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Abstract. Speech directed at infants and pets has properties that distinguish it from speech among adults [6].
Some of those properties are potentially useful for language learning. By careful design of form and behavior, robots
can hope to evoke a similar speech register and take advantage of these properties. We report some preliminary data
to support this claim, based on experiments carried out with the infant-like robot Kismet [4]. We then show how we
can build a language model around an initial vocabulary, perhaps acquired from “cooperative” speech, and bootstrap
from it to identify further candidate vocabulary items drawn from arbitrary speech in an unsupervised manner. We
show how to cast this process in a form that can be largely implemented using a conventional speech recognition
system [8], even though such systems are designed with very different applications in mind. This is advantageous
since, after decades of research, such systems are expert at making acoustic judgments in a probabilistically sound
way from acoustic, phonological, and language models.
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1 Introduction We first look at approaches to speech interfaces tak-
en by other groups. Then we briefly review the potential
advantages of eliciting infant-directed speech. In Sec-

A natural-language interface is a desirable compongigh 4 we present some preliminary results characteriz-

of a humanoid robot. In the ideal, it allows for naturghg the nature of speech directed at Kismet. The remain-

hands-free communication with the robot without nter of the paper develops an unsupervised procedure for

cessitating any special skills on the human user’s Pafbcabulary extension and language modeling.
In practice, we must trade off flexibility of the interface

with its robustness. Contemporary speech understand-
ing systems rely on strong domain constraints to achiexe Background and motivation
high recognition accuracy [20]. This paper makes an ini-
tial exploration of how ASR techniques may be applieRecent developments in speech research on robotic
to the domain of robot-directed speech with ﬂexib”itplatforms have followed two basic approaches. The
that matches the expectations raised by the robot’s st approach builds on techniques developed for
manoid form. command-and-control style interfaces. These systems
A crucial factor for the suitability of current speectemploy the standard strategy found in ASR research of
recognition technology to a domain is the expectdithiting the recognizable vocabulary to a particular
perplexity of sentences drawn from that domaipredetermined domain or task. For instance, the
Perplexity is a measure of the average branching fadROBITA robot [14] interprets command utterances and
within the space of possible word sequences, and ateries related to its function and creators, using a
generally grows with the size of the vocabulary. Fdixed vocabulary of 1,000 words. Within a small fixed
example, the basic vocabulary used for modbmain fast performance with few errors becomes
weather-related queries may be quite small, whergesssible, at the expense of any ability to interpret
for dictation it may be much larger and with a muchut-of-domain utterances. But in many cases this is
less constrained grammar. In the first case spegmhfectly acceptable, since there is no sensible response
recognition can be applied successfully for a large userailable for such utterances even if they were modeled.
population across noisy telephone lines [19], whereas A second approach adopted by some roboticists [17,
in the second a good quality headset and extensive ubgfis to allow adjustable (mainly growing) vocabular-
training are required in practice. It is important tges. This introduces a great deal of complexity, but has
determine where robot-directed speech lies in thise potential to lead to more open, general-purpose sys-
spectrum. This will depend on the nature of the task tems. Vocabulary extension is achieved through a label
which the robot is being applied, and the character afquisition mechanism using either supervised or unsu-
the robot itself. For this paper, we will consider thpervised learning algorithms. This approach was taken
case of Kismet [4], an “infant-like” robot whose formin CELL [17], Cross-channel Early Language Learning,
and behavior is designed to elicit nurturing responsetiere a robotic platform called Toco the Toucan was
from humans. developed to implement a model of early human lan-



