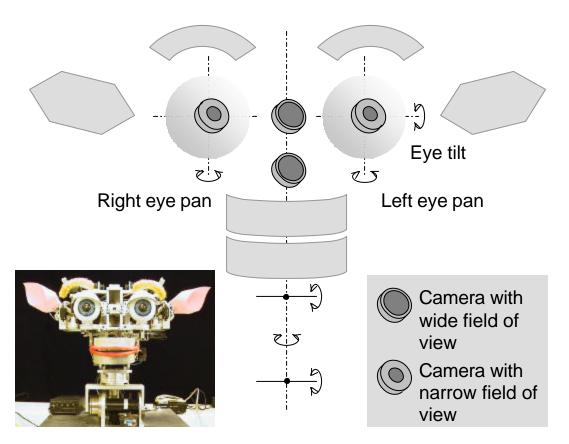

Social Constraints on Animate Vision

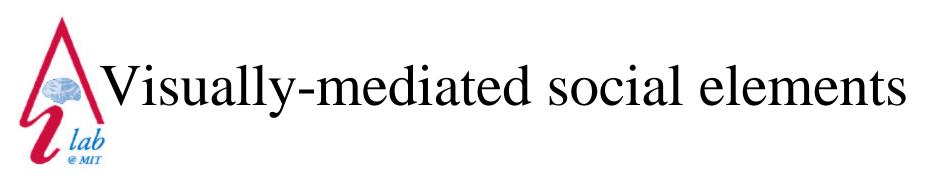
Cynthia Breazeal Aaron Edsinger Paul Fitzpatrick Brian Scassellati *MIT AI Lab*

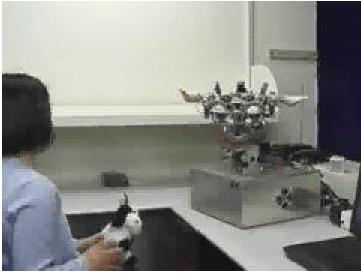
Social constraints

- Robots create expectations through their physical form – particularly humanoid robots
- But with careful use, these expectations can facilitate smooth, intuitive interaction
 - Provide a natural "vocabulary" to make the robot's behavior and state readable by a human
 - Provide natural frameworks for trying to negotiate a change in each other's behavior and (through readability) knowing when you have succeeded
 - These elements have their own internal logic and constraints which, if violated, lead to confusion

- Readable locus of attention
- Negotiation of the locus of attention
- Readable degree of engagement
- Negotiation of interpersonal distance
- Negotiation of object showing
- Negotiation of turn-taking timing


Readable locus of attention


Attention can be deduced from behavior Or can be expressed more directly


Kismet – a readable robot

- Designed to evoke infant-level social interactions
 - Eibl-Eiblsfeldt "baby scheme"
 - physical size, stature
- But not exactly human infant
 - caricature that is readable
- Naturally elicit scaffolding acts characteristic of parent-infant scenarios
 - directing attention
 - affective feedback, reinforcement
 - simplified behavior, suggested to make perceptual task easier
 - slow down, go at infant's pace

One person's strategies

Another's strategies

- For object-centered activities, attention is fundamental
- There are natural strategies people use to direct attention
- The robot's attention must be receptive to these influences, but also serve the robot's own agenda

Humanoids2000

relevance Current input Skin tone Color Motion Habituation Saliency map Pre-attentive filters

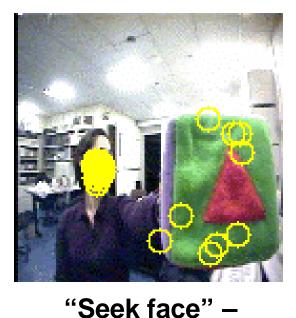
- Attention is allocated according to salience
- Salience can be manipulated by shaking an object, bringing it closer, moving it in front of the robot's current locus of attention, object choice, hiding distractors, ...



Tuned to natural cues

stimulus category	stimulus	presentations	average time (s)	commonly used cues	commonly read cues
color and movement	yellow dinosaur	8	8.5	motion across centerline, shaking, bringing object close	change in visual behavior, face reaction,
	multi-colored block	8	6.5		
	green cylinder	8	6.0		
movement only	black&white cow	8	5.0		
skin toned and movement	pink cup	8	6.5		
	hand	8	5.0		body posture
	face	8	3.0		
Overall		56	5.8		

