UNIVERSITY of LIMERICK

—

“A novel behaviour-based robot architecture
and its application to building an autonomous robot sentry”

by
Paul Fitzpatrick

—

A thesis submitted for the degree of
Master of Engineering

based on work done at
The Department of Electronic and Computer Engineering
College of Informatics and Electronics
University of Limerick, Ireland

Declaration

| hereby declare that this thesis is entirdly my own work and has not been submitted as an

exercise to any other university.

Paul Fitzpatrick

Abstract

Indugtridly deployed robots are currently very dependent on human guidance and support.
They rely on operator intervention to maintain a sable, known environment within which they
perform specific wel-defined tasks. Such congraints limit the extent to which robots can be
employed. Many useful gpplications await the development of salf-rdliant, autonomous robots-
applications ranging from exploring Mars to cleaning factory floors. New design techniques are
evolving to meet this chalenge. One technique that has met with consderable success is
“behaviour-based” control. In this form of control, the modules or “behaviours’ within the
robot’s control system take their cues primarily from the environment, rather than from each
other as in more traditiona schemes. Robots congtructed in this way need to make fewer
assumptions about their environment, and so are more robust. However, it can be difficult to
control the interaction of such behaviours. In this thess, a novel scheme for orchedtrating the
actions of collections of behaviours is presented, and implemented on a physica robot.
Another mgor chalenge for autonomous robots is how to learn about their surroundings so
they can navigate from place to place efficiently. Much of the literature addressing how robots
can congtruct maps of their environment is oriented towards robots with vison sensors, and
relies on computationaly expensive image processing dgorithms. However, there is currently
condderable research interest in investigating the potentid applications of groups of smal,
chegp, miniature robots. Such robots aretypicdly limited in their sensing ability and processing
power. This thesis examines how a miniature robot can build and maintain a useful mep of its
environment with short-range proximity sensors only, and do o in red-time even with the
restricted processing power of such robots. This is a desirable ability because it could alow
robots to be usad in a range of niches where sophisticated sensing and image processing
would be impracticd. Again, the technique described is implemented on a physica robot that
behaves as a sentry.

(i

Acknowledgements

| am sncerdly grateful to my supervisor, Colin Flanagan, for his support in this work. His
feedback was invariably enlightening, and was particularly invauable in the drafting of this
thess. | am indebted to him for dl his help. My gratitude dso to Prof. Tom Coffey for his
input.

Heartfdt thanks to the group of people who acted as cheerleaders dong the way, and whom it
gives me great pleasure to acknowledge in print. To my mother, Ann, and dl of my family, for
support thet is the foundation of dl | do. Thanks to my sigter, Deirdre, for introducing me to
the Zen of tea My cousn David, for dl the information about seaweed and Finland an
engineer could ever want, and for many Interesting Times. Willemien, to whom | owe many,
many sandwiches. Mary, for dways having some refreshingly mindless work on the farm lined
up for me when | came home. And everyone ese for continualy asking when | was going to
be finished, and generdly kesping me going despite my .

Findly, | want to thank my robot, for being very wel behaved, and never throwing a mgor
tantrum. May your cogs aways run free, and may your battery charge last forever.

(ii)

Table of Contents

Table of Contents

L INTRODUCTION.....cuctitieeirieueereaetees sereeastsessasseessesssesssss seesessssssessssssesssssssassses sbsssssessssssessssssessesesasas sessssnssssesesssnsns 1
1.1 NOVEL APPLICATION CONTRIBUTION.cccevurirrniursiessesssssssessessssssssssssssesssssssssssssssssssssssssssssessssasssssansanns 1
00 T O 4T o 0] o= o OO SRR 2
L. 1.2 TNE SOIULION 1ottt 2
L. 1.3 INOVE] FEAIUNES.....eueeeereereeeeeiseisees setsesseesseesesse bbb ssees st seesees et s bbb sees s £ b s e bbb seb et ensen et 3
1.2 ROBOT ARCHITECTURE CONTRIBUTIONccueiuiuiireuenetreusmessesesssesesssessese st ssss st sssssssssssssssmnessssssses 3
1.2 THE PrOBIEM ..ottt bbbttt 4
1.2.2 TRE SOIULION ..ttt bbb bbb e e e e bbbt b e b et e b et e b s e e e e ae e e e e e anas 4
1. 2.3 NOVE FEALUIES.......ceeereereeeerestieeeire retrese s eas e s st s e s s bbbt bbb eeaes bt s b s 5
1.3 OVERVIEW OF THESIS CONTENTovuuitumeereeseessess sesseesesssessesssssesssesses ssessssssssssnsssesssessasssesss sessessessssssssnssnssnns 5
2. BACK GROUND ..ottt se e ssse s et bebes s se b b s £ se e ae b b s e et R b e b e et e b e b e bt e ae bt es e s e bes e aeb et seanans 8
2.1 REVIEW OF ROBOT ARCHITECTURES.........costueeureeseeseessmeessessessesssessssssesssesssmssessessssssssssssssssesssssmesssssesssessanes 8
2.2 CLASSICAL ROBOT ARCHITECTURES...........ccottiiriteeieiresesiete s s sse st sesssessessnesnssenes 9
2.2.1 DOMAaiN Of APPIICALION......c.ciieirieeiseieieece sttt 11
2.2.2 An example arChiteCtUrE- RCS ..ottt bbb 11
2.3 REACTIVE ROBOT ARCHITECTURES.........ccoomtuueemeesseesseesseeseesesssessessssessesssesssesssnsssesssesssessesssmessesssessesssnsseees 12
2.3.1 DOMAIN Of APPIICALION......ciiierireiririeirice it b e bbbt ee s 13
2.3.2 Example architecture- The Niche RODOt ArChiteCtUr@.......couveirveciresce e 14
2.4 BEHAVIOUR-BASED ROBOT ARCHITECTURESc.ooiueeiuitesessesesssss st st ssssssssssssssssessssssssassssssassanss 15
2.4.1 SUDSUIMPLION ..ooevreectieeieeerese s ses s ess s Rt 16
2.4.2 LEVEIS Of COMPELENCEoceeeeeeerireeeeseeeeseseeseseessesessssessesessssessssessssessssessssesessesessssesssessesessnsessnsessnsesnsessnsns 17

2.4.3 Layers of CONrol........ccveenrereerereenees soreerenseneenes

2.4.4 Implementation of Individual Layers

2.4.5 DEVEIOPMENT SIFALEJY ...vuvvrverreirieieriesessesessesesssessssesssssessssssssssesessssssasesssssssssssssssssssssessssssssasessssssasessssssssases 20
2.4.6 Practical Arguments for SUDSUMPLION.veririeeriirerees e seese s 21
2.4.7 Philosophical Arguments for SUDSUMPLIONc.cuieinineeneeiseiseeee et ssessesesees 22
2.4.8 Experiences With SUDSUMPLION ..ottt senssnenns 24
2.4.9 Limitations Of SUDSUMPLIONcouiiiiriririiree ettt sttt sesesenns 26
25 HYBRID ROBOT ARCHITECTURES...........cooosnitietniretieiereesesesese et sesese st sesesens 27
2.5.1" Reactive Deliberation” RODOt ArChItECIUN ..o e seese e seeseeenns 28
25,2 GLAIR ..ottt e et s es e8RS AR 4R AR AR R et nenen 30
2.5, 3 ACBARR ...ttt ettt ettt et e R £ R ARt E £ A A SEeE e A b e R e A e b £ e R b et R b bbb et et e Reaebetas 31
2.5.4 ACtiON SElECH ON NELWOTKooviiieiciiecicieii ettt 32
2.5.5 Reactive ACtion Package SYSEEM.........ccriree et sess s 34

Table of Contents

256 ATLANTIS ettt b £ e A b £t b £ et b bbbttt e bt nnnbas 34
2.5.7 The ArchiteCture CONEI Ol Kili... ..ottt
2.6 REVIEW OF LANGUAGES FOR ROBOT ARCHITECTURES
2.8. 1 ALFA ..ottt et SRR RS SRR 37
2.6.2 The Behaviour Language/” New SUDSUMPLION ..o srreseeeesessesessessesessseses sesesessesssneneens 38
2.7 REVIEW OF CARTOGRAPHIC SCHEMES FORROBOT NAVIGATIONoooovereeeseeeeeeseeens sneeseseeeesessesessessenaees 39
2.7.1 Grid-based and topol 0giCal MELNOAS..........cceuieriieririerrrreie s 39
2.7. 2 POENtiAl FIEIAS ..ot 39
2.7.31NEMNAIISEA PIANS......coiiiceiic e 41
2.8 SUMMARYootiieteeiristeteeeses etstsseesesas et eae e e sesess seaesessesesensaesesseseseseas shesesens et et esese s aseseseaes ssesesseseneesenenseeeseneres 43
U LATERAL ettt R A A £ e R SR £ £t R A £ e et A E e e e b bt e e Ana et et e e aenes 44
L OVERVIEW. ...ttt sttt b et ae bt es sese s b s e se b ee et ae £eaebeE e s b e et b e et E e e s 14 e e e re e ae bbbt et en e s 44
3.2 CONFLICT RESOLUTION IN LATERAL.......ocoiriittieietetesesseses st eses et sssesens 46

3.3ELEMENTSOF LATERAL

3.3, L CONNECLIONS......cveureaereser et e e et m e n e
33,2 BENAVIOUI S....cerereneeeeeietsei sereeeeses s sss s e s bbb S8t b bbb b eeae bt sesen s 55
3.4 COMPARISON WITH SUBSUMPTION........ccceiuiueeseereeseesseeseessessesscssessessssssesssssssssesssessssssssssssssssssssssssssssessessesaes 59
3.5 SYSTEM DECOMPOSITION USING LATERALccviiiiiiteiisireste s sss st sessssssesssasssmnseen 64
3.6 IMPLEMENTING LATERAL ..ottt es et b et b e st s e 68
3.6.1 Executing Behaviours: The SCAN CYCIE.......oceiienereeiseesee et ssese s ssnenns 69
3.6.2 Updating Connections: The PUll SYSEEM........ccciniriineineisieeeeeee et seesessesssssssssse e sesssssees 71
3.6.3 Traversing Connections. The MESh SITUCIUN €. esesesesesessesessssessesesssessesessenns 73
3.6.4 Coding Lateral through CH ...ttt 76
3.7 SUMMARY L. oeeeesttseeeesieias sesessses s ss s bbbt s8R 181 4R 8RR SE bbb 78
4. THE CARTOGRAPHIC SYSTEM ...ttt s sssessnens 80
4.1 MOTIVATION FOR USING MAPSooiuiireueereesnesseeseessessesssssessesssessesssesssssesssessssssesssssssssesssssessessessssssssssssnens

4.2 USING MAPS IN A BEHAVIOUR-BASED ROBOT

4.3 “MARKER’-BASED MAP REPRESENTATION SCHEMEccccoeuniireresisstsssnsssssesssssssssssssssssssssssssssssassssssanens 83
4.3.1 NEIGNDOUINOOUS.......coeviieiicieieiete ittt s et a bbb e esnne st et ananenn 88
4.3. 2 MArker LAYiNG SYSLEMc.cuiiieeeieirireieirermei ettt een 93
4.3.3 Adding @anNOtatiONS 10 MATKETS........ccviuieiririererie ettt 94

4.4 USING LANDMARKS.......c.ootteutieueteteensses crtsesessaesesssessssssesesetas sesesesessssssssesssssassesas seesesseatssssassssasesasesass £esesensssnsans 95
4.4.1 General strategy for trusting |andmarks...........c s 97
4.4.2 Sraight-€d0e [aNTMAIKS.......c.occurieirieireereieires st 99
4.4.3 COrNEN [ANAMAIKS.....cocuieeiieeiieeicie et s bbb sen s 108

A5 INTERACTING WITH THE MAPotirritrreermeeeeeseseesssesssssssssssssssssssssssesssssssssssssssssssnsssesssassssssssssssssssssssssssssssns 112
4.5.1 POSition and DireClION SEIVICE......ciuiuriereurieeiieieieireiseeses et sesses st ss s ssessssens 113

Table of Contents

5.2 VITHUBL SENSOIS.....vuiuemireereeeiseiseesessesseseese e bbb es st 114
A.5.3 TAQGING SENVICE ..eveuiieireeeereteeseee sttt ss s ss s st se s s s s et e st e e e e et e et e st ee st sesesnesensen 115
A.5.4 GOl SEEKINGcvurrerieirireirertae s seeie st ese sttt bbbt 115
4.6 SUMMARY L.....oooitimetteesesstsses nsssesssesssessse bbb es sesb e se RS REE £R8 R RS RS EeRR R bbb 123
5. SENTRY BEHAVIOURS ...ttt bbbttt sttt bbbt 125
B.L OVERVIEW. ...ttt ettt bbb es sese st e e e bbbt ££xebeEseae b e £ et s e bt b eE s 14 e ae e e be b et et ee e nanteen 125
5.2 MOTION BEHAVIOURS.........cooiuriueureeetseemese s s s ssesssesses bbbt bbbt 127
5.2.1 Motor Control BENAVIOU ..o eses 128
5.2.2 NUAQING BENAVIOUT ...ttt 129
5.2.3 EAge FOllOWING BENAVIOUceuieecereeceieieessieessisese ettt sessssesssnssnns 129
5.2.4 TUrNING BENAVIOU ...ttt sttt sttt ssss s ss s ssss st essssssnssssnssssnssssnnsnns 137
5.3 INFORMED BEHAVIOURS..........ccotuiumeeeireesseesesseessessesssssssssesssessesssssesssessessesssessssssssssssesssessesssessssssssesssssssssessses 138
5.3.1 Location SEeKiNg BENAVIOULoucuriiueiricin ettt sessseens 139
5.3.2 Patrolling BENAVIOUL ..ottt sttt eseas 143
5.3.3 EXPlOrNG BENAVIOUFceveueeiceeiceeiceei st 150
5.3.4 PrOWIING BENAVIOUN ...t s siseiseesssse s e ssees b sss s ssssees sessessessess st s s sesnssanss 151
5.3.5 Map MaintainiNg BENAVI OUN...........cccuriueiririrrmeirreie sttt snas s ssssssnens 156

5.4 USER INTERACTION BEHAVIOURS..

5.4.1 Manual Control BENAVIOUF ...t ssssssssssssssssssssssssnees
5.4.2 Region SEEKiNG DENAVIOUN ..o et st bbb 159
5.4.3 REPOMING BENAVIOU ..ottt ettt 161
5.4.4 ProxXy BENAVIOUTcouiieeireciercese ettt nss ettt 162
5.5 SUMMARY ... itittietiseiseissees sesesssss et e s s e shsess b s s8R Rs 81 81 RS R R b S8Rt b e 164
B. ZAC SCRIPT ..ottt st st 166
B.1 OVERVIEW.........ooeeiereceeteestne eteteesesessese e e st e sese s seessesese e sessesase e nesseses saesesensesesenesnsasansaeseen senessesensnsanesensensnsanes 166
6.1.1 Languages for robot arChitECIUNES.........c.cciviircereerieeireee et

6.1.2 Mapping Lateral structuresto C++

6.1.3 Supporting Zac Script through C++ eXLENSIONS......ccveeereeereieereinireiereiseseisessises s esessssesssseseens 168
6.2 QUTLINE OF TRANSLATION PROCESS..........cooooiiutieierereresmereressesese s sse s essssssss s mesesesesnsens 169
B.3WRITING ZAC SCRIPTooriiirereereeseseeseemmessssssssssessesssssssssssssssmassssssssssssessessessssssssssmsssssassssssssssssessessessassmssssnes 170

6.3.1 Specification Of State MACKINES..........vririeee e 172

6.3.2 Implementation Of State MACKINES..........ci st ses e ses e 174

6.3.3 DiSCUSSION Of INItTAITSALION ...cucvueeiieieieee e 179

6.3.4 SPeCification Of CONNECLIONS ..ot 180

6.3.5 ImplementatiOn Of CONNECTIONSc.ocuricrreree e 182

6.3.6 RUNNING the traNSIALON ... e s saes e es e 183
6.4 SYNTAX OF ZAC SCRIPTooitieueeueeeeeseaeeseessesseessessesssessessesssessesssssessssssessessssssessasssessssssssasssssssessesssssesssssnses 184

Table of Contents

6.4.1 PrOQgIaM SYNLAX ...c.cuerereiuiertrerieasestresessssessesessasssssesessssssssesesssssssstssssesassesssesessssesssssssssssnssssssssssssasessenssasas 186
6.4.2 Syntax Of Lateral €lEMENES ... ettt sees et sss sttt sssses sebessesesesessseens 187
6.4.3 Syntax of DENAVIOUE DOTY ..o bbbt 189
6.4.4 Syntax of input and OULPUL CONNECLIONS.........covrueeririccieirisesss et sens 190
5.4.5 SYNEAX OF SLALEScevireeceeeereeet et 191
6.5 EXTENDED EXAMPLE-THE ROBOT WHEELBARROWcooeeitrieeeesias sersiasssssssssssssssssssssns sessssssssssssnes 191
6.5.1 The “ MOVEFOrward” BENAVIOUN..........coc e seeritnetseeseseesssssessessees seesessesss e sssssssssssssss sesessesnees 193

