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Abstract

In active vision applications, there can be a con-
flicting need for both high acuity and a wide field
of view. One possible trade-off in such cases is
to provide high acuity in a small central area,
and to use lower resolution information in a wider
field of view to control where that central area is
placed. This arrangement is akin to the foveated
retina of the human eye. For binocular vision
under these circumstances, it is important that
both cameras center the same object. In humans,
this is achieved by vergence eye movements. One
simple, fast method for implementing vergence is
to use correlation of a log-polar sampling of the
images from the cameras. I will examine a ver-
gence algorithm based on log-polar sampling, and
present an analysis and implementation of a mod-
ified version of this algorithm.

1 Introduction

Visual tasks in robotics, particularly humanoid robotics,
can have a conflicting requirement for high acuity and a
wide field of view. High acuity is needed for recognition
tasks and for controlling precise visually-guided motor
movements. A wide field of view is needed for search
tasks, for tracking fast or multiple objects, compensat-
ing for involuntary ego-motion, etc. A common trade-off
is to sample part of the visual field at a high enough res-
olution to support the first set of tasks, and to sample
the rest of the field at an adequate level to support the
second set. This is the same trade-off used in animals
with foveate vision, such as humans, where the density
of (color) photoreceptors is highest at the center and falls
off dramatically towards the periphery. It can be imple-
mented by using multiple cameras with different fields of
view [16], or specially designed hardware [15].

For a binocular vision system, it is useful to have some
way to ensure that both cameras foveate, or center, the
same object. This is called vergence in human vision,
and is the only eye movement where the eyes are moved
towards and away from each other rather than moving
in lock-step. Humans use many cues for performing ver-
gence, including motion and shading, but the main cue
is disparity. This is the also the main cue that machine
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Figure 1: This figure shows a simplified decomposition
of eye movements in humans. Vergence movements al-
low the eyes to center objects at varying depths in the
highest resolution area of the retina. Smooth pursuit
tracks objects across the visual field, and interacts with
vergence. Saccades move the eyes rapidly to a new part
of the visual field.

vision implementations use for applications in uncon-
strained environments. Computing disparity involves es-
tablishing a correspondence between the images from the
two cameras, which is a problem that has been studied
extensively in stereo vision. The main barrier to bringing
all this work to bear on vergence is the severe restrictions
on the amount of computation that can be performed,
since the vergence algorithm must be fast enough to con-
trol the cameras in real-time. For contemporary hard-
ware, this generally restricts vergence algorithms to sim-
ple, limited, techniques such as correlation of patches of
the images, or correlation in the frequency domain. An
example of the latter is the cepstral filter [8], a type of
filter originally developed to analyze signals containing
echoes.

Another way to improve correlation performance with-
out moving to the frequency domain is to work with the
log-polar transformation of the image. The log-polar
transform gives a space-variant sampling of the image
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that is most dense around the center and least dense
towards the periphery, so that the center of the image
is represented with a higher resolution than the rest of
the image. Correlation of such images with each other
amounts to little more than a weighted correlation of
the original untransformed images, but it nevertheless
gives surprisingly good results, and is faster than current
methods that operate in the frequency domain. The na-
ture of the log-polar transform is described in Section 3,
and details of an implementation of vergence using the
transform by Santos-Victor and Bernardino [4] are given
in Section 4. The algorithm is analyzed in Section 5. I
implemented a variant of their algorithm on an active
vision head, the details of which are given in Section 7,
with results in Section 8.

The active vision head I worked with was from the
Cog humanoid robot project at the MIT AI Lab [16].
The head is binocular, with each ‘eye’ having both a
wide angle camera and a ‘foveal’ camera with a narrow
field of view. An object can therefore be imaged with
greatest detail when information from the wide field of
view cameras is used to bring the object into the field of
view of the foveal cameras. Relevant details of the head
are given in Section 7.1, when I describe the details of
my implementation.            

