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Abstract— Randomized motion planning techniques are re-
sponsible for many of the recent successes in robot control.
However, most motion planning algorithms assume perfect and
complete knowledge of the environment. These algorithms can
fail arbitrarily badly if there are errors in the model of the
environment. In contrast, real world robot systems have suc-
ceeded by using explicit representations of model uncertainty
in localization and mapping to compensate for sensor error. In
this paper, we propose an extension of the Probabilistic Roadmap
algorithm that allows us to compute motion plans that are robust
to uncertain environment models. We show that the adapted PRM
generates less collision-prone trajectories with fewer samples than
the standard method.

I. INTRODUCTION

Randomized motion planners, such as the Probabilistic
Roadmap (PRM) [1] and the Rapidly-exploring Randomized
Tree (RRT) [2] have been very successful in solving planning
problems for robots with many degrees of freedom, prob-
lems that were previously considered intractable [3], [4], [5].
However, these algorithms depend on having a complete and
accurate model of the world.

In carefully engineered settings, such as a robot manipulator
on the factory floor, the “perfect map” assumption is a reason-
able one, as the robot’s environment can be precisely measured
and tightly controlled. In contrast, major successes in planning
have been driven by appropriate models of uncertainty. Sta-
tistical inference techniques such as Markov localization and
the Kalman filter [6], [7], [8] have enabled mobile robots to
navigate safely in populated, dynamic, uncertain environments
without getting lost. For robots with few degrees of freedom,
non-randomized motion planning algorithms have become
more robust to sensor and model errors by using robust
control techniques that incorporate both the cost of control
errors and position uncertainty [9]. In order to allow the same
robust operation for high-dimensional robots such as humanoid
robots interacting with the real world, we need to incorporate
knowledge of model uncertainty into the motion planning.

This paper extends the Probabilistic Roadmap (PRM) algo-
rithm in two ways. Firstly, we show how to modify randomized
sampling of poses in order to minimize the number of samples
required to express good plans. Our results show that good
sampling strategies that respect map uncertainty can be used to
substantially reduce the number of samples required to express
good (less collision-prone) trajectories in uncertain worlds.
Since the trajectory search process is quadratic (Dijkstra search

algorithm [10], A*) in the number of nodes, minimizing the set
of samples is a major factor in keeping the planning problem
tractable. Secondly, we show how to evaluate PRM actions
efficiently in the context of uncertainty and generate motion
plans with minimal expected cost.

Notation used:

C-space - configuration space; the space of all robot
poses. C-space � C-free � C-obst
C-free - the space of all collision-free robot poses.
C-obst - all poses resulting in collision with obstacles.

II. THE PROBABILISTIC ROADMAP METHOD

Given a map, robot dimensions, and the start and goal
positions, the PRM method [1], [11] aims to produce a valid
path from start to goal. The PRM solves the motion planning
problem in two stages [1], [12]1:

1) The preprocessing phase, during which points are sam-
pled from C-space, and only collision-free samples are
retained. As a result, an approximation of C-free [13]
is built from a set of discrete collision-free poses.
The retained samples constitute the nodes of a graph.
The graph edges are found using a local planner that
determines collision-free connectivity of each node to
its � nearest neighbors. If the local planner finds the
path between two nodes to be collision free, then an
edge between the nodes is added to the graph; the edge
is labelled with an associated cost, such as distance. The
local planner may be relatively simple, such as straight-
line distance, or a more sophisticated kinodynamic plan-
ner [14].

2) The query phase, when a graph search algorithm is used
to find a path from the start to the goal location. In
the conventional setting, the lowest-cost path generally
implies the shortest collision-free path.

The power of the PRM resides in the preprocessing stage,
which exploits the fact that even if C-free cannot be tractably
computed, it is relatively efficient to determine if an arbitrary
pose lies in C-free. The PRM learns a discrete node set
approximation of C-free by sampling poses from C-space and
rejecting samples that lie in C-obst (i.e., that collide with

1Our work extends a classic variant of the PRM which tests for collisions
during sampling and local planning as opposed to the Lazy PRM method [11].
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Fig. 1. A comparison of conventional sampling, column-wise: Uniform, Gaussian, Bridge

obstacles). If the sampling strategy is good, then a relatively
small number of nodes suffices to approximate C-free. The
issue with PRM is determining good sampling strategies that
capture the topology of the C-free with as few samples as
possible, reducing the time to search for the path during the
query stage of PRM. Although the PRM solution is complete
in the limit of sampling an infinite number of nodes, the rate of
convergence depends on the sampling strategy and difficulty
of the environment [15]. An example of a challenging C-free
configuration is a narrow passage where a naı̈ve sampling
strategy (such as uniform [16]) may require a large number
of samples before it approximates a trajectory through such a
corridor. Three commonly used sampling strategies are:

Uniform sampling [16] samples poses with uniform proba-
bility from the C-space (left in figure 1). The disadvantage of
this method is that no information about the map is used and
unnecessarily many points are sampled in the empty regions
of space.

