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1. Introduction 
There is currently considerable research interest in investigating the potential applications of groups of small, 
cheap, miniature robots [1]. Such robots are typically limited in their sensing ability and processing power. 
Much of the literature addressing how robots can construct maps of their environment is oriented towards 
robots with vision sensors, and relies on computationally expensive image processing algorithms. This 
paper examines how a miniature robot can build and maintain a useful map of its environment with 
short-range proximity sensors only, and do so in real-time even with the restricted processing power of 
such robots. This is a desirable ability because it could allow robots to be used in a range of niches where 
sophisticated sensing and image processing would be impractical. The novel techniques described in this 
paper have been implemented on a Khepera [2] miniature robot. 

2. The importance of landmarks 
It is useful for an autonomous robot to maintain a map of its environment for a number of reasons, such as 
planning efficient routes and avoiding cyclic behaviour. But the most fundamental use of maps is to prevent 
the robot losing track of its position relative to the rest of the environment. While a reasonable estimate of 
the robot’s position can be maintained by tracking its movements and integrating them, unavoidable errors 
in the feedback from the robot’s motors, and environmental interference, will accumulate over time to make 
these estimates increasingly inaccurate. The robot needs some way to compensate for these errors. This 
can be done by searching for “landmark” features of the environment that can be used as reference points. 
By detecting such landmarks in the environment and comparing them with the map, the robot can deduce 
corrections to its position estimate and keep better track of where it is relative to its environment. 

3. Detecting landmarks 
A robot with proximity sensors only cannot simply “look” at an object and recognise it. It can only sense 
the small portion of an object that is in its immediate locality. And even that portion may not be sensed very 
accurately. For example, proximity sensors may give a distance reading that is non-linear, noisy, influenced 
by ambient light, and the colour, texture, and other features of the object. Such readings are not even 
remotely suitable for direct use in landmark detection. There are simply no stable features the robot can 
recognise.  

However, such non-ideal sensor data is sufficient to allow the robot to perform a simple task such as 
following the boundary of an object. To do this, the robot never needs to know the exact distance it is from 
the object, only whether that distance is increasing or decreasing. This relative information can be 
extracted reasonably reliably from proximity readings, even though the absolute distances the readings 
represent cannot. The reason this is relevant to a discussion of landmarks is that when the robot is following 
the edge of an object, the path it moves along will trace the outline of that object’s boundary. The distance 
the path is from the object will depend on the exact nature of the object’s surface- but whatever the 
distance is, it will be consistent, since the nature of surfaces tends to be remain constant. So if the robot 
follows the same boundary twice, the path it follows will generally be consistent. Hence recognisable 
features such as corners and edges that appear in the path will reappear in the same places the next time 
the robot follows the boundary. Therefore these features can act as landmarks for the robot. 
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Figure 3-1: Tracing the outline of an object  

This idea allows a robot to detect landmarks in its environment with even the most primitive sensing 
equipment. It could, for example, be implemented with a simple pair of “whisker” sensors- much cheaper 
than a machine vision system. 
 

4. General strategy for trusting landmarks 
There are two sections of a boundary which are particularly well suited to act as landmarks- corners and 
straight edge sections. These segments of the boundary have well-defined, stable features from which 
consistent information can be extracted, as will be shown soon. With careful use of this information, it is 
possible to compensate for accumulating error in the robot’s estimates of its position and direction. Before 
looking at the details of how this can be done, some general difficulties with landmarks need to be 
addressed. 
While the idea of landmarks is that they provide reference points that the robot can use to keep track of its 
position, it is important to remember that the robot’s environment is not static. It cannot be assumed that a 
change in the apparent position of a landmark automatically means that the robot’s estimate of its position 
has become inaccurate- it may equally well be that the landmark has simply moved. A change in the 
position of a landmark and an error in the robot’s estimate of its position are indistinguishable while the 
robot is close to that landmark. However, an important point to realise is that they can be distinguished 
once the robot moves away from that area. A change in the position of a landmark will not change the 
position of any other landmark, whereas a drift in the robot’s sense of position will change the perceived 
position of every landmark. One is a local change, the other is a global change. So if the robot finds that 
every landmark it meets seems to have moved, then it becomes more and more likely that the movement is 
only apparent, caused by a drift in the robot’s estimate of its position. Essentially, the “consensus” of the 
landmarks in the environment is used to determine what has occurred in a particular part of that 
environment. This use of landmarks ensures that the map is kept self-consistent by essentially averaging 
error over the entire map1. 