Figure 2: The active vision head

2 Approaches to vergence

Vergence seems a simpler problem than general stereo,
since it is only necessary to identify a single point of
correspondence between the camera images. Unfortu-
nately, this is not an easy task, and typical methods for
establishing correspondences rely on the optimization of
a global error measure for robustness. In other words,
to establish a single correspondence reliably it is nec-
essary to solve the total stereo vision problem, which

is computationally expensive. Since vergence has to be
done in real-time, there are severe practical limits on the
computation that can be devoted to identifying the cor-
respondence.

In constrained environments, vergence can be quite
easy to implement – for example, when there is a high
contrast between the object and the background, or when
the object is moving and is the only part of the environ-
ment doing so, or when the object is a light bulb [19].
But for arbitrary stationary objects in a cluttered envi-
ronment, the correspondence problem is much harder.

It is possible to make the correspondence problem con-
siderably easier by simply changing the hardware. For
example, the correspondence problem becomes increas-
ingly straightforward as the distance between the cam-
eras is reduced, since the images will differ less through
occlusions, foreshortening and shading effects. However,
the most accurate depth measurements can be deduced
from correspondences when the cameras are far apart.
So the cameras could simply be moved very close to-
gether, making correspondences simple to establish, and
then moved apart at a rate that allows the correspon-
dences to be updated iteratively, with the search at each
iteration being highly constrained by the results of the
previous iteration. This is the approach used by FOVEA
[12], a foveated vergent active stereo vision system using
an expanding baseline. While the goal of that work was
to create dense depth maps, the hardware base would
make vergence an easier task. This is not an option for
the Cog project because of a commitment to human-
like vision, for reasons that will be discussed in Section
9. Other engineering approaches include using multiple
(>2) cameras with multiple baselines (for example, [11]),
or illuminating the scene with carefully engineered light
patterns (for example, [13]).

If the hardware is taken as a given, then the prob-
lem becomes finding a method for establishing corre-
spondences that is a good balance between accuracy and
speed. The simplest way to search for correspondences
is to correlate a small patch of the image from one of the
cameras with small patches of the image from the other
camera, within some area or along an epipole. This is
very straightforward to implement, although it has well
known failings, such as coping poorly with differences in
foreshortening effects [10]. Vergence modules along these
lines have been implemented on the Cog active vision
head by a number of people including Yamato [21]. As
a baseline for comparison, I implemented such a system
too, and found it to be very unreliable. The next step
generally taken after this approach is abandoned is to
switch to doing correlation in the frequency domain [8].
This requires using the FFT, which takes considerably
more computation then correlation on the raw image. A
less computationally intensive alternative that has arisen
from considerations of primate vision makes use of a log-
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Figure 3: Photoreceptor density across the retina. Visual
acuity is greatest within a region of about 0.3◦, and then
falls off very rapidly. (Taken from [9])

polar sampling of the image, the nature of which will
now be described.

3 The log-polar transform

In the retina, the density of photoreceptors grows rapidly
towards the center of the visual field (the fovea). This
effect can be approximated using a log-polar transfor-
mation. This maps the image on to a polar coordinate
system where the distance coordinate is logarithmic:

(x, y) =⇒ (ρ, θ)
ρ = logb r

= logb
√
x2 + y2

θ = tan−1 y

x

The parameter b controls how quickly the density falls
off with distance from the center. Clearly, there is a
singularity at the center of the coordinate system. This is
often handled by introducing another parameter ρmin to
control the minimum ρ value that will be used. Another
choice would be to use ρ = logb(r + a) where a is some
constant to avoid the singularity when r = 0. This is
the choice used in models of the actual retinal density
[5], and for this application it has the advantage of not
cutting out information from the one part of the image
you care most about.

Figure 4 shows a regular grid in (ρ, θ) space mapped
onto an image in Cartesian space. Notice how the grid
size decreases towards the center, showing that the cen-
tral part of the image is sampled at the highest resolu-
tion. Figure 5 shows an example of a transformed image.

