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Abstract

Object segmentation is a fundamental problem
in computer vision and a powerful resource for
development. This paper presents three embod-
ied approaches to the visual segmentation of ob-
jects. Each approach to segmentation is aided
by the presence of a hand or arm in the prox-
imity of the object to be segmented. The first
approach is suitable for a robotic system, where
the robot can use its arm to evoke object mo-
tion. The second method operates on a wear-
able system, viewing the world from a human’s
perspective, with instrumentation to help detect
and segment objects that are held in the wearer’s
hand. The third method operates when observing
a human teacher, locating periodic motion (fin-
ger/arm/object waving or tapping) and using it
as a seed for segmentation. We show that ob-
ject segmentation can serve as a key resource for
development by demonstrating methods that ex-
ploit high-quality object segmentations to develop
both low-level vision capabilities (specialized fea-
ture detectors) and high-level vision capabilities
(object recognition and localization).

1. Introduction

Both the machine vision community and cognitive
science researchers recognize objects as a power-
ful abstraction for intelligent systems. Likewise,
those who study cognitive development have a
long history of analyzing the detailed maturation
of object related competencies in infants and chil-
dren. But despite the acknowledged importance
of objects to human cognition and visual percep-
tion, our robots continue to be challenged by the
everyday objects that surround them. Funda-
mentally, robots must be able to perceive objects
in order to learn about them, manipulate them,
and develop the important set of intellectual ca-
pabilities that rely on them. In this paper, we
demonstrate three embodied methods that allow
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Figure 1: The platforms.

machines to visually perceive the extent of ma-
nipulable objects. Furthermore, we show that the
object segmentations that result from these meth-
ods can serve as a powerful foundation for the
development of more general object perception.

The presence of a body changes the nature of
perception. The body provides constraint on in-
terpretation, opportunities for experimentation,
and a medium for communication. Hands in par-
ticular are very revealing, since they interact di-
rectly and flexibly with objects. In this paper, we
demonstrate several methods for simplifying vi-
sual processing by being attentive to hands, either
of humans or robots. This is an important cue
also in primates, as was shown by Perret and col-
leagues (Perrett et al., 1990), who located areas
in the brain specific to the processing of the visual
appearance of the hand (one’s own or observed).
Our first argument is that in a wide range of situ-
ations, there are many cues available that can be
used to make object segmentation an easy task.
This is important because object segmentation or
figure/ground separation is a long-standing prob-
lem in computer vision, and has proven difficult to
achieve reliably on passive systems. The segmen-
tation methods we present are particularly well
suited to segmenting manipulable objects, which
by definition are potentially useful components of
the world and therefore worthy of special atten-
tion. We look at three situations in which active
or interactive cues simplify segmentation:



(i) Active segmentation for a robot viewing its
own actions. A robot arm probes an area, seeking
to trigger object motion so that the robot can
identify the boundaries of the object through that
motion.

(ii) Active segmentation for a wearable system
viewing its wearer’s actions. The system moni-
tors human action, issues requests, and uses ac-
tive sensing to detect grasped objects held up to
view.

(iii) Demonstration-based segmentation for a
robot viewing a human’s actions. Segmentation
is achieved by detecting and interpreting natural
human showing behavior such as finger tapping,
arm waving, or object shaking.

Our second argument is that visual object seg-
mentation can serve as a powerful foundation for
the development of useful object related compe-
tencies in epigenetic systems. We support this by
demonstrating that when segmentation is avail-
able, several other important vision problems can
be dealt with successfully – object recognition,
object localization, edge detection, etc.