Can shape an interaction

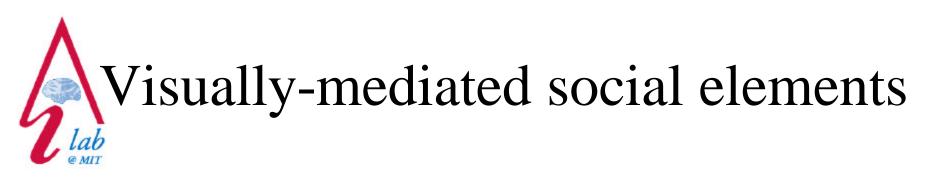


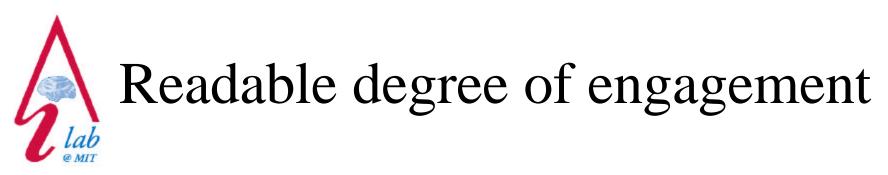
- The robot's attention can be manipulated repeatedly
- So caregiver can shape an interaction into the *form* of an object-centered game, or a teaching session

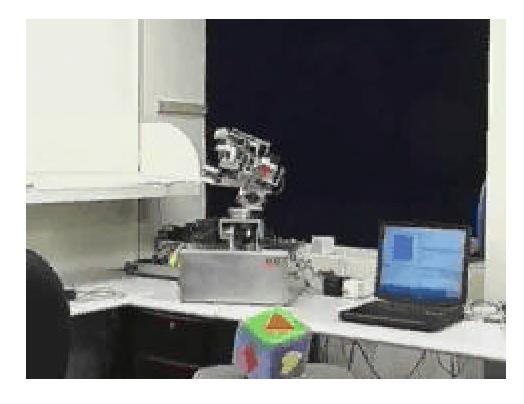
Internal influences on attention

"Seek toy" – low skin gain, high saturated-color gain Looking time 28% face, 72% block

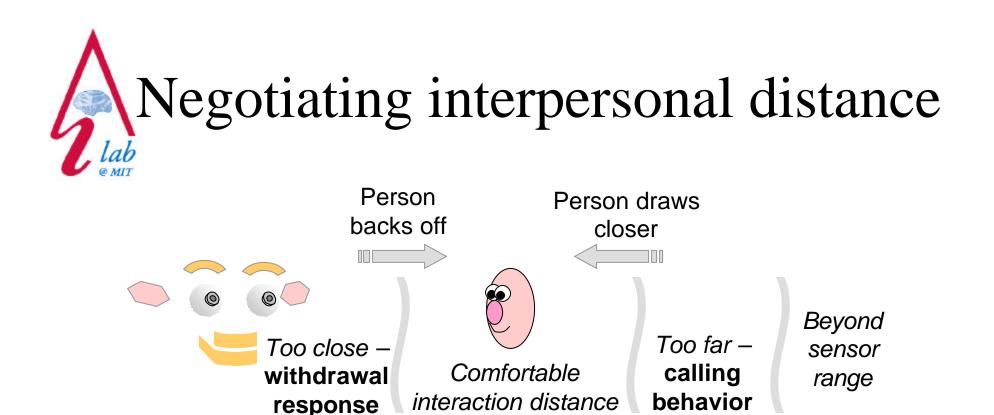
high skin gain, low color saliency gain Looking time 28% face, 72% block


- Internal influences bias how salience is measured
- The robot is not a slave to its environment

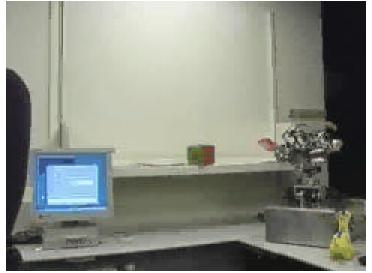



Maintaining visual attention

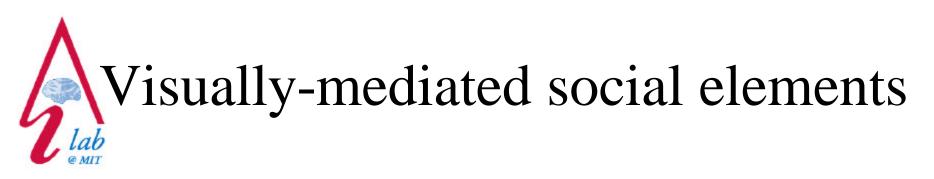
- Want attention to be persistent enough to permit coherent behavior
- Must be able to maintain fixation on an object, when behaviorally appropriate
- Attention system interacts closely with tracker to support this robustly