6.5.2 The“ Turn” Behaviour

6.5.3 The " PUSN” BENAVIOUN........cccuiiiieeiiiieere e 196
6.5.4 The *“ IMProvedPuUSh” BEhAVIOUL...........ccoreiii e st e ssssseens 199
B.6 LIMITATIONS........coiiteteiere st ere e et e e ettt e s se s e sre e et e se s ene e e s et e Re e e s R e s e e et e seseae e e et et ese et eaesene e s aesnsntan 202
B.7 SUMMARY _.....ooititretreeseeseeseees seseeseessetseese s ssesseees sesesseebaee bbb s R R eEE1 SE1eEAeER e R bbb E AR bbb bbbt b s 203
T AMPLEMENTATIONottt ss e bbb 205
T L OVERVIEW.......coiteieteesisissies sessassses s shssssss s s S84 bbbt bbb 205
7.2 INTERFACING WITH THEROBOTcootniuriuieneenesseseiessesssisessessssssssssssss s ssss s ssssssssssesssssssessens 207
7.2.1 THE PRYSICAI FODOLoucveieie ettt bbb 207
7.2.2THE SIMUIBLEH FODOL........ceceiirieiecirei ettt 209

7.2.3 The common robot
7.2.4 Thelogical robot

7.3 SYSTEM DECOMPOSITION.........ccorriurerneerresness sesessssesesssnsssssssssssssns sessssessssssssssssssssssssssnss sessssssssssesssnsssssasssnssan os 213
7.4 THE COMMON ROBOT MODULE.........ccoiuriuieeeeeeeemreeseeseeseeseeseessessessessssmesesssssessesssssessessassssssmesssssssssessesssssenes 215
7.4.1 Physical robot version of the common robot MOdul €. 217
7.4.2 Simulated robot version of the common robot MOAUIE............ocree e s 221
7.5 THE LOGICAL ROBOT MODULEotuuitmiemeeseeseessesssesssesssess s sssessss s ssse sttt ssss st ssessssesssnses 222
7.5.1 SENSOT MOUEL ..ottt 223
7.5.2 MOLION MOEL......eoeeeeiieeicet e e s e 225
7.6 THE LATERAL RUNTIME MODUL E.....ooouttuieeemeeseeeseessesesseesseessessesssesssessssmesesssesssssssssesssssssssssmmessessssssesssnees 227
7.7 THEUSER CONTROL UNIToiiicireririeuiinerens seesesesesesssseseessssssasenes srsssssesssssssssssssssssssess sessssssssesessnsssssessnsssssns on 228
TBEXTERNAL TOOLScuiuriueeetseessessessesssessessses e sasss s ssse s s s bbbt 228
7.8.1 SUPENVISION TO0] ..ot sesss et bbbt es st s s s e s sansnnas 229
7.8.2 ViSUAITSALION TOONcuiveeieciesct et 230
7.9 SUMMARY L_...oooeeeereeeeseesseens sesesseesseessesssessessseesses 1eessesssessessseessessssssaess sesssesssessesssesssesseessesse sesessesseesesessmssessnnes 232
8. EXPERIMENTAL RESULTS ...ttt ess ettt st bbbttt 233
8.1 SIMULATED ROBOTottieuitrerseeeetesssessessstssessesssessesssss s ssesssesse s st st se bbb bbbt 233
8.1.1 BOUNAIY FOIOWING......cuiiueireieireieireieeei sttt 233
8.1.2 TAr QB SEEKING. .. vueuereueereeeereieersi et 235
B.1.3 PrOWIING c.eueiieeeeeeiresisee sttt esess e s se s seseeseseesesse e s sessssessssessssesssse st sesessesessnses et es et essnseesnssesesssasas 239

Table of Contents

8.2 PHY SICAL ROBOTcruuureuueeeseeeseeeseesseessessessaesssesssesssesssesssesssesssesssessssesssesssessesssesssesssesssesssessssessnessssssssssessnees 242
S35 = o0 o =T VA o | oY 1 oo S OO 242
8.2.2USE Of |ANUIMAIKS.......cuvuiirrieicirei ettt bbb 244
LS B = T o 1= 1= o OO 248
8.2, PrOWIING c.euevuteeeieeeet ettt 250

8.3 COMPARATIVE RESULTS.......couriureueerreeeeeeseesseeseessessesseessessesssessessssssessessssssesssssssssasssesssssassssssessessesssesessssnees 252
8.3.1 Comparison With the ACBARR SYSLEM.........ccvrururiieeiresieeisesisesessesessss s ssmesssssssssssesssessensssssssssns 253

8.3.2 Comparison with Scarecrow

8.3.3 Comparison With ROBIDIE.........ccciiierrse st
O. CONCLUSIONS ...ttt et ste st e st e st et e st et e st st e sesae st e s essesasasansa st esasesheebassesbessensesbessamestensestensanean 262
L 1S U @ 262

LS00 I S =011 VY oo o= 1 o) o OO OO 262

9.1.2 Lateral RODOt ArCRITECIUINE.....cveeeeceeetrere et es bbb b e s s s b ennes 263
Q.2 FUTURE WORKociuitiuiueiiineiesssessssssssesesesesesesasssesessssssssssssssssssssssssesesesesasesasesessssssssssssssssssssssssesesesesesesesesasesas 265
APPENDIX A ..ottt sttt seeteste st ete e s be st etesaeaesses stesesseseasasessaseese e eaenee bereebessese et eseeRe e esereebens shesbebeseneeaeesestenens 267
AL KHEPERA SPECIFICATIONS........cceitiiiectctsisissistssstsssa et ssssss st ssssss st ssss s st sssssssssssssssssstssssssssessssssssassssssasasas 267
A2, IMPLEMENTATION PLATFORMccooitiiiteisiictiiisess seetissssssssssssssssssssssses sessssssesssssssssssssessssssass stetessssssssssasesanns 267
AS. GNU CC CROSSCOMPILER.........coiiiteteteisistete st bs s sss s s st bt ssssebessssssssssessssassssesassssatessssssnsanas 268
A4. RELEVANT KHEPERA BIOSSERVICES.........cocoisiieretsesissseeesesisss s ssesssssssssssssssssssssssssssesssssssasssssssssssssesessssnns 268
A5, KHEPERA SIMULATOR PROGRAMMATIC INTERFACE..........coooeoeeeeeeeeessesesesesesasssasssessesssssesesssesssssassens 269
AB. COMMUNICATIONSWITH KHEPERAcoooeiiiietetcte sttt ssss s bttt s sttt s s s st ssssnsnanas 270
APPENDIX B ..ottt s besssssbessbesssssbesssas sssssssessstesassstssassstasass sessbessssssessssssesssassassas essssssasesssssssssesasans 272
B1. EDGE FOLLOWING BEHAVI OUR........coiviiieiecietsiesie et be s sse s sss s s sss st b sssssssesassssssssasssnssssssssnsssssnes 272
B2. LOCATION SEEKING BEHAVIOUR..........coeviiinitctetiisiete st sssss st sessssssssesssssssssessssssssssesssssssesesssssnssssesssnsnss 273
B3. FROWLING BEHAVIOUR.........oouiictiitetietcee et s s ts st s e e sassts s sbe st s sts s saasbe st ssssbesba s ssssbe et e stssesbasbssssssssesbassesssasasasns 274
B4, FROXY BEHAVIOUR. ...ttt cttte e te e e tesae e sseses sesessasestassaseneesasssaessess seesessesessasssseneetansssensas sesessansanns 276
B5. DETAILED MAP MAINTENANCEccoooiteiiiretesisste ettt bbb bbb s s bt asssssssbessssssssssssssas 277
APPENDIX C...ooovveetetietetee st vt s b bttt sbess shsssssassssassssssassssssaeses sebsssssessssssessssstassssssans stesesassssssetessssnssnses 279
C1. COMMON ROBOT UNIToiiieitiisiieetessesissssssssssssss s ssssssssssesssssssssssssssssssesssssssassssessssssssesassssssssassssssssssssssssassesens 279
C2. LOGICAL ROBOT UNITiieiietcteritieitsesises sessssesssssssssssssssssssssssss setsssssssssssssssssssssssesases sesssssssssssssssssesesesssessss sessses

C3. LATERAL RUNTIME UNIT

CA. USER CONTROL UNIT ...ttt st st snssses 287

REFERENCES ...ttt bbb bbb b 289

(vii)

Introduction Chapter 1

1. Introduction

Thefield of roboticsis advancing dong two fronts, both of which find expresson in this thesis
Firstly, progress is being made through the sheer weight of experience gained by researchers
as they attempt to apply robots with varied capabilities to widdy different and novel tasks.
Secondly, the field is advancing as the lessons learned in these specific gpplications are
encoded in reusable structures called “robot architectures’ which act as frameworks to
amplify the development of future gpplications.

This thesis contains contributions to both fronts. It shows how a robot possessing only short
range sensors can successtully perform “sentry duty” by exploring, mapping, and patrolling its
environment- tasks which would normally be expected to require long range sensors, such as
sonar or vison. In pardld with the development of this gpplication, a new robot architecture
cdled Laterd is evolved which makes behaviour co-ordingtion much smpler to implement
than in other related architectures such as Subsumption [[7]]. The “sentry duty” gpplication
plays a dud role as a “proof of concept” of the new architecture, and as an innovative
gpplication in its own right.

This chapter outlines the nature of the two threads of the thesis, what problems they seek to
solve, and interesting features of the proposed solutions. It describes how the two threads
relate to each other, and how the thesis is structured. The “Novel Application” thread is
discussed firg, then the “Robot Architecture’ thread, and findly a “road-map” for the thesisis
given, capturing the structure of the thesis and how each part of it rdates to the whole.

1.1 Novel application contribution

The nove gpplication discussed in this thess is to huild arobot capable of performing “ sentry
duty” (prowling, patrolling, exploring, etc.) with only very short-range sensors. The ideais to
take a second look a what is possble with minima sensing equipment, because there is a
range of potentiad niches for robots where sophigticated sensing and image processing would
be impractical- particularly where the robot has to be small and inexpensive, as when large
swarms of cheap “gnat” robots are to be used.

Introduction Chapter 1

The gpplication is implemented on both a physicd and smulated robot. The robot used is the
Khepera miniature robot (see Figure 1-1, and Section 7.2.1, page 207).

Fhobs Alsin Heizog

Figure 1-1: The Khepera Robot

For a discussion on the importance of making an “embodied” implementation of a robot
gystem, see Section 2.4.7 (page 22). Serious reservations have been expressed on the
usefulness of work that is entirdy smulated [10]], at least for the purposes of working
towards truly autonomous robots. The fact that the gpplication in this thess, dthough quite
complex, isgill physicaly implemented was considered an important god to achieve.

1.1.1 Theproblem

The major problems to be solved to build a sentry robot with no long range sensors are: how
to detect landmarks with such restricted sensing equipment; and how to build, use, and

maintain a useful map of the robot’ s environment in regk time.

1.1.2 Thesolution

The thesi's presents a novel gpproach to detecting landmarks in a robot’ s environment using
minima sensing equipment. Landmarks are important for robust cartographic systems because
they act as reference points from which the robot can correct its estimate of its position from
time to time and avoid losing track of its location. When rich sensor data are available, plenty
of cues are present from which landmarks can be recognised. Landmarks are difficult or
impossible to extract from the sparse sensor data available from coarse short range proximity
sensors. The solution proposed in this thesis is that, while landmarks may not be recognisable
directly from any sensor sgnature, they can be identified by monitoring the robot itself when it
interacts with them. For example, while it may not be possible to identify the presence and
shape of a corner from sensor deata, if the robot performs an agorithm to follow the curve of a
boundary (a very smple task even with limited sensor deta) then the characteristics of the

corner become obvious by andysing how the robot itself moves around it. The landmark could

2

Introduction Chapter 1

be sad to be an emergent feature from the combination of the robot's behaviour with its
environment. Thisis the key idea that alows the proposed cartographic syssem work with low
bandwidth sensors.

How a map can actudly be put to use effectivey is equdly as important as the mechanics of
maintaining it. Any form of map will generdly grow in size proportionately with the total area
the robot has explored, so care is needed to ensure the map remains usable as it gets larger.
This paper presents a method for maintaining continuoudy updated locd “windows’ onto the
overal map a different scaes, alowing the information needed for different tasks to be quickly
congrained and filtered. This prevents the robot from being swamped by the mass of detall to
be considered. This supports the use of the cartographic system on robots with less powerful
processors.

The thesi's shows how these ideas together give a useful cartographic system with less sensing
and processing requirements than comparable systems, and describes the condraints it places

on the behaviour of arobot usng it.

1.1.3 Novel features

The main innovations of this section of the thesis are-
The cartographic system, capable of maintaining a ussful map from proximity sensors done.
The sat of behaviours of the robot, designed to achieve an overal “sentry”-like behaviour
using the cartographic system and operating symbiotically with it to ensure it receives the
data it needs to map correctly. The behaviours dso alow genera god seeking ability.

These areas are explored in Chapters 4 and 5 (see Figure 1-2 at the end of this chapter for a

thess “road-map”).

1.2 Robot architecture contribution

The nove contribution to robot architectures in this thess is embodied in “Laterd”, a new
robot architecture. Laterad is a “behaviour-based” control technique where the desired
functiondlity of the robot is implemented by building and combining a set of “behaviour”
modules (see Chapter 3).

Introduction Chapter 1

1.2.1 Theproblem

Behaviour-based control has many advantages over traditiond techniques in terms of reaction
gpeed, robustness, and ease of design, as exemplified by the best known of such control
architectures, “ Subsumption”. The characterigtic festure of Subsumption is that the robot’s
control system is implemented as a series of layers, each enhancing the layer below it (by
sdective suppression, inhibition, and replacement of dataflows) to give an incrementaly more
competent robot. If a layer becomes disabled, the robot can till operate by reverting to a
lower level of competence. This smple organising principle is naturaly robust, and has proven
remarkably powerful. It is less hdpful, however, for structuring control systems which cannot
easly be madeto fit into asimple layered hierarchy.

1.2.2 The solution

In this thes's a new behaviour -based robot control architecture, caled “Laterd”, is presented
that supports structured behaviour combinaion rather than requiring the grict layering
mandated by Subsumption. It alows behaviours to be organised in whatever decomposition is
naturd for the control system, while ill retaning Subsumption’s ability to implement
behaviours incrementaly and the natura robustness thet this gives.

Laterd’s structurd flexibility is achieved by a corresponding flexibility in its priority system.
The priority system in a behaviour-based architecture is critical Snce it determines how conflict
between behaviours is resolved. In Subsumption, the priority of a module is determined by the
layeritisin, soitisfixed a alevel decided at design time. In Laterd, the priority of a module
is ingdead determined by the importance of the task it performs. This is a dynamic property
which can change as the robot’ s Situation and goa's change. While the hierarchy of behaviours
in Subsumption is rigidly fixed, in Laerd it changes fluidly according to need using a system
cdled “sponsorship”.

A tool for amplifying the implementation of a design made using Laterd sructures is aso
developed. Thistool, Zac Script, is then used to implement the “ sentry” behaviours designed in
Chapter 5. A complete discusson of the nature and utility of Zac Script is given in Chapter 6.
The details of the Lateral architecture are presented in Chapter 3. It is compared with other
robot architectures in generd and Subsumption in particular, and the advantages it has br
building a behaviour-based robot control system are elucidated.

Introduction Chapter 1

1.2.3 Novel features

The main innovations of this section of the thess are-
The flexibility of the decompostion of arobot’s control system that can be supported.
The new ways behaviours can be combined using “sponsorship”.
The Zac Script tool for encoding Laterd condructs in a draightforward and
platform-independent way.

1.3 Overview of thesis content

Thethessis structured in the following way -
Fird, a review is made of the literature relevant to both threads of the thesis- the robot
architecture, and the sentry application (Chapter 2).
The new robot architecture, Laterd, is then described, judtified, and compared with other
architectures (Chapter 3). This is done before any discusson of the sentry application
because that gpplication is built usng the Latera architecture, so the nature of the
architecture must be clear first. The architecture acts as a guide for and a set of congtraints
on the design of the sentry application.
Next, the desgn of the sentry gpplication is discussed. This involves two main issues-
cartography (Chapter 4), and the choice of behaviours for the robot (Chapter 5). Both are
examined and related to each other in this pair of chapters.
The Zac Script tool for implementing behaviours in Laterd is then introduced (Chapter 6).
The design of the sentry application and the discussion of the Latera architecture are
related to each other to show how the gpplication is built from the architecture.
An implementation chepter (Chapter 7) next shows how the entire architecture and
application developed so far can be connected to a robot to become a functional control
system. This chapter discusses the actual robot the work was implemented on, Khepera.
Figure 1- 2 illugtrates the structure of the main body of the thes's.

