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Abstract

This paper presents an approach to perceiving rhyth-
mically moving objects that generate sound as they
move. The work is implemented on the humanoid
robot Cog [2]. We show selectivity and robustness in
the face of distracting motion and sounds. Our method
does not require accurate sound localization, and in
fact is complementary to it. We are motivated by the
fact that objects that move rhythmically are common
and important for a humanoid robot. The humanoid
form is often argued for so that the robot can interact
well with tools designed for humans, and such tools
are typically used in a repetitive manner, where the
sound is generated by physical abrasion or collision:
hammers, chisels, saws etc. We also work with the
perception of toys designed for infants – rattles, bells
etc. – which could have utility for entertainment/pet
robotics. Our goal is to build the perceptual tools re-
quired for a robot to learn to use tools and toys through
demonstration.

1 Introduction

Tools are often used in a manner that is composed
of some repeated motion – consider hammers, saws,
brushes, files, etc. This repetition can potentially aid
a robot to perceive these objects robustly. Our ap-
proach is for the robot to detect simple repeated events
at frequencies relevant for human interaction, using
both visual and acoustic perception. The advantage
of combining rhythmic information across these two
modalities is that they have complementary proper-
ties. Since sound waves disperse more readily than
light, vision retains more spatial structure – but for
the same reason it is sensitive to occlusion and the
relative angle of the robot’s sensors, while auditory
perception is quite robust to these factors. The spa-
tial trajectory of a moving object can be recovered
quite straightforwardly from visual analysis, but not
from sound. However, the trajectory in itself is not
very revealing about the nature of the object. We use
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Figure 1: The experimental platform. The humanoid
robot Cog [2] is equipped with cameras in an active
vision head, and a microphone array across the torso.
A human demonstrates some repetitive action to the
robot, such as using a hammer.

the trajectory to extract visual and acoustic features
– patches of pixels, and sound frequency bands – that
are likely to be associated with the object. Both can
be used for recognition. Sound features are easier to
use since they are relatively insensitive to spatial pa-
rameters such as the relative position and pose of the
object and the robot.

Our work is implemented on Cog [2], an upper-torso
humanoid robot (see figure 1). Previous work on Cog
has shown the ability to extract a perceptual bene-
fit (object segmentation) from known motion (object
tapping) [4]. Cog has previously been applied to per-
forming basic repetitive behaviors [8] including turn-
ing a crank, hammering, sawing, playing with a slinky,
swinging a pendulum, and so on. In a sense, the cur-
rent work is a perceptual analog of this motor ability,
which had no sensory component other than direct
feedback from the robot’s joints.

2 Detecting rhythmic motion

Perhaps the most direct way to detect periodicity
is to use the Short-Time Fourier Transform (STFT).



This transform maps a signal into a two-dimensional
function of time and frequency. A STFT is applied to
each input signal available,

I(t, ft) =

N−1∑

t=0

i(t′)h(t′ − t)e−j2πftt′ (1)

where h is a windowing function, and N the number of
samples. Periodicity is estimated from a periodogram
determined for all signals from the energy of the win-
dowed FFTs over the spectrum of frequencies. These
periodograms are then processed to determine whether
they correspond to a clear unambiguous period. A pe-
riodogram is accepted if its energy is concentrated over
a narrow peak.

This is a very general method, and is similar to
that adopted in [7]. There are some difficulties with
applying it. We must choose a time span over which
to perform periodicity inference. The longer this span,
the larger the number of signal repetitions available,
and the larger the set of frequencies that can be pro-
cessed, increasing the range of oscillating objects with
which the robot can interact. But visual tracking per-
formance decreases with the increase of the time win-
dow, and the assumption of constant period over this
window is weakened for larger intervals, for both au-
dio and visual signals. We attempted to address this
tension by adopting a flexible compromise between
the spatial and frequency based views of a signal.
The periodicity detection is applied at multiple scales,
with long spatial intervals (and hence small window
sizes) providing more precise spatial, local informa-
tion, while larger windows increase the frequency res-
olution. For objects oscillating during a short period
of time, the movement might not appear periodic at a
coarser scale, but does appear as such at a finer scale.
If a strong periodicity is found, the points implicated
are used as seeds for object segmentation (discussed
in section 4). Otherwise the window size is halved and
the procedure is repeated for each half.

