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Abstract. Speech directed at infants and pets has properties that distinguish it from speech among adults [6].
Some of those properties are potentially useful for language learning. By careful design of form and behavior, robots
can hope to evoke a similar speech register and take advantage of these properties. We report some preliminary data
to support this claim, based on experiments carried out with the infant-like robot Kismet [4]. We then show how we
can build a language model around an initial vocabulary, perhaps acquired from “cooperative” speech, and bootstrap
from it to identify further candidate vocabulary items drawn from arbitrary speech in an unsupervised manner. We
show how to cast this process in a form that can be largely implemented using a conventional speech recognition
system [8], even though such systems are designed with very different applications in mind. This is advantageous
since, after decades of research, such systems are expert at making acoustic judgments in a probabilistically sound
way from acoustic, phonological, and language models.
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1 Introduction

A natural-language interface is a desirable component
of a humanoid robot. In the ideal, it allows for natural
hands-free communication with the robot without ne-
cessitating any special skills on the human user’s part.
In practice, we must trade off flexibility of the interface
with its robustness. Contemporary speech understand-
ing systems rely on strong domain constraints to achieve
high recognition accuracy [20]. This paper makes an ini-
tial exploration of how ASR techniques may be applied
to the domain of robot-directed speech with flexibility
that matches the expectations raised by the robot’s hu-
manoid form.

A crucial factor for the suitability of current speech
recognition technology to a domain is the expected
perplexity of sentences drawn from that domain.
Perplexity is a measure of the average branching factor
within the space of possible word sequences, and so
generally grows with the size of the vocabulary. For
example, the basic vocabulary used for most
weather-related queries may be quite small, whereas
for dictation it may be much larger and with a much
less constrained grammar. In the first case speech
recognition can be applied successfully for a large user
population across noisy telephone lines [19], whereas
in the second a good quality headset and extensive user
training are required in practice. It is important to
determine where robot-directed speech lies in this
spectrum. This will depend on the nature of the task to
which the robot is being applied, and the character of
the robot itself. For this paper, we will consider the
case of Kismet [4], an “infant-like” robot whose form
and behavior is designed to elicit nurturing responses
from humans.

We first look at approaches to speech interfaces tak-
en by other groups. Then we briefly review the potential
advantages of eliciting infant-directed speech. In Sec-
tion 4 we present some preliminary results characteriz-
ing the nature of speech directed at Kismet. The remain-
der of the paper develops an unsupervised procedure for
vocabulary extension and language modeling.

2 Background and motivation

Recent developments in speech research on robotic
platforms have followed two basic approaches. The
first approach builds on techniques developed for
command-and-control style interfaces. These systems
employ the standard strategy found in ASR research of
limiting the recognizable vocabulary to a particular
predetermined domain or task. For instance, the
ROBITA robot [14] interprets command utterances and
queries related to its function and creators, using a
fixed vocabulary of 1,000 words. Within a small fixed
domain fast performance with few errors becomes
possible, at the expense of any ability to interpret
out-of-domain utterances. But in many cases this is
perfectly acceptable, since there is no sensible response
available for such utterances even if they were modeled.

A second approach adopted by some roboticists [17,
15] is to allow adjustable (mainly growing) vocabular-
ies. This introduces a great deal of complexity, but has
the potential to lead to more open, general-purpose sys-
tems. Vocabulary extension is achieved through a label
acquisition mechanism using either supervised or unsu-
pervised learning algorithms. This approach was taken
in CELL [17], Cross-channel Early Language Learning,
where a robotic platform called Toco the Toucan was
developed to implement a model of early human lan-
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guage acquisition. CELL is embodied by an active vi-
sion camera placed on a four degree of freedom mo-
torized arm and augmented with expressive features to
make it appear like a parrot. The system acquires lexi-
cal units from the following scenario: a human teacher
places an object in front of the robot and describes it.
The visual system extracts color and shape properties of
the object, and CELL learns on-line a lexicon of col-
or and shape terms grounded in the representations of
objects. The terms learned need not pertain to color or
shape exclusively - CELL has the potential to learn any
words, the problem being that of deciding which lexi-
cal items to associate with which semantic categories.
In CELL, associations between linguistic and contextu-
al channels are chosen on the basis of maximum mutual
information. Also in [15], a Pioneer-1 mobile robot was
programmed with a system to cluster its sensory experi-
ences using an unsupervised learning algorithm. In this
way the robot extends its vocabulary by associating sets
of sensory features with the spoken labels that are most
frequently uttered in their presence.