                                                 
1 Note that this averaging process, while it keeps the map self-consistent, does not prevent the coordinate system of the map drifting 

over time. This point has no bearing on landmark recognition, but does have bearing on the nature of the services the map can 
provide. 
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A strategy for applying corrections to the robot’s estimates is now presented that follows from the above 
considerations. It is first assumed for the purposes of calculation that apparent changes in the 
environment are entirely due to drifts in the robot’s position and direction estimates and not to changes in 
the position of landmarks. Then, having computed the corrections to the robot’s estimate of its position and 
direction that would be appropriate under that condition, only a conservative fraction of each correction 
is actually applied. If the apparent changes in the environment are in fact due to drifts in the robot’s 
estimates, then every landmark the robot meets will continue to apply these corrections until they build up 
sufficiently to compensate for the drifts. If on the other hand the apparent changes are real, and due to an 
actual change in the position of a landmark, the correction will not be reinforced at any other landmark. In 
fact, at other landmarks the “incorrect correction” will be compensated for, since the error introduced into 
the robot’s estimates will seem just like a natural drift from accumulating error and can be corrected as 
such. The “conservative fraction” mentioned earlier should be one chosen so that if a correction is applied 
in error, it is small enough to be recovered from through the same process that deals with normal drift. 
Suitable values will be quoted for straight-edge and corner landmarks when they are discussed. It is 
important to note that corrections to the robot’s estimate of its direction must be made particularly 
conservatively, because small erroneous corrections to the direction will be multiplied into very large errors 
in its position as the robot moves. Erroneous corrections to the position estimate do not become amplified 
in this way2. 

This ability of the landmark system to “heal itself” if errors are introduced while attempting to make 
corrections is quite general, so long as the errors are not large enough to prevent landmarks being 
recognised. One useful consequence of this is that it is acceptable to make approximations when calculating 
the corrections to the robot’s estimates from a landmark. The difference between the approximation and 
the exact answer can be seen as introducing an error component into the corrections the robot makes 
which may add to the drifts in the estimates rather than removing them. This will simply appear as an extra 
component in the position and direction drift calculated in future corrections and be eliminated. 

Before looking at the details of detecting particular landmarks, it is necessary to choose how the robot’s 
map is to be represented. This is discussed in the following section. 

5. Representation scheme 
The two most widely used map representation schemes in robotics are grid-based and topological [[1]]. A 
grid-based scheme assumes the world is arranged in a manner somewhat analogous to a chess board, with 
all the objects in it arranged in definite locations that can be known exactly by the robot. If the robot can 
know its own position precisely, and is able to sense objects perfectly, there is no problem with this, but 
otherwise the scheme becomes essentially unworkable. It is very difficult to allow for any uncertainty in the 
robot’s position in it, and limitations in the robot’s sensing capability are particularly troublesome. Hence it 
is unsuitable for use with an autonomous robot, although it may work perfectly well in a simulated 
environment. 
Topological schemes, in contrast, depend less on the exact location of the objects in the robot’s 
environment, and concentrate more on trying to capture the basic shape of the environment in terms of its 
essential topology. In other words, the robot tries to determine which areas can be reached from each 

                                                 
2 If you aim a cannon at a target, but shoot a few degrees in the wrong direction, you will miss the target by a distance that keeps 

increasing the further the cannonball goes. If, on the other hand, you aim the cannon exactly on target, and move it a few paces left 
or right before firing- still facing the same direction- then the cannonball will miss the target by just the distance you moved no 
matter how far away the target is. 
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other, which are cut off from each other by obstructions, etc. As such the precise details of the robot’s 
surroundings are not as significant, only the overall form, so uncertainty in the robot’s position becomes less 
important. However the price paid for this is the extra computation necessary for recognising abstract 
topological features in the environment. For a robot with no long-range sensors, such features cannot be 
directly observed. The only way to observe them is indirectly, by keeping track of the discernible attributes 
of the immediate environment, combining that information into a model of the overall environment, and then 
analysing that model for topological features. In other words, in the absence of long-range sensors it is 
effectively necessary to build a map before topological features can be detected, so such features cannot 
be used in building the map in the first place. 