Introduction

Chapter 1

Chapter 2 Chapter 3

Background

T o] Crepter 4

_____ e |

Chapter 5

Chapter 6

Chapter 7

Chapter 8
Chapter 9

Figure1-2: Road-map, structure of main body of thesis

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

details the State of research relevant to this project. It describes the various
classes of robot architectures, giving examples of each, and contrasts their
functiondity. It dso examines approaches taken to map building and use by
other researchers.

develops the Laterdl Architecture, a novel robot architecture for smplifying
behaviour co-ordingtion.

describes the design of a cartographic system suited to a robot performing
“sentry duty”

describes the design of behaviours for a robot performing “sentry duty”, using
Lateral.

introduces a tool for ading the implementation of a behaviour - based design
cdled “Zac Script”.

discusses implementation of the sentry design on a physica and smulated
robot.

evduates the performance of the sentry, and where possble makes
comparisons with other research.

discusses the project, and gives conclusions drawn from the work.

References and appendices follow.

Introduction Chapter 1

Background Chapter 2

2. Background

This chapter presents a literature review of topics relevant to this thess. It examines the theory
of robot architectures, and different approaches taken to robot cartography. The overview of
architectures provides the background necessary to wnderstand the choices and decisions
made when developing the Latera robot architecture in Chapter 3. The review of cartography
is needed for Chapter 4, where an approach to map building and use in a robot with short

range sensorsis described that builds on the ideas reviewed here.

2.1 Review of Robot Architectures

At the firg International Symposium on Robotics Research, robotics was broadly defined as
“the intelligent connection of perception to action” [[1]]. This connection is provided by the
robot’ s control system (see Figure 2-1).

Sensors Perception

Roboticsis:
“the Intelligent
Connection of
Perception to Action”

Robot

Actuators Action

Figure 2-1: Definition of robotics

A robot architecture is a set of guiding principles used to structure arobot’s control system. It
does this both by providing a scheme for the organisation of the system, and by congdraining
the way in which the system can attempt to solve control problems. Hence the architecture is
reflected not only in the building blocks from which the control system is constructed, but dso
directsitshigh level design. In summary, an architecture is responsible for:-

providing a set of principlesfor organising a control system, and

imposing aset of congraints on the design of that system.

Background Chapter 2

Robots vary greetly in the hardware and software they use, and work done on one robot is
often impossible to gpply directly to others. Robot architectures, however, are reusable and
for this reason research is often concentrated on them rather than on specific gpplications built
from them. A wide range of robot architectures exigt, varying in their domains of application
and philosophica background. Some of the criteria they can be categorised under are as
follows-
Symboalic or non-symbolic- an architecture may ded with atomic “facts’ or may use
distributed representations, such as neurd networks and connectionist models generdly.
Homogeneous or inhomogeneous- architectures may require that the same single
fundamental organisationa unit be used throughout the control system, or may dlow a
range of such units. In the firg casg, it is implicitly assumed that a sngle form of building
block is sufficient to congtruct any control system, including rea-time humen-level
intelligence, while in the second case it is assumed that control systems may need to be
composed of structurdly different modules.
Deliberative or reactive- an architecture may support protracted reasoning, or may be
geared towards building systems that react directly to environmenta cues. In the first case,

the architecture is said to be knowledge driven, in the second caseiit is data driven.

2.2 Classical Robot Architectures

Robotics developed as a sub-fidd of Artificid Intelligence (Al), so it was naturd thet it was
heavily influenced by the methodologies that had proved successful in that area Al has
evolved a useful toolbox of techniques goplicable to problem solving and planning, whereby
given a auitable description of the state of the world, powerful search agorithms can be
applied to find the appropriate manipulations to move from that state to a desired goal State.
This is grongly reminiscent of what robots need to do, and Al-based or “classca” robot
architectures try to make use of such techniques. To do this, it is necessary to trandate from
sensor data to a description of the state of the world, and from manipulations on that
description to physicd actuator commands. In terms of the criteria listed in the overview, an
architecture congtructed in thisway is-
Symbolic- Al techniques are based on manipulating systems of symbols.

Background Chapter 2

Homogeneous: symboals are used throughout the control system for dl stages of reasoning-
for describing the world, expressing plans, etc.
Deliberative- Al is strongly biased towards describing a problem, carrying out extended
reasoning, and generating a solution.
This initid decomposition leads naturdly b a “pipeined” gpproach to interacting with the
environment, where the overd|l sysem is divided into a number of subsystems arranged in
series, asshownin FHgure 2-2.

 Actuato

Figure2-2: Applying Al to robotics

Typicaly the decomposition shown is further refined to consst of the following modules:-

1. Perception- this interfaces to the sensing devices connected to the robot.

1. World modédling- this subsystem uses the results of perception to update an internal
modd of the robot’s environment, and to keep track of where the robot is with respect to
that model.

1. Planning- this attempts to work out how it will achieve its gods given the current world
dtate and the state of the robot.

1. Task execution this bresks down the plan developed by the previous subsystem into
detailed motion commands.

1. Motor control- this interfaces with actuators to express motion commands generated

during task execution.

10

Background Chapter 2

These modules Hill act in series, with eachone in turn processing the results of the previous

module, as shownin Figure 2-3.

Figure 2-3: “ Pipelined” approach of classical control

2.2.1 Domain of Application

Each of the subsystems enumerated above is a complex program, and al have to work
together well for the robot to operate at al. However, some of the subsystems have many
unsolved problems associated with them, such as perception and world moddling, that make
them feasble only in very structured environments. The noisy and random nature of the redl
world overwhelms them. In particular, as the complexity of the environment increases, the time
needed to perceive, model and plan about the world increases exponentialy. Hence classica
robot architectures are most successful in-

Very structured environments, such asindugtria applications[[2]], or

Simulated environments or “toy worlds’ [[3]].
A specific eample of adasscd architecture will now be given.

2.2.2 An examplearchitecture- RCS (Real-Time Control System), Albus [[4]]

This sophisticated architecture in the classca control tradition consists of anested hierarchy of

modules, with each layer distinguished by a characterigtic bandwidth range, and with tasks at

each level being decomposad into sequential sub-tasks. The components of this architecture

are-

1. Sensory Processing modules- These filter, mask and correkte sensor data, and perform
feature detection, pattern recognition etc.

1. Knowledge Database modules- These embody knowledge about the logicd and
dynamic behaviour of the world.

11

Background Chapter 2

1. World Modeling modules- These modd the state of the world and predict the results of
actions using the output of sensor processing and a knowledge database.

1. Value Judgement modules- These evauate states and the rdiability of sate estimations,
perform cost-benefit andlyss, and may track the maich between observations and
predictions.

1. Behaviour Generating moduless These are concerned with decomposing tasks into
achievable sub-tasks usng any of a number of planning dgorithms- smple look-up, state-
space search, etc.

1. A communications system between the modules.

RCS is a reference modd architecture for intdligent systems developed a the Nationd

Ingtitute of Standards and Technology (U.S.) and has been deployed in various applications

such as a motor assembly testbed, an intelligent workstation for deburring and chamfering

components of jet engines, a control system for a U.S. pogtd facility, and in robots for floor-
cleaning and hospitd service. It is part of an overd| effort to make industrid machinery more
intelligent by providing an open control architecture supporting advanced Al techniques.

2.3 Reactive Robot Architectures

Robots built usng classcad robot architectures are cgpable of performing sophidticated
reasoning, but only in well-structured environments. The first family of robot architectures to
diverge from this patern were caled “resctive’. They attempted to operate in complex
ungructured environments by reacting to environmenta cues rather than trying to
second- guess the environment by modeling it. As shown in Figure 2-4, this form of control is
the exact opposte of classcd contral, a least dong the dimensions of environmentd and
cognitive complexity.

12

Background Chapter 2

> Classical

> Control

< —

g complex cognition

S simple environment

(&)

Q simpler cognition

= complex environment

c

@ -

S Reactive
Control

\J

Environmental complexity
Figure 2-4: Reactive architectures versus classical control

This type of architecture was not developed explicitly, but rather emerged repeatedly from the
work of researchers engaged in widdly varying projects, working with totaly different
hardware and software, and using very diverse vocabularies to describe their methodology
[[5]]. In the robot control systems that began to appear, the robot was controlled by
programming it with a set of condition p action rules, or some equivaent abstraction, where
the conditions are combinations of sensor readings and state variables, and the actions are
smple functions performed on actuator settings or state variables. By coordinating these rules
through state variables, robots are produced that, in their limited domain, perform very well
and give the impresson of advanced cognition smply because the complexity of their
environment finds direct reflection in ther actions. Robots controlled in this way, usng
condition p action rules, are by their nature reactive. There is little processng or modelling
in the route from sensor data to actuator settings; the condition/action pairs are like reflexesin
biologica systems.

2.3.1 Domain of Application

Reactive robots have good rea-time characteristics, which is an important advantage over
classcaly controlled robots because “ An oncoming truck waits for no theorem prover”

[[6]]. They can keep pace with changes in a dynamic environment, since the path from change
in sensor reading to change in actuator setpoint is short, providing a direct coupling of
perception to action.

13

Background Chapter 2

2.3.2 Example architecture- The Niche Robot Architecture, Miller [[5]]

This is a very typicd reactive architecture. Niche robots are programmed usng a set of
condition p action rules, with the following semantics-

“Conditions’ are tests of the gtate of sensor vaues and interna dtete variables. If they

become true, the associated action is executed.

“Actions’ are smple manipulations of actuator settings or dtate variables.
There is no hierarchy mandated, but if the robot needs to switch between sets of rules under
different conditions, it is useful to collect rules into “scenes’, recognised by having a common
component in their conditions, and to control switching between scenes using another batch of
rules caled the “ sequencer” (see Fgure 2-5).

> Selectio | — P
acti i Actuators -

Figure 2-5: Niche Robot Architecture

Robots built usng this architecture are suitable for gpplications where very tight rea-time
condraints must be met. They are reldively easy to design, but any given robot is very limited
in scope (hence the term “niche’” robots). Within their restricted domain the robots can
perform very well and gppear to exhibit a higher level of cognition than is actudly the case.
The architecture described here has been essentidly re-discovered time and again by

numerous researchers working in different contexts[[5]].

14

Background Chapter 2

2.4 Behaviour-Based Robot Architectures

Behaviour-based robot architectures developed as a more sophisticated dternative to classical
architectures than purely reective architectures, which are limited in their ability to perform
time-extended tasks[[7]], as Figure 2-6 illustrates.

A

> Classical

x Control

?El complex cognition

o simple environment

(&)

w H H i -

2 better cognition BEha(\:“OUV blased

= -

= same complex environment ontro

(@]

O - . . -

© simpler cognition Reactive
complex environment Control

\

Environmental complexity
Figure 2-6: Behaviour -based robot architectures

Behaviour-based control architectures are characterised by the following principles and
congtraints [[8]] -
Modules are somewhat time- extended.
Modules tend to be more reactive than delibertive.
Modulestend to be rdatively smple.
Modules interact with each other through the environment, not the system, as much as
possible.
The world is conddered its own best mode- it is never out of dete or inaccurate- so
modules conault it directly whenever practicd, rather than trusting the judgements of other
modules.
Modules uses distributed representations tailored to their particular needs, and do not share
their representations with other modules.
Execution of modulesis not serialised.
The system is incrementdly implemented, with aworking system exigting from the very first
module.

15

Background Chapter 2

Behaviour-based architectures are dominated by the first and most well known of al such
architectures, “ Subsumption”. This architecture will now be examined in detal, as the work
presented in this thesis builds on this architecture.

2.4.1 Subsumption

Subsumption uses a “horizontal” decomposition of a robot’s control system, rather than the
“vertical” decomposition used in classic contral. If a robot is drawn as a “black box” with
sensor input entering on the left and actuator output exiting on the right, then he system
decomposdition used in classica control dices the black box verticdly into a sequentia pipeine
of modules, with sensory information entering only one, and being processed by each in turn
until it has passed through the entire pipeine and emerges as actuator commands.
Subsumption, in contrast, divides the sysem “horizontaly” into layers arranged in pardld

rather than in series, each of which have smultaneous access to both sensors and actuators

(seeFigure 2-7).

Work usﬁﬁw l

oy |

JU0D 1010|A

Wan
Avoid obﬁgﬁﬁ@ .
Classcd Al Architecture Subsumption Architecture

Figure 2-7: Classical Al architecture versus Subsumption architecture

Rather than using a functional decomposition, as is favoured in classcd control, the system is
divided into “task achieving behaviours’. In generd this type of horizontal decompostionisthe
one usad in al behaviour -based robot architectures. Comparing the kind of modules present in
classical control and Subsumption Sde by Sdeasin Table 2-1, the classica modules are seen
to be concerned with transformations on representations, while modules in Subsumption have

direct expression as externaly observable behaviour.

16

Background Chapter 2
Table2-1
Modulesin Classical Al Architecture Modulesin Subsumption Architecture
Perception Work Usgfully
World Modd Use Maps
Fanning Explore
Task Execution Wander
Motor Control Avoid Obstacles

Each individud “horizontd layer” will contain eements of dl the “verticd” tasks found in a
classica system, but implemented in a form tailored to the requirements of the behaviour it is
responsible for, such as the ability to move away from an obstacle, to move around an areain
a random fashion, or to explore the robot’s environment. Any given module need not tackle
the whole business of getting the robot from A to B; ingtead, it only performs that part of
perception, planning, etc., which is appropriate to the task it has to perform.

The horizontal decomposition used in behaviour-based systems introduces a new issue that
does not affect classica control. Since more than one module can now potentidly attempt to
control an actuator a the same time, conflict is possible if two or more modules attempt to
gain control of an actuator smultaneoudy. Every behaviour-based system must have some
way of resolving this conflict, and it is the different gpproaches to doing this that distinguish
behaviour-based architectures (of which Subsumption is just one) from each other.
Subsumption resolves conflict by arranging layers in afixed hierarchy, with higher layers given
priority over lower layers, as explained in the following sections.

2.4.2 Levelsof Competence

In Subsumption, a robot’s control system is specified by defining a number of desred levels
of competence for the robot. Each level of competence is an informa description of how the
robot should behave for any environment it will encounter. The levels are arranged sequentialy
by their degree of sophidtication, with each level enhancing the competence supplied by the

level beforeit to provide a higher competence.

Table 2-2 shows an example set of competences used by Brooks[[7]].

Table2-2

17

Background Chapter 2

Level | Behaviour of robot

0 Avoid contact with objects (whether the objects move or are stationary)

1 Wander amlesdy around without hitting things

2 “Explore’ the world by ®eing places in the distance which look reachable and
heading for them

3 Build amap of the environment and plan routes from one place to another

4 Note changesin the “gatic” environment

5 Reason about the world in terms of identifiable objects and perform tasks related
to certain objects

6 Formulate and execute plans which involve changing the state of the world in some
desirable way

7 Reason about the behaviour of objectsin the world and modify plans accordingly

Each levd of competence assumes the existence of dl lower leves For example, the
exploration competence is free to move as it pleases, secure in the knowledge that the lower
level competence designed to avoid contact with objects will prevent it from entering into
collison with an obstacle. Once the obstacle avoidance competence is present, higher levels
do not need to be aware of the problems of avoiding objects, because if there is something in
the way, this competence will resolve that problem for them. Note that while higher leve
competences are aware of lower level competences, lower level competences are permitted

no knowledge of higher level ones.

2.4.3 Layersof Control

Each level of competence is implemented incrementaly by adding a corresponding layer of
control to the robot. Suppose that a robot currently has layers of control implemented
corresponding to al competences up to the n competence. Then the (n+1)" layer of control
can be built. This layer is alowed to examine data from the n layer. It may also place data
into the interna connections within this layer, overriding the norma data flow. The n™ layer
remains unaware of the new layer above it, and runs as usud, except for the occasiond

intervention by the higher layer to make the refinements to its behaviour necessary for a higher
level of competence. Thisisthe essentid characteristic of Subsumption (see Figure 2-8).

18

Background Chapter 2

Higher layers can view
’7 and modify the data

I
Work usefully

flow in lower layers

Sensor EXp : \i

All modules oo e -

have access to

|]
Sensors I_Amldpﬁstacke&_.

Figure 2-8: Subsumption architecture

All modules
have access to
actuators

A successful implementation of a layer of control is a functiona robot exhibiting the new

competence and with dl other previoudy implemented competences retained.