2. Object perception

What our retinas register when we look at the
world and what we actually believe we see are no-
toriously different (Johnson, 2002). How does the
brain make the leap from sensing photons to per-
ceiving objects? The development of object per-
ception in human infants is an active and impor-
tant area of research (Johnson, 2003). A central
question is that of segmentation or ‘object unity’
– how a particular collection of surface fragments
become bound into a single object representation.
In our work we focus on identifying or engineer-
ing special situations when object unity is simple
to achive, and show how to exploit such situa-
tions as opportunities for development, so that
object unity judgements can be made in novel sit-
uations. There is evidence that a similar process
occurs in infants. Spelke and others have shown
that the coherent motion of an object is a cue
that young infants can use to unite surface frag-
ments into a single object (Jusczyk et al., 1999).
Needham gives evidence that even a brief expo-
sure to independent motion of two objects can
influence an infant’s perception of object bound-
aries in later presentations (Needham, 2001). The
ability to achieve object unity does not appear
fully-formed in the neonate, but develops over
time (Johnson, 2002). In this paper, we explore
analogues of this developmental step, and demon-
strate that the ability to perceive the boundaries
of objects in special, constrained situations can in

fact be automatically generalized to other situa-
tions. Elsewhere, we have used this ability as the
basis for learning about and exploiting an object
affordance (Metta and Fitzpatrick, 2003), and to
learn about activities by tracking actions taken
on familiar objects (Fitzpatrick, 2003).

Switching our attention from theoretical to
practical considerations, decades of experience in
computer vision have shown that object segmen-
tation on unstructured, non-static, noisy and low
resolution images is a hard problem. The tech-
niques this paper describes for object segmenta-
tion deal with different combinations of the fol-
lowing situations, many of which are classically
challenging:

. Segmentation of an object with colors or tex-
tures that are similar to the background.

. Segmentation of an object among multiple
moving objects in a scene.

. Segmentation of fixed or heavy objects in a
scene, such as a table or a sofa.

. Segmentation of objects printed or drawn in
a book or in a frame, which cannot be moved
relative to other objects on the same page.

. Insensitivity to luminosity variations.

. Fast operation (near real-time).

. Low resolution images.

The next three sections document three basic
active and interactive approaches to segmenta-
tion, and then the remainder of the paper shows
how to use object segmentation to develop ob-
ject localization, recognition, and other percep-
tual abilities.

3. Segmentation on a robot

The idea of using action to aid perception is
the basis of the field of “active perception”
in robotics and computer vision (Ballard, 1991,
Sandini et al., 1993). The most well-known in-
stance of active perception is active vision. The
term “active vision” has become essentially syn-
onymous with moving cameras, but it need not
be. Work on the robot Cog (pictured in Fig-
ure 1) has explored the idea of manipulation-
aided vision, based on the observation that robots
have the opportunity to examine the world us-
ing causality, by performing probing actions and
learning from the response. In conjunction with
a developmental framework, this could allow the
robot’s experience to expand outward from its
sensors into its environment, from its own arm to
the objects it encounters, and from those objects
outwards to other actors that encounter those
same objects.
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Figure 2: Cartoon motivation for active segmentation. Hu-

man vision is excellent at figure/ground separation (top left),

but machine vision is not (center). Coherent motion is a

powerful cue (right) and the robot can invoke it by simply

reaching out and poking around.
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Figure 3: This images show the processing steps involved

in poking. The moment of impact between the robot arm

and an object, if it occurs, is easily detected – and then the

total motion after contact, when compared to the motion

before contact and grouped using a minimum cut approach

(Boykov and Kolmogorov, 2001) gives a very good indication

of the object boundary.

Object segmentation is a first step in this pro-
gression. To enable it, Cog was given a simple
“poking” behavior, whereby it selects locations in
its environment, and sweeps through them with
its arm (Metta and Fitzpatrick, 2003). If an ob-
ject is within the area swept, then the motion gen-
erated by the impact of the arm with that object
greatly simplifies segmenting that object from its
background, and obtaining a reasonable estimate
of its boundary (see Figure 3). The image pro-
cessing involved relies only on the ability to fixate
the robot’s gaze in the direction of its arm. This
coordination can be achieved either as a hard-
wired primitive or through learning. Within this
context, it is possible to collect good views of the
objects the robot pokes, and the robot’s own arm.