A more suitable map representation scheme can be derived if, instead of seeing a map as a model of the 
environment, it is viewed more as a “record of experiences”. At any particular moment, the robot 
experiences the environment in its immediate vicinity, as perceived through the robot’s sensors. It also 
experiences feedback from its motors indicating any movement it is making, which can be used to calculate 
its position. It is clear the most well informed robot conceivable is one which archives all this information 
exhaustively, continuously recording the state of the sensors along with the associated position of the robot, 
and never discarding any of this data. Such a robot is an upper bound on the knowledge a cartographic 
system can have3, since it contains every piece of data ever available to the robot. The approach used in 
this project takes this trivially simple idea of archiving all the robot’s experiences as a starting point, and 
modifies it into a form that is actually practical to implement. 
Firstly, a complete archive of sensor state and motion feedback for all the time the robot is in operation is 
obviously hopelessly impractical- the robot would quickly “drown” in the information deluge, with too much 
data to process. To reduce this burden, it would seem reasonable to eliminate any records in the archive 
that apply to the same position of the robot as a new record being added, since the new record will have 
the most up-to-date information about the state of the environment at that position. However there is a 
problem with this. The robot’s position is deduced by integrating the motion feedback from the robot’s 
motors. Errors in the motion feedback are unavoidable, so the position estimate will gradually drift from the 
robot’s true position. Hence two records showing the same “nominal position” of the robot cannot be 
assumed to correspond to the same physical position if there is a significant time interval between when 
they were recorded. However, if there was some way to use landmarks in the environment to keep the 
robot’s estimate of its position consistent, then it would be acceptable to keep only the most recent record 
corresponding to a given position and discard all previous records for that location.  

At this point an initially unjustified assumption is made that this is indeed the case- that the cartographic 
system eventually constructed will be able to keep track of its position by using landmarks. Given that, we 
can discard as out-of-date any entries in the archive that are marked at the same position estimate as the 
current position when we add a new record. This step will be justified in Section 4, where it is shown that 
the representation scheme which the assumption made here leads to will in fact allow the robot to keep 
track of its position by the use of landmarks. 
Another change to the archiving strategy needs to be made before it becomes practical. Obviously records 
of sensor state versus robot position cannot be made for every continuous point along the robot’s path, as 
this would still demand unlimited storage space. Instead, it is acceptable to record “samples” at positions 
with a certain minimum distance between them- so the robot has information about representative points in 
every area it has been. The minimum distance between records is chosen based on how much memory is 

                                                 
3 Of course, trying to make use of this huge archive of data sensibly would be another matter entirely. 
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available to store the samples- the smaller the distance, the more samples in a given area and the more 
memory that will be required. 

At this point, the “record of experiences” has been re-cast in a form that is actually practical to implement. 
The records of sensor state versus nominal position are called “markers” in this paper. The following 
example clarifies the proposed nature of the “marker”-based representation scheme. 

By using markers, the robot can deduce what its sensors were reading the last time it was in a particular 
position. But it is not as easy to work the other way, and use markers to estimate the robot’s position from 
its current sensor readings. This is because there may be many markers with the same set of sensor 
readings associated with them, and the robot will not be able to distinguish them. The robot’s sensors are 
not rich enough to record its environment at a level of detail that would make this distinction possible- for 
example, all the markers that are away from boundaries look the exact same to the robot: zero proximity 
readings on all sides. This is why it is important to try to isolate special “landmark” features in the 
environment that the robot can distinguish from other areas and use to keep track of its position. Although 
most markers of themselves cannot be used as landmarks, there are some markers- or groups of markers- 
that can. 

 

Replaced marker

Path of Robot

Older marker

Recent marker

 

Figure 5-1: A map as a collection of markers 

The robot’s “map” in this form of representation is simply a collection of markers. Since the collection is 
potentially large, it is important that it be structured in a way that lets the robot extract the information it 
needs from the map in a timely fashion, without having to do any computationally expensive searching. This 
can be achieved by arranging markers into a hierarchy of “neighbourhoods”- structures for filtering groups 
of markers by their distance from the robot so that it can find out about its locality in a timely fashion 
without searching the entire archive. Each neighbourhood has an associated nominal distance range with it. 
The robot attempts to keep markers whose positions are within that distance range from the current robot 
position in the appropriate neighbourhood. The distance range associated with a neighbourhood is called 
nominal because in general the distance of some markers in a neighbourhood from the robot’s current 
position will in fact lie outside the neighbourhood’s specified distance range. This happens when a 
movement of a robot changes the distance from the robot to a marker sufficiently to make it inappropriate 



The autonomous construction of maps by miniature robots Page 6 

6 

for the neighbourhood it is in. The marker will be re-classified into the correct neighbourhood the next time 
it is examined by the sorting process. 