guage acquisition. CELL is embodied by an active visolated words Whether isolated words in parental
sion camera placed on a four degree of freedom ngpeech help infants learn has been a matter of some
torized arm and augmented with expressive featurestebate. It has been shown that infant-directed
make it appear like a parrot. The system acquires lexiterances are usually short with longer pauses between
cal units from the following scenario: a human teachemrds (e.g., research cited in [18]), but also that they do
places an object in front of the robot and describes iitot necessarily contain a significant proportion of
The visual system extracts color and shape propertiessmlated words [1]. Another study [5] presents evidence
the object, and CELL learns on-line a lexicon of cothat isolated words are in fact a reliable feature of
or and shape terms grounded in the representationsnééint-directed speech, and that infants’ early word
objects. The terms learned need not pertain to coloramquisition may be facilitated by their presence. In
shape exclusively - CELL has the potential to learn apgarticular, the authors find that the frequency of
words, the problem being that of deciding which lexexposure to a word in isolation is a better predictor of
cal items to associate with which semantic categorieghether the word will be learned, than the total
In CELL, associations between linguistic and contextérequency of exposure. This suggests that isolated
al channels are chosen on the basis of maximum mutwalrds may be easier for infants to process and learn.
information. Also in [15], a Pioneer-1 mobile robot wagqually importantly for us, however, is the evidence for
programmed with a system to cluster its sensory expegi-substantial presence of isolated words in IDS: 9%
ences using an unsupervised learning algorithm. In thdsind in [5] and 20% reported in [1]. If Kismet
way the robot extends its vocabulary by associating sathieves its purpose of eliciting nurturing behavior
of sensory features with the spoken labels that are mfrsim humans, then perhaps we can expect a similar
frequently uttered in their presence. proportion of Kismet-directed speech to consist of
We share the goal of automatically acquiring negingle-word utterances. This hypothesis will undergo a
vocabulary. We are particularly interested in augmentipgeliminary evaluation in Section 4.
unsupervised techniques that work on arbitrary speech
with more specialized methods that make use of humél
cooperation. Section 3 looks at infant-directed speec
special speech register which many claim has interest{
properties for facilitating language learning. A simil
register arguably exists for “pet-directed speech” [6],

Runciated speech and “vocal shaping” The

eﬂdency of humans to slow down and overarticulate
H&ir utterances when they meet with misunderstanding
%has been reported as a problem in the ASR community

h that an infant-like robot | K 2]. Such enunciated speech degrades considerably the
we hope that an infant-like robot may alSo EVOKe SPEEgQ i mance of speech recognition systems which were
with similar properties. Section 4 presents some pi

limi Its t . hether this is th Th?éined on natural speech only. If we find that human
iminary resufts to verify whether this is € Case. 1N& retakers tend to address Kismet with overarticulated
remainder of the paper shows how to build a langua

S gﬁeech, its presence becomes an important issue to be
model around any vocabulary we can extract in this Wayy dressed by the robot's perceptual system

and use that model to locate further candidates for vo-| " i ¢ % Girected speech, we might expect

cabulary extension. overarticulation to occur in an instructional context,
when a caretaker deliberately introduces the infant to a
new word or corrects a mispronunciation. Another
possible strategy is that of “shaping” of the infant’s
onunciation by selecting and repeating the
ispronounced part of the word until a satisfactory

3 Infant-directed speech

r
When interacting with a youthful-appearing robot sw{})ﬂ

as Kismet, we can expect that the speech input ult is reached. There is evidence that parents may

have specialized characteristics similar to those o :
: i . . ; loy such a strategy, but it appears to be mostly at
infant-directed speech (IDS). This section exammﬁ?e%n)écdotal level 9y PP y

some of the properties of IDS so they may inform our
expectations of the nature of Kismet-directed speech.
We examined the following two questions regarding tié  Exploring robot-directed speech
nature of IDS:
This section describes a preliminary study of
— Does it include a substantial proportion of singlgnteractions between young children and the Kismet
word utterances? Presenting words in isolation sidewot in the context of teaching the robot new words.
steps the problematic issue of word segmentatiorpyring these sessions, the robot was engaging in
— How often, if at all, is it clearly enunciated andhroto-conversational turn-taking, where its responses to
slowed down compared to normal speechiterances of the children were random affective
Overarticulated speech may be helpful to infantsabble. A very minimal mechanism for vocal mimicry
but has important consequences for artificiaghd vocabulary extension was present. The purpose of
speech recognizers. our study is to identify ways to improve the speech



interface on the robot based on a better knowledgelsblated words These are fairly common; 303 utter-
the properties of speech directed at this particular robahces, or 36.5% consisted of a single word said in iso-
lation. The percentage of single-word utterances had a
distribution among subjects with a mean at 34.8 and a
4.1 Robot configuration deviation of 21.1. Even when we exclude both greetings
) ) . and the robot’s name from counts of single-word utter-
During these experiments the robot was engaging 4fices, we get a distribution centered around 20.3% with
proto-conversational turn-taking as described in [4}, standard deviation of 18.5%. This still accounts for
augmented with the following command-and-contrglgypstantial proportion of all recorded Kismet-directed
style grammar. Sentences that began with phrases sg¢Bech. However, almost half the subjects use less than

as “say”, “can you say", “try” etc. were treated aggo jsolated words, even in this teaching context (see
requests for the robot to repeat the phonetic sequeRgg|e 1).