The log-polar transform has some properties that
make it potentially useful for vision. One property that
stimulated early interest is that scaling and rotation

            

Figure 4: Log-polar image sampling. The grid size
increases exponentially with distance from the center.
There is a singularity at the center where the grid size
goes to zero, so the grid must be truncated at some min-
imum radius.
                        

Figure 5: An example of a transformed image. The im-
age has been shifted in θ to facilitate comparison with
the original. The figure on the left shows the original
image, in the (x, y) coordinate system. The figure on
the right shows the transformed version of this image in
the (ρ, θ) coordinate system. The grid size is, of course,
much finer than shown in Figure 4. Notice, for example,
that the ears become smaller than the eyes, since they
are further from the center of the original image.

of the image correspond to simple translation in (ρ, θ)
coordinates. Of course, the down side of this is that
translation of the image in Cartesian coordinates corre-
sponds to a complicated warping in (ρ, θ) coordinates.
But foveation centers an object in a stereotyped way,
so in theory at least this could provide a basis for scale
and rotation invariant object recognition. Another rea-
son for interest in log-polar sampling is that it can give
a dramatic reduction in image size, and hence increase
the speed of processing the image. This applies only to
tasks for which the center of the image is all-important
and the periphery is less so.
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4 Using the transform

Here I give details of how the log-polar transformation
has been used to implement vergence. The particular
algorithm I describe is due to Bernardino and Santos-
Victor [2, 4].

First, the log-polar transform is applied to the images
from the two cameras. This reduces the size of the image
significantly (a factor of eight for Bernardino and Santos-
Victor), since the periphery is sampled at a much reduced
resolution. Then a correlation measure is applied to the
two transformed images, over their full area. As the cam-
eras move, the sign of the change in the correlation mea-
sure is used to control whether the cameras should stay
moving in the same direction, or switch directions. The
speed at which the cameras should move is determined
from the magnitude of the correlation measure.

The computation required for this scheme is very min-
imal, so vergence can be extremely rapid. Unfortunately
the cameras can get captured at locations that corre-
spond to local maxima of the correlation function, and
the speed of convergence is strongly dependent on fairly
arbitrary properties of the scene.

Bernardino and Santos-Victor also describe a more ro-
bust vergence strategy called “preprogrammed vergence
control”, modeled after a theory of vergence in humans.
Here they directly estimate the disparity, at the price of
more computation. The disparity estimate is made by
performing the correlation for various assumed dispari-
ties between the images, and finding the correlation peak.
This makes the system less susceptible to local minima
of the correlation measure. Performing the correlations
requires a complicated warping of the images to reflect
translation in Cartesian space, maps for which are cal-
culated off-line. The disparities tested for are sampled
with highest density around zero and decreasing density
for larger disparities.

The correlation measure used by Santos-Victor and
Bernardino in [2] is:

∑
ρ,θ (Il(ρ, θ)− µ(Il))(Ir(ρ, θ) − µ(Ir))√∑

ρ,θ (Il(ρ, θ)− µ(Il))2
∑
ρ,θ (Ir(ρ, θ) − µ(Ir))2

This first subtracts the mean value from the images,
and then treats them as vectors and calculates the co-
sine of the angle between them, using this as a measure of
similarity. Since the measure is invariant to bias and scal-
ing applied to the images, there is less need to carefully
calibrate the cameras or monitor changes in illumination
conditions.

If Il and Ir are treated as random variables, of which
the images represent N ×N pairs of samples, then this
measure is exactly the correlation coefficient of the two

variables.

c =
σ(IlIr)

σ(Il)σ(Ir)

where

σ(IlIr) = E [(Il − µ(Il))(Ir − µ(Ir))]

σ2
(Il)

= E [(Il − µ(Il))
2]

σ2
(Ir) = E [(Ir − µ(Ir))2]

with E(x) being the expected value of the random vari-
able x, empirically estimated by the mean.