This choice of activity has many benefits. (i)
The motion generated by the impact of the arm
with a rigid object greatly simplifies segmenting
that object from its background, and obtaining
a reasonable estimate of its boundary (see Fig-
ure 3). (ii) The poking activity also leads to
object-specific consequences, since different ob-
jects respond to poking in different ways. For ex-
ample, a toy car will tend to roll forward, while a
bottle will roll along its side. (iii) The basic oper-
ation involved, striking objects, can be performed
by either the robot or its human companion, cre-
ating a controlled point of comparison between
robot and human action.

Figure 4: The wearable system monitors the wearer’s point

of view (top row) while simultaneously tracking the wearer’s

arm (bottom row).

Figure 5: The wearable system currently achieves segmen-

tation by active sensing. When the wearer brings an ob-

ject up into view (first column), an oscillating light source

is activated (second column). The difference between images

(third column) is used to compute a mask (fourth column)

and segment out the grasped object and the hand from the

background via a simple threshold.(fifth column).

4. Segmentation on a wearable

Wearable computing systems have the potential
to measure most of the sensory input and physi-
cal output of a person as he or she goes through
everyday activities. A wearable system that con-
trols a human’s actions while making these mea-
surements could take advantage of the wearer’s
embodiment and expertise in order to develop
more sophisticated perceptual processing.

One of the authors is designing a system named
Duo that consists of a wearable creature and a
cooperative human (Kemp, 2002). The wearable
component of Duo serves as a high-level controller
that requests actions from the human through
speech, while the human serves as an innate and
highly sophisticated infrastructure for Duo. From
a developmental perspective the human is analo-
gous to a very sophisticated set of innate abilities
that Duo can use to bootstrap development. In
order for Duo to take full advantage of these abil-
ities, Duo must learn to better interpret human
actions and their consequences, and learn to ap-
propriately request human actions.

The wearable side of Duo currently consists of a
head-mounted camera, 4 absolute orientation sen-
sors, an LED array, and headphones. The wide
angle lens and position of the head-mounted cam-
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Figure 6: Segmentation based on finger tapping (left). This

periodic motion can be detected through a windowed FFT

on the trajectory of points tracked using optic flow, and the

points implicated in the motion used to seed a color segmen-

tation. The segmentation is applied to a frame with the hand

absent, grabbed when there is no motion.

era help Duo to view the workspace of the domi-
nant arm. The 4 absolute orientation sensors are
affixed to the lower arm, upper arm, torso and
head of the human, so that Duo may estimate
the kinematic configuration of the person’s head
and dominant arm. The wearable system makes
spoken requests through the headphones and uses
the LED array to aid vision (see Figure 4).

Currently, when Duo detects that the arm has
reached for an object and picked the object up,
Duo asks to see the object better. When a coop-
erative person brings the object close to his head
for inspection, Duo recognizes the proximity of
the object using the arm kinematics, and turns
on a flashing array of white LEDs. The illumina-
tion clearly differentiates between foreground and
background since illumination rapidly declines as
a function of depth. By simply subtracting the
illuminated and non-illuminated images from one
another and applying a constant threshold, Duo
is able to segment the object of interest and the
hand (see Figure 5). While the human is holding
the object close to the head, Duo kinematically
monitors head motion and requests that the per-
son keep his head still if the motion goes above a
threshold. Minimizing head motion improves the
success of the simple segmentation algorithm and
reduces the need for motion compensation prior
to subtracting the images.

5. Segmentation by demonstration

The two segmentation scenarios described so far
operate on first-person perspectives of the world
– the robot watching its own motion, or a wear-
able watching its wearer’s motion. Now we de-

Figure 7: Periodic motion can also be used to segment an

object held by the teacher, if they shake it.

velop a method that is suitable for segmenting
objects based on external cues. We assume the
presence of a cooperative human or “teacher” who
is willing to present objects according to a proto-
col based on periodic motion – waving the object,
tapping it with one’s finger, etc. (Arsenio, 2002).