that followed them. If, after the robot repeated a

sequence, a positive phrase such as “yes” or “good

robot” was heard, the sequence would be entered in fHNciated speech Also common is enunciated
vocabulary. If not, no action was taken unless tiP€eCh; 27.4% of the transcribed utterances (228)
human’s next utterance was similar to the first. irontained enunciated speech. An utterance was counted

which case it was assumed to be a correction and fie "€hunciated speech” whenever deliberate pauses

robot would repeat it. Because of the relatively lof€tween words or syllables within a word, and vowel
accuracy of phoneme-level  recognition sudfngthening were used. The count therefore includes

corrections are the rule rather than the exception. € Very frequent examples where a subject would ask
the robot to repeat a word, e.g. “Kismet, can you say:

GREEN?". In such examples, GREEN would be the
4.2 Data collection only enunciated part of the utterance but the whole
guestion was counted as containing enunciated speech.
For this preliminary study, we drew on recording§he mean proportion of enunciated speech is 25.6%
originally made for Sherry Turkle’s research omwith a deviation of 20.4%, which again shows a large
children’s perception of technology and identity. Weariation.
analyzed video of 13 children aged from 5 to 10 years

old intgracting with. the robot. Each sessio_n lasteghcal shaping In the whole body of data we have dis-
approximately 20 minutes. In two of the sessions, Wy ered only 6 plausible instances (0.7%) of vocal shap-
children are playlng_wrth the robot at Fhe_same time. ]Hg. It may not be an important teaching strategy, or it
the rest of the sessions, only one child is present wﬁl']\ay not be evoked by a mimicry system that is not re-
the robot. sponding reliably enough to the teacher.

4.3 Preliminary data analysis Vocal mimicry There were 23 cases of children imi-
tating the babbling sounds that Kismet made, which ac-

We were interested in determining whether any of tlw@unts for 2.8% of the transcribed utterances. However,

following strategies are present in Kismet-directedost children did not use this strategy at all.

speech:

. o . 4.4 Discussion
single-word utterances (words spoken in isolation)

— enunciated speech Qualitatively, the results presented above seem encour-
— vocal shaping (partial, directed corrections) aging. However, before we draw any conclusions from
— vocal mimicry of Kismet's babble the analysis, we must realize that in this instance, the

process of gathering the data and the method of analysis
A total of 831 utterances were transcribed from the 1d several shortcomings. The data itself, as was men-
sessions of children playing with the robot. We observéidned earlier, came from recordings of interactions set
a wide variation of strategies among subjects. The falp for the purposes of an unrelated sociological study
lowing preliminary results include a measure of stawf children. The interaction sessions were not set up
dard deviations, which are mentioned to give an ideaa$ controlled experiments, and do not necessarily rep-
the wide range of the data, and should not be readrésent spontaneous Kismet-directed speech. In particu-
imply that the data follows a Gaussian distribution. THar, on all occasions but one, at some point during the
total number of utterances varied from subject to suipteraction, children were instructed to make use of the
ject in the range between 19 and 169, with a mean afrrently implemented command-and-control system to
64 (standard deviation of 44, based on a sample of IRt the robot to repeat words after them. In some cas-
utterances per subject. es, once that happened, the subject was so concerned



subject|# utterances# single-word % # smgle-word # kismet % W|t_hout . enunciated %
utterances greetings utterances greetings, kismet
1 94 65 69.2 0 30 37.2 14 14.9
2 19 9 47 .4 1 2 31.6 5 26.3
3 128 69 54.0 11 46 9.3 19 14.8
4 37 17 46.0 2 7 21.6 1 2.7
5 26 9 34.7 3 0 23.1 0 0.0
6 61 14 23.0 9 0 8.2 15 24.6
7 34 2 5.9 1 0 2.9 5 14.7
8 73 43 58.9 0 0 58.9 20 27.4
9 169 39 23.1 8 9 13.0 63 37.3
10 32 17 53.1 0 2 46.9 21 65.6
11 56 7 12.5 3 1 5.4 22 39.2
12 33 5 15.2 5 0 0.0 2 6.1
13 69 7 10.1 3 0 5.8 41 59.4
total 831 303 46 97 228
mean 34.8 20.3 25.6
deviation 21.1 18.5 20.4