This correlation is carried out on the image after it has
been transformed into its log-polar equivalent, so it is
weighted towards measuring the statistics of the center.
It is of course possible to fold the transformation into
the correlation measure, and simply apply the combined
measure to the untransformed images. I give the relevant
analysis in the next section, since it clarifies the nature
of the correlation.

5 Analysis

Santos-Victor and Bernardino in [2] compare the prop-
erties of a particular similarity measure in Cartesian co-
ordinates and log-polar coordinates when the disparity
is low. For some reason, presumably simplicity, the sim-
ilarity measure is not the one they actually use in their
algorithm. I give here an analysis for the correlation
metric used in the paper, and show what the metric is
expressed in terms of the original Cartesian image.

Consider the contininuous analog of the correlation
measure given earlier:

c =

∫∫
(Il − µ(Il))(Ir − µ(Ir))dρdθ√∫∫

(Il − µ(Il))2dρdθ
∫∫

(Ir − µ(Ir))2dρdθ

Writing (x, y) in terms of (ρ, θ) gives:

x = bρ cos θ
y = bρ sin θ

The transformation between the coordinate systems is
then:

dA = dxdy =

∣∣∣∣∣ ∂x
∂ρ

∂x
∂θ

∂y
∂ρ

∂y
∂θ

∣∣∣∣∣ dρdθ
where the determinant of the Jacobian is:∣∣∣∣∣ ∂x

∂ρ
∂x
∂θ

∂y
∂ρ

∂y
∂θ

∣∣∣∣∣ =
∣∣∣∣ bρ cos θ log b −bρ sin θ
bρ sin θ log b bρ cos θ

∣∣∣∣
= b2ρ log b = r2 log b

Where r =
√
x2 + y2 as usual. So the correlation

measure can be rewritten as:

c =

∫∫ Il−µ(Il)

r

Ir−µ(Ir)

r dxdy√∫∫
(
Il−µ(Il)

r )2dxdy
∫∫

( Ir−µ(Ir)

r )2dxdy

4



Ignoring the subtraction of averages, this is just the
correlation of the images after they have been indi-
vidually weighted by a factor inversely proportional to
the distance from the center. Bernardino makes an
equivalent point for another similarity measure (a Eu-
clidean distance metric). I think it is important to stress
that this does not imply that the overall correlation is
weighted by 1

r . That would be a rather weak weighting,
since the total weight along lines of equal distance from
the center would remain constant. This is undesirable
because there is more area in the periphery of the image
than in the center, so if the weighting doesn’t fall fast
enough the total weight of the periphery can be higher
than that of the center. The actual nature of the weight-
ing is clarified by expanding the above out fully as:

RR IlIr

r2
dxdy

RR 1
r2
dxdy

−
RR Il

r2
dxdy

RR 1
r2
dxdy

RR Ir
r2
dxdy

RR 1
r2
dxdy√√√√[ RR I2

l
r2
dxdy

RR 1
r2
dxdy

− (
RR Il

r2
dxdy

RR 1
r2
dxdy

)2

][
RR I2r

r2
dxdy

RR 1
r2
dxdy

− (
RR Ir

r2
dxdy

RR 1
r2
dxdy

)2

]
This is exactly the formula for correlation in Carte-

sian space, but with an extra weighting of 1
r2 appearing

everywhere.
Everything in the above equation is straightforward to

calculate without making the log-polar transformation.
Notice that the b parameter of the transformation does
not appear. The minimum radius parameter ρmin trans-
lates to leaving a ‘hole’ in the middle of the area over
which the integral is performed.

Clearly, this integral could have been derived by a di-
rect attempt to weight the correlation measure. It is
interesting to now work backwards, and see what trans-
formations different weightings would correspond to.

