Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

#!/usr/bin/python 

 

# Find the minimum-area bounding box of a set of 2D points 

# 

# The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates.  

# The first and last points points must be the same, making a closed polygon. 

# This program finds the rotation angles of each edge of the convex polygon, 

# then tests the area of a bounding box aligned with the unique angles in 

# 90 degrees of the 1st Quadrant. 

# Returns the  

# 

# Tested with Python 2.6.5 on Ubuntu 10.04.4 

# Results verified using Matlab 

 

# Copyright (c) 2013, David Butterworth, University of Queensland 

# All rights reserved. 

# 

# Redistribution and use in source and binary forms, with or without 

# modification, are permitted provided that the following conditions are met: 

# 

#     * Redistributions of source code must retain the above copyright 

#       notice, this list of conditions and the following disclaimer. 

#     * Redistributions in binary form must reproduce the above copyright 

#       notice, this list of conditions and the following disclaimer in the 

#       documentation and/or other materials provided with the distribution. 

#     * Neither the name of the Willow Garage, Inc. nor the names of its 

#       contributors may be used to endorse or promote products derived from 

#       this software without specific prior written permission. 

# 

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 

# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 

# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 

# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 

# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 

# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 

# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 

# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 

# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 

# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 

# POSSIBILITY OF SUCH DAMAGE. 

 

from __future__ import division 

from numpy import * 

import sys  # maxint 

 

def minBoundingRect(hull_points_2d): 

    #print "Input convex hull points: " 

    #print hull_points_2d 

 

    # Compute edges (x2-x1,y2-y1) 

    edges = zeros( (len(hull_points_2d)-1,2) ) # empty 2 column array 

    for i in range( len(edges) ): 

        edge_x = hull_points_2d[i+1,0] - hull_points_2d[i,0] 

        edge_y = hull_points_2d[i+1,1] - hull_points_2d[i,1] 

        edges[i] = [edge_x,edge_y] 

    #print "Edges: \n", edges 

 

    # Calculate edge angles   atan2(y/x) 

    edge_angles = zeros( (len(edges)) ) # empty 1 column array 

    for i in range( len(edge_angles) ): 

        edge_angles[i] = math.atan2( edges[i,1], edges[i,0] ) 

    #print "Edge angles: \n", edge_angles 

 

    # Check for angles in 1st quadrant 

    for i in range( len(edge_angles) ): 

        edge_angles[i] = abs( edge_angles[i] % (math.pi/2) ) # want strictly positive answers 

    #print "Edge angles in 1st Quadrant: \n", edge_angles 

 

    # Remove duplicate angles 

    edge_angles = unique(edge_angles) 

    #print "Unique edge angles: \n", edge_angles 

 

    # Test each angle to find bounding box with smallest area 

    min_bbox = (0, sys.maxint, 0, 0, 0, 0, 0, 0) # rot_angle, area, width, height, min_x, max_x, min_y, max_y 

    #print "Testing", len(edge_angles), "possible rotations for bounding box... \n" 

    for i in range( len(edge_angles) ): 

 

        # Create rotation matrix to shift points to baseline 

        # R = [ cos(theta)      , cos(theta-PI/2) 

        #       cos(theta+PI/2) , cos(theta)     ] 

        R = array([ [ math.cos(edge_angles[i]), math.cos(edge_angles[i]-(math.pi/2)) ], [ math.cos(edge_angles[i]+(math.pi/2)), math.cos(edge_angles[i]) ] ]) 

        #print "Rotation matrix for ", edge_angles[i], " is \n", R 

 

        # Apply this rotation to convex hull points 

        rot_points = dot(R, transpose(hull_points_2d) ) # 2x2 * 2xn 

        #print "Rotated hull points are \n", rot_points 

 

        # Find min/max x,y points 

        min_x = nanmin(rot_points[0], axis=0) 

        max_x = nanmax(rot_points[0], axis=0) 

        min_y = nanmin(rot_points[1], axis=0) 

        max_y = nanmax(rot_points[1], axis=0) 

        #print "Min x:", min_x, " Max x: ", max_x, "   Min y:", min_y, " Max y: ", max_y 

 

        # Calculate height/width/area of this bounding rectangle 

        width = max_x - min_x 

        height = max_y - min_y 

        area = width*height 

        #print "Potential bounding box ", i, ":  width: ", width, " height: ", height, "  area: ", area  

 

        # Store the smallest rect found first (a simple convex hull might have 2 answers with same area) 

        if (area < min_bbox[1]): 

            min_bbox = ( edge_angles[i], area, width, height, min_x, max_x, min_y, max_y ) 

        # Bypass, return the last found rect 

        #min_bbox = ( edge_angles[i], area, width, height, min_x, max_x, min_y, max_y ) 

 

    # Re-create rotation matrix for smallest rect 

    angle = min_bbox[0] 

    R = array([ [ math.cos(angle), math.cos(angle-(math.pi/2)) ], [ math.cos(angle+(math.pi/2)), math.cos(angle) ] ]) 

    #print "Projection matrix: \n", R 

 

    # Project convex hull points onto rotated frame 

    proj_points = dot(R, transpose(hull_points_2d) ) # 2x2 * 2xn 

    #print "Project hull points are \n", proj_points 

 

    # min/max x,y points are against baseline 

    min_x = min_bbox[4] 

    max_x = min_bbox[5] 

    min_y = min_bbox[6] 

    max_y = min_bbox[7] 

    #print "Min x:", min_x, " Max x: ", max_x, "   Min y:", min_y, " Max y: ", max_y 

 

    # Calculate center point and project onto rotated frame 

    center_x = (min_x + max_x)/2 

    center_y = (min_y + max_y)/2 

    center_point = dot( [ center_x, center_y ], R ) 

    #print "Bounding box center point: \n", center_point 

 

    # Calculate corner points and project onto rotated frame 

    corner_points = zeros( (4,2) ) # empty 2 column array 

    corner_points[0] = dot( [ max_x, min_y ], R ) 

    corner_points[1] = dot( [ min_x, min_y ], R ) 

    corner_points[2] = dot( [ min_x, max_y ], R ) 

    corner_points[3] = dot( [ max_x, max_y ], R ) 

    #print "Bounding box corner points: \n", corner_points 

 

    #print "Angle of rotation: ", angle, "rad  ", angle * (180/math.pi), "deg" 

 

    return (angle, min_bbox[1], min_bbox[2], min_bbox[3], center_point, corner_points) # rot_angle, area, width, height, center_point, corner_points