2.4.4 Implementation of Individual Layers

How each layer is implemented is a separate issue to the main thrust of the Subsumption
architecture specified above. The only congraint is that the implementation should alow higher
layers to examine and modify interna dataflows in lower layers. Brooks [[7]] chooses to build
layers from fixed topology networks of Augmented Finite State Machines, with communication
via connecting “wires’ (see Figure 2-9). The wires, snce they carry dataflow, are the dements
that higher layers interact with to enhance lower layers. The “ Augmented” in Augmented Finite
State Machines denotes that the state machines are not constrained to be pure state machines
in the mathematica sense, but are permitted some internd storage (in the form of registers) and
timers,

For a higher layer to examine data flow in alower one, it attaches an extra wire to whatever it
wishes to monitor. There are a number of schemes for overriding norma data flow. An extra
wire can terminate at the target of another wire (an “input Ste’). If any message flows in the
extra wire, it inhibits any message aong the other wire for some pre-determined time (the
“Characteridic time’ of the system). An extra wire can adso terminate at the source of another
wire (an “output Ste”’). Any message flowing in the extra wire will not only inhibit the other
wire, but will be inserted on to it, suppressing and replacing the norma dataflow. A variant of
this type of connection appears in later versons of Subsumption [9]], cdled defaulting,

19

Background Chapter 2

where priority is given to the origind wire, with dataflow from the new wire only being

accepted when there is no data on the origind wire for agiven time,

Defaulting Inhibiting

Augmented Finite

e — . >
Inputs State Machine Outputs
—>

T Suppressing

Figure 2-9: The use of wiresin Subsumption

2.4.5 Development Strategy

Brooks strongly advocates a particular approach to the development of a Subsumption system
beyond the specific details of levels of competence and layers of contral [[7]] :-

Implement the control system incrementaly.

Use “data driven” design.

Avoid usng smulation.

Avoid usng a shared world modd.
Each layer should be implemented in turn, and debugged until flawless before proceeding to
the next higher layer. This gpproach ensures that dl bugs must belong to ether the layer being
added or the interface between that layer and the previous one. This incremental testing
method is a software engineering principle recommended generdly, not just within the specific
context of robot control systems.
The control system should be “data driven” (reactive rather than deliberative). This means that
the action of a part of the control system should be primarily a consequence of events or
opportunities in the environment, and only secondarily dependent on interactions with the rest
of the control system. Such a system avoids dependence on a centrdised planner, since
planning under these conditions will occur in a digtributed fashion.

20

Background Chapter 2

There should be no amplified test environments. Robots usng Subsumption should be
embedded in the red world, and interact with it directly, without depending on human
assstance.

No centra representation or “World Mode” should be used. Brooks has claimed that in a
Subsumption system, no variables should be ingtantiated, no rules matched, and no choices
made. Certainly if representation is used, it should be distributed, and never shared between
layers.

While Subsumption need not necessarily be implemented in the form of finite state machines,
many of the criteria Brooks associates with his particular implementation should be retained.
The implementation should avoid the use of globd data and should not require “dynamic
communication”— when a message is sent, there should be no need of an indication as to
whether it has been recaived or not. This last point is a pragméatic one geared towards
fadilitating afast control system.

2.4.6 Practical Argumentsfor Subsumption

Before examining the philosophical arguments for and againgt Subsumption, it is worth looking
a its practica consequences. The most significant aspect of Subsumption is its incrementa
neture. This is the primary factor in its success in producing complete functioning physicaly
redlised robots.

Consider arobot initsinitial state without any control software present. At this point the robot
is essentialy a hardware “trolley” carrying a collection of sensors and actuators. If sgndled to
move in a certain direction, it will do so, until it hits something and bregks.
Suppose a conventiond Al module is added to the raw robot. A natura one to implement first
isMotor Control. With the addition of this module, the nature of how the robot is commanded
will have changed; it will now be easier and a a higher leve of abdtraction. But the nature of
the robot has not changed. If commanded to move in a certain direction using the new
interface, the robot will again move forward until it hits something and bresks. If another Al
module is implemented aso, Task Execution for example, then the robot becomes even easier
to control. Now it could be given a more complex peth to follow rather than moving in a
draght line. But it will gill smash into any obstacle it meets it can't get any smarter until the
Planning module is implemented, and that can't be done until the modules working from

21

Background Chapter 2

Perception up are implemented. In short, the robot remains just as brittle as its raw hardware
until al the Al modules of its control system have been implemented. Before anything works,
everything must work.

If instead a Subsumption layer were to be added to the raw robot, the nature of the robot
changes immediately. The most naturd layer to add firg is the Obgtacle Avoidance module.
Once this is added, if the robot is Sgndled to move in a given direction it will do so, until it
meets something and stops to avoid a collison. The robot has become “ smarter” immediately.
As each layer isadded in turn, the robot is given an increasing vocabulary of behaviours. But it
is functiond a each stage- the robot starts working from the time the first layer has been
added.

2.4.7 Philosophical Argumentsfor Subsumption

Philosophicaly, Subsumption is rooted in a rgjection of the Symbol System Hypothesis, or at
least of the main body of work which developed in Al under its influence.

The Symbol System Hypothesis

This hypothesis assarts that “intdligence” arises through the manipulation of symbols in a
domain-independent manner, where the meaning of the symbols is irrdlevant to the reasoner
[[10]]. “Meaning” enters the picture only when observers of the system identify symbolsin the
system with some corresponding entity within their own experience. The symbol system
hypothesis is an implicit assumption behind much work in Artificid Inteligence. When gpplied
to roboatics, it isimplicit in the hypothes's that perception and action, which are by their nature
non-symbolic, should have symbolic interfaces so they can be reasoned about. Brooks
suggests that this interface between the symbolic and the nonsymboalic is critical, and has been
mishandled by conventional Al. To reason a a certain level of abdraction, a system of
symbols representing entities and their relationships at that level of abstraction isrequired. It is
tempting to assign the task of generating such a representation to the pre-symbalic part of the
system, i.e. the interfaces to the red world. But in Brooks opinion this whole emphasis on
abstraction from the real world is damaging because:

It directs researchers towards the elusive god of building a general purpose system to

ddiver complete descriptions of the world in symbolic form, rather than more redligtic task

driven perception systems such as active vison [[10]].

22

Background Chapter 2

It builds into the system the assumption that knowable objective truth exigts, with much
added complexity needed to work around that assumption so the robot can ded with
incomplete information about complex environments[ibid.].
Brooks believes this process of abgtraction is the difficult part of the problem posed by
robotics, and that there is no clear dividing line between it and reasoning. Hence
conddering it just an “interfacing issue” is mideading. That this is S0 is attested to by the
wedth of anecdota evidence of robot smulators (which don't have to perform this
interfacing) that performed fine but proved utterly incgpable of being generdised to working
in the rea world [[11]].
Assuming that the state of the world can be known completely by a reasoning entity is
acceptable when, for example, the entity is a compiler and the “world” is its host operating
system. It is not so redigtic when the entity is a robot, operating in an environment much more
complex than that experienced by any disembodied software entity, and of which t can only
sense a gmdl dice & atime. Hence, for robots, the Symbol System Hypothes's, athough not
necessaily invalid, has proved mideading. In replacement, Brooks advances the Physical
Grounding Hypothesis.

The Physical Grounding Hypothesis

The Physcd Grounding Hypothess dtaes that “to build a system that is inteligent it is
necessary to have its representations grounded in the physical world” [[10]]. The syssem must
be connected to the red world- only embodied ertities can be physicaly grounded, unlike with
symbol systems. Physical grounding requires that al the robot’s knowledge must be extracted
from physica sensors and that its goas must eventualy be expressed as physicd action.

Brooks places great importance on embodiment. He suggests that concentrating on abstract
“reasoning” is missing the fundamenta nature of inteligence. The evolution of insects from the
firs angle-celled entities took about 3 hillion years; from there to the immediate predecessors
of the great apes took about 430 million years;, and from there to present day humans just
another 18 million years. This last step in which “human inteligence’ (language, resson,
problem solving behaviour, etc.) developed seems smal compared with the time taken to
evolve to just before that level, and suggests that the more generd type of intelligence

concerned with smply exiging and surviving in a complex world is much more important, and

23

Background Chapter 2

much harder. By enforcing Physicad Grounding and requiring robots to be physicdly redised,
Brooks hopes to advance research in this neglected area which is often just “abstracted away”
into non-existence. He believes that smulated robots have their intellectud work done for
them by those credting ther input, and that a fundamental paradigm shift is necessary for a
robot thet can cope for itsdf with the unpredictability of the real world seen through noisy,
inaccurate sensors.
Brooks enumerates the following key aspects of his work that he views as crucid for making
genuine progress in robotics research:-
Situatedness- robots should deal with the real world, not with abstract representations of
it.
Embodiment- a robot is part of its environment; its actions change the environment and
this effect isfed back to its sensors.
Intelligence- the robot, as part of its environment, appears intelligent to an observer. That
intelligence lies not only in the robot, but in its Stuaion in the environment, the
characterigtics of its sensors, and how the robot’ s physica form interacts with the world.
Emergence- externa action may not be identifiable with any concrete entity or cause
within the robot’s control system, and instead the action may emerge from interactions of
components both between themsdves and with the world.
Brooks summarised the conclusions of his robotics research asfollows-
We have reached an unexpected conclusion (C) and have a rather
radical hypothesis (H)
C 3 When we examine a very simple level intelligence we find that
explicit representations and models of the world simply get in the way. It
turns out to be better to use the world as its own model.
H 3, representation is the wrong unit of abstraction in building the

bulkiest parts of intelligent systems.”

2.4.8 Experienceswith Subsumption

MIT Robot “Allen” [[10]]

This early robot implemented obstacle avoidance, random wandering, and smple exploration

where the robot targets a distant area and tries to reach it. Despite the robot's smplicity, it

24

Background Chapter 2

exhibits dl the hdlmarks that have come to be associated with Subsumptionbased robots- it
is robust, autonomous (it does not need to be fed external gods), and solves tasks using a

hierarchy of behaviours.

MIT Robot “ Herbert” [[10]]

This robot was designed to wander through alab and pick up empty soda cans. It did thisin
an interesting way, where the sequencing of behaviours needed to pick of a can was produced
by environmentd cues rather than an explicit internd sequencer. This dlowed it to teke
advantage of opportunities in the environment by skipping behaviours that were redundant,
and made it easier to recover when the unexpected happened because so few expectations
were built into the robot. This is difficult in conventiond Al, but very naurd under
Subsumption.

MIT Robot “ Toto” [[8]]

Toto, like dl of the Subsumption robots & MIT, implemented obstacle avoidance and
wandering, but also demonstrated boundary following, landmark detection, map construction
and path finding. It kept track of where it was by building an internd “map”, o it could find its
way back to a specific area if commanded to do so. The nature of this map-building is
interegting, given the prohibition within Subsumption againgt building world modds. Firg,
landmarks are detected by a group of behaviours each of which monitors the robot’s motion
and the state of its sensors to detect a specific set of conditions that identify a particular
noteworthy feature such as a “corridor”. When one sich landmark is detected, an empty
“behaviour-shdl” is associated with it. In effect, the robot acquires a new behaviour
specificdly geared to identifying that landmark, and new “behaviour-shels’ will only be
asdgned if no exiging behaviour recognises the robot's current location. Behaviours
condructed in this way are attached to each other to reflect their observed topologica
relationships. The resulting collection of behaviours acts as Toto's map. Toto can plan a path
towards a particular target by activating the behaviour associated with that target. The
activation will spread through the topologica links between behaviours until it reaches the one
associated with the robot’ s current position, and from there the robot need only trace the trail

backwards to arrive a its target. This method of map congtruction and use makes use of

25

Background Chapter 2

“active representation”- it is procedura and distributed, rather than declarative and centraised

as in conventiond Al.

The Nerd Herd [[8]]

This experiment in group behaviour conssted of 20 mobile robots cooperating in collecting a
scattered set of “pucks’. In building the robots control systems, the idea of “basis behaviours’
was introduced, and the Subsumption methodology was extended to facilitate the grouping of
such behaviours into composite behaviours. Two types of grouping were used, direct and
tempora. Direct combination summed the effects of the behaviours per actuator, while
tempora combination switched between behaviours, with only one being active & atime. The
structure these ideas lead to is good for multi-robot scenarios where robot’s behaviours
interfere with each other. It is dso a suitable foundation on which to apply learning, where the

robot learns what behaviours are useful under what conditions.

The Reactive Accompanist [[12]]

The reective accompanist is a program whose god is to derive the chord structure of amelody
(played live) in red time, mimicking the ability of musicias to “play dong” unfamiliar melodies.
In contrast to the examples of Subsumption given o far, the accompanist is not a traditiona
robot, dthough it has many of the properties of one. This program is interesting because it is
implemented in atotaly different software environment to the MIT robot series, yet retains all
the key features of Subsumption.

2.4.9 Limitationsof Subsumption

Brooks origindly proposed that a Subsumption architecture be comprised of a hierarchy of
control layers where each layer is cpable of overiding dl inferior layers a any time and
taking control of the robot for as long as it wishes [7]]. It then relinquishes contral to
whatever inferior layer was previoudy in command of the robot. The layer which “ subsumes’
control of the robot at any point need have no knowledge of what is currently controlling the
robot a tha point, and smilarly the “usurped” module need have no information about the

“subsumer”.

26

Background Chapter 2

It can be argued that this scheme has anumber of weaknesses:-

1. In practice it has been found that this very loose coupling between layersis not sustainable.
Layers often need to pass information back and forth, but “pure’” Subsumption control only
alowsthison an ad-hoc basis.

1. The divison between layers is quite rigid. Thus, if a layer 2 competence decides that it
wants to control the robot, a layer O competence cannot resst it. Such a decison is
potentidly hazardous if the layer O competence has abilities that the layer 2 competence
neglects. If layer 2 does not understand the behaviour required to retreat in the face of an
on-coming truck, but layer O does, layer O cannot stop disaster from occurring. This leads
to the requirement that each layer implement the full competence of dl lower layers in
addition to its own tasks, which is undesirable because it wastes resources and makes it
difficult to ater a given competence a a later sage. The typicad solution adopted by the
MIT robots is for higher layers to “grope around” in the internals of their subordinates-
which is dso undesrable, this time from a software engineering standpoint. The difficulty
seems to arise from the rigid and early decision about what competences belong “above’

others.

2.5 Hybrid Robot Architectures

Reactive robot architectures avoid the need for explicit planning, a least for basic robot
behaviour. At some level, however, it may prove beneficid to integrate Al-inspired modules
into the robot for conventiona god-oriented behaviour (dthough Brooks denies this).
Unfortunately, traditional planning methods are proving difficult to apply, as they are just not
designed for use in “Stuated agents’ (objects that are in continuous interaction with the
physica world).

The most graightforward form of plan to generate and execute is a ssimple sequence of
ingructions, each of which is executed in order. Such plans are applicable to domains where
operations never fail, or where it is acceptable for an entire plan to fail if one of its stepsfails.
This clearly does not correspond to a red unconstrained environment, but will correspond to

the environment of an indusgtria robot (which explains the success of such robots).

27

Background Chapter 2

There are two basic ways to improve on such plans. It is possible to retain the plan-making
process asit is, but to use amore sophisticated executive or plan-user which follows the plan
closdly but has greater freedom in the detailed actions it follows. An example of this is to
formulate a plan as if it were controlling a robot entirdy, but to add reactive control to the
robot so it can, if necessary, suspend plan execution to navigate smal unforeseen obstacles
efc. Such a cgpability is a definite improvement. However the robot is il limited by being
grongly committed to asingle inflexible plan.

A second approach is to change the nature of the plan, by enhancing it to take account of the
possible failure of a step and provide dternative responses based on the various failure modes.
Although such enhancements can be continued ad infinitum and so would seem to be capable
of giving arbitrarily sophidticated behaviour, in practice it is difficult to second-guess the
environment, since the number of possible results of any action is exponentidly large.

Given the problems with these two approaches, alarge number of dternative mixes have been
developed. A sample of these will now be described.

2.5.1 “Reactive Deliberation” Robot Architecture, Sahota [[13]]

This robot architecture tries to integrate reactive and goal-directed activity. The control system
is built from two digtinct entities, an Executor and a Ddiberator, with the only essentid
difference between them being that the two modules operate on different time-scales (see
Figure 2-10). The ddiberator decides what to do and how to do it, while the executor
interacts with the environment in reg-time. This is the basic idea between a large number of
hybrids combining conventiona Al with reactive gpproaches. In effect, the reactive part of the
robot is used as a form of “sub-conscious’ for more reflexive tasks with loca solutions, while

the conventiond deliberative component acts as the “ conscious’ goal oriented component.