Consider a radially symmetric weight w(r), which for
the above case was 1

r2 . We want to find a coordinate sys-
tem (φ, θ) for which normal correlation will give the same
result as a weighted correlation in the Cartesian coordi-
nate system. We can constrain the coordinate system to
be polar:

x = r(φ) cos θ
y = r(φ) sin θ

The variable r has its usual meaning, with r =√
x2 + y2. The determinant of the Jacobian of this

transformation is r drdφ . As shown earlier, all the inte-
grals in the correlation end up divided by this quantity,
so it must be is the reciprocal of the desired weighting
function w(r). So:

r
dr

dφ
=

1
w(r)∫

rw(r)dr =
∫

1dφ

φ =
∫
rw(r)dr + C

For a weighting of 1
r3 , for instance, φ = 1

r is a solu-
tion (ignoring scale factors, which don’t affect the cor-
relation). This means that the image is turned inside
out, with points approaching the center of the image in
Cartesian coordinates appearing out towards infinity in
the transformed image. Higher powers of r are similar.
In fact the weighting 1

r2 is a special case since it leads to
the integral of 1

r , which is logarithmic instead of a power
of r. This suggests that the log-polar transformation is
not easily “tweaked” to give stronger weight to the center
– it is tied strongly to the weighting of 1

r2 .

6 Comments

Researchers who use the log-polar transform for vergence
stress its speed advantages. This is indeed a crucial fac-
tor for vergence, since it sits inside a control loop trying
to keep the cameras foveated on an object, and the less
latency there is in the loop the more tightly the object
can be kept foveated and the more stable the overall sys-
tem is.

Another advantage cited for the log-polar transform is
its close match with the nature of foveated tasks, where
the central area of the image is all-important and the
periphery is less so. It seems to be taken for granted that
this match also applies to the vergence task, since it too
is concerned with the center of the image. But I don’t
think this is as obvious as it might seem, and contains
an implicit assumption about the type of vergence being
implemented.

By definition, when vergence has any work to do, it
must be the case that the cameras are not centered on
the same object. To move the cameras so that they are
centered on the same object, the important information
will in general lie away from the center of the images
from the cameras. Therefore it does not seem sensible to
throw away information from the periphery of the images
while sampling the center of the image densely.

Vergence can be divided into two phases: tracking and
acquiring. When an object is moving slowly, the vergence
angle needed to fixate it will change smoothly. If the
frame rate is high enough, the correct fixation point will
be close to the center of the images, and so the log-polar
sampling scheme retains the important information. But
this form of vergence is quite simple to implement us-
ing any one of a number of schemes, including simple
correlation over small patches. The problem of initially
acquiring correct vergence on a new object of interest or
an object that has just appeared is a more difficult part
of the vergence problem. In this case, the center of the
images from the current view of the camera are no more
likely to be important than any other horizontally offset
position.

In these cases then, vergence does not immediately ap-
pear to be a good candidate for a foveated approach. One
argument to dispute this conclusion would be to make
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an appeal to biology, since humans can clearly verge ro-
bustly working from an approximately log-polar sampled
image. More convincingly, it could be argued that the
larger the disparity, the less accurately that disparity
needs to be known, since the vergence control is part
of a closed loop system – and this is exactly what the
log-polar transform will give, since it has high resolution
at the center and lower resolution towards the periph-
ery. But it seems likely that the lower resolution at the
periphery can only reduce the set of circumstances un-
der which the qualitatively correct vergence angle will be
detected.

In my opinion, there are two separable ideas in
Bernardino and Santos-Victor’s work that have been
somewhat conflated. One is the use of the log-polar
transform to bias correlation towards measuring the
statistics of the center of the image. Another is the use
of the log-polar transform to reduce the size of the im-
age and speed processing. In particular, it is possible
to use the transform as a weighting scheme only, and to
relinquish its use in compressing the image (and also its
biological plausibility).