We share the goal of automatically acquiring new
vocabulary. We are particularly interested in augmenting
unsupervised techniques that work on arbitrary speech
with more specialized methods that make use of human
cooperation. Section 3 looks at infant-directed speech, a
special speech register which many claim has interesting
properties for facilitating language learning. A similar
register arguably exists for “pet-directed speech” [6], so
we hope that an infant-like robot may also evoke speech
with similar properties. Section 4 presents some pre-
liminary results to verify whether this is the case. The
remainder of the paper shows how to build a language
model around any vocabulary we can extract in this way,
and use that model to locate further candidates for vo-
cabulary extension.

3 Infant-directed speech

When interacting with a youthful-appearing robot such
as Kismet, we can expect that the speech input may
have specialized characteristics similar to those of
infant-directed speech (IDS). This section examines
some of the properties of IDS so they may inform our
expectations of the nature of Kismet-directed speech.
We examined the following two questions regarding the
nature of IDS:

– Does it include a substantial proportion of single-
word utterances? Presenting words in isolation side-
steps the problematic issue of word segmentation.

– How often, if at all, is it clearly enunciated and
slowed down compared to normal speech?
Overarticulated speech may be helpful to infants,
but has important consequences for artificial
speech recognizers.

Isolated words Whether isolated words in parental
speech help infants learn has been a matter of some
debate. It has been shown that infant-directed
utterances are usually short with longer pauses between
words (e.g., research cited in [18]), but also that they do
not necessarily contain a significant proportion of
isolated words [1]. Another study [5] presents evidence
that isolated words are in fact a reliable feature of
infant-directed speech, and that infants’ early word
acquisition may be facilitated by their presence. In
particular, the authors find that the frequency of
exposure to a word in isolation is a better predictor of
whether the word will be learned, than the total
frequency of exposure. This suggests that isolated
words may be easier for infants to process and learn.
Equally importantly for us, however, is the evidence for
a substantial presence of isolated words in IDS: 9%
found in [5] and 20% reported in [1]. If Kismet
achieves its purpose of eliciting nurturing behavior
from humans, then perhaps we can expect a similar
proportion of Kismet-directed speech to consist of
single-word utterances. This hypothesis will undergo a
preliminary evaluation in Section 4.

Enunciated speech and “vocal shaping” The
tendency of humans to slow down and overarticulate
their utterances when they meet with misunderstanding
has been reported as a problem in the ASR community
[12]. Such enunciated speech degrades considerably the
performance of speech recognition systems which were
trained on natural speech only. If we find that human
caretakers tend to address Kismet with overarticulated
speech, its presence becomes an important issue to be
addressed by the robot’s perceptual system.

In infant-directed speech, we might expect
overarticulation to occur in an instructional context,
when a caretaker deliberately introduces the infant to a
new word or corrects a mispronunciation. Another
possible strategy is that of “shaping” of the infant’s
pronunciation by selecting and repeating the
mispronounced part of the word until a satisfactory
result is reached. There is evidence that parents may
employ such a strategy, but it appears to be mostly at
the anecdotal level.

4 Exploring robot-directed speech

This section describes a preliminary study of
interactions between young children and the Kismet
robot in the context of teaching the robot new words.
During these sessions, the robot was engaging in
proto-conversational turn-taking, where its responses to
utterances of the children were random affective
babble. A very minimal mechanism for vocal mimicry
and vocabulary extension was present. The purpose of
our study is to identify ways to improve the speech
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interface on the robot based on a better knowledge of
the properties of speech directed at this particular robot.

