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Abstract

Identity uncertainty is a pervasive problem in real-world data analysis. It
arises whenever objects are not labeled with unique identifiers or when
those identifiers may not be perceived perfectly. In such cases, two ob-
servations may or may not correspond to the same object. In this paper,
we consider the problem in the context of citation matching—the prob-
lem of deciding which citations correspond to the same publication. Our
approach is based on the use of a relational probability model to define
a generative model for the domain, including models of author and title
corruption and a probabilistic citation grammar. ldentity uncertainty is
handled by extending standard models to incorporate probabilities over
the possible mappings between terms in the language and objects in the
domain. Inference is based on Markov chain Monte Carlo, augmented
with specific methods for generating efficient proposals when the domain
contains many objects. Results on several citation data sets show that
the method outperforms current algorithms for citation matching. The
declarative, relational nature of the model also means that our algorithm
can determine object characteristics such as author names by combining
multiple citations of multiple papers.

1 INTRODUCTION

Citation matching is the problem currently handled by systems such as Citeseer [1].% Such
systems process a large number of scientific publications to extract their citation lists. By
grouping together all co-referring citations (and, if possible, linking to the actual cited
paper), the system constructs a database of “paper” entities linked by the “cites(p1,p2)”
relation. This is an example of the general problem of determining the existence of a set
of objects, and their properties and relations, given a collection of “raw” perceptual data;
this problem is faced by intelligence analysts and intelligent agents as well as by citation
systems.

A key aspect of this problem is determining when two observations describe the same
object; only then can evidence be combined to develop a more complete description of the
object. Objects seldom carry unique identifiers around with them, so identity uncertainty
is ubiquitous. For example, Figure 1 shows two citations that probably refer to the same
paper, despite many superficial differences. Citations appear in many formats and are rife
with errors of all kinds. As a result, Citeseer—which is specifically designed to overcome

1Seeci t eseer. nj . nec. com Citeseer is now known as Researchindex.
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Figure 1: Two citations that probably refer to the same paper.

such problems—currently lists more than 100 distinct Al textbooks published by Russell
and Norvig on or around 1995, from roughly 1000 citations.

Identity uncertainty has been studied independently in several fields. Record linkage [2] is
a method for matching up the records in two files, as might be required when merging two
databases. For each pair of records, a comparison vector is computed that encodes the ways
in which the records do and do not match up. EM is used to learn a naive-Bayes distribution
over this vector for both matched and unmatched record pairs, so that the pairwise match
probability can then be calculated using Bayes’ rule. Linkage decisions are typically made
in a greedy fashion based on closest match and/or a probability threshold, so the overall
process is order-dependent and may be inconsistent. The model does not provide for a
principled way to combine matched records. A richer probability model is developed by
Cohen et al [3], who model the database as a combination of some “original” records that
are correct and some number of erroneous versions. They give an efficient greedy algorithm
for finding a single locally optimal assignment of records into groups.

Data association [4] is the problem of assigning new observations to existing trajectories
when multiple objects are being tracked; it also arises in robot mapping when deciding if
an observed landmark is the same as one previously mapped. While early data associa-
tion systems used greedy methods similar to record linkage, recent systems have tried to
find high-probability global solutions [5] or to approximate the true posterior over assign-
ments [6]. The latter method has also been applied to the problem of stereo correspondence,
in which a computer vision system must determine how to match up features observed in
two or more cameras [7]. Data association systems usually have simple observation mod-
els (e.g., Gaussian noise) and assume that observations at each time step are all distinct.
More general patterns of identity occur in natural language text, where the problem of
anaphora resolution involves determining whether phrases (especially pronouns) co-refer;
some recent work [8] has used an early form of relational probability model, although with
a somewhat counterintuitive semantics.

Citeseer is the best-known example of work on citation matching [1]. The system groups
citations using a form of greedy agglomerative clustering based on a text similarity metric
(see Section 5). McCallum et al [9] use a similar technique, but also develop clustering
algorithms designed to work well with large numbers of small clusters (see Section 4).