For example, instead of warping already-transformed
images to produce the versions needed for various as-
sumed disparity values, this could be done from the orig-
inal Cartesian images. This means there is no longer a
bias towards small disparities. Doing this sacrifices some
speed, since there are more operations over the larger
Cartesian images. I considered it a worthwhile trade-off,
so this is the algorithm I implemented.

7 Implementation

I implemented a variant of Santos-Victor and
Bernardino’s algorithm for performing vergence. The na-
ture of this algorithm, and the variation I introduced
were described in the previous section. This section
briefly describes the properties of the active vision head
on which this work was done, and outlines some im-
portant implementation details that have not yet been
touched on.

7.1 Characteristics of the head

The active vision head I used for this work has two pairs
of color cameras. One pair has 3 mm lenses, giving wide
fields of view (about 120◦ along the horizontal). The
other pair has 11 mm lenses, giving narrow fields of view
(about 25◦ along the horizontal). I only made use of
the cameras with wide fields of view, and converted the
color images to greyscale so that the vergence system
could be used on other active vision heads in the lab
which currently have monochrome cameras.

The head has three degrees of freedom: independent
pan for the left cameras and the right cameras, and a
shared tilt of the entire head. For this work, only the

Right eyeCyclopean
eye

Left eye

image plane
Left

image plane
Right

of the Cyclopean eye
Object in front

of the Cyclopean eye’s view
Object to the side

Figure 6: This shows how the target for vergence is cho-
sen. Objects in front of the Cyclopean eye project onto
mirror locations in the images from the left and right
cameras, while other objects do not.

pans were used. The cameras can pan very rapidly – fast
enough for the limiting factor to be the computation to
decide when to stop them. The baseline distance between
the left and right cameras is about 13cm (human average
inter-ocular distance is about 6.5cm).

The cameras are controlled by a set of TMS320C40
digital signal processors. Code for these is written in
Parallel C from 3L.

7.2 Choosing the target

One issue that has not been mentioned yet in this pa-
per is how to chose the target on which the cameras are
to verge. In the absence of any higher-level goals, one
common answer is to make one of the cameras ‘domi-
nant’ and verge on whatever appears in the center of the
image from that camera. Since moving the dominant
camera will change the target and could cause looping
behavior, this means that, in practice, this camera needs
to be held stationary while the other converges. This is
very unnatural in appearance.

I chose to make the cameras verge on anything that ap-
peared directly in front of the active vision head. Specif-
ically, I imagined a virtual ‘Cyclopean’ eye between the
cameras, facing in a direction intermediate to the two
cameras, and defined whatever appeared at the center of
its view to be the target for vergence. When the Cyclo-
pean eye is facing forwards, anything in front of it will
be projected to an equal distance from the inner side of
each image of the left and right cameras, as shown in
Figure 6. When the Cyclopean eye faces off-axis, there
is a similar relationship. This constrains the number of
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Left eye Right eye Left eye Left eyeRight eye Right eye

A AA

B B B

C C

Figure 7: Sequence of movements in changing fixation
from A to B. Eyes move to center the new target, and
then to verge on it (After [20]). These actions are some-
what superimposed.

comparisons that need to be made. There can be more
than one match if there is more than one object directly
in front of the Cyclopean eye. The match whose vergence
angle shows that it is closest to the head should be cho-
sen. In my implementation, I don’t do this. I simply
choose the one with the largest correlation. If the closest
object is not too small, it will occlude, at least partially,
the camera’s views of objects behind it, and so it likely
to have the highest correlation value.

I kept the Cyclopean eye facing directly forwards so
that only objects directly in front of the head would be
used as targets for vergence. In other words, I drove the
position of the cameras so that they always rotated by
equal amounts in opposite directions.

