Learning about Objects by Experiment

Paul Fitzpatrick

MIT Artificial Intelligence Laboratory

making opportunities_

In robotics, vision is often used to guide manipulation

But manipulation can also guide vision

Important for...

- Experimentation progressing when perception is ambiguous
- Correction recovering when perception is misleading
- Development bootstrapping when perception is primitive

a simple scene?_

Cube has misleading surface pattern

Color of cube and — table are poorly _____ separated

Maybe some cruel grad-student faked the cube with paper, or glued it to the table

 Object boundaries are not always easy to detect visually

- Object boundaries are not always easy to detect visually
- Solution: Cog sweeps through ambiguous area

- Object boundaries are not always easy to detect visually
- Solution: Cog sweeps through ambiguous area
- Resulting object motion helps segmentation

- Object boundaries are not always easy to detect visually
- Solution: Cog sweeps through ambiguous area
- Resulting object motion helps segmentation
- Robot can learn to recognize and segment object without further contact

integrated behavior_

segmentation examples_

segmentation examples

boundary fidelity_

object segmentation

edge catalog

object detection (recognition, localization, contact-free segmentation)

poking

affordance exploitation (rolling)

manipulator detection (robot, human)

poking

object segmentation

opportunities for segmentation _

robot, poking

(Paul Fitzpatrick,

Giorgio Metta)

wearable, illumination

(Charlie Kemp)

camera, periodicity (Artur Arsenio)

23

m of FFTs of oscillating points (x

0.08 0.07 0.06 0.05 0.04 0.03 0.02

_segmentation on a wearable _

System detects when wearer reaches for an object, requests wearer to hold it up, then illuminates it

segmentation by watching a human _

Ř	·····.						
e e g s Pada		2 h 6	6 0 2	5.5	- 60		
					-		
					=		

System detects periodic motion – waving, tapping, etc. – and extracts seed points for segmentation

poking

object segmentation

edge catalog

sampling oriented regions _

sample samples

most frequent samples.

some tests

Red = horizontal Green = vertical

_ natural images _

poking

object segmentation

edge catalog

object detection (recognition, localization, contact-free segmentation)

Advantages: more selective; fast Disadvantages: edges can be occluded; 2D method Property: no need for offline training

_ in operation _

_yellow on yellow _

open object recognition_

sees ball, "thinks" it is cube

pokes, segments ball

correctly differentiates ball and cube

open object recognition_

poking

object segmentation

edge catalog

object detection (recognition, localization, contact-free segmentation)

manipulator detection (robot, human)

manipulator recognition

object segmentation

edge catalog

object detection (recognition, localization, contact-free segmentation)

poking

affordance exploitation (rolling)

manipulator detection (robot, human)

objects roll in different ways _

a bottle it rolls along its side

a toy car it rolls forward

a toy cube it doesn't roll easily

a ball it rolls in any direction

affordance exploitation_

mimicry test -

Invoking the object's natural rolling affordance

Going against the object's natural rolling affordance

Demonstration by human

Mimicry in similar situation

Mimicry when object is rotated

mimicry test_

object segmentation

edge catalog

object detection (recognition, localization, contact-free segmentation)

poking

affordance exploitation (rolling)

manipulator detection (robot, human)

_referring to objects _

beyond objects.

familiar activities

use constraint of familiar activity to discover unfamiliar entity used within it reveal the structure of unfamiliar activities by tracking familiar entities into and through them

familiar entities (objects, actors, properties, ...)

learning activity structure_

conclusions.

active segmentation(through contact)appearance catalog(for oriented features)open object recognitionfor correction, enrollmentaffordance recognition(for rolling)open speech recognition(for isolated words)virtuous circle oflearning about and
through activity