The STFT based-method demonstrated good per-
formance after extensive evaluation for visual signals
from periodic objects, but it is not appropriate for pe-
riodicity detection of acoustic signals. These signals
may vary considerably in amplitude between periods,
which – particularly when combined with variability
in the length of the periods – suggests that Fourier
analysis is not appropriate. This led us to the devel-
opment of a more robust method for periodicity de-
tection, which was applied to both acoustic and vi-
sual signals. We construct a histogram of the dura-
tions between successive instances of particular values
of the signal, and search for the most common dura-
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Figure 2: Audio and visual information for a hammer
hitting a table. The robot monitors the spectrum of
the sound signal (the top graph shows the complete
spectrogram, the middle graph shows the overall en-
ergy signal) while tracking the trajectory of objects
visible to its camera (bottom).

tion, which we take to be the signal’s period. To make
this process efficient, we use a hash table indexed by
the signal values (combined with their derivatives) dis-
cretized relative to the minimum and maximum value
of the signal. Each index of the hash table corresponds
to distinct values for the signal and its derivative, and
the information stored in the table corresponds to the
time instants when each value/derivative pair last oc-
curred. After building the table, a period histogram
is constructed by the differences found during assign-
ments to the table. The histogram maximum corre-
sponds to the signal period.

3 Matching sound and vision

Due to physical constraints, the set of sounds that
can be generated by manipulating a particular object
is often quite small. For tools and toys which are
suited to one specific kind of manipulation – as ham-
mers encourage banging – there is even more structure
to the sound they generate. We expect that for such
objects, when sound is produced through motion, the
audio signal will be highly correlated both with the
motion of the object and the identity of the tool.

This concept can be illustrated with a basic exam-
ple: hammering (see figure 2). Whenever the hammer
bangs in the table, a distinctive audio signal is pro-
duced, spread all over the frequency bands, with a
sharp rise of energy at the instant of impact and rapid
fall-off thereafter. If we monitor the visual trajectory
of the hammer along the main axis of motion, it oscil-
lates at the same frequency as the sound, with approx-



imately zero phase-shift at the moment of impact. The
details of this sound may vary with the surface that
the hammer bangs against, but the overall pattern is
consistent.

For this example and all other experiments de-
scribed in this paper, our system tracks moving pix-
els in a sequence of images from one of the robot’s
cameras using a multiple tracking algorithm based on
the a pyramidal implementation of the Lukas-Kanade
algorithm. A microphone array sampled the sounds
around the robot at 16kHz. The Fourier transform of
this signal is taken with a window size of 512 samples
and a repetition rate of 31.25Hz. The Fourier coeffi-
cients are grouped into a set of frequency bands for the
purpose of further analysis, along with the overall en-
ergy. ‘Binding’ or grouping of simultaneous audio and
visual signals takes place if the periods of both signals
match within a tolerance of approximately 60ms. No
binding is carried out if a moving object is silent, or if
a noise-making object lies outside of the robot’s field
of view.

We now work through three cases of cross-modal
binding of increasing complexity, beyond the simple
situation already described for the hammer. The
first case is when multiple moving objects are visible,
but only one repeating sound is heard. If the sound
matches the motion of one of the objects, it will be
bound to that one and not the other. Similarly, if
two repeating sounds with different periods are heard,
and a single moving object is visible, the sound with
matching period can be bound with the visible object
– this is the second case examined. Finally, we show
that multiple sound and visual sources can be bound
together appropriately.

3.1 Matching with visual distraction

In this section we consider the case of multiple ob-
jects moving in the robot’s visual field, only one of
which is generating sound. The robot uses the sound
it hears to filter out uncorrelated moving objects and
determine a candidate for cross-modal binding. This
is a form of context priming, in which an external sig-
nal (the sound) directs attention towards one of a set
of potential candidates.

Figure 3 shows measurements taken during an ex-
periment with two objects moving visually, at differ-
ent rates, with one - a toy car - generating a rolling
sound, while the other - a ball - is moving silently. The
acoustic signal is linked with the object that generated
it (the car) using period matching. The movement of
the ball is unrelated to the period of the sound, and so
that object is rejected. In contract, for the car there
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Figure 3: The top left image shows a car and a ball
moving simultaneously, with their trajectories over-
laid. The spectrogram during this event is shown to
the right. Sound is only generated by the rolling car –
the ball is silent. A circle is placed on the object (car)
with which the sound is bound. The sound energy and
the visual displacements of the objects are given.

is a very definite relationship. In fact, the sound en-
ergy signal has two peaks per period of motion, since
the sound of rolling is loudest during the two moments
of high velocity motion between turning points in the
car’s trajectory. This is a common property of sounds
generated by mechanical rubbing, so the binding algo-
rithm takes this possibility into account by testing for
the occurrence of frequencies at double the expected
value. Section 3.4 develops another approach to deal-
ing with these and similar situations. Section 4 looks
at using the very richness of the relationship between
audio and visual signals for the purposes of object
recognition.

