the net-
work A satisfies CP(A) ≥ 5, then τSICi (A) = O(1).

Corollary 3.2. If the compactness parameter of the
network A satisfies CP(A) ≥ 5, then τSIC(A) = O(n).

Note this this lemma implies that despite the fact
that there exist instances in R1 of station sets S
admitting NCOi sequences of length Ω(n2) (see Lemma
3.6(b)), only a constant number of those orderings
correspond to nonempty reception regions.

We begin with two general claims that hold for
every distance metric. Consider two stations si, sj ∈ S
and a point p ∈ Rd.

Claim 3.3. If p ∈ HSIC(si) and dist(si, p) <
dist(sj , p), then dist(sj , p) ≥ CP(A) · dist(si, p).

Proof. If p ∈ HSIC(si) and dist(si, p) < dist(sj , p), then

there exists
−→
S k such that p ∈ H(

−→
Sk), Last(Sk) = si and

sj 6∈ Sk. This implies that(
dist(sj , p)

dist(si, p)

)α
≥ dist(si, p)

−α∑
s∈S\(Sk\{si}) dist(s, p) + N

≥ β,

which yields the claim.

�
We proceed with the second claim. Let

−→
S i =

(si1 , . . . , sik1 ) and
−→
S j = (sj1 , . . . , sjk2 ), such that k1 ≤

k2 and Si * Sj .

Claim 3.4. If H(
−→
Si),H(

−→
Sj) 6= ∅, then si1 6= sj1 or

Last(Si) 6= Last(Sj), assuming CP(A) ≥ 5.

Proof. Assume, toward contradiction, that there exist i

and j such that H(
−→
Si),H(

−→
Sj) 6= ∅ and yet si1 = sj1 and

Last(Si) = Last(Sj). Let m be the first index such that
sim 6= sjm . Let S∗ = {si1 , . . . sim−2} and set s∗1 = sim−1 ,
s∗2 = sim and s∗3 = sjm . Consider the reception zones
X1 = H((s∗1, s

∗
2) | S \S∗) and X2 = H((s∗1, s

∗
3) | S \S∗).

Since X1 ⊆ H(
−→
Si) and X2 ⊆ H(

−→
Sj), it follows that

X1, X2 6= ∅. Consider points p ∈ X1 and q ∈ X2.
For ease of notation, let dist(s∗1, p) = 1, dist(s∗2, p) = c2
and dist(s∗3, p) = c2 · c3. Since p ∈ X1, it holds that
c2, c3 ≥ CP(A). The following inequalities are direct
consequences of the fact that p ∈ X1.

dist(s∗1, s
∗
2) ≤ c2 + 1(3.6)

dist(s∗2, s
∗
3) ≥ c2 · c3 − c2(3.7)

In addition, note that point q satisfies dist(s∗3, q) <
dist(s∗2, q) (since q cancels s∗3 before s∗2). Combining
this with Ineq. (3.7), we get that

dist(s∗2, q) ≥ c2 · c3 − c2
2

(3.8)



By Ineq. (3.6,3.8) we have that

dist(s∗1, q) ≥ c2 · c3 − 3c2 − 2

2
(3.9)

Next, note that dist(s∗2, q) ≤ dist(s∗1, q)+ c2 +1 by Ineq.
(3.6). Combining this with Ineq. (3.8), we get that

dist(s∗2, q)

dist(s∗1, q)
≤ 1 +

2(c2 + 1)

c3 · c2 − 3c2 − 2
< CP(A) ,

for CP(A) ≥ 5. It therefore follows that q /∈ H(s∗1 |
S \S∗ ∪{s∗3}) and therefore also q /∈ X2, contradiction.

�
Hereafter, we focus on station si, and show that

τSICi = O(1). The station sj is called a contributor
for i if HSIC(si) ∩ Vor(sj) 6= ∅. By Claim 3.4, each
contributor can contribute at most one reception cell
to HSIC(si). We proceed by arguing that the number
of contributors for i is bounded by a constant, for any
dimension d > 0. (The proof of this claim will appear
in the journal version of the paper.)