Table 1. Analysis of Kismet-directed speech

with getting the robot to repeat a word that anything Having completed this exploratory study, we now
else simply disappeared from the interaction. On thrpkan to follow up the results with more tightly controlled
occasions, the subjects were instructed to use the “sayxperiments specifically designed to elucidate the nature
keyword as soon as they sat in front of the robot. Wherfithe speech input to the robot.

subjects are so clearly focused on a teaching scenario,

we can expect the proportion of isolated words, for in- . .
stance, to be unnaturally high. 5 Unsupervised vocabulary extension

Note also that as of now, we have no measure of ac-. ion devel hni b f
curacy of the transcriptions, which were done by har?[tji]'s section develops a technique to bootstrap from an

by one transcriber, from audio that sometimes had pd F'al .\t/)oc(:jalbulgry (.perr;faps n:)tr(%(cjigced by th?. methodds
guality. Given the focus of the analysis, only Kisme cescribed in 'ect|on ) by building an explicit mod-
directed speech was noted from each interaction, I_—Of unrecognized parts_, of utterances. The purpose of
cluding any conversations that the child may have h § background _m_o_del Is both to improve recognition
with other humans who were present during the sessigffcuracy on _the initial vocabulary and to_autom_atmally
Deciding which utterances to transcribe was clearly df€Ntify candidates for vocabulary extension. This work
other judgment call that we cannot validate here yet. ﬁ,[{?‘WS 3\? res,ﬁimh n Wo;d spottmg .andl ‘EpeiCh rec&)g-
nally, since the speech was transcribed by hand, we cgﬁ'—zn'l © YIV' ocr)]tstrap d"?m a r:jnmma_ ackgroun h
not claim a scientific definition of an utterance (e.g., odel, similar to that used In word-spotting, to a muc

pause duration) but must rely on one person’s judgem Henger modeluwhere many more word (3r phrase _cl_us-
call again. ters have been “moved to the foreground” and explicitly

modeled. This is intended both to boost performance on

. However, this prehmmary analysis shows Promi§ge original vocabulary by increasing the effectiveness
in that we have found many instances of isolated wor the language model, and to identify candidates for
in Kismet-directed speech, suggesting that Kismet’s ellitomatic vocabulary e;<tension

vironment may indeed be scaffolded for word learning. The remainder of this section shows how a conven-

However, fluent speech is stll prevalentevenina teactninal speech recognizer can be convinced to cluster fre-

ing scenario, and so an unsupervised learning algorithm . ; . o
; ! ) . uently occurring acoustic patterns, without requirin
will be needed to find new words in this case. We ha y 9 P q g

: . e existence of transcribed data.
also found that a substantial proportion of speech was

enunciated. Counter-intuitively such speech can present

problems for the speech recognizer, but at the same ti@lestering algorithm A speech recognizer with a
opens new possibilities. For an improved word-learniqdnone-based “OOV” (out-of-vocabulary) model is able
interface, it may be possible to discriminate betweéo recover an approximate phonetic representation for
natural and enunciated speech to detect instances of pvords or word sequences that are not in its vocabulary.
nunciation teaching (this approach was taken in the ASR commonly occurring phone sequences can be
community, for example in [12]). On the other hand, tHecated, then adding them to the vocabulary will allow
strategy of vocal shaping was not clearly present in thee language model to capture their co-occurrence with
interactions, and there were few cases of mimicry. words in the original vocabulary, potentially boosting



Extracting OOV phone sequencesWe use the speech
recognizer system developed by the SLS group at MIT

[8]. The recognizer is augmented with the OOV mod-
Run recognizer ‘ el developed by Bazzi in [2]. This model can match an
arbitrary sequence of phones, and has a phone bigram
A to capture phonotactic constraints. The OOV model is
Hypothesized ‘ N-Best ‘ placed in parallel with the models for the words in the
transcript hypotheses vocabulary. A cost parameter can control how much the
/\ \ OOV model is used at the expense of the in-vocabulary
: : models. This value was fixed at zero throughout the ex-
‘ Extract OOV ‘ ‘ |dentify rarely- ‘ ‘ |dentity ‘ periments described in this paper, since it was more con-
fragments used additions competition .
venient to control usage at the level of the language
model. The bigram used in this project is exactly the one
i used in [2], with no training for the particular domain.
N 10 lexican Remove from Update lexicon, Ph
lexicon baseforms one sequences are translated to phonemes, then

\ i / inserted as new entries in the recognizer’s lexicon.