4.1 Robot configuration

During these experiments the robot was engaging in
proto-conversational turn-taking as described in [4],
augmented with the following command-and-control
style grammar. Sentences that began with phrases such
as “say”, “can you say”, “try” etc. were treated as
requests for the robot to repeat the phonetic sequence
that followed them. If, after the robot repeated a
sequence, a positive phrase such as “yes” or “good
robot” was heard, the sequence would be entered in the
vocabulary. If not, no action was taken unless the
human’s next utterance was similar to the first, in
which case it was assumed to be a correction and the
robot would repeat it. Because of the relatively low
accuracy of phoneme-level recognition, such
corrections are the rule rather than the exception.

4.2 Data collection

For this preliminary study, we drew on recordings
originally made for Sherry Turkle’s research on
children’s perception of technology and identity. We
analyzed video of 13 children aged from 5 to 10 years
old interacting with the robot. Each session lasted
approximately 20 minutes. In two of the sessions, two
children are playing with the robot at the same time. In
the rest of the sessions, only one child is present with
the robot.

4.3 Preliminary data analysis

We were interested in determining whether any of the
following strategies are present in Kismet-directed
speech:

– single-word utterances (words spoken in isolation)
– enunciated speech
– vocal shaping (partial, directed corrections)
– vocal mimicry of Kismet’s babble

A total of 831 utterances were transcribed from the 13
sessions of children playing with the robot. We observed
a wide variation of strategies among subjects. The fol-
lowing preliminary results include a measure of stan-
dard deviations, which are mentioned to give an idea of
the wide range of the data, and should not be read to
imply that the data follows a Gaussian distribution. The
total number of utterances varied from subject to sub-
ject in the range between 19 and 169, with a mean of
64 (standard deviation of 44, based on a sample of 13)
utterances per subject.

Isolated words These are fairly common; 303 utter-
ances, or 36.5% consisted of a single word said in iso-
lation. The percentage of single-word utterances had a
distribution among subjects with a mean at 34.8 and a
deviation of 21.1. Even when we exclude both greetings
and the robot’s name from counts of single-word utter-
ances, we get a distribution centered around 20.3% with
a standard deviation of 18.5%. This still accounts for
a substantial proportion of all recorded Kismet-directed
speech. However, almost half the subjects use less than
10% isolated words, even in this teaching context (see
Table 1).

Enunciated speech Also common is enunciated
speech; 27.4% of the transcribed utterances (228)
contained enunciated speech. An utterance was counted
as “enunciated speech” whenever deliberate pauses
between words or syllables within a word, and vowel
lengthening were used. The count therefore includes
the very frequent examples where a subject would ask
the robot to repeat a word, e.g. “Kismet, can you say:
GREEN?”. In such examples, GREEN would be the
only enunciated part of the utterance but the whole
question was counted as containing enunciated speech.
The mean proportion of enunciated speech is 25.6%
with a deviation of 20.4%, which again shows a large
variation.

Vocal shaping In the whole body of data we have dis-
covered only 6 plausible instances (0.7%) of vocal shap-
ing. It may not be an important teaching strategy, or it
may not be evoked by a mimicry system that is not re-
sponding reliably enough to the teacher.

Vocal mimicry There were 23 cases of children imi-
tating the babbling sounds that Kismet made, which ac-
counts for 2.8% of the transcribed utterances. However,
most children did not use this strategy at all.

4.4 Discussion

Qualitatively, the results presented above seem encour-
aging. However, before we draw any conclusions from
the analysis, we must realize that in this instance, the
process of gathering the data and the method of analysis
had several shortcomings. The data itself, as was men-
tioned earlier, came from recordings of interactions set
up for the purposes of an unrelated sociological study
of children. The interaction sessions were not set up
as controlled experiments, and do not necessarily rep-
resent spontaneous Kismet-directed speech. In particu-
lar, on all occasions but one, at some point during the
interaction, children were instructed to make use of the
currently implemented command-and-control system to
get the robot to repeat words after them. In some cas-
es, once that happened, the subject was so concerned
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subject # utterances# single-word
utterances