Claim 3.5. The number of contributors for i is O(1).

We are now ready to conclude the proof of Lemma 3.7,
by combining the above two claims.

Proof. By Claim 3.4, a given Voronoi cell can contribute
at most one cell to a given HSIC(si). By Claim 3.5, at
most constant number of Voronoi cells can contribute
to HSIC(si). Overall, each HSIC(si) is composed of
constant number of cells. �

4 Construction of SIC-SINR Maps

The goal of this section is to provide an efficient scheme
for constructingHSIC(s1), the reception zone under SIC
for station s1. Recall that HSIC(s1) is a collection
of cells, each corresponding to a unique cancellation

ordering
−→
Si. For a given network A, the reception map

without SIC can be drawn by using the characteristic
polynomial of each zone H(si). In the SIC setting,
however, the characteristic polynomial of a given cell
depends on the cancellation ordering that generated

it. This is due to the fact that H(
−→
Si) is characterized

by |Si| ≤ n intersections of convex regions (see Eq.
(3.4)) and the characteristic polynomial of each such
region is known. The main task in drawing HSIC(s1) is
therefore determining the (at most) O(n2d) orderings
of NCO1 among the collection of a-priori (n − 1)!
orderings (i.e., CO1). We address this challenge by
constructing the arrangement Ar(S) and modifying it
into a data structure that contains the information of
all NCOi. Towards the end of the section we establish
the following.

Theorem 4.1. A data structure HDS of size O(n2d+1)
can be constructed in time O(n2d+1). Using HDS,
NCOi can be computed in time O(n2d+1).

4.1 Algorithm Description We begin by providing
some notation. Associate with every point p ∈ Rd a

label L(p), given by
−→
S p = (sp1, . . . , s

p
n), a sorted array

of S stations such that i < j if dist(spi , p) ≤ dist(spj , p).
In Observation 4.1 we prove that for a cell f in the
arrangement Ar(S), all points in f have the same
label. Hence we associate with each cell f ∈ Ar(S)
a unique label by setting L(f) = L(p) for some point
p ∈ f . (Observation 4.1 proves also that all cell labels

are distinct.) Let
−→
S p
i = (sp1, . . . , s

p
k) be the prefix of

−→
S p such that Last(

−→
S p
i ) = spk = si. We then define

Li(p) =
−→
S p
i (and Li(f) is defined accordingly).

We proceed by describing Algorithm BuildHDS.
The algorithm is composed of two steps:
(1) building Ar(S) (see Chapter 7 of [8]), and
(2) computing the labels L(f) for the cells f ∈ Ar(S).
The resulting data structure HDS is a labeled arrange-
ment denoted by L(Ar(S)). We now describe the label-
ing process, given by Algorithm LabelArrangment. The
algorithm starts from an arbitrary cell f ∈ Ar(S) and
computes L(f) by ordering the distances of stations in
S with respect to some arbitrary point p ∈ f . Start-
ing from f , Ar(S) is now traversed in a DFS fashion,
where the label of a newly encountered cell g, L(g), is
computed using the label of its parent in the DFS tree,
L(parent(g)). Given that g and parent(g) are separated
by the hyperplane HP (si, sj), Algorithm LabelCell sets
L(g) = L(parent(g)) and swaps the relevant positions si
and sj in L(parent(g)). Finally, Algorithm ExtractNCO
describes how NCOi can be extracted from HDS. The
algorithm constructs a hash-table HDSi to maintain
NCOi. To do that, the algorithm traverses the labeled
arrangement L(Ar(S)) and appends the truncated la-
bels Li(f) to HDSi.

4.2 Analysis We next sketch the correctness proof
of the algorithm. (Complete proofs will be given in the
journal version of the paper.) We begin by showing that
the labels of all points in a given cell f ∈ Ar(S) are the
same and the face labels are distinct.