‘ Update Language Model ‘ Dealing with rarely-used additions If a phoneme se-
guence introduced into the vocabulary is actually a com-
M mon sound sequence in the acoustic data, then the recog-
nizer will pick it up and use it in the next iteration. Oth-
erwise, it just will not appear very often in hypotheses.
Fig. 1. The iterative clustering procedure. After each iteration a histogram of phoneme sequence

occurrences in the output of the recognizer is generated,
and those below a threshold are cut.

recognition performance. This suggests building Bealing with competing additions Very often, two or
“clustering engine” that scans the output of the speegy e very similar phoneme sequences will be added
recognizer, correlates OOV phonetic Sequences acrsshe vocabulary. If the sounds they represent are in
all the utterances, and updates the_vo_cabulary_ wnh_q;_g& commonly occurring, both are likely to prosper and
frequent, robust phone sequences it finds. While thisyg ysed more or less interchangeably by the recogniz-
feasible, the kind of judgments the clustering enging Thjs s unfortunate for language modeling purposes,
needs to make about acoustic similarity and alignmefif,ce their statistics will not be pooled and so will be less

are exactly those at which the speech recognizer i, st. Happily, the output of the recognizer makes such
most adept. situations very easy to detect. In particular, this kind of

The clustering procedure we adopted is shown gonfusion can be uncovered through analysis of the N-
Figure 1. Anngram-based language model is initialize§€St Uttérance hypotheses. _
uniformly. Unrecognized words are explicitly represent- |T W€ imaging aligning a set of N-best hypothesis
ed using a phone-based OOV model, described in l?](-*éw_tences_ for a particular u'Fterance, t_h(_an competition is
next section. The recognizer is then run on a large dndlicated if two vocabulary items exhibit both of these

of untranscribed data. The phonetic and word level ol(OPerties:

puts of the recognizer are compared so that occurrences Horizontally repulsive - if one of the items appears
of OOV fragments can be assigned a phonetic transcrip- j, 5 single hypothesis, the other will not appear in a
tion. A rqndomly cropped subsgt of these are tentatively nearby location within the same hypothesis

entered into the vocabulary, without any attempt yet 19, ertically attractive - the items frequently occur in
evaluate their significance (e.g. whether they occur fre- 1o same location within different hypotheses
qguently, whether they are similar to existing vocabulary,

etc.). The hypotheses made by the recognizer are usedSince the utterances in this domain are generally
to retrain the language model, making sure to give tkbort and simple, it did not prove necessary to
new additions some probability in the model. Then thiggorously align the hypotheses. Instead, items were
recognizer runs using the new language model and ttansidered to be aligned based simply on the
process iterates. The recognizer’s output can be usegidoabulary items preceding and succeeding them. It is
evaluate the worth of the new “vocabulary” entries. Thimportant to measure both the attractive and repulsive
following sections detail how to eliminate vocabulargonditions to distinguish competition from vocabulary
items the recognizer finds little use for, and how to dé@ems that are simply very likely to occur in close
tect and resolve competition between similar items. proximity.



Accumulating statistics about the above two prop- If there is no transcribed data, then we cannot direct-
erties across all utterances gives a reliable measurdyoheasure the error rate. We can however bound the rate
whether two vocabulary items are essentially acousdtwhich it is changing by comparing keyword locations
cally equivalent to the recognizer. If they are, they canthe output of the recognizer between iterations. If few
be merged or pruned so that the statistics maintainedkeywords are shifting location, then the error rate can-
the language model will be well trained. For clear-cuiot be changing above a certain bound. We can therefore
cases, the competing items are merged as alternativeglate a convergence criterion on this bound rather than
the list of pronunciation variants for a single vocabulaign the actual keyword error rate. It is important to just
unit. or one item is simply deleted, as appropriate. = measure changes in keyword locations, and not changes