With the exception of [8], all of the preceding systems have used domain-specific algo-
rithms and data structures; the probabilistic approaches are based on a fixed probability
model. In previous work [10], we have suggested a declarative approach to identity uncer-
tainty using a formal language—an extension of relational probability models [11]. Here,
we describe the first substantial application of the approach. Section 2 explains how to
specify a generative probability model of the domain. The key technical point (Section 3)
is that the possible worlds include not only objects and relations but also mappings from
terms in the language to objects in the domain, and the probability model must include a
prior over such mappings. Once a model is defined, a general-purpose inference method is
applied. We have found Markov chain Monte Carlo (MCMC) to be effective for this and
other applications (see Section 4); here, we include a method for generating effective pro-
posals based on ideas from [9]. The system also incorporates an EM algorithm for learning



the local probability models, such as the model of how author names are abbreviated, re-
ordered, and misspelt in citations. Section 5 evaluates the performance of four datasets
originally used to test the Citeseer algorithms [1]. As well as providing significantly bet-
ter performance, our system is able to reason simultaneously about papers, authors, titles,
and publication types, and does a good job of extracting this information from the grouped
citations. For example, an author’s name can be identified more accurately by combining
information from multiple citations of several different papers. The errors made by our
system point to some interesting unmodeled aspects of the citation process.

2 RPMs

Reasoning about identity requires reasoning about objects, which requires at least some of
the expressive power of a first-order logical language. Our approach builds on relational
probability models (RPMs) [11], which let us specify probability models over possible
worlds defined by objects, properties, classes, and relations.

2.1 BasicRPMs

At its most basic, relational probability model, as defined by Koller et al [12], consists of

A set C of classes denoting sets of objects, related by subclass/superclass relations.
A set 7 of named instances denoting objects, each an instance of one class.

A set A of complex attributes denoting functional relations. Each complex at-
tribute A has a domain type Dom[A] € C and a range type Range[A] € C.

A set B of simple attributes denoting functions. Each simple attribute B has a
domain type Dom[B] € C and a range Val[B].

A set of conditional probability models P(B|Pa[B]) for the simple attributes.
Pa[B] is the set of B’s parents, each of which is a nonempty chain of (appropri-
ately typed) attributes o = A;.---.A,.B’, where B’ is a simple attribute. Prob-
ability models may be attached to instances or inherited from classes. The parent
links should be such that no cyclic dependencies are formed.

We also use slight variants of two additional concepts from [11]. The first is number un-
certainty, which allows for multi-valued complex attributes of uncertain cardinality. We
define each such attribute A as a relation rather than a function, and we associate with it a
simple attribute #[A] (i.e., the number of values of A) with a domain type Dom|[A] and a
range {0,1,..., max#[A]}. The second concept is the same-as statement, which, when
applied two chains of complex attributes, constrains those chains to be equivalent.

The standard semantics of RPMs includes the unique names assumption, which precludes
identity uncertainty. Under this assumption, any two papers are assumed to be different
unless we know for a fact that they are the same. In other words, although there are many
ways in which the terms of the language can map to the objects in a possible world, only one
of these identity mappings is legal: the one with the fewest co-referring terms. When there
is no uncertainty over either the identity mapping or the complex attributes, it is possible
to express the RPM as an equivalent Bayesian network: each of the basic attributes of each
of the objects becomes a node, with the appropriate parents and probability model. RPM
inference usually involves the construction of such a network.

2.2 RPMsfor citations

Figure 2 outlines an RPM for the example citations of Figure 1. There are four classes,
the self-explanatory Author, Paper, and Citation, as well as AuthorAsCited, which repre-



Author _
surname Author AsCited
fnames | ——{~surname
#fnames) — | ~fnames ———— ( Dis ]
t Tt #(fnames) ——— Dot
L author bz]
22
Paper _ B
authors —— Citation
#authors) obsAuthors
. “L'g_r . #(obsAuthors)
pubyp | obsTitle
parse
Citation.obsAuthorg]i].author \téxt
same-as er
Citation.paper .authorg[i] pap

Figure 2: An RPM for our Citeseer example. The large rectangles represent classes: the
dark arrows indicate the ranges of their complex attributes, and the light arrows lay out all
the probabilistic dependencies of their basic attributes. The small rectangles represent in-
stances, linked to their classes with thick grey arrows. There is a single same-as statement.