Gaussian obstacle-based sampling [17], [18], [19] tries
to capture the fact that the optimal length paths in the C-
space follow around and near the obstacles. It samples points
near and only in the presence of obstacles (center in figure 1).
A first sample, ��, is drawn using the uniform sampler. A
distance � is sampled from a normal distribution with mean
and covariance based on knowledge of obstacle density in C-
space. A second sample, �� is then drawn from a uniform
distribution of radius � centered at ��. If both samples are
either inside the C-free or in C-obst, then both are discarded.
Otherwise, the sample inside C-free is retained.

Bridge obstacle-based sampling [20] biases the sampling
towards narrow passages where retaining connectivity of the
C-free is difficult (right in figure 1). A first sample �� is drawn
using the uniform sampler and discarded if it lies in C-free.
Otherwise, a distance � is drawn from a normal distribution
with mean and covariance based on a priori knowledge of the
topology of C-space. A second sample �� is drawn from a
uniform distribution with radius � centered at ��. If �� lies
in C-free, both samples are discarded. If, however, �� is in
C-obst, then the midpoint � between �� and �� is computed.
If pose � falls within C-free, then � is added to the graph.
This sampler cannot generally be used alone since it samples
only in corridors.

III. UNCERTAIN WORLDS

A. Modelling world uncertainty

The sampling and planning methods described so far assume
that the features of the world are known exactly, and that there
is no ambiguity in the location of the obstacles. However, this
is an unreasonably optimistic assumption, since the mapping
techniques used to build models contain sensor and odometry
errors. For example, the Kalman filter [7] contains explicit rep-
resentations of the uncertainty of the world features/vertices. In
this paper, we represent the uncertainty in the obstacle position
as probability distributions over obstacle features. This choice
is motivated by a point-feature-based SLAM algorithm [7]
such as the Kalman filter, which represents point feature
distributions as multivariate Gaussians.

Figure 2 shows an example map in which the point features
(the vertices of the polygons) have explicit uncertainty mod-
elled with normal distributions. In figure 2(a), we visualize
the uncertainty of the location of each vertex by drawing
one standard deviation uncertainty ellipse, computed from
the map covariance �, around each vertex. Possible world
models are shown in figure 2(b). We do not know which world
model is the correct one: each of these world models has a
different likelihood under the joint probability distributions of
the polygon vertices. Also, since the features of the two “

�
”-

shaped obstacles in figure 2(a) are known with less precision,
the trajectories above them are more likely to collide with
obstacles realized in figure 2(b). The preferred path would go
around these obstacle, not directly across to the goal.

In the following section, we propose a method to sample
poses when the world is uncertain. We adapt the sampling
strategies to adjust for map uncertainty. In subsequent sections,
we describe how to incorporate the obstacle uncertainty into
motion costs and trajectory generation.

B. Proposed algorithms for sampling in uncertain worlds

In an uncertain world the actual positions of obstacles are
unknown. It is unclear whether a sampled pose � collides with
some obstacle or is in C-free, thus whether we should accept
or reject it. We propose that the decision to accept or reject �
be a function of the probability that a pose is in C-free.

Our method can be logically broken down into two steps:
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Fig. 2. Map of Robotics3 lab in Stata, MIT used as an example uncertain worldin ��. Left: the maximum-likelihood map, shown with distributions of the
features. Ellipses visualize one standard deviation from the mean. Right: example maps sampled from distributions.

1) Estimation of the collision probability for a sampled
pose �.

2) Reject or accept � based on the collision probability.

We will incorporate the world uncertainty into both phases
of the planning process. This does not constitute double-
counting; if we knew a priori the optimal path, then the
optimal sampler would sample only poses on the path. By
incorporating knowledge used in cost calculations, we can
focus the sampling appropriately. For example, our adapted
samplers are biased to sample closer to more certain side of
the corridor space. This allows the PRM planner to focus its
search in regions where collisions are less likely.