28

Background Chapter 2

Actions,
Parameters

Sensor Data,
Status

Figure2-10: Reactive Deliberation

Executor- this is a collection of “action schemas’. Action schemas are units thet, when
provided with a set of run-time parameters, can accomplish specific tasks. The tasks
themsdlves are independent of the robot’s gods. The Executor partition of the system runs
in reak-time.
Deliberator- this is a collection of “behaviours’. Behaviours in this context are units that
sdect an action schema, compute suitable run-time parameters to complete the schema,
and make a“bid” based on ametric of the gppropriateness of the schema given the robot’s
gods. Bids from different behaviours are compared, and a single action schemais sdected
for execution based on the results. The Deliberator partition operates on alonger timescae
than the Executor.
The name of this robot architecture sounds like an oxymoron, given tha reactivity and
deliberation are s0 fundamentaly different, but it is conggent with Artificid Inteligence
nomenclaure (eg. “Reactive Planning”). This architecture has beenused to build the control
system of apair of soccer-playing robots.
One condraint of the architecture is thet it requires a srong system partition between modules
implementing actions and modules that choose actions and the parameters for the actions. The
first set of modules is run at reak-time speeds, the other at a lower rate. This two-tier divison
requires dl modules to be run a ether of the two rates, with no in between. It is more useful if
modules can be graded dong a continuous spectrum fram fast/reactive to dow/ddiberdtive.
Another condraint is that the architecture is built around the fundamenta requirement that only

oneaction isin progress a atime- so actions cannot be combined or actively compete.

29

Background Chapter 2

252 GLAIR (Grounded Layered Architecture with Integrated Reasoning),
Hexmoor [[14]]

This architecture divides the robot’ s control system into three levels (see Figure 2-11) -
Knowledge Levet this embodies ddiberative modules, and deds with plans, beliefs,
gods etc. Sower response time than other levels, but can implement complex control.
Perceptuo-Motor Level- this embodies reactive modules thet are in a tight interaction
loop with the environment. Good response time, without complex control.
Sensori-Actuator Level- this embodies reflexive modules, with very high response time,
and very ssimple control.

3

Figure 2-11: GLAIR Architecture

This is smilar to the Reactive Ddiberation architecture in that the system is partitioned into
divisons operating at different speeds (in this case there are three divisions instead of two,
dlowing more flexible trade-offs to be made between speed and deliberation). Concurrency is
dlowed a the reective and reflexive level, and conflicting actuator commands can arise.

Therefore the architecture must provide an arbitration scheme for resolving such conflicts. The
paticular scheme usad is to give commands from reflexive modules priority unless explicitly
suppressed. This method of arbitration is less sophisticated than that alowed by Subsumption.

30

Background Chapter 2

And, like the “Reective ddiberation” architecture, partitioning requires globa decisons about
Speed versus ddiberation trade offs.

2.5.3 ACBARR (A Case BAsed Reactive Robotic system), M oorman& Ram [[15]]

This combines reactive techniques with case based reasoning (see Figure 2-12). This scheme
uses a reective controller smilar to that described for the “ reactive ddliberation” architecturein
Section 2.5.1 (page 28), but the rest of the system is more sophisticated, providing support
for-
Fine-tuning control parameters based on the success or difficulty a reective “schemd’ is
having in the environment.
Recognising that a change in the environment makes a different set of parameters and active
schemas gppropriate, using alibrary of useful parameter/schema combinations.

Case Library

Failu

R 1]
Reactive Cor

-
' —+

.....

Figure 2-12. ACBARR

It is difficult to make a fair comparison between this architecture and those enumerated
previoudy in this chapter, sinceit is quite different in its overal gpproach. If a“case’ is thought
of as an overdl behaviour or drategy of the robot, then the criticism can be made that
Srategies cannot be combined in this architecture (dthough lower-level schemas can). Again
this architecture draws a sharp artificid partition between the robot’s actions and how those

actions and their parameters are chosen.

31

Background Chapter 2

2.5.4 Action Selection Network, Maes[[16]]

This technique for building “situated agents™ dlows planning-like activity to occur without the
presence of a classicd controller. Instead, the “competence” modules (which are the objects
of planning) are connected by a network which spreads an “activation leve” dynamicaly
between the modules in a way that combines ddiberation with speed. Philosophicdly, this
system is based on the notion that you should not “tell” the robot how to achieve godss, but
indead let it find a control loop involving both the system and the environment which will
converge towards the god. Planning is therefore a Stuated dynamic activity.
The action sdection network is a collection of “competences’ which are individudly
characterised by enumerating the following:-
A *“precondition list” of propostions that must be true before the competence can be
activated.
A threshold specifying the activetion level a competence must reach before it can be
activated.
An “add ligt” of conditions/propositions that become true after the competence has been
activated and completed its action.
A “delete ligt” of conditions/propositions that become false after the competence has been
activated and completed its action.
A network is constructed of “successor”, “predecessor”, and “conflicter” links based on these
descriptions.
For every propostion in an “add lig” of one competence and a “precondition list” of
another, a successor link is added from the former competence to the latter. This modes
the fact that the first sets up a precondition of the second.
A predecessor link is added everywhere there is a successor, but reversed.
For every propostion in a “precondition lig” of one competence and a “ddete lig” of
another, a conflicter link is added from the former competence to the latter. This modelsthe
fact that the first is made unexecutable by the second.

! The term “agent” is very broad, and in general usage it refers to any software entity that is in some sense
autonomous. Situated agents are software entities with a physical embodiment- i.e. robots.

32

Background Chapter 2

Once the static network has been congtructed, it is dynamically and continuoudy updated. If
al the propostions in the “precondition lis” of a competence have been met, then it is
“executable’- there is nothing preventing it from being executed, except the presence of other
amilarly executable competences with higher activetion energy levels.
If a propogtion in the “precondition list” of a competence is observed to be currently true,
activation energy isinserted into that competence.
If a proposition in the “add list” of a competence is a globa god of the robot, activation
energy isinserted into that competence.
If a propogtion in the “delete list” of a competence is a protected goa of the robot (one it
has completed and does not want to undo), activation energy is removed from that
competence.
If a competence is executable, then a fraction of the competence's activation energy is
spread to its successors- this dlows the system to anticipate in advance the consequences
of acompetence being activated.
If a competence is not executable, then a fraction of the competence' s activation energy is
spread to its predecessors- this dlows the system to encourage suitable competences to
work to make a desirable competence executable.
Every competence decreases the activation energy of its conflicters by afraction of itsown
activation energy (with provision to prevent mutua inhibition). This alows competences to
try to disable other competences that would undo their preconditions.
A decay function is used to keep the overdl activetion level congtant.
With the action glection network running, dl that remains is to choose the “best” (highest
activation) executable competences at any given time and activate them. The network can be
tuned using various parameters controlling the spread of activation.
The mgor condraint of this system is that it implicitly requires that dl actions of the sysem can
be described symbolicdly in before-and-after terms. So dthough action selection networks
move away from casscd planning to an approach that utilises the robot's physica
embodiment, they Hill retain the Symbol System bias.

33

Background Chapter 2

2.5.5 Reactive Action Package (RAP) System, Firby [[17]]

The RAP system facilitates the reactive execution of symbolic plans (see Figure 2-13). Plans
or “tasks’ are implemented by giving alist of methods for performing the task, dong with the
conditions under which the methods are useful. Methods are either primitive actions or aligt of
ub-tasks. Suitable methods are attempted sequentidly until they ather finish or fal. On falure,
dternate methods are tried in turn. Such atask description is caled “Stuation driven”.

Figure 2-13: The RAP System

In the origind RAP system, actions were assumed aomic- i.e. that they had a well-defined
finish and that success and failure of the actions were equaly well defined. It was aso assumed
that it is gppropriate to complete one action before moving on to another. Both of these
assumptions are limiting, © later versons of the system moved towards remova of the idea of
“success’ and “failure’, and achange of focus from process steps to time-extended activities.
This architecture again retains the need to operate at a symbolic levd, with dl the difficulties
that entails (see Section 2.4.7, page 22).

2.5.6 ATLANTIS, Gat [[6]]

This is a combination of a reactive control substrate with a classcd planning system. Hanning
IS seen as an atempt to transform one world steate to another using “operators’ which map on
to associated physicd actions when executed. In the classca approach, operators are

executed in an atomic fashion, so there is a drict one-to-one correspondence between
34

Background Chapter 2

operators and actions. This is not amenable to continuous, overlapping, interruptible actions.
ATLANTIS redlocates the role played by operators to “activities’ and “decisons’. Decisons
are operators, but do not directly affect the world. Instead they start or stop “ activities’, which
in turn affect the world. Activities are potentialy long-running processes, and since atlomicity is
no longer an issue there may be severd activities in progress a any time, interleaved or
executing in pardld.
ATLANTIS has three main components-
The controller- this is concerned with activities that are mosily reective. “ALFA” (A
Language For Action) [[18]] was designed to aid the engineering of this component.
The sequencer- this is concerned with controlling sequences of both physicd activities
and deliberation. It is designed around the idea of “cognisant failure’. Rather than trying
to design dgorithms which never fall, it is of more practica worth to build agorithms which
may fail but will detect that they have failed, so the system can take corrective action. The
sequencer manages the activation of modules in the controller, monitors them, and
providing them with suitable parameters for their operation. Decisions are based on tasks
the robot has to perform. Like in the RAP system, tasks are described as a list of methods
for performing the task, dong with the conditions under which the methods are useful.
Methods are either primitive actions or a list of sub-tasks. Tasks are attempted sequentially
until they ether finish or fail. On task falure, dternate methods are tried in turn. A resource
list is attached to dl activities to prevent conflict.
The ddiberator- this performs computationdly expensive, long term tasks such &
planning and maintaining a world modd. Such computations are initiated by the sequencer
and may be terminated by it if resources are scarce. The ddliberator acts as an advisor only
to the sequencer, with overdl control of the robot remaining with the sequencer.

ATLANTIS uses the idea of “planas-communication” rather than “plan-as-program”
[[29].

35

Background Chapter 2

The ALFA language used in the controller is described in some detail in Section 2.6.1 (page
37). Itis amilar in ways to the language used with Subsumption. In particular, when priorities

are used to resolve conflicts, those priorities are hard- coded as with Subsumptior?.

2.5.7 The Architecture Control Kit, Rosca [[20]]

Thishybrid reective/ddiberative architecture is built from:-
“Objects’- these are declarative entities, containing attributes, with knowledge sources
attached, and connected with other objects. Objects are used to represent input sensors,
and sysem “bdiefs’ in fixed symbolic form.
“Knowledge Sources’- these are procedural entities, specifying how objects are
processed. These can act like rules in a rule-based system, and may be expressed in the
form:-
WHEN (opportunity-test) |F (appropriateness-test) THEN (body)
If the value of an attribute changes, al knowledge sources connected to the object the attribute
belongs to are activated. These knowledge sources may affect other attributes in the same or
other objectsin turn, causing a cycle to occur. This is the main execution loop.
The main advantage of this Smple architecture is that making knowledge sources act in pardld
is straightforward, and is just a question of ensuring they do not affect the same attributes. It is
a conceptualy smple architecture, combining general purpose computation and representation
with a“triggering” system reminiscent of PL.C devices for controlling industrid machinery- very
much areactive idea
Again, thisarchitecture is symbol-oriented, and thus difficult to ground.

2 The priority system in ALFA is arguably an improvement on Subsumption, in that the hard-coded priorities are set
at the point of connection rather than at the source, which means that the information for resolving conflicts is
available locdlly - this is better from a software engineering viewpoint.

36

Background Chapter 2

2.6 Review of Languages for Robot Architectures

Some of the architectures discussed above have languages associated with them to support
some aspects of their organisation and structures. Examples of these are described in the

following sections.

2.6.1 ALFA (A Language For Action) [[18]]

This language is usad in the reactive controller partition of ATLANTIS (see Section 2.5.6,
page 34), but can support other architectures such as Subsumption. A program in ALFA
consgts of aset of “modules’ connected by “channds’.
A module is a control eement that transforms a set of inputsto a set of outputs using either
dataflow or state-machine computations. Dataflow computations have no history (and are
therefore congtant time functions), while state- machines may have history (and so may have
time dependencies). Modules consist of internd registers, timers, and a set of methods that
aretried in turn on failure.
A channd is a control dement that combines asat of inputs into a single output using purey
dataflow computations. Inputs and the output come from and go to modules or the outside
world. There are four ways inputs can be combined:-
A) By Hecting the minimum
A) By HHecting the maximum
A) By HHecting the average
A) By sdecting the highest priority input thet is active, given afixed priority ordering of
the inputs
The idea of implementing a control systlem using objects corresponding to “channels’ and
processing “modules’ is used in this thesis, but with the semantics of the channdls considerably
modified (see Section 3.3.1, page 48).

37

Background Chapter 2

2.6.2 TheBehaviour Language/” New Subsumption”, Brooks[[21]]

This language is used to specify the augmented finite state machines needed in Subsumption.
The smallest procedurd unit is a “reaktime rule’, equivaent to reactive condition p action
rules [[5]]. These gppear either inisolation, or grouped into “behaviours’.
Rules have two forms-
Whenever- a rule of this form continuoudy monitors for a condition, and executes a
procedural body if it becomestrue.
Exclusive- this type of rule is composed of a set of Whenever rules, each of which is
continuoudy monitored. As soon as one succeeds, it is committed to and the others are not
checked again until the successful rul€’ s body terminates.
When a number of rules are collected together to form a “behaviour”, a list of inputs and
outputs to that behaviour are specified. “Wires’ are one method of communication between
behaviours. A wire can transmit messages from a single source to multiply targets. Or, instead
of trangmitting copies of a message to itstarget, it can suppress, inhibit, or default its outpt.
Suppress- sends messages to target and blocks messages from any other source to target.
I nhibit- blocks messages from any source to target.
Default- messages are sent to target if no messages have been received from another
source.
Behaviours can be active or inactive. When inactive, rules tagged as “hdltable’ are stopped,
and rules tagged as “inhibitable’ are left running but have ther outputs inhibited. Each
behaviour has an associated “activation level” and “activation threshold” used to determineif it
should be active. Activation levels can be managed in two ways.-
The Hormone System this uses entities called “conditions” which have an activation level
that can be “excited” by any rule, and decays with time when not excited. Functions of
these conditions can be used to control the activation levels of behaviours.
Spreading of Activation- this uses an action sdlection network [[16]], as described in
Section 2.5.4 (page 32).
The work described in this thesis tackles many of the same issues as those addressed in this
language, such as the various ways “wires’ can be connected, and how activation of modules

should be managed- but the solutions advanced are quite different (see Chapter 3).

38

Background Chapter 2

2.7 Review of Cartographic Schemes for Robot Navigation

In the following sections, approaches in the literature to map building and use are discussed.
This review is needed in Chapter 4 as background for the cartographic issues associated with
the sentry application.

2.7.1 Grid-based and topological methods

If the robot has very accurate knowledge of its pogtion, it can congtruct accurate maps Smply
by representing the environment as a “grid’, rather like a chess board. When a robot’s
esimate of its pogtion is not perfect, as is normaly the case, this representation scheme
breaks down because it has no way to cope with uncertainty in the motion of the robot [[48]].
“Topologica” maps try to overcome this difficulty by abstracting away from the environment.
They try to represent which regions are connected to each other, rather than trying to capture
the exact shape of objects. Such maps are much smpler to plan with. This type of map
representation is useful for robots with long-range sensors, such as sonar or vision sensors
[ibid.]. As will be argued in Section 4.3 (page 83), it is not useful for robots with proximity
sensors adone, because such a robot cannot detect topologica features in the environment
directly.

2.7.2 Potential Fields, Arkin [[22]]

In this system, dl the entities in the robot’s environment are seen as generating individud
“potentid fields’ which, when evauated and summed a the robot’s current position, give the
direction and speed at which the robot should move. Each field is controlled by a “motor
schemd’. As an example, for each static obstacle known to be in the environment, an “avoid-
datic-obstacle’ motor schema is indantiated which gives grongly repulsve vector

contributions when the robot is near the obstacle they are associated with (see Figure 2-14).

39

Chapter 2

Background
Avoid obstacle I Move to goal I Dock
4 YK <
<—O —> —> O - —> f{)‘
Y AN AN 4

Stay on path I

EREAREERERR
L B B B R

Figure 2-14: Potential fields of sample motor schemas (simplified)

The motion of the robot is determined by summing the required vectors of al motor schemas

a its current podtion. A “noisg” schema is added to remove problems of loca minima. The

actuad globa path the robot is to traverse is never caculated. Cartographic information in the

form of a static map of the robot’s environment is used to congtruct a set of linear path

segments for a particular robot misson, then behaviours ad schemas appropriate for

implementing this path are chosen. The actud path is evauated dynamicdly through the

interaction of motor schemas as the robot moves.