sents not actual authors, but author names as they appear when cited. Each citation we
wish to match leads to the creation of a Citation instance; instances of the remaining three
classes are then added as needed to fill all the complex attributes. E.g., for the first citation
of Figure 1, we would create a Citation instance C', set its text attribute to the string “Me-
tral M ...August 1994.” and set its paper attribute to a newly created Paper
instance, which we will call P;. We would then introduce max(#[author]) (here only 3,
for simplicity) AuthorAsCited instances (D11, D12, and Ds3) to fill the P;.obsAuthors (i.e.,
observed authors) attribute, and an equal number of Author instances (411, A2, and A;3)
to fill both the P;.authors[i] and the D,;.author attributes. (The authors of the actual paper
and the cited authors are constrained to be equal by the same-as statement.) Assuming (for
now) that the value of C'.parse is observed, we can set the values of all the basic attributes
of the Citation and AuthorAsCited instances. (E.g., given the correct parse, Dy;.surname
would be set to Lashkari, and D».fnames would be set to (Max)). The remaining basic
attributes — those of the Paper and Author instances — represent the “true” attributes of
those objects, and their values are unobserved.

The Bayesian network equivalent to our RPM is shown in Figure 3. We will now fill in the
details of its conditional probability models. Our priors over the “true” attributes are con-
structed off-line, using the following resources: the 2000 Census data on US names, a large
A.l. BibTeX bibliography, and a hand-parsed collection of 500 citations. We learn several
bigram models (actually, linear combinations of a bigram model and a unigram model):

Figure 3: The Bayesian network equivalent to our RPM, assuming C; # Cs.



letter-based models of first names, surnames, and title words, as well as higher-level mod-
els of various parts of the citation string. More specifically, the values of Author.fnames and
Author.surname are modeled as having a a 0.9 chance of being drawn from the relevant US
census file, and a 0.1 chance of being generated using a bigram model learned from that
file. The prior over Paper.titles is defined using a two-tier bigram model constructed using
the bibliography, while the distributions over Author.#(fnames), Paper.#(authors), and Pa-
per.pubType 2 are derived from our hand-parsed file. The conditional distributions of the
“observed” variables given their true values (i.e., the corruption models of Citation.obsTitle,
AuthorAsCited.surname, and AuthorAsCited.fnames) are modeled as noisy channels where
each letter, or word, has a small probability of being deleted, or, alternatively, changed,
and there is also a small probability of insertion. AuthorAsCited.fnames may also be ab-
breviated as an initial. The parameters of the corruption models are learnt online, using
stochastic EM.

Let us now return to Citation.parse, which cannot be an observed variable, since citation
parsing, or even citation subfield extraction, is an unsolved problem. It is therefore fortu-
nate that our approach lets us handle uncertainty over parses so naturally. The state space
of Citation.parse has two different components. First of all, it keeps track of the citation
style, defined as the ordering of the author and title subfields, as well as the format in which
the author names are written. The prior over styles is learned using our hand-segmented
file. Secondly, it keeps track of the segmentation of Citation.text, which is divided into
an author segment, a title segment, and three filler segments (one before, one after, and
one in between.) We assume a uniform distribution over segmentations. Citation.parse
greatly constrains Citation.text: the title segment of Citation.text must match the value of
Citation.obsTitle, while its author segment must match the combined values of the simple
attributes of Citation.obsAuthors. The distributions over the remaining three segments of
Citation.text are defined using bigram models, with the model used for the final segment
chosen depending on the publication type. These models were, once more, learned using
our pre-segmented file.

3 IDENTITY UNCERTAINTY

In our application, any two citations may or may not refer to the same paper. Thus, for
citations C; and Cs, there is uncertainty as to whether the corresponding papers P; and P,
are in fact the same object. If they are the same, they will share one set of basic attributes;
if they are distinct, there will be two sets. Thus, the possible worlds of our probability
model may differ in the number of random variables, and there will be no single equivalent
Bayesian network.