NearNear
NeighbourhoodNeighbourhood

DistantDistant
NeighbourhoodNeighbourhood

ImmediateImmediate
NeighbourhoodNeighbourhood

LocalLocal
NeighbourhoodNeighbourhood

Markers

Current position
of robot

 

Figure 5-2: Distance ranges associated with neighbourhoods 

6. Straight edge landmarks 
The effect of a drift in the robot’s position estimate is shown in Figure 6-1. The robot is shown following 
the same edge segment twice. As the robot follows the edge for the first time, it lays markers in a straight 
line at regular intervals along it. When the robot returns to the edge at a later stage, any drift in the robot’s 
position estimate will cause the markers it lays this time around not to be collinear with the ones laid 
originally4. This effect can be measured and used to correct the robot’s estimates of its position.  

                                                 
4 Unless the drift happened to take place along the direction of the edge itself. This possibility will be discussed soon. 
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Figure 6-1: mumble mumble straighty 

 

7. Corner landmarks 
Consider the situation where the robot is following an idealised boundary as shown in Figure 7-1. The 
boundary is straight initially, then turns, then continues straight again in another direction. The robot’s 
movement will reflect the shape of the boundary. By monitoring its motion, the robot can detect corners 
such as the one in the boundary shown here, and use them as landmarks. This section discusses how this 
can be accomplished. 

Robot moves in constant
direction along edge before
corner, facing angle θ1

Robot moves in
constant direction
along edge after
corner, facing angle θ2

Robot changes
direction rapidly
at corner

 

Figure 7-1: Robot moving around a concave corner  

It is possible to estimate how sharply an edge is turning simply by measuring how quickly the direction of 
the robot is changing as it follows that edge. Therefore there is no difficulty in detecting and characterising 
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curves in the boundary. The problem is making use of that information. There is no special point along a 
curve that the robot can distinguish from all others and use as a landmark. However, the sharper a curve is, 
the less distance it can extend. A gentle curve can extend a great distance, but a sharp curve must end 
quickly or the boundary will turn back in on itself. If a curve is sharp enough, then the distance it extends 
will appear as a point to the robot. More specifically, if the distance a curve extends is close to the 
granularity at which the robot is mapping its environment, then that curve can be used to isolate a point in 
the environment that can be treated as a landmark. 
For the robot used in this project, a “corner” was considered to be any curve that made the robot turn 30° 
or more in one second of motion. Such a curve appeared as a well-defined point. Note that concave 
corners are useful, convex ones are not. The reason is that the distance the robot has to travel to turn a 
convex corner cannot decrease lower than a fixed limit caused by the shape of the robot itself- see Figure 
7-2. 

Very sharp convex turn-
but robot cannot turn an arc with a
radius less than the robot itself

In concave corner, robot turns more
sharply than the curve itself

 

Figure 7-2: Concave versus convex turns 

Once a corner has been recognised, it can be used to correct the robot’s position estimate. Any difference 
between the position at which the robot turns the corner and the position of the marker laid at the corner by 
the robot the last time it turned it may be due to a change in the environment or to a drift in the robot’s 
position estimate. It was decided to give the current and previous corner position equal weighting in 
calculating the corrected position of the robot, but any conservative ratio produced satisfactory results. 

Note that corner landmarks cannot be used directly to correct the direction estimate. The directions of the 
robot before and after the corner are not known accurately enough for this. However, pairs of corners can 
be used indirectly to correct the direction estimate. Consider the situation shown in Figure 7-3. Here the 
robot has passed two corners. At the first corner it met, it found a discrepancy between its current position 
estimate (b1) and the position at which the corner had been detected the last time the robot passed it (a1). 
It used this discrepancy to compute a corrected position, c1, that was simply the average of a1 and b1. At 
the next marker, it repeated the same process. However it can then be observed that when the robot 
passed these corners last, they were in the positions a1 and a2, but this time round they have appeared to 
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be in locations c1 and b2
5. This indicates a direction drift of ∆θ as shown, which can be applied as a 

correction (weighted conservatively, as always). 
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Figure 7-3: Sequential corner landmarks 

The discussion of the use of landmarks is now complete. The two types of landmarks developed were 
found in experiments to work well, and they demonstrate that the marker representation scheme is in fact 
workable by showing that the robot can keep its position and direction estimates consistent relative to its 
environment. See Chapter 8 for experimental results that illustrate the operation of the landmark system in 
practice. 

The use of landmarks concludes the examination of how the robot’s map is built and maintained. The 
following sections look at how the map can actually be accessed by behaviours that need to use it. 