5.1 Periodicity detection

For events created by human teachers, such as
tapping an object or waving their hand in front
of the robot, the periodic motion can be used to
help segment it. Such events are detected through
two measurements: a motion mask derived by
comparing successive images from the camera and
placing a non-convex polygon around any motion
found, and a skin-tone mask derived by a simple
skin color detector. A grid of points are initial-
ized and tracked in the moving region. Tracking
is implemented through the computation of the
optical flow using the Lucas-Kanade pyramidal
algorithm. Their trajectory is evaluated using a
windowed FFT (WFFT), with the window size on
the order of 2 seconds. If a strong periodicity is
found, the points implicated are used as seeds for
color segmentation. Otherwise the window size is
halved and the procedure is tried again for each
half. A periodogram is determined for all signals
from the energy of the WFFTs over the spectrum
of frequencies. These periodograms are then pro-
cessed to determine whether they are usable for
segmentation. A periodogram is rejected if one
of the following four conditions holds: i) there is
more than one energy peak above 50% of the max-
imum peak; ii) there are more than three energy
peaks above 10% of the maximum peak value;
iii) the DC component corresponds to the maxi-
mum energy; iv) peaks in the signal spectrum are
diffuse rather than sharp. This is equivalent to
passing the signals through a collection of band-
pass filters. Once we can detect periodic motion
and isolate it spatially, we can use identify waving
actions and use them to guide segmentation.



5.2 Waving the hand/arm/finger

This method has the potential to segment ob-
jects that cannot be moved independently, such
as objects painted in a book (see Figure 6), or
heavy, stationary objects such as a table or sofa.
Events of this nature are detected whenever the
majority of the periodic signals arise from points
whose color is consistent with skin-tone. The al-
gorithm assumes that skin-tone points moving pe-
riodically are probably projected points from the
arm, hand and/or fingers. An affine flow-model is
applied to the optical flow data at each frame, and
used to determine the arm/hand/finger trajectory
over the temporal sequence. Points from these
trajectories are collected together, and mapped
onto a reference image taken before the waving
began (this image is continuously updated until
motion is detected). A standard color segmen-
tation (Comaniciu and Meer, 1997) algorithm is
applied to this reference image, and points taken
from waving are used to select and group a set
of segmented regions into what is probably the
full object. This is done by merging the regions
of the color segmented image whose pixel values
are close to the seed pixel values, and which are
connected with the seed pixels.

5.3 Waving the object

Multiple moving objects create ambiguous
segmentations from motion, while difficult
figure/ground separation makes segmentation
harder. The strategy described in this section
filters out undesirable moving objects, while pro-
viding the full object segmentation from motion.
Whenever a teacher waves an object in front of
the robot, or sets an oscillating object in motion,
the periodic motion of the object is used to seg-
ment it (see Figure 7). This technique is trig-
gered whenever the majority of periodic points
are generic in appearance, rather than drawn
from the hand or finger. The set of periodic points
tracked over time are sparse, and hence an algo-
rithm is required to group then into a meaningful
template of the object of interest. An affine flow
model is estimated by a least squares minimiza-
tion criterion from the optical flow data. The esti-
mated model plus covariance matrices are used to
recruit other points within the Mahalanobis dis-
tance. Finally, a non-convex approximation algo-
rithm is applied to all periodic, non skin-colored
points to segment the object. Note that this ap-
proach is robust to humans or other objects mov-
ing in the background – they are ignored as long
as their motion is non-periodic.

6. Building on segmentation

We see object segmentation as the first step on a
developmental trajectory towards a robust, well-
adapted vision system. It is a key opportunity for
many kinds of visual learning:

Learning about low-level features: The seg-
mented views of objects can be pooled to train
detectors for basic visual features – for example,
edge orientation. Once an object boundary is
known, the appearance of the edge between the
object and the background can be sampled, and
each sample labeled with the orientation of the
boundary in its neighborhood.
Learning to recognize objects: High-quality
segmented views of objects can serve as extremely
useful training data for object detection and
recognition systems, since they unambiguously
label the visual features that are associated with
an object. Often these visual features can be
used to detect, track, and recognize the object in
new contexts where the segmentation methods
presented here are not applicable.
Learning about object behavior: Once
objects can be located and segmented
from the background, they can be tracked
to learn about their dynamic properties
(Metta and Fitzpatrick, 2003).