The approach we have taken to this problem [10] is to extend the representation of a pos-
sible world so that it includes not only the basic attributes of a set of objects, but also an
assignment ¢, that is, a mapping from terms in the language (such as P;) to objects in the
world. We are interested only in whether terms co-refer or not, so «+ can be represented by a
set of equivalence classes of terms. For example, if P; and P, are the only terms, and they
co-refer, then ¢ is {{ Py, P> }}; if they do not co-refer, then ¢ is {{P1 }, {P»}}.

We define a probability model for the space of extended possible worlds by specifying
a prior P(1) and a conditional distribution over basic attributes given +.> As in standard
RPMs, we assume that the class of every instance is known. Hence, we can simplify P(:)
further by rewriting it as the product of the P(1¢)s of all the classes C' € C. We distinguish
two cases:

2publication types range over {article, conference paper, book, thesis, and tech report}
3We could also alow ¢ to depend on the attribute val ues—e.g., the frequency of citationsto agiven
paper might depend on the fame of the authors—provided we do not introduce cyclic dependencies.



e For some classes (such as the citations themselves), the unique names assumptions
remains appropriate. Thus, we define P(t¢station) 10 assign a probability of 1.0
to the one assignment where each citation object is unique.

e For classes such as Paper and Author, whose elements are subject to identity un-
certainty, we specify a prior over the cardinality of the class using a high-variance
log-normal distribution.* Then we make appropriate uniformity assumptions to
construct P(w¢). Specifically, we assume that each paper is a priori equally likely
to be cited, and that each author is a priori equally likely to write a paper. Here,
“a priori” means prior to obtaining any information about the object in question,
so the uniformity assumption is entirely reasonable. With these assumptions, the
probability of an assignment cc ., that maps k£ named instances to m distinct
objects, when C' contains n objects, is given by

n! 1
P(eokm) = (n—m)ink

When n > m, the world contains objects unreferenced by any of the terms. However, these
filler objects are obviously irrelevant (if they affected the attributes of some named term,
they would have been named as functions of that term.) Therefore, we never have to create
them, or worry about their attribute values.

Our model assumes that the cardinalities of the classes are independent. It is straightfor-
ward to specify a dependency model using standard Bayesian network semantics, where
the network nodes correspond to the cardinality attributes of the classes. E.g., it would be
reasonable to let the total number of papers depend on the total number of authors.

4 |INFERENCE

With the introduction of identity uncertainty, our model grows from a single Bayesian
network to a collection of networks, one for each possible value of «. This collection can be
rather large, since the number of ways in which a set can be partitioned grows very quickly
with the size of the set. ® Exact inference is, therefore, impractical. We use an approximate
method based on Markov chain Monte Carlo.

41 MARKOV CHAIN MONTE CARLO

MCMC [13] is a well-known method for approximating an expectation over some distribu-
tion w(x), commonly used when the state space of x is too large to sum over. The weighted
sum over the values of z is replaced by a sum over samples from 7 (), which are generated
using a Markov chain constructed to have 7(z) as a stationary distribution.

There are several ways of building up an appropriate Markov chain. In the Metropolis—
Hastings method (M-H), transitions in the chain are constructed in two steps. First, a
candidate next state ' is generated from the current state x, using the (more or less arbi-
trary) proposal distribution ¢(z'|z). The probability that the move to z' is actually made is
the acceptance probability, defined as a(z'|xz) = min (1, %)

Such a Markov chain will have the right stationary distribution 7 (z) as long as g is defined
in such a way that the chain is ergodic. It is even possible to factor ¢ into separate proposals
for various subsets of variables. In those situations, the variables that are not changed by the
transition cancel in the ratio w(2") /m(z), so the required calculation can be quite simple.

40ther models are possible; for example, in situations where objects appear and disappear, P(t)
can be modeled implicitly by specifying the arrival, transition, and departure rates [6].
5This sequence is described by the Bell numbers, and reaches 115, 975 for aset of size 10.



4.2 THE CITATION-MATCHING ALGORITHM

The state space of our MCMC algorithm is the space of all the possible worlds, where
each possible world contains both an assignment . and the values of all the basic attributes
of all the objects. Since the ¢ is given in each world, the distribution over the attributes
can be represented using a Bayesian network as described in Section 3. Therefore, the
probability of a state is simply P(+) multiplied by the probability of the hidden attributes
of the network.