C. Estimation of collision probability

Let us use Æ����� to denote a function that determines
whether or not � is in the C-free of a possible model �:

Æ����� �

�
� � � � C-free of �

� � otherwise�
(1)

Note that the world � is a single instance of sampled world
from the distribution as shown in figure 2(b).

The probability that a sample is in C-free can then be
computed by

� �� � C-free� �
�
�

Æ������������ (2)

where ���� is a multivariate probability density of the world
model at the world �, �� is an integration variable being a
volume in a configuration space of all degrees of freedom of
all obstacles, and the world � can be uniquely characterized
by the set of vertices of all obstacles.

To simplify the problem we assume that the obstacles are
not correlated. Correlation among obstacle configurations re-
quires domain knowledge which is usually not available from
sensing and increases computational intractability. Assuming
obstacle independence, we can approximate the likelihood that

� is in C-free by a product of probabilities that � does not
collide with any of the obstacles:

��� � C-free� �
�

��obstacles

��� ����������� (3)

where ���������� is the probability of colliding with obstacle �.
Given that, the total collision probability is given by:

�������������������� � C-free� � ��
�

��obstacles

��� ����������� (4)

The remaining task is to compute the probability of collision
with one obstacle, ����������. One simple way to estimate
the probability that a pose lies in C-free is to use a Monte
Carlo technique, sampling random points from the obstacle
vertices distribution functions. A possible obstacle results
from connecting pairs of neighboring sampled vertices. The
probability that the pose � lies inside some obstacle � is
approximated by

���������� �
����������

������

(5)

where ���������� is the total number of pose collisions with
obstacle � and ������ is the total number of trials. The difficulty
with the Monte Carlo approximation is that it requires many
samples for an accurate estimate, leading to computational
intractability. We propose to estimate the collision probability
in a more efficient manner, as follows.

IV. EFFICIENT ESTIMATION OF COLLISION PROBABILITIES

VIA NEAREST POINT METHOD

On each obstacle in our world model, we can find some
point �� which is closest to the robot. Our estimate of
the collision probability is based on the realization that the
likelihood for a robot to collide with a particular obstacle is
dominated by likelihood of colliding with ��. The robot will
generally collide with the obstacle if the point �� appears in
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Fig. 3. The distribution of a point �� on the obstacle edge which is closest
to �, can be computed from normal distributions of neighboring vertices.
Integrating �� distribution over the region � gives an estimate of the collision
likelihood with a particular obstacle.

the half-space bounded by the line tangent to the robot and
parallel to the obstacle edge (the area 	 in figure 3). Due
to the uncertainty of the obstacle, the position of �� is also
uncertain, but the probability of collision can be approximated
using only knowledge of the distribution of ��. Assuming
Gaussian distributions on the vertices, if �� lies on some
“obstacle edge”2, �� is distributed according to a Gaussian
with covariance derived from the covariance matrices of the
neighboring vertices:

��� �

�
�


�
�� 	

�
 � 
��
�


�
�� (6)

where 
 is the length of the edge, �� are the corresponding
covariances of vertices and 
� is a distance from �� to the
vertex with covariance �� (see figure 3) [21]. In an uncertain
world, �� minimizes the Mahalanobis distance between the
robot pose and the obstacle, but we cannot solve for �� since
we do not have a closed-form solution for the distribution of
an entire ‘edge’ and in practice the statistical distance can be
sufficiently approximated by the Euclidean case.

In order to estimate the collision probability, we integrate a
Gaussian function � �������� over the half-space:

���������� �

�
	

� ����������� (7)

We ran experiments to validate the Nearest Point method
using Monte Carlo method as a benchmark. The experiments
showed that Nearest Point approximation accurately estimates
the collision probability. Due to lack of space, we omit the
detailed results.

2The notion of an ’obstacle edge’ is not well-defined since our world
model consists of polygons defined by distributions over vertices. We define
an ’obstacle edge’ as the line connecting the means of a pair of vertices.

A. Rejection function based on collision probability

Equation 4 provides a way to estimate the cumulative
collision probability for a given pose efficiently; we reject or
accept sampled poses based on this probability, ��������������:
the higher the collision likelihood of a sampled pose, the
less likely our sampling algorithm will accept such pose. In
practice, we shaped our rejection function to generally reject
samples that lay inside the “nominal obstacle.”3 based on the
notion that samples where robot is 50
 or more likely to
collide with obstacles are costly and unlikely to be used by
the planning stage. This indicates that our sampling strategy
is unsatisfactory from a mathematical perspective, but our
experimental results will indicate that our sample measure
outperforms conventional techniques.