3.2 Matching with acoustic distraction

This section considers the case of one object moving
in the robot’s field of view, and one ‘off-stage’, with
both generating sound. Matching the right sound to
the visible object is achieved by mapping the time his-
tory of each individual coefficient band of the audio
spectrogram (see figure 4) to the visual trajectory of
the object. We segment the sound of the object from
the background by clustering the frequency bands with
the same period (or half the period) as the visual tar-
get, and assign those bands to the object.

Within the framework being described, visual infor-
mation is used to prune the range of frequency bands
of the original sound - the coefficient bands of the au-
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Figure 4: The two spectrogram/trajectory pairs shown
are for a shaking toy car and snake rattle. The top
pair occurs with only the car visible, and the lower
pair occurs with only the snake visible. The line in
each spectrogram represents the cutoff pitch frequency
between the car and snake.

dio visual are segmented into clusters of bands that
characterize the sound of an object. For the exper-
iment shown in the upper part of figure 4, the coef-
ficients ranging from 0 to 2.6Hz are assigned to the
object. Afterwards, a band-pass filter is applied to
the audio-signal to filter out the other frequencies, re-
sulting the clear sound of the car with the sound of
the rattle removed or highly attenuated. For the ex-
periment shown in the lower part of figure 4 the roles
of the car and snake were switched. A band-pass fil-
ter between 2.6-2.8Hz is applied to the audio-signal
to filter out the frequencies corresponding to the car,
resulting the snakes’ sound.

3.3 Matching multiple sources

This experiment considers two objects moving in
the robot’s field of view and both generating sound,
as presented in Figure 5. Each temporal trajectory of
a coefficient group is mapped into one of the visual
trajectories if coherent with its periodicity. For each
object, the lower and the higher coefficient band are
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Figure 5: The car and the cube, both moving, both
making noise. The line overlaid on the spectrogram
(bottom) shows the cutoff determined automatically
between the high-pitched bell in the cube and the low-
patched rolling sound of the car. A spectrogram of the
car alone can be seen on Figure 3. The frequencies of
both visual signals are half those of the audio signals.

labelled as the lower and higher cut-off frequencies, re-
spectively, of a band-pass filter assigned to that object.
The complex sound of both the moving car-toy and the
cube-rattle are thus segmented into the characteristic
sound of the car and sound of the rattle through band-
pass filtering. Multiple bindings are thus created for
multiple oscillating objects producing distinct sounds.

It is worth stressing that the real world is full of ob-
jects making all kinds of noise. However, the system
is robust to such disturbances. On the experiments
presented throughout this paper, people were speak-
ing occasionally while interacting with the robot, while
other people were making everyday sounds while work-
ing. If the distracting sound occurs at the same range
of frequencies as the sound of the oscillating object,
then a binding might just not occur for that specific
time, but occur after a few seconds when the interfer-
ence noise switches to other frequencies or disappears.

3.4 Priming sound detection using vision

Figure 6 shows how well the methods described for
binding sounds with objects work on a series of exper-
iments. False bindings occur in only one case, where
two objects are moving, a mouse and a plane. Only
the plane is generating sound. The sound is a rough
noise with silence at the two extrema of the plane’s mo-
tion, and hence appears to have a frequency of double
that of the trajectory. This is close to the frequency
of oscillation of the mouse, so simple period matching
occasionally gives false results. This is symptomatic
of a more general problem: the sound generated by a



Experiment visual
period
found

sound
period
found

bind
made

good
bind
(%)

bad
binds
(%)

missed
binds
(%)

hammer 6 8 6 100 0 0
car & ball 7 11 1 14 0 86
car 6 6 5 83 0 17
car (snake
background)

5 16 5 100 0 0

snake (car
background)

4 9 4 100 0 0

plane and
mouse

23 27 16 46 41 13

Figure 6: An evaluation of the efficacy of cross-modal
binding for various objects and situations.