%
# single-word
greetings

# kismet
utterances

% without
greetings, kismet

enunciated %

1 94 65 69.2 0 30 37.2 14 14.9
2 19 9 47.4 1 2 31.6 5 26.3
3 128 69 54.0 11 46 9.3 19 14.8
4 37 17 46.0 2 7 21.6 1 2.7
5 26 9 34.7 3 0 23.1 0 0.0
6 61 14 23.0 9 0 8.2 15 24.6
7 34 2 5.9 1 0 2.9 5 14.7
8 73 43 58.9 0 0 58.9 20 27.4
9 169 39 23.1 8 9 13.0 63 37.3
10 32 17 53.1 0 2 46.9 21 65.6
11 56 7 12.5 3 1 5.4 22 39.2
12 33 5 15.2 5 0 0.0 2 6.1
13 69 7 10.1 3 0 5.8 41 59.4

total 831 303 46 97 228
mean 34.8 20.3 25.6
deviation 21.1 18.5 20.4

Table 1.Analysis of Kismet-directed speech

with getting the robot to repeat a word that anything
else simply disappeared from the interaction. On three
occasions, the subjects were instructed to use the “say”
keyword as soon as they sat in front of the robot. When
subjects are so clearly focused on a teaching scenario,
we can expect the proportion of isolated words, for in-
stance, to be unnaturally high.

Note also that as of now, we have no measure of ac-
curacy of the transcriptions, which were done by hand
by one transcriber, from audio that sometimes had poor
quality. Given the focus of the analysis, only Kismet-
directed speech was noted from each interaction, ex-
cluding any conversations that the child may have had
with other humans who were present during the session.
Deciding which utterances to transcribe was clearly an-
other judgment call that we cannot validate here yet. Fi-
nally, since the speech was transcribed by hand, we can-
not claim a scientific definition of an utterance (e.g., by
pause duration) but must rely on one person’s judgement
call again.

However, this preliminary analysis shows promise
in that we have found many instances of isolated words
in Kismet-directed speech, suggesting that Kismet’s en-
vironment may indeed be scaffolded for word learning.
However, fluent speech is still prevalent even in a teach-
ing scenario, and so an unsupervised learning algorithm
will be needed to find new words in this case. We have
also found that a substantial proportion of speech was
enunciated. Counter-intuitively such speech can present
problems for the speech recognizer, but at the same time
opens new possibilities. For an improved word-learning
interface, it may be possible to discriminate between
natural and enunciated speech to detect instances of pro-
nunciation teaching (this approach was taken in the ASR
community, for example in [12]). On the other hand, the
strategy of vocal shaping was not clearly present in the
interactions, and there were few cases of mimicry.

Having completed this exploratory study, we now
plan to follow up the results with more tightly controlled
experiments specifically designed to elucidate the nature
of the speech input to the robot.

5 Unsupervised vocabulary extension

This section develops a technique to bootstrap from an
initial vocabulary (perhaps introduced by the methods
described in Section 4) by building an explicit mod-
el of unrecognized parts of utterances. The purpose of
this background model is both to improve recognition
accuracy on the initial vocabulary and to automatically
identify candidates for vocabulary extension. This work
draws on research in word spotting and speech recog-
nition. We will bootstrap from a minimal background
model, similar to that used in word-spotting, to a much
stronger model where many more word or phrase clus-
ters have been “moved to the foreground” and explicitly
modeled. This is intended both to boost performance on
the original vocabulary by increasing the effectiveness
of the language model, and to identify candidates for
automatic vocabulary extension.

The remainder of this section shows how a conven-
tional speech recognizer can be convinced to cluster fre-
quently occurring acoustic patterns, without requiring
the existence of transcribed data.

Clustering algorithm A speech recognizer with a
phone-based “OOV” (out-of-vocabulary) model is able
to recover an approximate phonetic representation for
words or word sequences that are not in its vocabulary.
If commonly occurring phone sequences can be
located, then adding them to the vocabulary will allow
the language model to capture their co-occurrence with
words in the original vocabulary, potentially boosting
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baseforms

Update Language Model

Fig. 1.The iterative clustering procedure.

recognition performance. This suggests building a
“clustering engine” that scans the output of the speech
recognizer, correlates OOV phonetic sequences across
all the utterances, and updates the vocabulary with any
frequent, robust phone sequences it finds. While this is
feasible, the kind of judgments the clustering engine
needs to make about acoustic similarity and alignment
are exactly those at which the speech recognizer is
most adept.