B. Pose rejection algorithm

We summarize the resulting accept/reject decision in the
following algorithm:

Algorithm 1: Accept or reject pose �
Input: pose �, all obstacles
Output: boolean �
����� describing whether to reject pose
(1) foreach obstacle �

(2) Compute �������, collision probability for � and
obstacle �, using Monte Carlo or Nearest Point
method or any other

(3) Compute the resulting collision probability for all the
obstacles:
�������������� � ��

�
���� �����������.

(4) �
�������� � ��������������.
(5) �
����� = randomly sample from Bernoulli distribution

where � � �
��������.
(6) return �
�����

Adapted Sampling Strategies

We modify each sampling strategy to accept or reject
samples stochastically, depending on the likelihood of pose
� lying in C-free.

Adapted Uniform Sampling: poses are drawn uniformly at
random from C-space and each sample is retained or rejected
based on collision likelihood as summarized in Algorithm 1
(see figure 4 left).

Adapted Gaussian sampling: Gaussian sampling generates
samples that are close to obstacles by generating pairs of
samples that lie on opposite sides of an obstacle edge, one
inside the obstacle, the other outside. In an uncertain world,
we retain samples based on probability that the pair of samples
lies on opposite sides of an edge. In contrast to the uniform
sampler, we first generate a sample �� inside the “nominal
obstacle,” where the probability of rejection is high, in our
setup �
�������� � �. Let us call this sample an “anchor”.
Next, we sample a distance �, and generate a second sample

3We define “nominal obstacle” as the obstacle with the vertices at the
maximum likelihood positions which are the means of Gaussian distributions.
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Fig. 4. A comparison of the sampling strategies adapted for uncertainty sampling, column-wise: Uniform, Gaussian, Bridge

�� from a uniform distribution of radius �4. This sample is
then retained according to Algorithm 1.

We require the “anchor” points to be inside the “nominal
obstacle,” because we do not want to produce too distant poses.
When we originally did not use this heuristic, many of the
resulting points were very far from the obstacles. This is a
side effect of the fact that, if the first point is already outside
the “nominal obstacle,” and happens to be labelled as being in
C-obst (since the process is stochastic), the second sample may
end up far from the obstacle. Since �� is far from an obstacle,
�
��������� will be small, and �� will be readily accepted as
a sample. By keeping the first sample anchored, we retain the
near-obstacle feature of the original method. Figure 4, middle,
shows Gaussian sampling in an uncertain world.

Adapted bridge sampling: Once again, in order to retain
the near-obstacle characteristics of the original bridge method,
the adapted bridge method secures anchoring of the first two
sampled points inside the “nominal obstacle” by generating
two samples that each have �reject � �. Next, the midpoint
� is computed. This midpoint is then retained based on
Algorithm 1. As a result, narrow pathways characterized by
higher certainty in the obstacle positions are favored, and the
search for a path with lower collision chance is focused on
those passages (see figure 4, right)).

Once a set of samples has been generated using any hybrid
of sampling strategies, we use a local planner to determine
if pairs of samples can be connected. We have not modified
this stage of the PRM, and we use �-nearest-neighbors plan-
ner using the Euclidean distance metric in a world defined
by “nominal obstacles.” We ignore uncertainty in the local
planner, because we want a spatially interconnected graph.

V. PLANNING IN UNCERTAIN WORLDS

To generate good trajectories, the query phase of PRM also
needs to incorporate the world uncertainty. Standard planners

4We need to keep in mind that, because our map is uncertain, the variance
of normal distribution of � must be greater than the variance in map fea-
tures/vertices. This is because the sampled points need to be placed sufficiently
far from the obstacles in order not to have high rejection probability.

find paths that minimize some quantity such as distance or
travel time. This quantity is represented via a cost function
associated with travelling the segments comprising the optimal
path. We extend this approach with a minimum-collision-cost
MCC planner which generates trajectories that minimize the
expected cost of collision when travelling edges in the graph.
We define the expected cost of traversing a path segment
between robot poses �� and �� as:

����� ��� � ���
 �������������� ��� 	 ���������� 	

��� ���
 �������������� ��������� ���� (8)

where ���
 �������������� ��� is the probability that a robot
collides with any obstacle while travelling on the line segment
from �� to ��, and ���������� is some fixed estimate of how
much it would cost when a robot collides with something.
���������� can also be chosen to be a function of distance;
for example, travelling 1 km less may be worth the risk of
colliding with an obstacle.