6.1 Learning about low-level features

Object segmentation identifies the boundaries
around an object. By examining the appear-
ance of this boundary over many objects, it is
possible to build up a model of the appearance
of edges. This is an empirically grounded al-
ternative to the many analytic approaches such
as (Freeman and Adelson, 1991). Figure 8 shows
examples of the kind of edge samples gathered
using active segmentation on the robot Cog. The
results show that the most frequent edge appear-
ances are “ideal” straight, noise-free edges, as
might be expected. Line-like edges also occur,
although with lower probability, along with a di-
versity of other more complicated edges (zig-zags,
dashed edges, and so on). Although these sam-
ples are collected for object boundaries, they can
be used to estimate orientation throughout an im-
age, giving a general-purpose orientation detector
that works in situations outside the one for which
it is explicitly trained (Fitzpatrick, 2003).



Figure 8: The empirical appearance of edges. Each 4 × 4

grid represents the possible appearance of an edge, quan-

tized to just two luminance levels. The line centered in the

grid is the average orientation that patch was observed on

object boundaries during segmentation. Shown are the most

frequent appearances observed in about 500 object segmen-

tations.

6.2 Learning to recognize objects

With any of the active segmentation behaviors
introduced here, the system can familiarize itself
with the appearance of nearby objects in a spe-
cial, constrained situation. It is then possible to
learn to locate and recognize those objects when-
ever they are present, even when the special cues
used for active segmentation are not available.
The segmented views can be grouped by their ap-
pearance and used to train up an object recogni-
tion module, which can then find them against
background clutter (see Figure 9).

Object recognition is performed using geometric
hashing (Wolfson and Rigoutsos, 1997), based on
pairs of oriented regions found using the detector
developed in Section 6.1. The orientation filter is
applied to images, and a simple region growing
algorithm divides the image into sets of contigu-
ous pixels with coherent orientation. For realtime
operation, adaptive thresholding on the minimum
size of such regions is applied, so that the number
of regions is bounded, independent of scene com-

model
view

test
image

oriented regions
detected and grouped

best match
without color

best match
with color

Figure 9: A simple example of object localization: finding a

circle buried inside a Mondrian. Given a model view (left) of

the desired object free from any background clutter, a clut-

tered view of the object (second from left) can be searched

for the specific feature combinations seen in the model (cen-

ter), and the target identified amidst the clutter (right). The

features we used combined geometric and color information

across pairs of oriented regions (Fitzpatrick, 2003).

plexity. In “model” (training) views, every pair of
regions belonging to the object is considered ex-
haustively, and entered into a hash table, indexed
by relative angle, relative position, and the color
at sample points between the regions (if inside
the object boundary). When searching for the
object, every pair of regions in the current view
is compared with the hash table and matches are
accumulated as evidence for the presence of the
object. As a simple example of how this all works,
consider the test case shown in Figure 9. The
system is presented with a model view of the cir-
cle, and the test image. For simplicity, the model
view in this case is a centered view of the object
by itself, so no segmentation is required. The pro-
cessing on the model and test image is the same;
first the orientation filter is applied, and then re-
gions of coherent orientation are detected. For
the circle, these regions will be small fragments
around its perimeter. For the straight edges in
the test image, these regions will be long. So find-
ing the circle reduces to locating a region where
there are edge fragments at diverse angles to each
other, and with the distance between them gen-
erally large with respect to their own size. Even
without using color, this is quite sufficient for a
good localization in this case. The perimeter of
the circle can be estimated by looking at the edges
that contribute to the peak in match strength.
The algorithm works equally well on an image of
many circles with one square, and has been ap-
plied to many kinds of objects (letters, compound
geometric shapes, natural objects such as a bottle
or toy car).