The clustering procedure we adopted is shown in
Figure 1. Anngram-based language model is initialized
uniformly. Unrecognized words are explicitly represent-
ed using a phone-based OOV model, described in the
next section. The recognizer is then run on a large set
of untranscribed data. The phonetic and word level out-
puts of the recognizer are compared so that occurrences
of OOV fragments can be assigned a phonetic transcrip-
tion. A randomly cropped subset of these are tentatively
entered into the vocabulary, without any attempt yet to
evaluate their significance (e.g. whether they occur fre-
quently, whether they are similar to existing vocabulary,
etc.). The hypotheses made by the recognizer are used
to retrain the language model, making sure to give the
new additions some probability in the model. Then the
recognizer runs using the new language model and the
process iterates. The recognizer’s output can be used to
evaluate the worth of the new “vocabulary” entries. The
following sections detail how to eliminate vocabulary
items the recognizer finds little use for, and how to de-
tect and resolve competition between similar items.

Extracting OOV phone sequencesWe use the speech
recognizer system developed by the SLS group at MIT
[8]. The recognizer is augmented with the OOV mod-
el developed by Bazzi in [2]. This model can match an
arbitrary sequence of phones, and has a phone bigram
to capture phonotactic constraints. The OOV model is
placed in parallel with the models for the words in the
vocabulary. A cost parameter can control how much the
OOV model is used at the expense of the in-vocabulary
models. This value was fixed at zero throughout the ex-
periments described in this paper, since it was more con-
venient to control usage at the level of the language
model. The bigram used in this project is exactly the one
used in [2], with no training for the particular domain.

Phone sequences are translated to phonemes, then
inserted as new entries in the recognizer’s lexicon.

Dealing with rarely-used additions If a phoneme se-
quence introduced into the vocabulary is actually a com-
mon sound sequence in the acoustic data, then the recog-
nizer will pick it up and use it in the next iteration. Oth-
erwise, it just will not appear very often in hypotheses.
After each iteration a histogram of phoneme sequence
occurrences in the output of the recognizer is generated,
and those below a threshold are cut.

Dealing with competing additions Very often, two or
more very similar phoneme sequences will be added
to the vocabulary. If the sounds they represent are in
fact commonly occurring, both are likely to prosper and
be used more or less interchangeably by the recogniz-
er. This is unfortunate for language modeling purposes,
since their statistics will not be pooled and so will be less
robust. Happily, the output of the recognizer makes such
situations very easy to detect. In particular, this kind of
confusion can be uncovered through analysis of the N-
best utterance hypotheses.

If we imaging aligning a set of N-best hypothesis
sentences for a particular utterance, then competition is
indicated if two vocabulary items exhibit both of these
properties:

. Horizontally repulsive - if one of the items appears
in a single hypothesis, the other will not appear in a
nearby location within the same hypothesis

. Vertically attractive - the items frequently occur in
the same location within different hypotheses

Since the utterances in this domain are generally
short and simple, it did not prove necessary to
rigorously align the hypotheses. Instead, items were
considered to be aligned based simply on the
vocabulary items preceding and succeeding them. It is
important to measure both the attractive and repulsive
conditions to distinguish competition from vocabulary
items that are simply very likely to occur in close
proximity.
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Accumulating statistics about the above two prop-
erties across all utterances gives a reliable measure of
whether two vocabulary items are essentially acousti-
cally equivalent to the recognizer. If they are, they can
be merged or pruned so that the statistics maintained by
the language model will be well trained. For clear-cut
cases, the competing items are merged as alternatives in
the list of pronunciation variants for a single vocabulary
unit. or one item is simply deleted, as appropriate.