With the previous assumption that individual obstacle distri-
butions are independent, the total probability of collision can
be approximated as:

���
 �������������� ��� � ��
�

��obstacles

��� ���
 ���������� ���� (9)

where ���
 ���������� ��� is the probability of hitting a par-
ticular obstacle � when travelling between �� and ��. We
cannot use the approximation technique of equation 7 to
calculate the probability of collision, as this method computes
the probability of a single pose. Integrating equation 7 along
the edge would overestimate the probability of collision due
to violated independence assumptions. We therefore use a
Monte Carlo technique as in equation 5, but for any collision
during simulated motion along the edge. We note that in the
example case of 2D world with polygonal obstacles and a
holonomic robot, a collision occurs when the line segment
from �� to �� gets within minimum distance to obstacle �,
that is, a robot travelling along this path segment collides
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with �.5 We compute the joint probability ���
 �������������� ���
via equation 9, and incorporate it into the cost of traversing
segment (��� ��) using equation 8. Finally, a graph search
algorithm (A*) uses the estimated collision cost along each
roadmap edge and returns the minimum cost path.

VI. EXPERIMENTS: ADAPTED SAMPLING AND PLANNING

In our preliminary experiments, we measured the effects
of adapted sampling strategies on the overall performance of
the PRM algorithm. Each experiment was a motion-planning
problem in the 2D plane for a simple circular robot from any
start to any goal location. The performance was measured by
repeatedly simulating a robot trajectory in a large set of worlds
(one simple world shown in figure 6) and recording how many
collisions occurred.

Fig. 6. Map of the MIT Stata Robotic Lab area, trajectories with obstacles
perturbed, standard A* planner (dashed), minimum-collision-cost A* planner
(dotted)

We examined planner robustness under three sampling
methods in conventional and adapted form, for a total of 6 vari-
ants. We used the Nearest Point method to determine whether
a sampled pose results in a collision for the adapted sampling
variants. The local planner used the straight-line distance and
maximum of 12 nearest neighbors (� � ��). In the query
stage, we always used the minimum-collision-cost planner in
order to focus on the impact of the sampling method. The
resulting path was smoothed by rerunning the MCC planner
on the fully-connected set of path nodes, including start and
goal.

Plots in figure 5 show that adapted sampling improves
the performance of the planner resulting in higher quality
paths (fewer collisions) while keeping the number of nodes
relatively small. Particularly, in the case of sample numbers
less than ���, the adapted sampling methods do substantially
better, resulting in collision rates that the standard sampling
needs more than ���� points to obtain. This is because the
adapted sampling methods bias the sampling into regions of

5For computational efficiency, we do not perform the Monte Carlo trial if
the obstacle and the path edge are statistically far from each other and just
set ���� ���������� ��� � �

certainty, encouraging pathways through those regions with
fewer samples overall.

The adapted sampling methods add a small amount of com-
putational overhead to the standard sampler, because samples
are rejected based on their collision probability and more loop
iterations are required to collect samples. We found that the
time to sample was anywhere from one to three times as long
as the standard sampling method. However, the sampling stage
of the PRM algorithm is a very small fraction (generally less
than �
) of the overall time to plan and the planner benefits
from a reduced sample set to plan with.

A. Modelling Orientation

Figure 7 shows planning for rectangular holonomic robots
of varying dimensions, using standard and MCC planners.
For these rectangular robots, we used basic (a) and adapted
uniform sampling (b) to sample robot poses ��� 
� �� for a
total of 3 dimensions. Note that in both (a) and (b), as the
length of the robot increases, the path needs to accommodate
it by moving the robot away from the obstacle before it can
turn. In figure 7(a) the differences in paths are due purely
to robot geometry since conventional planner is used. In
figure 7(b) path changes due to both geometry and uncertainty
and the robots’ trajectories obtained with MCC planner are
further from the uncertain obstacle. Simulations by perturbing
the obstacles show that the collision rates decrease from an
average of 
�
 for the conventional planner to ��
 for the
MCC planner.