Human vision behaves in a way reminiscent of this.
Consider the situation shown in Figure 7. When a target
disappears from position A and appears at position B,
both eyes move to compensate. It might appear that only
one eye need move while the other could stay stationary.
This is true, but is not what occurs. In human vision
both eyes turn to center the object on a line drawn from
the midpoint of the baseline (where the Cyclopean eye
would be), and then vergence brings the object back onto
the fovea. The right eye ends up back where it started,
but moved through a complicated path to get there.

7.3 Control strategy

Since vergence is performed in a feedback loop with la-
tencies, care must be taken to ensure that the controller
will be stable. I chose a very simple control strategy,
where the velocity of the camera motors was made pro-
portional to the disparity between the camera images.
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Figure 8: A record of the camera movements correspond-
ing to the sequence of events in Figure 10. The vergence
angle is estimated from shaft encoder ticks, so the scale
factor of the graph is approximate but its shape is accu-
rate. Between 0 and 5 seconds, the cameras are verged
on the background. A human figure enters the foveal
region at 5 seconds. The human extends his hand at 10
seconds, and removes it at 17 seconds. This triggers a
reflex return to vergence on infinity. Vergence is regained
on the human figure at about 20 seconds. At 14 seconds
the human figure withdrew, and the cameras returned to
verging on the background. Note that the sharp reflexive
loss of vergence does not occur here.

There are many ways this could be improved, but the
frame rate was high enough (15Hz) and the inertia of
the cameras was low enough for this strategy to be sta-
ble and still allow fast camera movement.

The vergence algorithm made no attempt to moni-
tor the positions of the cameras. Position measurements
were used only to monitor for drastic failures of vergence
– for example, the cameras diverging beyond the point
where they are parallel, or converging so far as to ap-
proach the hard limits of motion of the camera.

One detail was that when the cameras were verged on
a very close object, and that object was removed very
rapidly, too little of the frontal view remained for there
to be a high enough correlation to attract the cameras
back to facing forward. So when the best correlation
measure fell below a threshold, the cameras were made to
“reflexively” return to verging on infinity. Usually that
threshold was only exceeded when there was no object
in view that could be verged on.

8 Results

Figure 8 shows how the vergence angle of the cameras
changes over time as the object being verged on changes.
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The sequence of events is as follows (shown in Figure 10).
The cameras verge first on the background. Then a hu-
man figure enters the scene. The person extends their
hand very close to the camera. The hand is then re-
moved, and the person leaves. The graph shows that the
vergence system tends to overshoot slightly, due to the
simplicity of the controller used. It also shows that when
the eyes are highly verged, loss of a target triggers a ‘re-
flex’ that brings the cameras back to verging on infinity
before control is returned to the vergence system. This
was necessary because the images in the camera are of-
ten too different in this circumstance for the system to
regain correct vergence.

Figure 10 also shows correlation measurements under
the different circumstances. Since these apply to verged
conditions, the peak is always at zero disparity. The
peak is sharpest when verged on the background, and
smallest when verged on a very close object.

Figure 11 shows correlation values in verged and non-
verged circumstances. In the non-verged case, the peak is
off center, and indicates how much the right image should
be shifted left, and the left image shifted right, for the
best match at the center. While the highest peak is the
correct disparity, there is a smaller peak corresponding
to the disparity of the background.

Figure 9 shows a time sequence of the cameras verging
on a smoothly moving object.
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Figure 9: This time series shows the cameras verging on
an object moving towards, then away from the active vi-
sion head. Notice the jumps in the graph. This is due
to the low resolution of the images used. The smallest
change in disparity that can be detected is one pixel rel-
ative to the virtual Cyclopean eye, or two pixels total,
which corresponds to a larger distance the further the
object is from the camera. This is why the graph gets
rougher towards the lower values of the vergence angle,
when the object is furthest away.