Observation 4.1. The points p1, p2 ∈ Rd belong to the
same face in Ar(S) iff L(p1) = L(p2).

To show that Algorithm LabelCell is correct, we
establish the following claims.

Lemma 4.1. Let f1, f2 be two neighboring cells in
Ar(S). Then given L(f1), Algorithm LabelCell computes
L(f2) in time O(1).



Finally we show that HDS1 contains all NCO1, proving
the correctness of Algorithm ExtractNCO.

Lemma 4.2.
−→
S i ∈ NCO1 iff

−→
S i ∈ HDS1.

It is left to consider the construction time and memory
size of HDS. By Lemma 2.2 , Ar(S) is constructed
in O(n2d) and maintained in O(n2d) space. Clearly,
the labeled arrangement L(Ar(S)) is of size O(n2d+1)
as each label L(f) is of size O(n). We now consider
the time it takes to label Ar(S) (i.e., the running time
of Algorithm LabelArrangment). Note that the labeling
of the first cell f ∈ Ar(S) takes O(n log n) time as
it involves sorting. Subsequent labels, however, are
cheaper as they are computed directly using the label
of their neighbor and the hyperplane that separates
them. Overall, the labeling requires time linear in
the size of the labeled arrangement and bounded by
O(n2d+1). Finally we consider Algorithm ExtractNCO.
The extraction of NCOi requires one pass over the
labels of Ar(S) cells and therefore takes O(n2d+1) time.
This completes the proof of Theorem 4.1.

5 Approximate Point Location

In this section, we utilize the topological properties de-
rived thus far in order to address the problem of ef-
ficiently answering point location queries under inter-
ference cancellation. We first briefly review the topo-
logical and computational properties of the reception
zones. In Eq. (3.5), we described the reception zone
HSIC(si) as a union of cells. By Lemmas 3.3 and 3.4,
all cells in this union are distinct and convex. More-
over, Eq. (3.4) described each cell as the intersection of
at most n SINR reception zones with no ordered cancel-
lation. In Corollary 3.5, the number of possible cells in
HSIC(si), τ

SIC
i was shown to beO(n2d). In fact, by Sec-

tion 3.3, this bound can be tightened for threshold value
of CP(A). Theorem 4.1 then established the existence of
a polynomial-time algorithm to compute the non-empty
cancellation ordering responsible for each cell. We will
see here that when all these properties of the reception
zone are put to use, a point location algorithm with
logarithmic running time can be devised. For ease of il-
lustration, we focus here only on the 2-dimensional case.

At this point, a few remarks are in order. First,
when no cancellation is used, a station si can be heard
at point p only if the signal from si is the strongest
among all transmitting stations. In the uniform power
scenario, this means si is heard at p only if p is in the
Voronoi cell of si. As a result, one could devise a point
location algorithm that for a given point p returns the
nearest station si and whether p ∈ H(si) or not (with
some slack). However, when cancellation is possible,
several stations can be heard at p simultaneously (even

for β > 1). Consequently, we consider here only joint
station-location queries, that is, we wish to answer the
following question: given a point p in the plane and
a station si, is si heard at p under some ordering of
cancellations?

Second, note that without offline preprocessing,
Ω(n log n) time is required to answer a single point
location query. When processing a large number of
queries, this might be too costly, hence the need for a
tailored data structure that will facilitate O(log n) time
for each query.

Toward our goal, we use a number of results and
data structures derived for the SINR model with no
cancellation [3]. For completeness, we include the basic
concepts herein. For further details, the readers are
referred to [3]. In [3], the authors use the following
procedure: for a given reception zone H(si) ⊂ R2,
a square grid is drawn (see Figure 5(a)). Then, the
boundary ofH(si) is traversed, marking the grid squares
that intersect with the boundary (with possibly O(1)
additional squares in each step). These marked grid
squares form the region H?(si), for which no conclusive
answer can be returned. The interior grid squares form
the region H+(si), for which an affirmative answer is
returned. The rest of squares form H−(si), for which
a negative answer is returned. It is proved that since
the region H(si) is convex and fat (Lemma 2.1), for any
given ε, one can choose the grid granularity such that
area(H?(si)) ≤ ε · area(H(si)).