 

8. Interacting with the map 
The chapter so far has concentrated on the issue of building and maintaining a consistent map of the robot’s 
environment. Equally important as building the map is how to go about actually making use of it. This 
section discusses how the cartographic system can provide useful services to modules that wish to interact 
with the map. 

8.1 Virtual Sensors 
Often modules do not need detailed qualitative information from the map, just answers to simple 
quantitative questions like “how familiar does the current location of the robot seem?” or “how confident is 
the robot of its position estimate?”. These statistics can be provided in the form of “virtual sensors” that 
appear to behaviours just like physical sensors, but are internally generated. Some useful virtual sensors 
that can be provided are as follows:- 

• Familiarity- this sensor indicates whether the robot is currently in a region that the cartographic system 
recognises, and if so how long has it been since it has last there. This gives the robot a sense for how 

                                                 
5  b2 is used in the calculation rather than c2 because the position correction applied at the second corner actually obscures the 

direction drift by compensating for some of the position drift it caused as the robot moved from c1 to b2. Remember that as the 
robot moves, any error in its direction estimate is reflected as a growing position drift. To compute the error in the direction 
estimate, all the position drift should be taken into account. 
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recently it has passed through a particular area, or if the area is totally unknown to it. Familiarity is 
generated very simply from a comparison of the current time with the timestamp of the nearest marker 
to the robot which has not been laid recently, if one is present. This sensor results in a simple number, 
yet cannot be supported without the full effort of the cartographic system. 

• Confusion- this sensor measures how uncertain the cartographic system is about the accuracy of its 
best guess at the robot’s position. This uncertainty grows with the length of time the robot is moving 
after it has last managed to get a fix on its position from a landmark. This gives the robot a sense of how 
long it has been in motion without getting some fix on its location. Confusion is zeroed when the robot 
meets a corner landmark, or when two edge landmarks are passed with edges that are at an angle of at 
least 45° to each other (see Section 5, page 3). 

 

8.2 Goal Seeking 
It is also useful to have a service that uses the map as a resource to plan an efficient route to a given target 
location. This is a particularly difficult situation in which to avoid shared representation between the service 
and the user. First there is the problem of how to set the target without requiring the behaviour using the 
service to have access to the map. This is achieved by using the Tagging Service described above. A 
limitation of this is that targets may only be places the robot has passed through at some point in its history- 
but this is reasonable since the map would be of no use for planning routes to areas in which the robot has 
never been6. Another problem is how to communicate the route this service generates back to the 
behaviour that uses it without a shared representation of locations and paths. The solution adopted was to 
implement a virtual “scent” sensor. This sensor was generated in such a way that the robot could reach the 
target simply by moving in directions of increasing “scent”, and moving away from directions in which the 
scent’s intensity decreased. This is a simple reactive strategy, with no shared representation with the 
cartographic system needed. The “scent” sensor represents the gradient of the cartographic system’s 
estimate of some cost function from the robot’s current location to the target, but none of the complexity of 
calculating that function is visible to the user. This idea works out to be something quite similar to the 
“Internalised Plans” technique discussed in [HIT make coherent]. The details of how planning is achieved 
within the marker map representation scheme are now examined. 
Markers are stored in a system of neighbourhoods designed to efficiently filter out which markers are close 
to the current position of the robot, since these are the most relevant to it for most purposes. However, in 
planning routes to arbitrary targets, information about markers distant from the robot’s current position is 
needed. Specifically, it is important to be able to determine which markers can be reached from each other, 
and how great a distance the robot has to travel to do so. The use of neighbourhoods only allows the robot 
to determine which markers are close to the current position of the robot, and it cannot be used to 
determine which markers are close to some other arbitrary marker. 
To solve this problem, extra “connectivity” data is added to markers. As the robot moves, the 
neighbourhood system determines which markers are close to its current position. When the robot lays a 
marker and moves away from it, that information about adjacent markers can be captured and stored in the 
marker as connectivity data. It is then possible for planning to be done at a later stage, using these “frozen 
images” of the information calculated by the neighbourhood system. Figure 8-1 shows an example of a 
collection of markers with connectivity information overlaid that would be suitable for planning routes with.  

