

Facial Expression Recognition using a Dynamic Model and Motion Energy

Irfan Essa,

Alex Pentland

(a review by Paul Fitzpatrick for 6.892)

Overview 6 6 9

- Want to categorize facial motion
- Existing coding schemes not suitable
 - Oriented towards static expressions
 - Designed for human use
- Build better coding scheme
 - More detailed, sensitive to dynamics
- Categorize using templates constructed from examples of expression changes
 - Facial muscle actuation templates
 - Motion energy templates

Motivation Facial Action Coding System

- FACS allows psychologists code expression from static facial "mug-shots"
- Facial configuration = combination of "action units"

Motivation Problems with action units

- Spatially localized
 - Real expressions are rarely local
- Poor time coding
 - Either no temporal coding, or heuristic
 - Co-articulation effects not represented

Motivation Solution: add detail

- Represent time course of all muscle activations during expression
- For recognition, match against templates derived from example activation histories
- To estimate muscle activation:
 - Register image of face with canonical mesh
 - Through mesh, locate muscle attachments on face
 - Estimate muscle activation from optic flow
 - Apply muscle activation to face model to generate "corrected" motion field, also used for recognition

Modeling Registering image with mesh

- Find eyes, nose, mouth
- Warp on to generic face mesh
- Use mesh to pick out further features on face

Eyes, Nose & Mouth Located (Turk *et. al* 91, Pentland & Moghaddam 94,95)

Facial Model

Warped to Generic Model

Mesh Points Extracted

Modeling Registering mesh with muscles

- Once face is registered with mesh, can relate to muscle attachments
- 36 muscles modeled; 80 face regions

Modeling Parameterize face motion

- Use continuous time Kalman filter to estimate:
 - Shape parameters: mesh positions, velocities, etc.
 - Control parameters: time course of muscle activation

Modeling Driven by optic flow

- Computed using coarse to fine methods
- Use flow to estimate muscle actuation
- Then use muscle actuation to generate flow on model

Motion on the Model

Analysis Spatial patterning

- Can capture simultaneous motion across the entire face
- Can represent the detailed time course of muscle activation
- Both are important for typical expressions

Analysis Temporal patterning

- Application/release/relax structure not a ramp
- Co-articulation effects present

Recognition Peak muscle actuation templates

- Normalize time period of expression
- For each muscle, measure peak value over application and release
- Use result as template for recognition
 - Normalizes out time course, doesn't actually use it for recognition?

Recognition Peak muscle actuation templates

- Randomly pick two subjects making expression, combine to form template
- Match against template using normalized dot product

Recognition Motion energy templates

- Use motion field on face model, not on original image
- Build template representing how much movement there is at each location on the face
 - Again, summarizes over time course, rather than representing it in detail
 - But does represent some temporal properties

Motion energy template for smile

Recognition Motion energy templates

- Randomly pick two subjects making expression, combine to form template
- Match against template using Euclidean distance

Results Data acquisition

- Video sequences of 20 subjects making 5 expressions
 smile, surprise, anger, disgust, raise brow
- Omitted hard-to-evoke expressions of sadness, fear
- Test set: 52 sequences across 8 subjects

Results Data acquisition

Results Using peak muscle actuation

- Comparison of peak muscle actuation against templates across entire database
- 1.0 indicates complete similarity

Expressions	Smile	Surprise	Anger	Disgust	Raise Brow
Template			100		
Smile	$\textbf{0.97} \pm \textbf{0.03}$	0.63 ± 0.04	0.95 ± 0.01	0.86 ± 0.04	0.59 ± 0.16
Surprise	0.58 ± 0.03	$\textbf{0.99} \pm \textbf{0.01}$	0.59 ± 0.04	0.57 ± 0.05	0.56 ± 0.09
Anger	0.90 ± 0.05	0.55 ± 0.05	$\textbf{0.97} \pm \textbf{0.02}$	0.91 ± 0.01	0.65 ± 0.14
Disgust	0.82 ± 0.06	0.57 ± 0.05	0.92 ± 0.03	$\textbf{0.95} \pm \textbf{0.03}$	0.78 ± 0.10
Raise Brow	0.58 ± 0.05	0.57 ± 0.07	0.70 ± 0.05	0.78 ± 0.06	$\textbf{0.96} \pm \textbf{0.04}$

Results Using peak muscle actuation

- Actual results for classification
- One misclassification over 51 sequences

Expressions	Smile	Surprise	Anger	Disgust	Raise Brow
Template					
Smile	12	0	1	0	0
Surprise	0	10	0	0	0
Anger	0	0	9	0	0
Disgust	0	0	0	10	0
Raise Brow	0	0	0	0	10
Success	100%	100%	90%	100%	100%

Results Using motion energy templates

- Comparison of motion energy against templates across entire database
- Low scores indicate greater similarity

Expressions	Smile	Surprise	Anger	Disgust	Raise Brow
Template					
Smile	94.1±34.7	266.2 ± 52.3	234.5 ± 62.7	153.7 ± 59.7	306.6 ± 15.3
Surprise	230.9 ± 8.7	123.6 ± 70.7	160.5 ± 38.3	173.5 ± 14.2	233.4 ± 14.1
Anger	225.7 ± 16.5	199.2 ± 76.0	98.3±46.3	160.1 ± 29.1	147.0 ± 15.5
Disgust	149.0 ± 22.7	198.1 ± 54.0	140.3 ± 43.7	99.3±23.4	224.3 ± 16.2
Raise Brow	339.9 ± 32.9	321.6 ± 96.4	208.9 ± 33.0	293.2 ± 26.8	$106.8 {\pm} 27.0$

Results Using motion energy templates

- Actual results for classification
- One misclassification over 49 sequences

Expressions	Smile	Surprise	Anger	Disgust	Raise Brow
Template					
Smile	12	0	0	0	0
Surprise	0	10	0	0	0
Anger	0	0	9	0	0
Disgust	0	0	1	10	0
Raise Brow	0	0	0	0	8
Success	100%	100%	90%	100%	100%

Comments Small test set

- Test set is a little small to judge performance
- Simple simulation of the motion energy classifier using their tables of means and std. deviations shows:
 - Large variation in results for their sample size
 - Results are worse than test data would suggest
 - Example: anger classification for large sample size has accuracy of 67%, as opposed to 90%
- Simulation based on false Gaussian, uncorrelated assumption (and means, deviations derived from small data set!)

Comments Naïve simulated results

Expressions	Smile	Surprise	Anger	Disgust	Raise Brow
Template					
Smile	90.7%	1.4%	2.0%	19.4%	0.0%
Surprise	0.0%	64.8%	9.0%	0.1%	0.0%
Anger	0.0%	18.2%	67.1%	3.8%	9.9%
Disgust	9.3%	13.1%	21.4%	76.7%	0.0%
Raise brow	0.0%	2.4%	0.5%	0.0%	90.1%

Overall success rate: 78% (versus 98%)

Comments Motion estimation vs. categorization

- The authors' formulation allows detailed prior knowledge of the physics of the face to be brought to bear on motion estimation
- The categorization component of the paper seems a little primitive in comparison
- The template-matching the authors use is:
 - Sensitive to irrelevant variation (facial asymmetry, intensity of action)
 - Does not fully use the time course data they have been so careful to collect

Conclusion Video, gratuitous image of Trevor