>
N N
AR N

Figure 2-15: Path of robot resulting from combined potential fields

40

Background Chapter 2

This system dlows a reactive robot to negotiate complex terrain. The overdl path followed
can have the appearance of being the result of eaborate planning, but in redlity arises from
purely reective decison making (see Figure 2-15). This system is suited to Situations where the
environment is datic and dl the obstacles within it have been mapped. It is not ided for

dynamic Situations or Stuations with incomplete information.

2.7.3 Internalised Plans, Payton [[23]]

When plans are congtructed using state- space search, the planning process generdly finds an
optima path, returns this as the result, and if the assumptions under which the planning was
done change, the processis repeated from the beginning. In particular, if the robot isforced to
make even aminor deviation from the plan, it can only recover by generating a new plan for its
changed circumstances. Internadised plans offer a way to avoid this. In the planning process,
the cost from various intermediate points to the god will typicaly be consdered, and then an
“optima” route sdected to minimise the codt. Ingead of committing to such a route,
interndlised plans store this costing information for al points in the map, then congtruct a
gradient fidd showing the optimad direction to move in when a a given point (see Figure 2-
16). Now the robot aways knows the best direction to move in, no matter where it happens
to be. To reach the god from any point, it Smply needs to follow the gradient field. Because
the field is generated from cost information, the peth it directs the robot dong will be optima,
rather than a heuritic guide as for potentia fields (see Section 2.7.2). It dso does not have the
problem of locad minima possble with potentid fieds.

41

Background Chapter 2

Arrows show best direction to move in

Figure 2-16: Internalised plan, gradient field

Figure 2-16 shows the gradient field associated with an example of an interndised plan. Note
that the vectors are the result of planning, so for example the vectors a A, B or C show true
optimd direction for the robot to move in at that point. This direction could not be calculated
from purely local considerations, and so is superior to potentia fields. The diagram shows that
the technique has the useful fegture thet if the robot deviates from the optima path to its god, it
can immediately continue to move towards the god again without having to stop and re-
cdculaeits plan. Thisisimportant for good real-time performance, since it alows the robot to
make diversons around unforeseen obgtacles and then return without interruption to
approaching its target. One drawback of this technique is that it involves more computation
than ether the potentid field gpproach or traditiond planning. Also, if the target moves, the
fidld must be recaculated. If an autonomous robot was entirely dependent on its internalised
plan, then the burden of generating it whenever the target moved would thresten the robot’s
ability to operate in reak-time. Internalised plans are best used as “advice’- information thet
improves the robot’s behaviour when it is available but which the robaot can function without.
When used this way, the plan can be congtructed by a background task without freezing the
robot. The technique developed in this thess for target-seeking has some smilarities to
internalised plans, and is described in Chapter 4.

42

Background Chapter 2

2.8 Summary

This chapter has reviewed the literature relating to robot architectures and robot cartography.
Representative examples of work from both fields have been presented- both are too large for
exhaudtive coverage. The review of robot architectures will serve as background to Chapter 3,
in which anew architecture is developed that extends and improves on comparable work. The
review of cartography provides context for Chapter 4, in which a cartographic system for a

robot with proximity sensorsis developed.

43

Lateral Chapter 3

3. Lateral

This chapter presents Laterd, a novel behaviour -based robot architecture. Lateral extends the
popular Subsumption architecture developed by Brooks [7]]. It dlows behaviours to be
combined in amuch more flexible way than is possible in Subsumption. The techniques used to
dlow this are examined here, and a number of comparative examples are presented. Also
discussed are practica issues concerning the problem of implementing the Laterd architecture
in aform that is “light-weight” enough to be used with lower-end robots with limited memory
and smple on-board processors. The architecture developed in this chapter is used in Chapter
5 to build a specific robot control system.

3.1 Overview

Laterd is a behaviour-based robot control architecture. In other words, the robot’s control
system is compaosed of a collection of modules called “behaviours’ that operate in parale (see
Section 2.4, page 15). This contrasts with the arangement favoured by traditiona
architectures, where the control system is divided into a sequence of modules that
progressively transform sensor input through various representations until actuator output is
produced (see Section 2.2, page 9). As a consegquence, behaviours dl have access to sensors
and actuators, rather than being “sandwiched” between modules that abstract away from
perception and motor control. Behaviour-based architectures must provide a scheme to
resolve conflicts in the case of different behaviours attempting to control the same actuator. It
is here that Latera diverges from Subsumption. The Lateral architecture does not require that
behaviours be srictly layered in arigid hierarchy to determine which should take precedence
in the case of conflict, as Subsumption does (see Section 2.4.3, page 18). Instead it
implements a dynamic priority syslem where the priority of a given behaviour is affected by the
priority of any other behaviours that make use of it for their own purposes. As the demands of
behaviours on each other change, the flow of priority between them changes to reflect that,
and the effective precedence hierarchy of the behaviours in the control sysem dters
dynamicdly.

44

Lateral Chapter 3

N —
4S80 1 T
| Wander' -~
AIII m 0 _IIIlIIIIII!IIIIIIIIIIIIIIIIII \
< id obs*ag :
AVOld obs*a()) A .
have access ave. access 10

Sensors AcllALOLS

Figure 3-1: Lateral architecture

In Laterd, as the priority of a behaviour rises, its ability to exert influence over other

behaviours increases. In Figure 3-1, the seais used as avisua image to suggest the analogy of
“waves’ of priority lifting behaviours up to higher precedence. As one behaviour rises on a
“wave’ of priority, it can pull any behaviours it uses up with it to this higher leve of priority by
passing on its priority to them. It can do this selectively, by choosing how much of its priority it
is willing to pass on or “sponsor” other behaviours with. The idea of sponsorship provides a
principled way to resolve conflicts between groups of competing or co-operating behaviours.
The architecture is thus more scaeable than Subsumption, which does not lend itsdf to
managing groups of behaviours, aswill be discussed in Section 3.4, page 59. Thisisthemain
benefit of Lateral it extends the range of application of behaviour-based systems by improving
their scalability (see Fgure 3-2).

The idess introduced here are presented in more detail in the sections that follow, with

numerous examplesto illudirate the nature of Lateral’s priority system.

45

Lateral Chapter 3

systems extended by
improving their ability to il
combine behaviours Behavior-based systems:}

| Subsumption

Traditional Ideal
Al Architecture

>

p=

X

@

(e}

£

o

© _ . + Lateral
g Scope of behaviour-based

=

c

o

@]

O

[reactive systems ||

»

Environmental complexity

Figure 3-2: Lateral inrelation to other robot architectures

3.2 Conflict Resolution in Lateral

To darify the ideas presented in the previous section, congder the example control system
shownin Fgure 3-3.

High priority

{ ; 1 Medium priority

\)

Lines show communication ' \ 4 i Low priority

channels between behaviours i § i
I T I T
Wan“d@ﬁ '—-| EprWE I

—» |n control
Figure 3-3: An example control systemin Lateral

-~ Failing to control

The “Command” behaviour shown has a high priority. Behaviours with high priority can take
precedence over behaviours with lower priority when they compete with them for control of
other behaviours they wish to make use of. They can dso choose to sponsor selected
behaviours they favour with their own high priority so they can rely on those behaviours taking
precedence over competition as well. In the example, the “Command” behaviour chooses to

goonsor the “Seek Target” behaviour, pulling it up to its own levd of priority. As a

46

Lateral Chapter 3

consequence that behaviour is able to win control of further behaviours (“Move’ and “Use
Map”) despite competition by “Wander”- which does not have as much sponsorship.

The choices a behaviour makes about who to sponsor, and a what level, are alowed to
change a any time in Laterd. Figure 3-4 shows the same example control system, but with the
“Command” behaviour choosing to sponsor “Wander” rather than “ Seek Target”. Compared
with Figure 3-3, the priorities of a number of behaviours have changed sgnificantly. Some
have log priority, some have gained priority- and the changes are not confined to the
behaviours that “Command” controls directly, but extend throughout the system.

High priority
‘-IIIHHIHH!IiIIII!i ‘-HIJHI=IIIIIIiIII|7 ‘-Hlmliﬁﬂﬂmﬂi ‘-II!iIIIIIIIIIIiIIiI!i

a a,ﬁ ,;iﬁMedium priority
I £ T T T

Low priority

Figure 3-4: The example control system, with different sponsorship

While the potentid advantages of a dynamic priority system over datic sysems such as
Subsumption have long been noted [[47]], there have been a number of sumbling blocksto a
practicd redlisation of that potentia. The basic problem is that for a module to correctly
choose its priority, it must know how important it is compared to dl other modules in the
system. Implemented directly, this would seem to require every module to have an excessive
amount of globad knowledge. The Laterd architecture Sdesteps this problem by
implementing the priority sysem more within the channds of communication between modules
than within the modules themsdves. It uses the system of “sponsorship” mentioned above,
where the priority of a behaviour module is st to the leve that the highest priority behaviour
using it requests it should be. This recursve definition of priority alows the absolute priority

47

Lateral Chapter 3

of behaviours to be determined while only requiring that each behaviour make a local decison
about the relative importance of the behavioursit uses®.

The following sections introduce the dements from which the Lateral architecture is built, and
how the priority system isimplemented within them. The idess discussed in this section will be
returned to in detail in Section 3.3.2, page 55.

3.3 Elements of Lateral

The Latera architecture conssts of behaviours and connections. Behaviours implement
competences of the robot, while connections channel information and commands between
behaviours. Arbitration between conflicting commands is resolved within connections using
Laterd’s dynamic priority sysem. Priority flows from behaviour to behaviour through the
connections, “piggy-backed” on the information flow. The details of this sysem will now be
discussed, and then a comparison with Subsumption will be made to illudrate the advantages
the system has.

3.3.1 Connections

All control information passed between behaviours in Laerd is channelled through objects
cdled connections. It is important for behaviours to interact through such intermediaries so
that the conflict resolution ways necessary in a behaviour- based architecture can be enforced
(see Section 2.4.1, page 16). Connections in Laera are andogous to wires in the
Subsumption architecture (see Section 2.4.4, page 19), except that as wdll as carrying vaues
and messages from their source to their target, they dso carry the priority of the originator of
their content. This reflects the fact that the conflict resolution scheme in Laterd relies on
dynamic priorities, in contrast to the simpler fixed priority scheme of Subsumption (see Section
2.4.3, page 18).

3.3.1.1 Advantages of explicit information channels

A bendfit of having objects that explicitly channd the information flow between behaviours is
thet higher-level behaviours may now “tgp in” to this flow and sdectively modify it to suit their
own purposes, without having to rebuild any of the behaviours or modify the information

3 Normally modules would be connected in a tree structure, but cycles are possible and acceptable- see Section 3.6.1

48

Lateral Chapter 3

channdls aready present. This is fundamenta to the operation of Subsumption in fact thisis
where theidea of higher-leve behaviours “subsuming” lower-level onestakesits name. Latera
retains this cgpability, and expands on it.
The two ussful waysto “tap in” to the communications between behaviours are :-

Accessing the information flow in achanndl.

SHlectively overriding the informetion flow in achannd.
It should be possible to achieve both of these without having to rebuild any of the information
channels being tapped. Also, it is useful if the tap itsdf can adso be seen as an information
channe, since then that tap can be accessed and overridden in turn by higher-level behaviours.

3.3.1.2 Implementing information channels as connections

In Laterd, connections implement the ideas presented in the previous section. A connection
has a single source and a single target, both of which can be attached to other connections.
At its smpledt, the connection accesses the information flow at its source, and tries to
override the information flow & its target with a replica of what it reads from its sour ce. It will
only succeed in overriding its target if the information flow it is copying from has a higher
priority than the information flow in its target.

 Source Typical Use |

Target

Access !

: Source ;

> Connection accesses

: @ the information flow :

@ at its source

- Subsume

Connection tries to 5

override the @ i
information flow at @

its target ?

Target

Figure 3-5: Basic use of connections

49

Lateral Chapter 3

An example connection is shown in Figure 3-5. Connections are drawn as an arrow, with a
bar to mark their source and an arrowhead to mark their target. In Laterd, the connection Cin
the diagram could itself be made the target of some other connection, and in this case it will
access ether its norma source or this new connection, depending on which has the higher
priority. This is how overriding of an information channd occurs. In fact any number of
connections can have the same target, in which case the information flow in the connection
they target will be acopy of whichever of them has the highest priority- or acopy of itsnormal
source if none of them were of a high enough priority to override that. This Stuation is shown
in Figure 3-6. The connection C could also be made the source of some other connection.
This has no effect on C, as the connection using it as its source will only access C and will not
attempt to override it- connections only attempt to control their targets, not their sources. Any

number of connections can have the same source. Thisisasoillusrated in Figure 3-6.

Connections with C General Case |

as their target
C accesses the information
flow at whichever of S and

@ @ ------- @ A,..A_ has the highest
priority, and attempts to
Source Target override T with that.

I > .

@ @ @ Each of the connections
....... B,..B,, interact with C in the !

slamré way that C interacts |

with S - they will access C
unless overridden by some

other connection.

Connections with C
as their source

Figure 3-6: Using connections, general case

The priority of a connection is dways the same as that of the connection from which it is
reading. Hence a connection carrying high priority data will propagate that priority to any
connection to which that data is passed.

3.3.1.3 Attaching connectionsto behaviours

So far, methods for attaching connections to other connections have been shown, but no way
of attaching them to behaviours has been given yet. To achieve this, each behaviour is given
two sets of connections, inputs and outputs A behaviour can read and write directly to its
input and output connections. Output connections can have their targets attached to other

50

Lateral Chapter 3

connections, outsde the behaviour, with which communication is desred- such as input
connections in other behaviours. Output connections generally do not have their source
atached to anything®, because the behaviour that owns them is directly controlling the
information they carry and so they need no source to read from. Input connections generdly
have nether their source nor their target attached to anything, leaving them free to be
controlled by any externd connection that attaches their target to them. Alternatively, they
could have their sources attached to other connections which the behaviour wishes to monitor.

These posshilitiesareilludrated in Figure 3-7.

Behaviour Object Targets of outputs are

I — ; : : attached to connections the
Sources of inputs may be left { i Inputs :{ Outputs : i i behaviour tries to control

unconnected, and attached to

later by external connections

r -

Sources of inputs may also : . : J_ : -
be attached to connections the : ; } i c i Sources of outputs are left

behaviour wishes to monitor unconnected- the behaviour

J controls them directly

Targets of inputs are left unconnected-
the behaviour accesses them directly

Figure 3-7: Input and output connectionsin a behaviour

Leaving both the source and target of an input connection unattached is a convenient
arrangement when the semantics of the input are such that it is used to control some aspect of
abehaviour, rather than provide raw data for the workings of the behaviour. In such cases, the
behaviour should not be concerned with what is controlling it, only the task that it has to
perform. Leaving the source unattached reflects this indifference, and means the behaviour
does not have to be re-configured if it is later decided to change which behaviour contrals it.
An arangement where the souce of an input is left unattached and severd externd
connections compete for control of it turns out to be such a common and useful arrangement
that it is convenient to introduce a “short-hand” way of producing a diagram of the Situation
(seeFigure 3-8).

4 This is denoted in diagrams by replacing the bar at the source of the connection with the ground symbol from
electronics. If the target of aconnection is unattached, it is simply drawn curling back, pointing at nothing.

51

Lateral Chapter 3

A A connection with its A A short-hand way to
source unattached, and ! diagram this situation-
several connections the connections are
attempting to control it ! drawn “head to tail”
B > > i > | >
J_ A BorC A, BorC
depending on depending on
priority : priority
C . C

Figure 3-8: Special diagramming convention for inputs with no source attached

3.3.1.4 Dependencies between connections

At this stage the dependencies between connections will be boked a more closdy, as a

prelude to examining the full details of Laterd’s conflict resolution scheme. The fundamenta

dependencies are as follows-
The information flowing through a connection C is drawn from either the connection to
which its source is attached, or from any connection which has C attached as its target
(since these may succeed in overriding the norma source if they have sufficient priority). In
the rest of this chapter, the normal source of a connection C is labdled its ‘primary
source’, and any connections which have C atached as their target are cdled its
“secondary sources”. This is a reasonable label to gpply, since these connections may
effectively become C's source when their priority exceeds that of its primary source. The
primary source of a connection will often Smply be one that lower-leve behaviours have
configured it to read from, and the secondary sources could be overrides added by higher-
level behaviours.
The information flowing through a connection C may be passed on to the connection to
which its target is attached, and to any connection which has C attached as its source. In
the rest of this chapter, the direct target of a connection C islabdled its “primary target”,
and any connections which have C attached as their source are cdled its “secondary
targets’ (dnce they may copy from C if it has sufficient priority, effectively behaving as if
they were C's target). The primary target of a connection will often smply be one thet
lower-level behaviours configured it to write to, and the secondary targets could be higher-
level behaviours “ligening in”.