                                                 
6 This is true for autonomous robots, which are entirely responsible for generating their own map of the environment and hence 

cannot know anything about places they have never been. It would not apply if the robot had a built-in map of some form. 
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Figure 8-1: Storing connectivity data with markers 

The diagram draws attention to the fact that the robot cannot assume that, just because two markers are 
close to each other, it is possible to move from one to the other- they could be on opposite sides of a wall, 
for example, as is the case with markers A and B in the diagram. Care must be taken to detect such 
conditions. Connectivity links should only lead from one marker to other nearby markers which the robot 
can move to without hitting an obstruction- otherwise they will be misleading and useless for planning 
routes with. Hence two markers being close to each other is a necessary condition for them to be 
considered connected, but it is not sufficient.  

One sufficient reason for considering two markers to be connected is if they are laid one after the other by 
the robot. Such markers represent successive points along the path of the robot, so it is reasonable to 
assume that they can be reached from each other since the robot has actually just done so. 

From the connectivity information this gives, the robot can deduce further appropriate connections to 
make. Two markers that are close to each other but were laid at different times can be deduced as being 
connected if markers close to one of them are connected to markers close to the other. .... Since the 
marker being laid and the marker being replaced represent the same physical area, connectivity data from 
the replaced marker can be transferred over to the new one (with some caution, as will be discussed in a 
moment).  

Connectivity information is different to other data about the environment stored in markers because, by its 
very nature, it cannot be derived from purely local considerations. In contrast, information about whether 
an area is beside a boundary, for example, can be constructed entirely from immediate sensor data. It 
makes sense for the robot to always discard such data when it is replacing markers, and derive it anew for 
the current state of the environment. The robot should trust its sensors over any derived source of 
information it has, so the map should be overwritten with actual sensor data whenever possible. However, 
when working with connectivity data, information is lost if the old markers are simply discarded because 
connectivity information cannot be reconstructed completely from immediate sensor data. If the new 
marker being laid at C had replaced the older marker without copying its connectivity data, the robot 
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would no longer know that the area the markers represent is connected to D. Therefore, connectivity data 
should be transferred across to new markers from the markers they replace. 

If the links are simply copied to the new markers, the system works reasonably well for a while. However 
the markers the robot lays are not constrained to be in the exact same location as the markers they 
replace- and in general they will not be. Hence as the robot moves back and forth across the same area, 
and the links are copied between successive replacements to the original marker, it is quite possible that the 
position of the marker holding the links may have drifting quite a distance from the position of the original 
marker. The links will then give a totally inaccurate picture of the reality.  

To step around this problem every marker is given a “Reachable” timestamp. When the robot passes close 
enough to a marker to be confident that there is no boundary between the robot’s current position and the 
marker, this timestamp is set to the current time. This it taken to indicate that this marker was reachable by 
the robot at the given time. The timestamp is actively spread to any markers that are linked to it (with some 
time subtracted to represent roughly how long it would take to get to that marker). This is taken to indicate 
that those markers could have been reached at the calculated time if the robot had chosen to do so. These 
timestamps continue to spread from marker to marker. Then, when the robot replaces markers, 
connectivity can be reconstructed by comparing “Reachability” times with other markers in the locality. If 
two markers are close in position and both could have been reached within a short time from the robot’s 
current position (as indicated by them having reachability timestamps close to the current time), then those 
two markers can be considered reachable from each other and have their connectivity links updated 
appropriately. This is robust, and not subject to marker drift as simply copying connectivity data would be. 

Immediate
neighbourhood

Near neighbourhood Reachability is only
spread in “near”
and “immediate”
neighbourhoods.

Neighbourhoods
and marker density
are not drawn to
scale

Least reachable

Most reachable

Direction of spread

 

Figure 8-2: The use of reachability 

To limit the computational burden on the robot, reachability is only spread within the immediate and near 
neighbourhood of the robot. Any markers outside of these neighbourhoods are not reachable from the 
robot’s current position within a short time, so it is reasonable to eliminate them from consideration 
anyway. 
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There is one special case that needs to be catered for to ensure the correct operation of the reachability 
system. It is possible that reachability could spread to a small extent around a narrow wall. 

However, it is simple to introduce a heuristic to stop connectivity creeping around a wall, by simply 
disallowing links to be made between close markers that are both on a boundary, with the boundaries 
facing in opposite directions away from each other- i.e. on opposite sides of a narrow wall. 

There is one final practical consideration that is useful for storing connectivity information efficiently. It has 
been shown that if the robot is aware that two markers are linked, it may deduce that other markers are 
reachable from each other by spreading reachability. Hence not every link between markers needs be 
stored, only a sufficient number to allow reachability spreading to deduce the rest. Due to the memory 
limitations of the robot this work was implemented on, the number of links from each marker was limited to 
four. By applying criteria that favoured storing links to markers lying in different directions over links to 
markers clustered in the same direction, four links were found to be more than adequate for correct 
functioning of the reachability system- i.e. by spreading reachability, the robot successfully avoided losing 
connectivity information when it replaced old markers with fresh ones. The first diagram in this section, 
Figure 8-1 on page 11, in fact showed connectivity data constructed with a maximum of four links from 
each marker. 