Here is an example of this process in operation. imvocabulary items added by clustering.
this example, “phone” is a keyword present in the ini-
tial vocabulary. These are the 10-best hypotheses for g1e E . . .
given utterance: xperiments in vocabulary extension

“what is the phone number for victor zue” ) ] ] )
The unsupervised procedure described in the previous

<oov> phone (nahmber) (mihterz) (yuw) section is intended to both improve recognition accura-
<oov> phone (nahmber) (mihterz) (zyuw) cy on the initial vocabulary, and to identify candidates
<oov> phone (nahmber) (mihterz) (uw) for vocabulary extension. This section describes experi-
<oov> phone (nahmber) (mihterz) (zuw) ments that demonstrate to what degree these goals were
<oov> phone (ahmberf) (mihterz) (zyuw) achieved. To facilitate comparison of this component
<oov> phone (ahmberf) (mihterz) (yuw) with other ASR systems, results are quoted for a domain
<oov> (axfaanah) (mberfaxr) (mihterz) called LCSInfo [9] developed by the SLS group at MIT.
(zyuw) This domain consists of queries about personnel — their
<oov> (axfaanah) (mberfaxr) (mihterz) addresses, phone numbers etc. Very preliminary results
(yuw) for Kismet-directed speech are also given.

<oov> phone (ahmberf) (mihterz) (zuw)

<oov> phone (shmberf) (mihterz) (W) Experiment 1: qualitative results

The “<oov>" symbol corresponds to an out of vo-
cabulary sequence. The sequences within parenth
are uses of items added to the vocabulary in a prior |
eration of the algorithm. From this single utterance, w
acquire evidence that:

6.1
T| section describes the candidate vocabulary
cﬁ Covered by the clustering procedure. Numerical,
performance related results are reported in the next
Y&ction.

Results given here are from a clustering session

> The entry fofax f aa n ah) may be compet- With an initial vocabulary of five keywordse(nail,

ing with the keyword “phone”. If this holds up stafPhone, room, office, addres_,s _ ), runon a set
tistically across all the utterances, the entry will paf 1566 utterances. Transcriptions for the utterances
destroyed. were available for testing but were not used by the

>( ah mber ,(mberfaxr) and@h clustering procedure. Here are the top 10 clusters
m b erf) may be competing. They arediscoveredon a very typical run, ranked by decreasing
compared against each other because all of thér#ﬂluenci’ of occurrence:
are followed by the same sequer(ce ih t er rnm e 2 2w
z) and many of them are preceded by the same i w f;hlt ih 2 5 A

“ ” € m I aw ax aw

Wordphone. 5k|xnyu)\l/v 10 gruwp

> (y uw) , (z y uw) , and(uw) may be compet-  These clusters are used consistently by the
ing recognizer in places corresponding to: “number,

Il of th il b hed for th whereis, whatis, telLme, canyou please, thankou,
All of these will be patched up for the next |teran0, howabout, group,” respectively in the

_tiqn. This use C.’f theN b?St utterance h_ypotheses IS re\'%nscription. The first/n ah m b er/ , is very

|n|scen_t _of their _appllca_tlon to computing a measure g\ quent because of phrases like “phone number’,

recognition confidence in [11]. “room number”, and “office number”. Once it appears
as a cluster the language model is immediately able to

Testing for convergenceFor any iterative procedure, itimprove recognition performance on those keywords.

is important to know when to stop. If we have a collec- Every now and then during clustering a “parasite”

tion of transcribed utterances, we can track the keywagdpears such ddh ax f ow n/  (from an instance

error rate on that data and halt when the incrementah “the phone” that the recognizer fails to spot) or

performance is sufficiently small. Keywords here refdiy n eh 1/ (from “email”). These have the

to the initial vocabulary. potential to interfere with the detection of the keywords