Here is an example of this process in operation. In
this example, “phone” is a keyword present in the ini-
tial vocabulary. These are the 10-best hypotheses for the
given utterance:

“what is the phone number for victor zue”

<oov> phone (n ah m b er) (m ih t er z) (y uw)

<oov> phone (n ah m b er) (m ih t er z) (z y uw)

<oov> phone (n ah m b er) (m ih t er z) (uw)

<oov> phone (n ah m b er) (m ih t er z) (z uw)

<oov> phone (ah m b er f) (m ih t er z) (z y uw)

<oov> phone (ah m b er f) (m ih t er z) (y uw)

<oov> (ax f aa n ah) (m b er f axr) (m ih t er z)

(z y uw)

<oov> (ax f aa n ah) (m b er f axr) (m ih t er z)

(y uw)

<oov> phone (ah m b er f) (m ih t er z) (z uw)

<oov> phone (ah m b er f) (m ih t er z) (uw)

The “<oov> ” symbol corresponds to an out of vo-
cabulary sequence. The sequences within parentheses
are uses of items added to the vocabulary in a prior it-
eration of the algorithm. From this single utterance, we
acquire evidence that:

. The entry for(ax f aa n ah) may be compet-
ing with the keyword “phone”. If this holds up sta-
tistically across all the utterances, the entry will be
destroyed.

. (n ah m b er) , (m b er f axr) and(ah
m b er f) may be competing. They are
compared against each other because all of them
are followed by the same sequence(m ih t er
z) and many of them are preceded by the same
word “phone”.

. (y uw) , (z y uw) , and(uw) may be compet-
ing

All of these will be patched up for the next itera-
tion. This use of the N-best utterance hypotheses is rem-
iniscent of their application to computing a measure of
recognition confidence in [11].

Testing for convergenceFor any iterative procedure, it
is important to know when to stop. If we have a collec-
tion of transcribed utterances, we can track the keyword
error rate on that data and halt when the increment in
performance is sufficiently small. Keywords here refer
to the initial vocabulary.

If there is no transcribed data, then we cannot direct-
ly measure the error rate. We can however bound the rate
at which it is changing by comparing keyword locations
in the output of the recognizer between iterations. If few
keywords are shifting location, then the error rate can-
not be changing above a certain bound. We can therefore
place a convergence criterion on this bound rather than
on the actual keyword error rate. It is important to just
measure changes in keyword locations, and not changes
in vocabulary items added by clustering.

6 Experiments in vocabulary extension

The unsupervised procedure described in the previous
section is intended to both improve recognition accura-
cy on the initial vocabulary, and to identify candidates
for vocabulary extension. This section describes experi-
ments that demonstrate to what degree these goals were
achieved. To facilitate comparison of this component
with other ASR systems, results are quoted for a domain
called LCSInfo [9] developed by the SLS group at MIT.
This domain consists of queries about personnel – their
addresses, phone numbers etc. Very preliminary results
for Kismet-directed speech are also given.

6.1 Experiment 1: qualitative results

This section describes the candidate vocabulary
discovered by the clustering procedure. Numerical,
performance-related results are reported in the next
section.

Results given here are from a clustering session
with an initial vocabulary of five keywords (email,
phone, room, office, address ), run on a set
of 1566 utterances. Transcriptions for the utterances
were available for testing but were not used by the
clustering procedure. Here are the top 10 clusters
discovered on a very typical run, ranked by decreasing
frequency of occurrence:

1 n ah m b er 6 p l iy z
2 w eh r ih z 7 ae ng k y uw
3 w ah t ih z 8 n ow
4 t eh l m iy 9 hh aw ax b aw
5 k ix n y uw 10 g r uw p

These clusters are used consistently by the
recognizer in places corresponding to: “number,
whereis, what is, tell me, canyou, please, thankyou,
no, howabout, group,” respectively in the
transcription. The first,/n ah m b er/ , is very
frequent because of phrases like “phone number”,
“room number”, and “office number”. Once it appears
as a cluster the language model is immediately able to
improve recognition performance on those keywords.

Every now and then during clustering a “parasite”
appears such as/dh ax f ow n/ (from an instance
of “the phone” that the recognizer fails to spot) or
/iy n eh l/ (from “email”). These have the
potential to interfere with the detection of the keywords
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Fig. 2. Keyword error rate of baseline recognizer and cluster-
ing recognizer as total coverage varies.

they resemble acoustically. But as soon as they have
any success, they are detected and eliminated as
described earlier. It is possible that if a parasite doesn’t
get greedy, and for example limits itself to one person’s
pronunciation of a keyword, that it will not be detected,
although we didn’t see any examples of this happening.

