Better Vision through Manipulation

Giorgio Metta · Paul Fitzpatrick

Humanoid Robotics Group MIT AI Lab

Vision & Manipulation

In robotics, vision is often used to guide manipulation

But manipulation can also guide vision

Important for...

- Correction recovering when perception is misleading
- Experimentation progressing when perception is ambiguous
- Development bootstrapping when perception is dumb

Linking Vision & Manipulation

A link from robotics

 Active vision: Good motor strategies can simplify perceptual problems

A link from neuroscience

 Mirror neurons: Relating perceived actions of others with own action may simplify learning tasks

Linking Vision & Manipulation

A link from robotics

 Active vision: Good motor strategies can simplify perceptual problems

A link from neuroscience

Mirror neurons: Relating perceived actions of others with own action may simplify learning tasks

A Simple Scene?

A Simple Scene?

Cube has misleading surface pattern

Color of cube and — table are poorly separated

Maybe some cruel grad-student glued the cube to the table

Active Segmentation

Active Segmentation

Result

No confusion between cube and own texture

No confusion between cube and table

Point of Contact

Point of Contact

Motion spreads continuously (arm or its shadow) Motion spreads suddenly, faster than the arm itself \rightarrow contact

Segmentation

Side tap

Back slap

Prior to impact

Impact event

Motion caused (red = novel, Purple/blue = discounted) Segmentation (green/yellow)

Typical results

A Complete Example

Linking Vision & Manipulation

A link from robotics

 Active vision: Good motor strategies can simplify perceptual problems

A link from neuroscience

 Mirror neurons: Relating perceived actions of others with own action may simplify learning tasks

Linking Vision & Manipulation

A link from robotics

 Active vision: Good motor strategies can simplify perceptual problems

A link from neuroscience

 Mirror neurons: Relating perceived actions of others with own action may simplify learning tasks

Viewing Manipulation

"Canonical neurons" Active when manipulable objects are presented visually

"Mirror neurons"

Active when another individual is seen performing manipulative gestures

What is the simplest possible manipulative gesture?

- Contact with object is necessary; can't do much without it
- Contact with object is sufficient for certain classes of affordances to come into play (e.g. rolling)
- So can use various styles of poking/prodding/tapping/swiping as basic manipulative gestures

(if willing to omit the *manus* from manipulation...)

Gesture "Vocabulary"

Exploring an Affordance: Rolling

Exploring an Affordance: Rolling

A toy car: it rolls in the direction of its principal axis

A bottle: it rolls orthogonal to the direction of its principal axis

A toy cube: it doesn't roll, it doesn't have a principal axis

A ball: it rolls, it doesn't have a principal axis

Preferred Direction of Motion

ĢD

Closing the Loop

identify and localize object

Previously-poked prototypes

Closing The Loop: Very Preliminary!

Conclusions

Poking works!

Will always be an important perceptual fall-back

Simple, yet already enough to let robot explore world of objects and motion

Stepping stone to greater things?

Acknowledgements

This work was funded by

DARPA

as part of the "Natural Tasking of Robots Based on Human Interaction Cues" project under contract number DABT 63-00-C-10102

and by

NTT

as part of the NTT/MIT Collaboration Agreement

Locating Arm without Appearance Model

Tracing Cause and Effect