100

: were chosen and kept constant and in the vocabulary
o, -c-  Baseline performance .
oo} ——  Performance after clustering || across all the experiments so the results would not be
el S ) i confounded by properties of the keywords themselves.
T “e The same set of keywords were used as in the previous
. 1 section.
g 6o i Clustering is again performed without making any
S ~ ~ 1 use of transcripts. To truly eliminate any dependence on
8 ol P | the transcripts, an acoustic model trained only on a dif-
g MRS ferent dataset was used. This reduced performance but
or 1 made it easier to interpret the results.
208 1 Figure 2 shows a plot of error rates on the test data
10F 1 as the size of the vocabulary is varied to provide differ-
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ent degrees of coverage. The most striking result is that
002 B e 0% % % the clustering mechanism reduces the sensitivity of per-

formance to drops in coverage. In this scenario, the er-
Fig. 2. Keyword error rate of baseline recognizer and clusteter rate achieved with the full vocabulary (which gives
ing recognizer as total coverage varies. 84.5% coverage on the training data) is 33.3%. When
the coverage is low, the clustered solution error rate re-
mains under 50% - in relative terms, the error increases
they resemble acoustically. But as soon as they hayeat most a half of its best value. Straight application of
any success, they are detected and eliminated sg3gnguage model gives error rates that more than double
described earlier. It is possible that if a parasite doesgtireple the error rate.
get greedy, and for example limits itself to one person’s as a reference point, the keyword error rate using a
pronunciation of a keyword, that it will not be detectedanguage model trained with the full vocabulary on the
although we didn’t see any examples of this happeningy| set of transcriptions with an acoustic model trained
on all available data gives an 8.3% KER.

6.2 Experiment 2: quantitative results

For experiments involving small vocabularies, it is a3  EXPeriment 3: Kismet-directed speech
propriate to measure performance in terms of Keywofd, experiment was carried out for data drawn from

Error Rate (KER). Here this is taken to be: robot-directed speech collected for the Kismet robot.
Fi+M This data comes from an earlier series of recording
x 100 (1) sessions [7] rather than the ones described in Section 3.
Early results are promising — semantically salient
F = Number of false or poorly localized detectior’@ords such as “kismet’, “na”, “sorry”, rob_ot ’ oke_ly_
M = Number of missed detections appear among the top ten clusters. But this work is in a
T = True number of keyword occurrences in data/ery preliminary stage, since an acoustic model needs

o o to be trained up for the robot's microphone
A detection is only counted as such if it occurs &pnfiguration and environment.

the right time. Specifically, the midpoint of the hypothe-
sized time interval must lie within the true time interval
the keyword occupies. We take forced alignments of tle Conclusions and Future Directions
test set as ground truth. This means that for testing it is
better to omit utterances with artifacts and words outhe work described in this paper is not as yet a uni-
side the full vocabulary, so that the forced alignment fied whole. We are approaching the question of language
likely to be sufficiently precise. for a humanoid robot from several directions. One di-
The experiments here are designed to identify whegction is concerned with characterizing and influenc-
clustering leads to reduced error rates on a keyword g the speech register that people use when addressing
cabulary. Since the form of clustering addressed in thiwe robot. Another addresses how to extract vocabulary
paper is fundamentally about extending the vocabulaitgms from such speech, be it cooperative or otherwise.
we would expect it to have little effect if the vocabu©Other work, not described here, is addressing the cru-
lary is already large enough to give good coverage. Wl issue of binding vocabulary to meaning. One line of
would expect it to offer the greatest improvement wheesearch under way is to use transient, task-dependent
the vocabulary is smallest. To measure the effect of caxecabularies to communicate the temporal structure of
erage, a complete vocabulary for this domain was usedpcesses. Another line of research looks more general-
and then made smaller and smaller by incrementally fg-at how a robot can establish a shared basis for com-
moving the most infrequent words. A set of keywordsunication with humans by learning expressive verbal

KER =

with:



behaviors as well as acquiring the humans’ existing linfg] D. Burnham, E. Francis, C. Kitamura, U. Volimer-
guistic labels.

Parents tend to interpret their children’s first

utterances very generously and often attribute meaning
and intent where there may be none [3]. It has been
shown, however, that such a strategy may indeed he[[!gxl
infants coordinate meaning and sound and learn

express

themselves verbally. Pepperberg [16]

formalized the concept into a teaching technique called
referential mapping. The strategy is for the teacher t[s]
treat the pupil's spontaneous utterances as meaningful,
and act upon them. This, it is shown, will encourage the
pupil to associate the utterance with the meaning that
the teacher originally gave it, so the student will use th&!
same vocalization again in the future to make a similar
request or statement. The technique was successfully
used in aiding the development of children with specigl
needs. In future work, we hope to apply this technique
to build a shared basis for meaningful communication
between the human and the robot.

[11]
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