B. Modelling Environmental Dynamics

Figure 8 shows results obtained when planning a path for
a circular B21 robot using a conventional, minimum-distance
planner (the solid trajectory) and the probabilistic, minimum-
collision-cost (MCC) planner (dashed) employing segment
collision cost in equation 8. The conventional planner returns
a path that is ����� long where some path segments have
���
 ���������� estimated by MCC to be as high as ��
�. The
MCC planner selects the longer (�����) path, but with smaller
(less than ���� for a given segment) collision likelihood.

VII. APPLICABILITY TO MULTIDIMENSIONAL PROBLEMS

We have shown ways to incorporate uncertainty metrics into
the PRM and demonstrated the concepts on 2D world exam-
ples, including robots with rotational dependencies. However,
our extension to model uncertainty can be applied to prob-
lems with more dimensions, involving robots with multiple
degrees of freedom operating in 3D. There, sampling can be
decomposed for each dof of the robot. For example, each
limb of a humanoid robot can be treated independently and
the overall collision probability estimated by combining the
probability of collision of individual components. It has been
shown experimentally [15] that when problem dimensionality
increases, randomized probabilistic sampling and planning
methods fare better than deterministic methods with respect
to computational complexity. Occupancy grids (aka evidence
grids) [22] are deterministic and their complexity increases as
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Fig. 5. The PRM performance in terms of collision rates using original and adapted sampling as a function of the sample number. The minimum-collision-cost
planner was used in both cases in order to focus on the influence of the sampling strategy. We note that collision rates when sample numbers are small (under
���) are substantially lower when using our adapted sampling techniques.

����� where � is the number of dimensions, and � is inversely
proportional to graph resolution.

We must point out that estimating collision probabilities in
3D gets difficult since now the closest point belongs to an
obstacle plane, and can no longer be approximated by a linear
combination of the endpoints. To remedy this problem, a new
uncertainty model is needed. Our future work will focus on
modelling uncertainty in higher dimensions and methods to
incorporate stochastic world information into collision proba-
bilities and path costs.

VIII. RELATED WORK

Most randomized planning algorithms are not explicitly
robust to model errors. Some sampling methods such as
Medial Axis PRM (MAPRM) [23] have attempted to generate
trajectories that are robust to model errors since samples on
the medial axis of the plane maximize their distance from
obstacles. However, such conservative sampling methods do
not incorporate uncertainty into the cost function and cannot
bias samples to be closer to more certain obstacles [23].

In RRTs [2], which utilize a local search planner and keep
a fully connected tree, adapted sampling could be done on a
local level and the decision whether or not to extend a branch
could utilize the cost function of the minimum-collision-
cost planner. The Probabilistic Roadmap of Trees method
(PRT) [14] uses a random tree algorithm as a subroutine in
PRM, where the nodes in the PRM roadmap are trees. Since
multiple RRTs can be grown in parallel we could achieve
substantial speedups as we can simultaneously explore and
evaluate multiple regions of a map for trajectory quality. Our
modified sampling and planning framework could therefore be
incorporated into both the local planner (RRT) and the global
planning mechanism (PRM).

Leven and Hutchinson in [24] address a problem of chang-
ing environments by a variant on PRM, where sampled nodes
are updated according to information about the changing state
of the world. Unlike our work, they do not rate feasibility
of collisionless travel through different regions of space and
their motion plan does not rate uncertainty. Similarly, Berg

and Overmars in [25] use the PRM to plan in dynamic
environments by first generating a global path assuming a
static world, and then using local planners to deal with moving
obstacles, therefore avoiding having to recompute the global
trajectory. Similarly, their global path does not incorporate
uncertainty, and their motion plan selects a global trajectory
assuming that the world is certain.

IX. CONCLUSION

We demonstrated that conventional, purely geometric mo-
tion planning algorithms can be extended to allow robust
motion planning when the true state of the world is not known
exactly. In particular, we proposed incorporating uncertainty
into the PRM sampling and planning. We adapted three
popular sampling techniques: Uniform, Gaussian, and Bridge
to focus samples on regions of higher certainty. In the planning
stage, we modelled the cost of potential collisions in travelling
through uncertain regions of the configuration space. The
experiments showed that using a stochastic rejection function
in sampling biases the path into regions of more certainty, re-
sulting in fewer overall collisions than the traditional approach,
and with small sample numbers. Our preliminary results show
that the uncertainty-adapted PRM leads to substantially more
robust paths than the conventional PRM in the face of map
uncertainty.
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