We now turn to our original problem. For each sta-
tion si, we construct a data structure DS(si) representing
the reception zone HSIC(si), together with two binary
search trees on its (now possibly slightly overlapping)
cells. Using these data structures, we are able to design
an algorithm answering joint station-location queries in
logarithmic time. Our main result in this section is the
following.

Theorem 5.1. Let A = 〈d = 2, S, ψ = 1,N > 0, β >
1, α = 2〉. Fix a station si. A data structure DS(si)
of size O(n9ε−1) is constructed in O(n11ε−1) processing
time. This data structure partitions the Euclidean plane
into disjoint zones R2 = HSIC,+(si) ∪ HSIC,−(si) ∪
HSIC,?(si) such that

1. HSIC,+(si) ⊆ HSIC(si)

2. HSIC,−(si) ∩HSIC(si) = ∅

3. area(HSIC,?(si)) ≤ ε · area(HSIC(si)).

DS(si) identifies the zone to which a query point p ∈ R2

belongs in time O(log n).

Let us start by describing the construction of the
data structure DS(si). Fix a station in the network.



(a) One reception zone (b) Zones intersection (c) After one iteration

Figure 5: (a) The grid structure for the representation of H(si). The region boundary is in bold line. The undetermined
squares, forming H?(si), are marked in gray. The inner squares form H+(si), while the outer form H−(si). (b) Adding
the boundary of a second region. (c) The gray areas marking the undetermined region of the intersection. Each grayed
square was grayed out in at least one of the original shapes.

Without loss of generality, assume it is s1. Represent the

reception zone of s1 as a union of cells H(
−→
Si) indexed by

the orderings
−→
Si ∈ CO1, as in Eq. (3.5). Recalling that

NCO1 = {
−→
Si ⊆ S | Last(

−→
Si) = s1 and Vor(

−→
Si) 6= ∅}, in

the rest of this proof, sums and unions over
−→
Si ∈ CO1 in

the representation of HSIC(s1) refer only to the distinct
ordered subsets that define HSIC(s1), given in NCO1,
rather than to all possible subsets.

By Lemma 3.3, all cells in the union in the right
hand side of (3.5) are distinct, and each has the form

(5.10) H(
−→
Si) =

k⋂
j=1

H(sij | S \ {si1 , . . . , si(j−1)
}) ,

where k = |
−→
Si|. H(

−→
Si) is thus the intersection of

at most n reception zones of the form H(sij | S \
{si1 , . . . , si(j−1)

}), that is, SINR reception zones without
interference cancellation (though with, possibly, some
stations turned off). Since there are O(n4) such dis-
tinct cells, whose cancellation orders are stored in the
data structure HDS, our data structure DS(si) is con-
structed in three main steps: (1) retrieve the order-

ings
−→
Si ⊆ S that form HSIC(s1) from the data structure

HDS. Now all cancellation orders in NCO1 are known.

(2) Construct the data structures that represent H(
−→
Si),−→

Si ∈ NCO1, by intersecting the required maps accord-
ing to (5.10). (3) Assemble all data structures built in
step (2) in a search tree facilitating logarithmic queries.

To retrieve the orderings of cancellations that piece
together HSIC(s1), we traverse the data structure HDS.
According to Theorem 4.1, inO(n4) time, NCO1 is com-
puted and the orderings of cancellations are retrieved.

We now consider the data structure DS(
−→
Si) required

to represent H(
−→
Si). Let ε̃ be a small positive parameter,

to be defined later. By [3], for each of the reception
zones in the right hand side of Eq. (5.10), an ε̃
approximation is achieved using a data structure of size
O(ε̃−1). The time required to construct such a data

structure is O(nε̃−1). Let DSm(
−→
Si), 1 ≤ m ≤ k, be

the data structure for the mth region in Eq. (5.10).