52

Lateral Chapter 3

To summarise, primary sources and targets represent the communications channd that the
connection was created to establish. Secondary sources and targets are added by behaviours
which wish to monitor or influence that channel respectively. Secondary attachments can be
meade without having to re configure the origina connection (see Figure 3-9).
SecondarySourcesofC

§Primary . Primary
- Source ! Target '
| ofC @ ofC |

Secondary Targets of C

Figure3-9: Connectionsin Lateral

Figure 3-9 illudtrates the various ways that connections can be attached to each other.

3.3.1.5 Detailed conflict resolution between connections

Arbitration between connections attempting to control the same target is straightforward when
they are at different priorities. The information flow that a connection carries is aways a copy
of the information flowing in its primary source unless there is a secondary source at a higher
priority, in which case the information flow in the connection is overridden by the secondary
source with the greatest priority. Put Ssmply, a connection copies the information flow from
whichever source, either primary or secondary, has the greatest priority. There is no effective
difference between primary and secondary sources under these conditions- the digtinction
merdly reflects whether the source is the one origindly configured, or alater override.

However, when a number of competing connections are a the same priority, it is not obvious
wha the correct way to arbitrate between them is. The normd result in Laterd is that
messages from every member of a group of competing sources will be passed on when they
have the same priority. This is cdled “sharing”. However, connections can be assigned an
extra“type’ tag if it isimportant to explicitly control arbitration under these conditions. Thistag
is afeature of Laterd designed s0 that when connections are dl a the same priority they may

53

Lateral Chapter 3

interact n away that is equivaent to wires in Subsumption. All the different ways wires can
interact in Subsumption can aso be used in connections (see Section 2.4.4, page 19).
Connections can be tagged as ether “Default”, “Shared”, “Preferred”, or “Replace’. The
semantics of the different possbilities are given in Table 3-1. They are chosen to be consistent
with corresponding ideas in Sthsumption. Remember these digtinctions are only relevant when

connections are at the same priority.

Table3-1

TyPE OF CONNECTION DESCRIPTION

Default- connection The connection passes on messages only if its target is not
receiving messages from its primary source.

Shared- connection The connection contributes its messages to be merged with
those of its target’s primary source. This is the normad type of

connection.

Preferred-connection The connection passes on messages if it has them, blocking its
target from reading from its primary source. If not, its target is

alowed to read from its primary source again.

Replace- connection The connection passes on messages if it has them. Regardless of
whether it has messages, it blocks its target from reading from

its primary source.

Note that when this form of arbitration is in use, a diginction appears between primary and
secondary sources of a connection. This mirrors the asymmetry in Subsumption between wires
and tgps on those wires. Suppression in Subsumption corresponds to a “preferred-
connection”, defaulting is equivaent to a “default-connection”, and inhibition can be
implemented usng a “replace connection” (the connection should however be enabled or
disabled rather than sending or not sending messages as in Subsumption). See Section 2.4.4,
page 19 for a description of these Subsumption congtructs. If a number of secondary sources
of the same priority are present, “replace-connection” is given highest priority, then “ preferred-
connection”, then “shared-connection”, and “default-connection” is given lowest priority.
Streams of messages from connections of the same type, if present, are merged.

54

Lateral Chapter 3

Effectively, the “type’ tag dlows a datic priority scheme to be superimposed on top of the
dynamic priority scheme usad in Laterd. A useful consequence of this is that it dlows the
Laterd priority system to be used smply to merge a collection of Subsumption-like Stetic
hierarchies. The robot could then dynamically switch between these hierarchies as appropriate
during its operation, with Laterd taking care of the details of sdecting the correct behaviours
and rearranging them into the new hierarchy. A more complete comparison of Latera with
Subsumption is given in Section 3.4, page 59.

The “type’-tag feature was included to make Laterd a true superset of Subsumption- it was
not in fact needed for the robot application described in the latter part of this thess. The
control system for this gpplication (see Chapter 5) was designed to use the full power of
Laterd and not smply be a collection of Subsumption-like static hierarchies merged together.

3.3.2 Behaviours

The abstract nature of “behaviours” was discussed in Section 2.4, page 15. For the purposes
of this chapter, abehaviour can be seen as a process running on a robot that implements some
aspect of the robot's competences. Behaviours are executed in pardle, rather than
sequentialy as modules in traditiona Al are. In Laterd, behaviours interact with the rest of the
system by reading and writing information from a set of input connections and a st of output
connections. The messages received through the input connections carry priority information
about their sources as well as actud data, and this is used to caculae the priority of the
behaviour itsdf. Before looking a how this caculation is done, it is worth examining what use
is made of the result of the caculaion. Firdly, in Laterd, the behaviour may independently
choose to st its priority at some other lower level the caculated priority is amaximum only.
If the behaviour does not st its priority, it will be set to the maximum by default. Every output
of the behaviour will carry the find priority chosen, and tranamit it to any behaviours they are
connected to in turn. The behaviour, again, can choose to override this default and set the
priority of individual outputs a any desred level up to its own priority. It is dso free to
sHectively enable or disable its outputs. A disabled connection effectively disappears, and
means that the behaviour has no requirements of whatever it was connected to. Findly, the
behaviour can dso set a priority factor for each connection. This factor, which defaults to

55

Lateral Chapter 3

unity, determines whet fraction of its priority a connection may impart to the target behaviour it
connects to (possibly through intermediate connections), as distinct from what priority it should
have when competing with other connections for control of that behaviour (see Figure 3-10).
This dlows a “sponsoring” behaviour to use its maximum priority to take control of another
behaviour and yet impart alower priority to that behaviour (for example, so it will not compete
with the sponsoring behaviour itsdf if they conflict dsewhere). An example of this will be given
later in this section.

priority 1P, priority OP,
priority IP, Priority Control priority OP,
>
o ; o
o Behaviour °
° priority P °
priority IP_, priority OP |

Behaviour priority P

The priority of the behaviour The priority of any output is
is bounded by the highest of ~ bounded by the priority of the
the input priorities behaviour.

P £ max(IP) OP,£P
Figure 3-10: Prioritiesin behaviours

To caculate a behaviour's maximum priority, its input connection with the highest priority is
found. That priority is multiplied by the associated priority factor carried by that connection,
giving the amount of priority the most important user of the behaviour iswilling to bestow. This
iswhere the term “sponsorship” originated.

Priorities can change dynamicaly and are continuoudy recaculated. Behavioursin Laterd may
have a specid “priority control” section respongible for responding to changes in the input
connections and propageating those changes to the output connections. If this section is not
present, the behaviour is assgned the maximum priority it is sponsored, caculaed as
described above.

Congder the example shown in Figure 3-11. The “Command” behaviour is a a priority of 4.
It has two outputs, attached to inputs of the “Seek Target” and “Wander” behaviours. It can
control which of those behaviours finds expresson in the action of the robot by choosing
which to give the higher priority. In this case it sets its output to “Seek Target” a a priority

56

Lateral Chapter 3

level of 2, and its output to “Wander” a a levd of 4. These are the only inputs those
behaviours have, so the priority of “Seek Target” and “Wander” become 2 and 4 respectively,
and both accept any messages “Command” sends to them. “Wander” has an output to the
“Explore’ behaviour, which it chooses to drive a alow priority of 1. Since that behaviour has
no other inputs, its priority becomes 1 and it is controlled by the output from “Wander”. Both
“Seek Target” and “Wander” attempt to control the “Use Map” behaviour smultaneoudy at
their full priorities. “Use Mgp” is controlled by the connection with the highest priority- in this
case, the one from “Wander”. The connection from “Seek Target” is ignored, and only
messages from “Wander” are accepted. Each of “Seek Target”, “Use Mgp” and “Explore”
attempt to control “Move’. “Use Map” succeeds because it has the highest priority, and the

other connections are ignored.

Figure 3-11: An example of calculating behaviour priorities

Figure 3-12 shows the same example, but with “Command” favouring “Seek Target” rather
than “Wander”. “Seek Target” now succeeds in gaining control of “Use Map”. Note that
“Command”, by making a local decison about which of the behaviours it directly interacts
with are more important, actudly changes the action of behaviours it has no knowledge of-
“Use Mgp” and “Move’ are now being used for a different task.

57

Lateral Chapter 3

pri=4 _ pri=4

7 move

Figure 3-12: The effect of a change in sponsorship

A more sophidticated use of Laterd is shown in Figure 3-13. “Seek Target” is dill being
favoured with sponsorship, but it has now decided that athough it till want$ to retain control
of the “Use Map” behaviour, it wants to control the “Move’ behaviour itsdf. This could be
because it wishes to try to reach atarget by some fast but unreliable guesswork, while waiting
for “Use Map” to find a better path to the target. For its best chance of retaining control of
“Use Mg, it should place its full priority on the connection to that behaviour. However if it
does that, “Use Map” will be able to compete with “Seek Target” itsdf for control of “Move’,
which “Seek Target” does not want to dlow until it is confident that “Use Map” has a better
chance of success than its guesswork. To avoid this, it seems that a lower priority should be
used on the connection but this does not reflect the fact that “Seek Target” wants to retain
control of “Use Map” as much as it wants control of “Move’, and it would leave “Use Map”
open to being taken over by some lower priority behaviour. In this example, if the priority of
the connection was set to 2, “Wander” could compete successfully for some control of “Use
Map’.

The solution is to use priority factors. “ Seek Target” can set the connection to “Use Map” a
its full priority of 4, but with a priority factor of 0.5 (for example). This means tha the
connection will compete for control of “Use Map” a a priority of 4, but when it has gained
control of “Use Map”, the behaviour only receives a priority of 2 (4 0.5). It therefore cannot
compete with “Seek Target” for control of “Move’, as desired. Priority factors are

5 Anthropomorphisms are used here to avoid complicating the example with detail.

58

Lateral Chapter 3

gppropriate when a behaviour wishes to sponsor another behaviour, but is not willing to let it
compete with activities of the sponsoring behaviour itsdf.

Figure 3-13: Use of priority factors

3.4 Comparison with Subsumption

Latera isin a sense a superset of Subsumption, since a Subsumption based control system
could be implemented in Lateral by smply placing al behaviours at the same priority. Under
this condition, connections behave very much like the wires in Subsumption. A set of
behaviours operating & the same priority in Laterd is caled a“priority plang’. Within asingle
priority plane, the control system behaves smilarly to how it would act under Subsumption,
and the same linear enhancement of a behaviour through incrementd levels of competence is
possible. This linear enhancement is akin to single inheritance, Snce abasic behaviour is taken
and enhanced to give it more functionality. However single inheritance is not dways a good
modd for how behaviours rdae. The existence of multiple priority planes in Laterd, with
behaviours able to influence each other’s priority as described in the preceding sections,
means that behaviours may be related in ways other than smple inheritance. In the language of
Software Engineering, links more like HAS A relationships than the 1S-A relationships of
inheritance can be made between behaviours. Behaviours no longer need to be arranged as a
grictly ordered series of enhancements.

For example, consder a Subsumption robot with a control system implemented using the
levels of competence shown in Table 3-2, Smilar to the ones described by Brooksin [[7]].

59

Lateral Chapter 3

Table3-2

L evel | Competence Description of competence

0 avoid-contact Avoid contact with objects

la wander Wander aimlesdy, moving a random

2a explore-world Explore the world by seeing places in the distance that ook
reachable and heading for them

And now consider the same robot, programmed to perform a different task with anew control
sysem condding of a different st of linear enhancements from the same “avoid- contact”

competence (see Table 3-3).

Table3-3

Level | Competence Description of competence

0 avoid-contact Avoid contact with objects

1b follow-edge Follow the edges of obstacles

2b seek-god Move towards a god by heading in that direction and skirting
any objectsin the way

Suppose that it became desirable to combine the abilities of both these control systems, to
give arobot that can either explore the world on its own, or can be directed to reach specific
targets. This is difficult to achieve in Subsumption. The problem is that both of the control
systems above started from the same behaviour, the “avoid-contact” behaviour, and enhanced
it in different ways. There is no easy way to fit these two different evolution paths into a linear
layering of behaviours. One possibility is to take the control system that evolved the “explore-
world” behaviour, for example, and then enhance that to include edge following, and then goa
seeking ability (see Table 3-4).

Table3-4
Level | Competence Description of competence
0 avoid-contact Avoid contact with objects
la wander Wander amlesdy, moving a random
2a explore-world Explore the world by seeing places in the distance that ook
reachable and heading for them
3 explore-world- Explore e world by seeing places in the distance that ook
or-edge-follow reechable and heading for them, or follow the edge of an
obstacle
4 explore-world- Explore the world by seeing places in the distance that ook
or-seek-goal reachable and heading for them, or move towards agoa

60

Lateral Chapter 3

The problem is that neither edge following nor goa seeking have anything to do with exploring
the world, and seeing them as enhancements of the “explore world” behaviour is artificid and
leads to unnecessary and undesirable dependencies between the behaviours.

Another possibility would be to make sure that the “explore- world” behaviour and the “ seek-
god” behaviour are never active at the same time, so that effectively one control system is
turned off and replaced with the other as needed. This will work®, but places the burden of
resolving conflicts back on the designer. The more the control systems try to share behaviours
(such as “avoid-contact” in the examples above) the more complex the logic necessary to
avoid conflict will be.

Lateral does not require behaviours to be shut off so as not to affect one another. Instead it
moves them to separate “ priority planes’ based on the importance of what they are being used
for, as opposed to assigning fixed priorities to the behaviours themsaves (see Figure 3-14). A
priority plane is smply the set of dl behaviours and connections a a given priority. A

behaviour on a lower priority plane is guaranteed not to affect anything on a higher priority

plane. Since the priority of a behaviour is determined by the priorities of its input connections,
a behaviour can be “pulled up” to a higher priority plane by an input connection having that
higher level of priority. And since the priority of a behaviour's output connections reflects the
behaviour's own priority, these connections may aso be “pulled up” to the higher priority

plane, and the behaviours they connect to, and so on.

% The idea of switching between different static hierarchies of behaviours to extend Subsumption is called “moods”
[46]

61

Lateral Chapter 3

@ A behaviour

—» A connection Within a plane

®<VO behaviours
\ O— interact as in

Priority=3 Subsumption

\
)

If a behaviour is
/»@ connected to a

Priority=2

behaviour with
lower priority, it

may chose to
O sponsor that
behaviour up to its
O

own priority

Priority=1

Figure 3-14: Priority planes

For example, if the robot is engaged in one task (which can use any number of behaviours), a
higher priority task can “hijack” any behaviours it needs and not have to worry about turning
off parts engaged in the lower task that do not concern it. This “hijacking” happens
automaticaly through sponsorship. In the above diagram, behaviour “A” could choose to
gponsor “C” to have a priority of 3. If o, “B” will no longer have control of it snce “C” will
now be on a higher priority plane. If “C” passes on its sponsorship to “D” in turn, then “B” will
lose control of “D” aswell. These behaviours have been “ hijacked” for ahigher priority task.
When this task finishes, its priority fals and sponsorship diminishes, so control will
automatically return to lower priority tasks. Since behaviours are designed to be reactive, and
to be able to dedl with environmenta interference, the temporary subversion of components to
another task can be recovered from through mechanisms that are aready naturaly present.
Interruptions are a norma @t of the operation of a behaviour-based system, in contrast to
being trested as abnorma exceptions asthey are in traditiona Al.

Returning to the problem of merging the two control systems described earlier, it should be
clear that Latera can handle this without any problem. The control systems can smply be
merged directly, as they stand. Because the hierarchy is no longer linear, it can no longer be

drawn clearly asatable, and is presented graphicaly in Figure 3-15.

62

Lateral

Chapter 3

explore-world

wander

\ avoid-contact

seek-goal

follow-edge

/

Figure 3-15: Control systems merged using Lateral

The two control systems can be implemented independently of each other, except where they

share the common “avoid -contact” behaviour. Conflicts will be resolved according to the

priority plane the behaviours are on a any given time. If “seek-god” isat ahigh priority, it will

pull “follow-edge’ up with it, and that in turn will pull up “avoid-contact” (see Fgure 3-16).

“Avoid-contact” will therefore be guaranteed to be entirely unaffected by “explore-world” and

“wander”, snce they are on a lower priority plane, and lower planes cannot affect higher

planes.

High priority

seek-g oal |||

; Low priority

avoid-contact

explore-world

—» |n control
| —-» Failing to control

Figure 3-16: Merged control system, with seek-goal at high priority

If “seek-god” becomes alow priority relative to “explore-world”, the position will be reversed
(see Figure 3-17). “Seek-god” and hence “follow-edge’ will be on alow priority plane, and

“explore-world” will pull “avoid-contact” up to its higher plane, guaranteeing that it will be
entirely unaffected by either “seek-god” or “follow-edge’.

High priority

m
explore-world

ﬁ_ﬁ Low priority

l seek-g oal

—» |n control
| = Failing to control

Figure 3-17: Merged control system, with exploreworld at high priority

63

Lateral Chapter 3

This is a very smple example of the advantages of Laterd in terms of the system
decomposition it facilitates. More complete examples will be given in the next section.