periodically moving object can be much more complex
and ambiguous than its visual trajectory. The extrema
of an approximately repeating trajectory can be found
with ease, and used to segment out single periods of
oscillation within an object’s movement. Single peri-
ods of the sound signal can be harder to find, since
there is more ambiguity – for example, some objects
make noise only at one point in a trajectory (such as a
hammer), others make noise at the two extrema (some
kinds of bell), others make noise during two times of
high velocity between the extrema (such as a saw), and
so on. For cases where periodicity detection is difficult
using sound, it makes sense to define the period of an
action in the visual domain based on its trajectory,
and match against this period in the sound domain –
instead of detecting the period independently in each
domain. We have developed an approach, where for
each object moving visually, fragments of the sound
are taken for periods of that object, aligned, and com-
pared. If the fragments are consistent, with sound and
vision in phase with each other, then the visual trajec-
tory and the sound are bound. This is a more strin-
gent test than just matching periods, yet avoids the
problem of determining a period reliably from sound
information. Figure 7 shows results for the plane-and-
mouse example described at the beginning of this sec-
tion, showing that it does in fact rectify the problem.
The periodicity detection method in section 2 is still
necessary when only sound information is available.

There is evidence that, for humans, simple visual
periodicity can aid the detection of acoustic period-
icity. If a repeating segment of noise is played, the
repetition can be detected for much longer periods if
a light is flashing in synchrony with some point in the
period [1]. More generally, there is evidence that the
cues used to detect periodicity can be quite subtle and
adaptive [5], suggesting there is a lot of potential for
progress in replicating this ability beyond the ideas
already described.
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Figure 7: An experiment in which a plane is being
pushed across wood while a mouse is shaken in the
background. Shown are the highest quality acoustic
matches for this sound (right) and the object with
which they correspond (left). Matches against the
mouse are much lower and below threshold.

4 Object segmentation and recognition

Different objects have distinct acoustic-visual pat-
terns which are a rich source of information for object
recognition. Our approach can differentiate objects
from both their visual and acoustic backgrounds by
finding pixels and frequency bands (respectively) that
are oscillating together. We deal with a fundamen-
tal problem in computer vision - object segmentation -
by detecting and interpreting natural human behav-
ior such as waving or shaking objects. This is impor-
tant, because object segmentation on unstructured,
non-static, noisy, real-time and low resolution images
is a hard problem. Results for object-background sep-
aration are shown in figure 8 and were obtained with
varying light conditions. The environment was not
manipulated to improve natural occurring elements,
such as shadows or light saturation from a light source.
All the experiments were made while a human or the
robot were performing an activity.

Features extracted from the visual and acoustic seg-
mentations are what we need to build an object recog-
nition system (in the visual domain see [3], and [6] has
looked at the recognition of sound generated by a sin-
gle contact event). Each type of feature is important
for recognition when the other is absent. But when
both are present, then we can do better at recognition
by looking at the relationship between visual motion
and the sound generated (see figure 9), to which the
method in section 3.4 gives us easy access.



Figure 8: Examples of object segmentations.

5 Discussion and conclusions

We described techniques to detect periodicity of
signals, identifying their strengths and limitations.
Through the detection of visual periodic events, we
were able to localize an object in the visual field
and extract information concerning its trajectory over
time, as well as to segment a visual representation of
an object from an image. In addition, sound segmen-
tation - the identification of the frequency bands that
best characterize an object - was also possible from
just acoustic information. A cross-modal strategy to
period detection proved necessary and advantageous,
being more robust to disturbances either in sound or
vision, and providing a better characterization of ob-
jects. We discussed how to reliably bind the visual
appearance of objects to the sound that they gener-
ate, and to achieve selectivity: a visual distractor was
filtered out using sound, and sound was also used to
prime the visual field. In addition, we argued that the
cross-modal strategy is well suited for integration with
object recognition strategies for searching visually for
tools and toys and finding/recognizing them whenever
their sound is perceived by the robot.

A lot about the world could be communicated to a
humanoid robot through human demonstration. The
robot’s learning process will be facilitated by send-
ing it repetitive information through this communica-
tion channel. If more than one communication chan-
nel is available, such as the visual and auditory chan-
nels, both sources of information can be correlated for
extracting richer pieces of information. We demon-
strated in this paper a specific way to take advantage
of correlating multiple perceptual channels at an early
stage, rather than just by analyzing them separately -
the whole is truly greater than the sum of the parts.
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Figure 9: The relationship between object motion and
the sound generated varies in an object-specific way.
The hammer causes sound when changing direction af-
ter striking an object. The bell typically causes sound
at either extreme of motion. A toy truck causes sound
while moving rapidly with wheels spinning; it is quiet
when changing direction.
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