The matching process also allows the boundary



Figure 10: A cube being recognized, localized, and segmented

in real images. The image in the first column is one taken

when the robot Cog was poking an object, and was used

(along with others) to train the recognition system. The

image in the remain columns are test images. The border

superimposed on the images in the bottom row represents the

border of the object produced automatically. Note the scale

and orientation invariance demonstrated in the final image.

of the object in the image to be recovered. Fig-
ure 10 shows examples of an object (a cube) being
located and segmented automatically, without us-
ing any of the special segmentation contexts dis-
cussed in this paper, except for initial training.
Testing on a set of 400 images of four objects
poked by the robot, with half the images used
for training, and half for testing, gives a recogni-
tion error rate of 2%, with a median localization
error of 4.2 pixels in a 128 × 128 image (as de-
termined by comparing against the center of the
segmented region given by active segmentation).
By segmenting the image by grouping the regions
implicated in locating the object, and filling in, a
median of 83.5% of the object is recovered, and
14.5% of the background is mistakenly included
(again, determined by comparison with the re-
sults of active segmentation).

In geometric hashing, the procedure applied to
an image at recognition time is essentially identi-
cal to the procedure applied at training time. We
can make use of that fact to integrate training
into a fully online system, allowing behavior such
as that shown in Figure 11, where a previously
unknown object can be segmented through active
segmentation and then immediately localized and
recognized in future interaction.

6.3 Learning about object behavior

Once individual objects can be recognized, prop-
erties that are more subtle than physical appear-
ance can be learned and associated with that ob-
ject. For a robot, the affordances offered by an
object are important to know (Gibson, 1977). In
previous work, Cog was given the ability to char-
acterize the tendency of an object to roll when

1 2 3

Figure 11: This figure shows stills from a short interaction

with Cog. The area highlighted with squares show the state

of the robot – the left box gives the view from the robot’s

camera, the right shows an image it associates with the cur-

rent view. In the first frame, the robot is looking at a cube,

which it does not recognize. It pokes the cube, segments it,

and then it can recognize the cube in future (frame two) and

distinguish it from other objects it has poked such as the ball

(frame three).

struck, and was able to use that information to
invoke rolling behavior in objects such as a toy
car (Metta and Fitzpatrick, 2003).

7. Discussion and conclusions

In one view of developmental research the goal
is to identify a minimal set of hypotheses that
can be used to bootstrap the system towards a
higher level of competency. In the field of visuo-
motor control some authors (Metta et al., 1999,
Marjanović et al., 1996) used this approach, ini-
tializing a robotic system with simple behav-
iors and then developing more complicated ones
through robot-environment interaction. In this
paper we have shown that object segmentation
based on minimal and generic assumptions repre-
sents a productive basis for such work. Related
work (Metta and Fitzpatrick, 2003) has shown
that behavior dependent on robot-object interac-
tion and mimicry can be based substantially on
object segmentation alone. This work also relates
to a branch of developmental research that probes
very young human infant behavior in search of
the building blocks of cognition (Spelke, 2000). It
has been observed that very young infants a few
hours after birth already possess a bias in recog-
nizing faces, human voices, smell, and in explor-
ing the environment (relatively sophisticated hap-
tic exploration strategies have been documented).
Also a crude form of object recognition seems to
be in place, to the level of distinguishing round-
ness or spikiness of objects both haptically and
visually, for instance. In this paper we examined
yet another possible candidate: object segmen-
tation. We did not venture into the definition
of the developmental rules that might help the
robot in building complex behaviors by means of
this primitive, but showed that in principle a sys-
tem can build on top of object segmentation. We



also showed that both higher level abilities such as
recognition or lower level vision (edge orientation
estimation) can benefit from this approach. In the
future the developmental mechanism allowing the
combination of these hypothetical building blocks
into complex behaviors will be the subject of in-
vestigation.
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