Given that connectivity links are being maintained, goal seeking is straightforward to achieve by any 
standard search technique. One simple way it can be done is to assign a “hop count” to every marker to 
represent how many other markers the robot would need to pass through when going from that marker to 
the target. Obviously the hop count of the target is zero. Any markers linked to the target will take on a hop 
count of one, and markers linked to them in turn will take a hop count of two, etc. In general, a marker M 
determines its hop count by finding which of its links leads to the marker with the lowest hop count. It 
should assign itself a hop count of one greater than that, and tag the link as shown in Figure 8-3. 
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Figure 8-3: Goal Spreading in action 

Once this process “spreads” out to markers in the vicinity of the robot, it can simply follow all the tagged 
links to the target. This is called “Goal Spreading”. It can be improved by using cumulative distances 
between markers on the route to the goal instead of simple hop counts, or a combination of both (as was 
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used for the robot this work was implemented on). The computation required for Goal Spreading is 
extensive and takes time, although the work done for each marker is quite simple. The calculations should 
be performed as a background task so that they do not affect the real-time performance of the robot. 
There is one final improvement that can be made to Goal Seeking. If multiple goals were set for the robot, 
everything described so far would still work- Goal Spreading would simply spread paths out from each 
goal, and whichever reached the robot first would be the one it would move towards. This is suitable for a 
situation where a number of goals are equally acceptable to the robot. It is simple to extend Goal Seeking 
so that it can also handle cases where some goals are more desirable than others. This is done by 
associating a “desirability” factor with the goals when they are set, and spreading that factor to markers that 
point along routes to that goal. In other words, when a marker scans the markers it is linked to for the one 
with the lowest hop-count/cost to a goal, it should only consider those with the highest “desirability” 
present, and then accept that desirability level for itself. Hence as paths to more desirable goals propagate, 
they can “take over” markers that were leading to less desirable goals- even if those goals were closer. 

The results of goal spreading are made available through the “scent” virtual sensor, which simply gives a 
vector corresponding to the direction of the tagged link of the marker nearest the robot’s position, if goal 
spreading has reached that link. The image is of a scent released at the goal spreading outwards until the 
robot picks it up and follows it to its source. This involves no shared representation between the service 
and its user. Another advantage of the use of this sensor rather than returning an explicit optimal path is that 
if the robot wanders off course, the path does not have to be recalculated. 

 
 

9. Location seeking example 
It is convenient to control the robot’s motion by feeding a target to a “location seeking” module, and giving 
that module responsibility for doing everything necessary to get as close as possible to the goal- navigating 
around obstacles, backtracking out of dead-ends, etc. This section describes one strategy such a module 
can use, assuming the existence of the cartographic system described in this paper. 
Initially, the robot tries to move directly towards its target. If it strikes a boundary, it will start following that 
boundary in whichever direction seems “best”- whichever direction seems to require the least deviation 
from the robot’s current path, at least in that locality (since that is the only area it can sense or evaluate 
from the map). It will continue to follow the boundary until conditions become suitable for it to resume its 
path towards the target. This will occur if the boundary turns sufficiently to no longer be an obstruction. 
With this simple strategy, the robot is able to negotiate many obstacles. However, it may lead to cyclic 
behaviour for obstacles with certain shapes, such as the one in Figure 9-1. 
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Figure 9-1: Obstacle makes robot loop back on its path 

A loop can occur if the robot meets an obstacle, follows its boundary until it again becomes possible to 
move in the target direction, and then runs into the same obstacle, hence entering a cycle. One simple 
solution to this, using the “familiarity” virtual sensor generated by the cartographic system (see Section 8.1, 
page 9), is to make the robot alternate in the direction it chooses to move in after it hits a boundary at a 
familiar location7. 

Familiar location- tries
following boundary in
opposite direction  

Figure 9-2: Robot uses familiarity to avoid cyclic behaviour 

This simple improvement is enough to allow the robot to navigate most common boundaries. Looping can 
still occur, however, in situations like the one shown in Figure 9-3, where the obstacle resembles a “cave”.  