Our algorithm uses a factored ¢ function to propose, first, a change to ¢, and then, values
for all the hidden attributes of all the objects (or clusters in ) affected by that change. The
algorithm for proposing a change in ¢ works as follows:

Select two clustersas, az € vc®

Create two empty clusters b, and b

place each instance € a; U az u.ar. into by or by
Propose v = vc — {al,a2} U {b1, b2}

Given a proposed ¢, suggesting values for the hidden attributes boils down to recovering
their true values from (possibly) corrupt observations, e.g., guessing the true surname of
the author currently known both as “Simth” and “Smith”. Since our title and name noise
models are symmetric, our basic strategy is to apply these noise models to one of the
observed values. In the case of surnames, we have the additional resource of a dictionary
of common names, so, some of the time, we instead pick one of the set of dictionary entries
that are within a few corruptions of our observed names. (One must, of course, careful
to account for this hybrid approach in our acceptance probability calculations.) Parses are
handled differently: we preprocess each citation, organizing its plausible segmentations
into a list ordered in terms of descending probability. At runtime, we simply sample from
these discrete distributions. Since we assume that boundaries occur only at punctuation
marks, and discard segmentations of probability < 10~%, the lists are usually quite short.
The publication type variables, meanwhile, are not sampled at all. Since their range is so
small, we sum them out.

4.3 SCALING UP

One of the acknowledged flaws of the MCMC algorithm is that it often fails to scale. In
this application, as the number of papers increases, the simplest approach — one where
the two clusters a; and a, are picked u.a.r — is likely to lead to many rejected proposals,
as most pairs of clusters will have little in common. The resulting Markov chain will mix
slowly. Clearly, we would prefer to focus our proposals on those pairs of clusters which are
actually likely to exchange their instances. We have implemented an approach based on the
efficient clustering algorithm of McCallum et al [9], where a cheap distance metric is used
to preprocess a large dataset and fragment it into many canopies, or smaller, overlapping
sets of elements that have a non-zero probability of matching. We do the same, using word-
matching as our metric. Then, at runtime, our ¢(=z'|z) function proposes first a canopy e,
and then a pair of clusters u.a.r. from ¢. (g(z|z") is calculated by summing over all the
canopies which contain any of the elements of the two clusters.)

5 EXPERIMENTAL RESULTS

We have applied the MCMC-based algorithm to the hand-matched datasets used in [1].
(Each of these datasets contains several hundred citations of machine learning papers, about

®Note that if the same cluster is picked twice, it will probably be split.
"It would also be possible to sample directly from amodel such as a hierarchical HMM



Face Reinfor cement Reasoning Constraint
349 citations, 242 papers | 406 citations, 148 papers | 514 citations, 296 papers | 295 citations, 199 papers

Phrase matching 94% 79% 86% 89%

RPM + MCMC 97% 94% 96% 93%

Table 1: Results on four Citeseer data sets, for the text matching and MCMC algorithms.
The metric used is the percentage of actual citation clusters recovered perfectly; for the
MCMC-based algorithm, this is an average over all the MCMC-generated samples.

half of them in clusters ranging in size from two to twenty-one citations.) We have also
implemented their phrase matching algorithm, a greedy agglomerative clustering method
based on a metric that measures the degrees to which the words and phrases of any two
citations overlap. (They obtain their “phrases” by segmenting each citation at all punctu-
ation marks, and then taking all the bigrams of all the segments longer than two words.)
The results of our comparison are displayed in Figure 1, in terms of the Citeseer error met-
ric. Clearly, the algorithm we have developed easily beats our implementation of phrase
matching.

We have also applied our algorithm to a large set of citations referring to the textbook Ar-
tificial Intelligence: A Modern Approach. It clusters most of them correctly, but there are a
couple of notable exceptions. Whenever several citations share the same set of unlikely er-
rors, they are placed together in a separate cluster. This occurs because we do not currently
model the fact that erroneous citations are often copied from reference list to reference list.
This can be handled by extending the model to include a CopiedFrom attribute. Generally
speaking, we expect that relational probabilistic languages with identity uncertainty will be
a useful tool for creating knowledge from raw data.
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