6.2 Experiment 2: quantitative results

For experiments involving small vocabularies, it is ap-
propriate to measure performance in terms of Keyword
Error Rate (KER). Here this is taken to be:

KER =
F + M

T
∗ 100 (1)

with:
F = Number of false or poorly localized detections
M = Number of missed detections
T = True number of keyword occurrences in data

A detection is only counted as such if it occurs at
the right time. Specifically, the midpoint of the hypothe-
sized time interval must lie within the true time interval
the keyword occupies. We take forced alignments of the
test set as ground truth. This means that for testing it is
better to omit utterances with artifacts and words out-
side the full vocabulary, so that the forced alignment is
likely to be sufficiently precise.

The experiments here are designed to identify when
clustering leads to reduced error rates on a keyword vo-
cabulary. Since the form of clustering addressed in this
paper is fundamentally about extending the vocabulary,
we would expect it to have little effect if the vocabu-
lary is already large enough to give good coverage. We
would expect it to offer the greatest improvement when
the vocabulary is smallest. To measure the effect of cov-
erage, a complete vocabulary for this domain was used,
and then made smaller and smaller by incrementally re-
moving the most infrequent words. A set of keywords

were chosen and kept constant and in the vocabulary
across all the experiments so the results would not be
confounded by properties of the keywords themselves.
The same set of keywords were used as in the previous
section.

Clustering is again performed without making any
use of transcripts. To truly eliminate any dependence on
the transcripts, an acoustic model trained only on a dif-
ferent dataset was used. This reduced performance but
made it easier to interpret the results.

Figure 2 shows a plot of error rates on the test data
as the size of the vocabulary is varied to provide differ-
ent degrees of coverage. The most striking result is that
the clustering mechanism reduces the sensitivity of per-
formance to drops in coverage. In this scenario, the er-
ror rate achieved with the full vocabulary (which gives
84.5% coverage on the training data) is 33.3%. When
the coverage is low, the clustered solution error rate re-
mains under 50% - in relative terms, the error increases
by at most a half of its best value. Straight application of
a language model gives error rates that more than double
or treble the error rate.

As a reference point, the keyword error rate using a
language model trained with the full vocabulary on the
full set of transcriptions with an acoustic model trained
on all available data gives an 8.3% KER.

6.3 Experiment 3: Kismet-directed speech

An experiment was carried out for data drawn from
robot-directed speech collected for the Kismet robot.
This data comes from an earlier series of recording
sessions [7] rather than the ones described in Section 3.
Early results are promising – semantically salient
words such as “kismet”, “no”, “sorry”, “robot”, “okay”
appear among the top ten clusters. But this work is in a
very preliminary stage, since an acoustic model needs
to be trained up for the robot’s microphone
configuration and environment.

7 Conclusions and Future Directions

The work described in this paper is not as yet a uni-
fied whole. We are approaching the question of language
for a humanoid robot from several directions. One di-
rection is concerned with characterizing and influenc-
ing the speech register that people use when addressing
the robot. Another addresses how to extract vocabulary
items from such speech, be it cooperative or otherwise.
Other work, not described here, is addressing the cru-
cial issue of binding vocabulary to meaning. One line of
research under way is to use transient, task-dependent
vocabularies to communicate the temporal structure of
processes. Another line of research looks more general-
ly at how a robot can establish a shared basis for com-
munication with humans by learning expressive verbal
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behaviors as well as acquiring the humans’ existing lin-
guistic labels.

Parents tend to interpret their children’s first
utterances very generously and often attribute meaning
and intent where there may be none [3]. It has been
shown, however, that such a strategy may indeed help
infants coordinate meaning and sound and learn to
express themselves verbally. Pepperberg [16]
formalized the concept into a teaching technique called
referential mapping. The strategy is for the teacher to
treat the pupil’s spontaneous utterances as meaningful,
and act upon them. This, it is shown, will encourage the
pupil to associate the utterance with the meaning that
the teacher originally gave it, so the student will use the
same vocalization again in the future to make a similar
request or statement. The technique was successfully
used in aiding the development of children with special
needs. In future work, we hope to apply this technique
to build a shared basis for meaningful communication
between the human and the robot.
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