9 Discussion

Vergence using log-polar sampling of the images proved
considerably more robust than any previous implemen-
tation of vergence on the Cog active vision platform. It
is by no means perfect, and suffers from the predictable
defects of a weighted correlation over the entire image: it
won’t work on small objects, it won’t work with objects
that contrast poorly with the background, and some-
times it just won’t work. My implementation is also not
particularly precise, as Figure 9 showed, but this is not
intrinsic to the algorithm. My priority was to make ver-
gence robust to sudden changes in disparity, since track-
ing small changes in disparity is a straightforward task.
With a relatively coarse but robust version of vergence
working, the views from the foveal cameras will be of ap-
proximately the same part of the scene, so it should be
possible to now take the views from the foveal cameras
and use them for precise vergence.

Log-polar sampling is such a simple technique that
I am almost embarrassed to submit a term paper on
the topic, but it is currently an attractive method for
performing vergence. And vergence is an attractive vi-
sual behavior to implement, because if it can be done
robustly without object recognition, it helps to solve
the figure/ground separation problem. Once the cam-
eras have verged, the object they have verged on can
be extracted from the background using, for example,
a zero disparity filter [8]. This can be used to imple-
ment a robust object tracking behavior [4]. Vergence
also facilitates stereo fusion around the foveation point,
since stereo algorithms that will only operate with small
disparity values can be applied once the cameras have
verged [7]. Both these properties facilitate object recog-
nition. Other advantages are that the vergence angle
gives a measure of the distance to the object, and that
vergence is a step towards having an object-centered co-
ordinate system.

All these advantages are relevant for the Cog project.
There is also another more specific and less technical rea-
son for vergence being important for the type of research
being pursued for the Cog project. Part of the project
focuses on social interaction as scaffolding for learning
[6]. Mechanisms of joint attention, such as pointing and
gaze direction, are a key element of this work. It is im-
portant that Cog can infer what a human is interested
in from their gaze direction. But the dynamic of social
interaction makes it equally important that a human can
infer the location to which Cog is paying attention. It
is helpful to make Cog’s gaze as human-like as possible.
Currently Cog keeps its cameras parallel when it turns
towards an object of interest. Adding vergence will make
its locus of interest easier for a human to deduce, by
adding information about distance. This is particularly
so because Cog’s cameras are about twice the distance
apart as human eyes, exaggerating the difference between
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Figure 10: The above images are views from the two cameras taken at five second intervals. Views from the left
camera are on the left, views from the right camera are on the right. The cameras are designated left and right from
the point of view of a homunculus behind the cameras. The first pair of images show the cameras in near-parallel
orientation, verging on the distant background. The correlation measure, given beside the pair of images, is sharply
peaked. The next pair of images show the cameras verged on a face. Objects in the background now appear shifted.
The correlation measure is less sharply peaked. The next pair of images show the cameras verged on a hand. The
human figure now appears shifted outwards. Notice that the appearance of the hand differs significantly between the
images. The correlation measure is quite erratic. The following two pairs of images show the cameras reverting to
verging on the face when the hand is removed, and then to the background when the face is removed. The images
shown here are scaled versions of the 64× 64 pixel images actually used by the vergence system.
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Figure 11: The upper pair of images show a toy in front of the cameras with the vergence system disabled. The
correlation graph on the top right shows that there is a disparity of 20 pixels in the convergent direction. This
disparity is with respect to a virtual ‘cyclopean’ eye, so the total disparity between the two images is 40 pixels (image
width is 64 pixels). There is a secondary peak in correlation for a disparity close to zero, corresponding to the
background. The lower pair of images show that when the vergence system is enabled, the cameras move to center
the dominant disparity.

parallel and convergent camera angles.
One difficulty with the log-polar transform for ver-

gence is that is no obvious way to improve its perfor-
mance. Details such as accounting for the significant
radial distortion of the wide angle cameras used might
have some small benefit. Using color images might help
somewhat as well. But there is no real theoretical meat
to build on. Therefore, for this application, the log-polar
transformation may be just a stop-gap approach until
the price of computation falls enough to allow the use of
more rigorously developed techniques.
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