DSm(
−→
Si) partitions the space into three regions, R2 =

H+
m ∪ H−m ∪ H?

m (see Figure 5(a)). In particular, it is
represented as a vector with O(ε̃−1) entries (indexed
by the x-axis value of the grid columns). Each entry
stores the locations of the upper (high y-axis values)
and lower marked squares, that is, the squares forming
the boundary of the reception zone. In this way,
given a point p, one can compute the grid square in
which p resides, access the data structure at the entry
corresponding to the column, and based on the y-axis
values of the upper and lower marked squares decide in
O(1) whether si is heard at p, unheard or a conclusive
answer cannot be returned. Note, however, that in order

to keep all structures {DSm(
−→
Si)}km=1 on the same grid,

all should be constructed according to the finest grid
resolution. On the other hand, since we are interested
only in the intersection, all grid columns corresponding

to x locations outside the region of DS1(
−→
Si) can be

discarded.
To construct DS(

−→
Si), we proceed as follows. We

start with DS1(
−→
Si), and iterate over its ε̃−1 entries.

Let DS[l, upper] and DS[l, lower] denote the coordinates
of the undetermined upper and lower (respectively)
squares in column l of DS (in [3], each such region was
represented by at least three squares). We say that



DSi[l, upper] ≥ DSj [l, upper] if the y index of the lower-
most square in DSi[l, upper] is greater than or equal to
the y index of the lowermost square in DSj [l, upper]. For
each entry, we iterate over m, the number of cells to in-

tersect, updating DS1(
−→
Si)[l, upper] and DS1(

−→
Si)[l, lower]

in each iteration to represent the intersection of all re-
gions at the specific entry. This is done by Algorithm
Intersect, which compares the upper and lower values of
the current region (describing the intersection thus far)
with the ones of the new region we intersect with, and
updates the region according to one of the 6 possible
intersection patters. Note that the procedure follows a
simple “hierarchy” among the three types of squares:
A square that was tagged as a ′−′ is any one of the

data structures {DSm(
−→
Si)}km=1 will be tagged as such in

DS(
−→
Si). A square will be tagged as a ′+′ iff it is tagged

as such in all intersecting data structures. Finally, a

square tagged as a ′?′ in DS(
−→
Si) must have been tagged

as such in at least one of the intersecting structures. An
example is given in Figures 5(b) and 5(c). In this case,
a new region intersects the current one in such a way
that the upper boundary of the intersection is that of
the new region, and the lower boundary of the inter-
section is that of the current region. The comparison
done in each grid column, for each new region added
takes O(1) processing time. Thus, the whole process of
intersecting at most n given data structures requires
O(nε̃−1) processing time. The resulting data struc-

ture DS(
−→
Si) representing the intersection is also of size

O(ε̃−1), as it is not required to be larger than the largest
among the intersecting structures. Since this method
requires having all data structures beforehand, these
are constructed in O(n2ε̃−1) processing time. Clearly,
a data structure DS(s1) to represent HSIC(s1) is built
from the O(n4) data structures, representing all cells
of HSIC(s1). DS(s1) requires O(n4ε̃−1) memory and
O(n6ε̃−1) processing time to construct. Items 1 and
2 of the theorem thus follow by construction.

Consider now the area of the undetermined regions
in DS(s1). To establish item 3 of the theorem, we wish
to show that this region can be made arbitrarily small
compared to HSIC(s1) with a proper choice of ε̃. The
required choices, and the ensuing analysis establishing
the theorem, will appear in the journal version of the
paper.

To achieve a query time that is logarithmic in n,
simply arrange the O(n4) data structures representing
HSIC(s1) in two binary search trees, one according to
right-most grid point each structure represents, and
one according to the lowest grid point each structure
represents. Since this procedure is merely technical, we
skip the details. Given a point p ∈ R2, one can identify

the data structure to which p may belong in O(log n),
and query the relevant data structure in O(1).
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