                                                 
7 That is, any location whose familiarity indicates that it was visited after the robot started seeking its current target. 
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Figure 9-3: Behaviour cycle in “cave”-shaped obstacle 

Here, because the boundary-following strategy turns the robot back on its path twice, it again enters a 
loop. Cases like this can be handled using the familiarity sensor in a more general way than described 
above. The robot should take an opportunity to return to moving in the direction of its target only if it is 
following a boundary in unfamiliar territory. Then, if the robot is following a boundary in familiar 
territory- territory that it has moved through before while seeking the current target- it “knows” that it 
should not return to moving in the direction of its target even if it seems desirable to, since this is what it 
would have done last time it was there. Instead it should wait until it reaches unfamiliar territory again, and 
then turn whenever appropriate. This results in an expanding search that can get the robot out of awkward 
situations like the “cave” obstacle, as shown in Figure 9-4. 

Familiarity
expands until
escape is possible

 

Figure 9-4: Robot escapes from cave-shaped obstacle 

It is easy to see that this approach should never result in looping behaviour. If the robot makes a decision 
to turn at a particular location, and that decision results in it looping back to that same location, the next 
time around that area will be familiar to it so it will not turn there again. 

The robot can “hedge its bets” by using the Goal Seeking service of the cartographic system in the 
background to search for a route to the target (see Section 8.2, page 10). This searching process is slow, 
but if the robot is delayed backing out of dead-ends as it tries to get to the target the search will have time 
to succeed, and the robot can then switch to simply following the “scent” virtual sensor to the goal. It can 
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always revert back to using location seeking if the path found by goal seeking proves to be inaccurate due 
to changes in the environment. 

Inspiration-
background
search succeeds

 

Figure 9-5: Use of background search 

Goal seeking is only suitable for use as a safeguard, not as the robot’s main strategy for finding a route to 
the target. Lower-end robots have insufficient processing power to implement such a search in anything 
approaching real-time, so they would have to “sit and think” before moving at all8. Also, since planning 
based on a map constrains the robot to moving through regions it has already explored and mapped, 
opportunities may be missed that the “physical search” approach could have taken advantage of.  

10. Sample results 
This section presents some results from the use of the robot implementing the cartographic system 
described in this chapter. 

10.1 Use of landmarks 

10.1.1 Ablation study 
In this test case, the utility of the use of landmarks is demonstrated by removing them. 

 

                                                 
8 For the robot this work was implemented on, a feature was added so that the search could be speeded up a hundredfold by an 

external request from the user, with significant degradation of the real-time performance of the robot (it grinds to a halt for a few 
moments). 
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Test case Standard maze, edge following 

Feature demonstrated Robot performance without use of landmarks 

 

A

 

Figure 10-1: Position drift 

 

 

In the diagram opposite a trace of the 
robot’s best-guess of its position over time is 
shown while edge-following a closed 
boundary. Note that when it reaches its 
starting point around A, error has 
accumulated in its position sense and it is 
starting to deviate significantly from the 
robot’s true position.  

 

 

Figure 10-2: Aliasing of topological features 

 

 
The error in the robot’s best-guess at its 
position continues to accumulate. Here the 
robot is circling the boundary for the third 
time. Topological features have started to 
overlap, and the robot’s map is useless- 
worse than useless, misleading. 

 

 

Figure 10-3: Recovery when landmarks reintroduced 

 

 
The robot was left to continue circling for a 
while, and then the use of landmarks was 
turned back on. The trace shows that the 
robot eventually started to develop a 
consistent map of the boundary it was 
tracing. This is seen where a cluster of lines 
make a seemingly thicker line, showing that 
the robot started to trace the boundary in a 
consistent manner. 
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11. Summary 
In this chapter, a complete cartographic system has been developed that is capable of constructing and 
maintaining a map of the robot’s environment in real-time, and with the use of short-range proximity 
sensors only. The representation scheme used was based on units called “markers”. The map consisted of 
a collection of these markers- records of the robot’s experiences at particular locations- rather than being 
an explicit model of its environment. Strategies for maintaining this collection of markers in a state that 
reflected the condition of the environment were discussed in detail. Then the issue of landmark recognition 
was addressed, showing that the robot could maintain an estimate of its position that remained consistent 
relative to its environment over time. This is the ultimate test of a cartographic system. Examples of services 
the map could provide were presented that allowed the map to be used without requiring any knowledge of 
how it is represented. An example of robot behaviour using the map to escape from behaviour cycles, back 
out of dead-ends, plan routes to targets, was shown. Finally, results were given.  
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