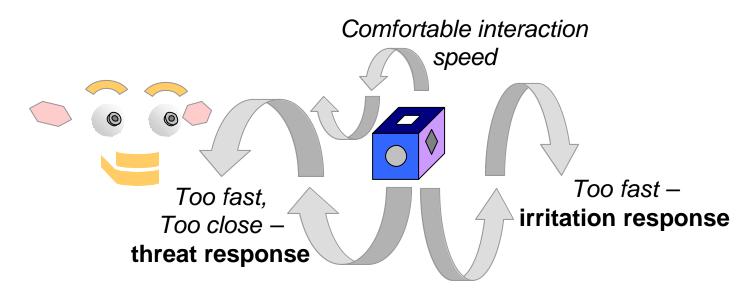
- Visual behavior conveys degree of commitment
 - fleeting glances
 - smooth pursuit
 - full body orientation
- Gaze direction, facial expression, and body posture convey robot's interest



- Robot establishes a "personal space" through expressive cues
- Tunes interaction to suit its vision capabilities

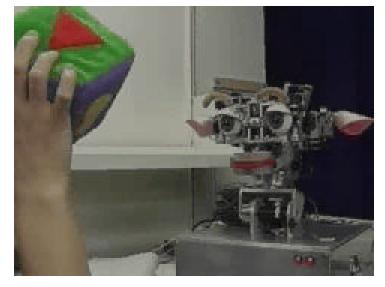


"Back off buster!"


"Come hither, friend"

- Robot backs away if person comes too close
- Cues person to back away too social amplification
- Robot makes itself salient to call a person closer if too far away

Negotiating object showing



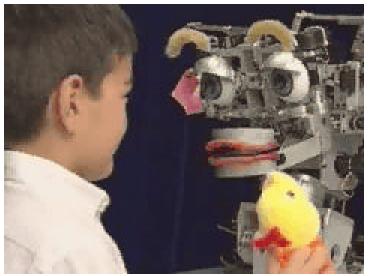
- Robot conveys preferences about how objects are presented to it through irritation, threat responses
- Again, tunes interaction to suit its limited vision
- Also serves protective role

Negotiating object showing

Threat response

Withdrawal, startle

- Robot "shuts out" close, fast moving object threat response
- Robot backs away if object too close
- Robot cranes forward as expression of interest



Turn-Taking

- Cornerstone of human-style communication, learning, and instruction
- Four phases of turn cycle
 - relinquish floor
 - listen to speaker
 - reacquire floor
 - speak
- Integrates
 - visual behavior & attention
 - facial expression & animation
 - body posture
 - vocalization & lip synchronization

Examples of turn-taking

Kismet and Adrian

Kismet and Rick

- Turn-taking is fine grained regulation of human's behavior
- Uses envelope displays, facial expressions, shifts of gaze and body posture
- Tightly coupled dynamic of contingent responses to other

Evaluation of Performance

- Naive subjects
 - ranging in age from 25 to 28
 - All young professionals.
 - No prior experience with Kismet
 - video recorded
- Turn-taking performance
 - 82% "clean" turn transitions
 - 11% interruptions
 - 7% delays followed by prompting
- Significant flow disturbances
 - tend to occur in clusters
 - 6.5% of the time, but rate diminishes
- Evidence for entrainment
 - shorter phrases
 - wait longer for response
 - read turn-taking cues
 - 0.5—1.5 seconds between turns

		time stamp	seconds
		(min:sec)	between disturbances
subject 1	start @ 15:20	15:20 - 15:33	13
subject I		15:37 - 15:54	21
		15:56 - 16:15	19
		16:20 - 17:25	70
	end @ 18:07	17:30 - 18:07	37+
subject 2	start @ 6:43	6:43 - 6:50	7
54656672		6:54 – 7:15	21
		7:18 - 8:02	44
	end @ 8:43	8:06 - 8:43	37+
subject 3	start @ 4:52 min	4:52 - 4:58	10
subject 5		5:08 - 5:23	15
		5:30 - 5:54	24
		6:00 - 6:53	53
		6:58 – 7:16	18
		7:18 – 8:16	58
		8:25 - 9:10	45
	end @ 10:40 min	9:20 - 10:40	80+

Conclusion

- Active vision involves choosing a robot's pose to facilitate visual perception.
- Focus has been on immediate physical consequences of pose.
- For anthropomorphic head, active vision strategies can be "read" by a human, assigned an intent which may then be completed beyond the robot's immediate physical capabilities.
- Robot's actions have communicative value, to which human responds.