The idea of priority spreading from module to nedule sounds superficidly smilar to the
“soreading activation” system used in the New Subsumption (see Section 2.5.4, page 32).
However, it is quite diginct. “Spreading activation” involves spreading an activation leve
between modules which, when compared with threshold levels, determines if they are active or
not. It amounts to away of automating the task of turning on and off modules to prevent them
from ingppropriaidy interacting or conflicting with each other. The Latera system uses
“goreading priority” to eiminate the need for such a system. It dlows control of the reative
weighting that the outputs of a behaviour have compared to other behaviours. This s fixed in
the Subsumption scheme- the only way to changeit isto turn amodule off.

The Subsumption architecture is specified at a finer granularity than Laterd. It is described at
the level of wires connecting a collection of augmented finite state machines to implement a
gngle behaviour (see Section 2.4.4, page 19). While Laterd can support this leve of
granularity when incremental enhancement of a behaviour is desired, it is for the most part
described here at a coarser levd, with individua behaviours as the smdlest unit. A behaviour's
input and output connections comprise its public inteface; no support is given in the
architecture for accessing anything internd to a behaviour. Thisisgood for modularity.

3.5 System Decomposition using Lateral

Further examples are presented in this section to clarify the influence of the choice of
architecture on the system decomposition used for a given robot control system. The example
is in fact a amplified extract from the robot application developed later in this thess (see
Chapters 4 and 5).

Suppose a smple robot is to be constructed which can move from its current location to a
specified target location. The robot has a patid map of its environment in memory- but the
mep may be out of date, and searching the map to try and find a path to the target is a dow
process. In such a scenario, the robot could combine two strategies in an attempt to reach its
target. The first, physical search, is the mos direct, and involves the robot smply moving
towards the target and attempting to work its way around any obstacles it meets aong the
way. In the second, map search, the robot plots a path to the target using its internal map, and

64

Lateral Chapter 3

when that is complete, attempts to execute that path. Attempting to reach atarget by physica
search done will work well for stuations with few obstacles between the current position and
the target, but will be dow in more complex situations. Using just map search will perform
better when there are complex obstacles to be negotiated, but will dow the robot down in
smpler stuations. By switching between the two types of search as circumstances indicate, the
robot can gain the advantages of each. For this example, this combined search sirategy will be
caled “smart search”.
If such arobot were implemented using Subsumption, behaviours like the following would be
implemented, each incrementaly enhancing the one that came before it-

Avoid- this behaviour keeps the robot from bumping into anything.

Edge Follow- this behaviour alows the robot to follow the boundary of an obstacle, while

retaining the competence of the “ Avoid” behaviour.

L ocal Motion this behaviour makes the robot move “sensibly”- so thet it can manoeuvre

gracefully both close to aboundary and in open aress.

Physical Search- this behaviour gives the robot the ability to try to approach targets using

acollection of techniques that do not require map information.

Smart Search this is the required behaviour of the robot, implementing both physica

search and map search.

These behaviours areillugtrated in Figure 3-18.

I Sensors

Figure 3-18: Decomposition using Subsumption

Physcd and map search are digtinct techniques, s0 it makes sense to implement them
separately. But Subsumption only alows behaviours to be enhanced linearly, so one of the
techniques must be picked as more “basic” and the other one added to it as an enhancement.
For example, the choice of implementing physical search firgt in the decompostion in Figure 3-

65

Lateral Chapter 3

18 was entirely arbitrary, and map search could have been chosen ingtead, as shown in Figure

3-19.

Figure 3-19: Alternate decomposition using Subsumption

Whichever technique is taken as basic, the other one must be derived from it even though they
have no relationship other than that they work towards achieving the same task. This is
undesirable from a software engineering point of view.

Because Laterd is not restricted to linear enhancement of behaviours, a more satisfactory and
naturd decomposition can be used, as shown in Figure 3-20. Physicd and map search are
implemented separately, and the “smart search” module need only implement the heurigtics for
switching between the two when circumstances dictate.

SO

gu ! U‘

Figure 3-20: Decomposition using Lateral

Thisis more stisfactory, since each module need only know the minimum information required
to accomplish its task. Note that in the decomposition, the dependencies between loca
moation, edge following, and avoidance have been smilarly rearranged. This more accurately

66

Lateral Chapter 3

reflects the nature of loca motion, which sometimes makes use of edge following but does not
need to use it when the robot is in open aress. “Making us?’ of a behaviour cannot be
captured in Subsumption except by the crude approximeation of linear enhancement.

To move away from smple examples, Figure 3-21 shows the main body of the decomposition
used for the sentry application’ (Chapter 5). The diagram is smilar in nature to the ones seen
aready, but more complex. Implementing the decompaosition in even gpproximatdy the form
presented would not be feasible in Subsumption it cannot be made linear without losing the
advantages of using such a decompostion in the first place.

)

Actuator

Figure 3-21: An actual decomposition

This decomposition is the source of the (very much smplified) example given a the very sart
of this chapter (see Section 3.2, page 46). For most purposes, the decomposition need
operate on only two priority planes, high and low, indicating behaviours that need to be active
and those that do not. The patrol behaviour may be sponsored at an intermediate level, Since it
can be used to peform the “map search” discussed earlier while a “physicd search” is
operaing a a higher priority. The diagram of the decompostion differs from earlier diagrams

" Maintain-Map is shown straddling the sensor line because its outputs act as virtual sensors accessible to al the
other modules.

67

Lateral Chapter 3

in that it shows “Actuators’ underneath the Motor behaviour. This reflects that fact that while
in a behaviour-based system any behaviour can attempt to control the actuators, in this
decomposition the motors are in fact dways controlled through the Motor behaviour. Thisis
done because that behaviour implements obstacle avoidance. Other behaviours are ill
technically free to atempt to drive the motors directly, but by doing so they do not have the
protection of obstacle avoidance and risk damage to the robot. In effect, the Motor behaviour
has become a“virtua actuator”.

3.6 Implementing Lateral

The rest of this chapter is concerned with taking the abstract properties of the Laterd
architecture discussed thus far and showing how they can be supported in an actud
implementation. The most important single congraint on how the architecture can be
implemented is the level of operating system support available to it. Autonomous robots
generdly have limited processing power and memory, and techniques that are perfectly
adequate for use with smulated robots running on a workstation may be totally unsuited for
downloading to a much less computationdly powerful physica robot.
Laterd could be implemented most naturdly under afull digtributed system with asynchronous
message passing. However, since the work in this thesis was to be implemented on a physica
robot, it could not expect such sophisticated operating system support. In fact, an
implementation that demanded any multi-tasking ability at al would contradict one of the ams
of the work, which was to see what could be done with the cheapest robots with minimel
processing power and minima sensing equipment. Given that, it was decided to make the
Laterd implementation itsdf responsble for running behaviours concurrently, without
depending on operating system support. The implementation of multi-tasking could only be
“bare-bones’ however, to avoid svamping the limited memory of lower-end robots. It was
obvioudy important to leave sufficient space for useful gpplications to be built. The approach
used was to dlow context-switching between behaviours a a coarse granularity only, in the
following way-

Behaviours were required to be written in the form of augmented state machines, as in

Subsumption (see Section 2.4.4, page 19).

68

Lateral Chapter 3

Code associated with a single state of a behaviour was aways executed without pre-

emption.

Context switching between behaviours occurred only at State transtions or on completion

of the code associated with a state.
The advantages of this approach were thet it made for a very light-weight implementation with
low memory overhead, and it required no plaiform dependent code to be writterf. The
disadvantage is that it places an extra burden on the programmer to ensure that code within
dtates completes or trangtions in a timely fashion and does not “hog” the processor. This was
considered an acceptable trade- off, snce usng this light-weight sysem meant that less time
had to be spent “re-inventing the whed” implementing a multi-tasking system, ard more time
could be spent concentrating on the novel features of the Laterd architecture. Also, the burden
on the programmer in practice is less than might be imagined, because states of behaviours
written to be reactive naturdly have very short duration so that they can respond to the
environment asit is now rather than asit was a sometime in the pad.
For dlarity, the implementation of Latera developed in thisthesisis given its own name, “Zac’,
separate from the architecture itself. This is to dearly distinguish the genera concepts behind
the architecture from the particular way chosen to implement them. Regtrictions had to be
placed on the support for Lateral developed in this thess so as to satisfy the congtraints the
work took place under, particularly the desire for the work to be applicable to lower-end
robots. These limitations are not intringic to the architecture- hence the careful distinction being

made.

3.6.1 Executing Behaviours: The Scan Cycle

To run the control system in the Zac implementation of Latera, every active behaviour
(defined as a behaviour with non-zero priority) is executed in turn for one state. When dl the
behaviours have been executed, the cycle is repeated for another state. This processis cdled
the “scan cycle’. Before a behaviour is executed for another cycle, its input connections are

updated, and its priority is recalculated accordingly as described in Section 3.3.2, page 55.

8 This was an important pragmatic consideration, since when the work for this thesis was begun, the robot it was to
be implemented on was not known.

69

Lateral Chapter 3

Updating a connection means gpplying the arbitration rules of Laterd to determine which of its
sources it should read from (see Section 3.3.1.5, page 53).

The order of evauation of behaviours is chosen so that if there is a chain of dependencies
between any behaviours, effects from the start of the chain will reach behaviours a the end of
the chain within a sngle cyce. To darify what this means, consder an example where a
behaviour A depends on a behaviour B (i.e. information flow from B is channdled to A
through some sequence of connections), and B in turn depends on C, and C dependson D. If
these behaviours are executed in the order A, B, C and then D, three scan cycles will be
needed before a change in an output from D can affect A, since the change will only propagate
up the chain at arate of one behaviour per cycle- asshownin Figure 3-22.

D generates new
output in previous
~ cycle.

f
&
g

A executed first.
A Reads from B.

E

B executes next.

:
s

S ngl € Reads from C.
Scan
Cycle C executes next. Reads

from D. Effect of change
propagates through C.

3

)
:

| D generates new
D output again.

W

Cycles continue. Effect
of changes propagate
through a single
behaviour per cycle.

a

=

Figure 3-22: Propagation of effects with bad choice of execution order

In contragt, if the behaviours are executed in the order D firg, then C, then B, and findly A,
then the action of D will affect dl the other behaviours within asingle cycle, as shown in Figure
3-23. This will be the order chosen by the implementation of Laterd developed in this thess.
How the proper ordering of behaviours is deduced is described in the following section. The
agorithm used will order any tree-like hierarchy of behaviours so that a Sngle cydeis sufficient

70

Lateral Chapter 3

to propageate effects from the top of the tree to the bottom. If there is a cyclic dependency
(e.g. A depends on B, B depends on C, and C depends in turn on A) the order of execution
chosen will be such that it takes a single cycle for effects to propagete from one behaviour in
the loop around to that behaviour again.

D executed first.
Generates new output.

D

— * C executes next. Effect
ropagates immediatel
Scan propag y

B executes next. Effect
propagates further.

3

o @

— A executes. Effect of
A changein D reaches A in
asingle cycle.

-
K

— Cycles continue. Effect
within asingle cycle.

x
-
X

Figure 3-23: Propagation of effects with good choice of execution order

3.6.2 Updating Connections. The Pull System

Before a behaviour is executed, its input connections are updated o that it is operating on up-
to-date information. In Laterd, updating a connection means applying the arbitration rules of
the architecture to determine which of its sources it should read from, and then accessing that
source (see Section 3.3.1.5, page 53). A auitable data structure for implementing connections
is given in the next section that makes it possble to apply Laterd’s arbitration rules quickly
and efficiently.

The implementation of Laterd developed in this thess makes use of the presence of
connections to determine the best order in which to execute behaviours to optimise the speed
a which effects soread through the system. As wdl as being active insruments of

communication, connections serve to make the dependencies between behaviours explicitly

71

Lateral Chapter 3

accessible to the architecture. By applying the following two rules, it is possible to ensure that

al behaviours are executed in the optimum order -

1. To update a connection, update dl its sources first. Omit any that have aready been
updated in the current scan cycle or which are in the process of being updated. Then, if the
connection is an output of some behaviour, update that behaviour using rule 2 (unless that
behaviour has aready been updated in the current scan cycle or is currently in the process
of being updated).

1. Before updating a behaviour, update dl its input connections first in the manner described in
rule 1. Then execute it.

Note that the rules recursively invoke each other as dependencies are traced back though

connections and the behaviours met dong the way are updated. The conditionsin rule 1 check

for cycles and avoid looping. These two rules together are known as the “pull system”, since
when a behaviour is to be executed, it “pulls’ through its input connections to ensure that

everything it depends on is executed first. A smple exampleisgiven in Fgure 3-24.

""" 8 oy Pull started here
— v . I'_-'II 4 ~

—— pull stopped,
Execution sequence: 8, 3, 6, 5, 2 I cycle detected

Figure 3-24: Pull systemin action

Here behaviour “2” is to be executed. It first updates its input connection, which traces back
to behaviour “5”. Rule 2 is then invoked to update behaviour “5” before behaviour “2” can be
executed. Behaviour “5” depends in turn on behaviours “8” and “6”, so these are updated
before either “5” or “2’. Behaviour “8" has no dependencies, so it may be executed
immediately. Behaviour “6” depends on behaviour “3”, so “3" must be updated before “6”.
Behaviour “3" depends cydlicaly on behaviour “6” again, but rule 1 will detect this cyce and

72

Lateral Chapter 3

cut it offS. Behaviour “3” has no other dependencies, so it will now execute. This dlows
behaviour “6” to execute in turn. All the dependencies of behaviour “5” have executed, so that
behaviour may now be executed itsdlf. Finaly, behaviour “2” isfree to execute.

3.6.3 Traversing Connections. The Mesh Structure

To implement Laterd efficiently, it is important that the various reaionships between
connections can be determined quickly and without search. This is because these relationships
are usd extensvely both in the arbitration rules for updating connections, and in the “pull
system” for executing behaviours in the optimum order. This section introduces the idea of a
“mes’, a very flexible data structure developed for this architecture which is sufficiently
powerful to dlow dl the reationships possble between connections in Laterd to be
determined efficiently.

In Fgure 3-25, the logicd reaionships between connections in Laterd are shown for
reference purposes, copied from Fgure 3-2 on page 46. Each connection has a single
primary source and primary target. It can aso have secondary sources (connectionswhich
have that connection as ther primary target) and secondary targets (which have that
connection as their primary source). Also, every input or output connection belongs to a

behaviour cdled its owner. Intermediate connections outsde of behaviours have no owner.

Secondary Sources of C

Primary Primary
. Source |} ™| Target :
. ofC © ofC |

Secondary Targets of C

Figure 3-25: Relations required in Lateral

® The cyclic dependency still exists, but propagation from behaviour “6” to behaviour “3” will occur in the next cycle
rather than the current one.

73

Lateral Chapter 3

Since the pull system and the priority system in Latera both rely on repestedly evauating these
relationships, it is important that al of the following operations can be performed quickly
without search-

Finding the primary source of a connection.

Finding al secondary sources of a connection (al connections that have the given

connection as ther primary target'©).

Finding the primary target of a connection.

Finding al secondary targets of a connection (all connections that have the given connection

astheir primary source't).

Finding the behaviour that owns a connection, if it isan input or output connection.

Finding dl connections with the same owner as a given connection

The data dtructure used in this thesis to implement a connection so that dl the above
relationships can be easly determined is cdled a “mesh link”. A collection of such linksis
cdled a“mesh”. Each link!? has adirect hook to its owner, its primary source, and its primary
target. That much is straightforward. Each link has in addition a hook to a single secondary
source, and a single secondary target. It aso acts as an element in three separate linked lists-
the ligt of links with the same primary source as the given link, the list of links with the same
primary target as the link, and the list of links with the same owner behaviour as the link. Note
that having access to these lists means that only a hook to a single secondary source or target
need be maintained within a link - the rest can be found by traversang the list of links with the
same primary source or target as that link. In Lateral, the secondary sources and targets are
only ever examined as a group- <0 it is not necessary to be able to find a particular
secondary source or target without search, only to find the group. The lists are stored as
double-linked ligts for ease of manipulation, as shown in Figure 3-26.

10 |f this seems confusing, remember that the primary targets of connections are chosen freely, and do not affect either
the primary source or the primary target of the connections to which they are attached- just as one electrical wire
can be attached to another without changing what that wire is connected between. Hence if the primary target of A
is B, that does not mean that the primary source of B is A (and in general it will not be).

1 |f this seems confusing, the explanation is analogous to that given in footnote 10.

12 | this thesis, the terms “ connection” and “link” are essentially synonymous. The distinction is made as a reminder
that connections could be implemented in many ways, with the “link” structure being just one of those ways.

74

primary source Source Source primary source P
Previous with Next with

same owner Owner same owner
Prev. with same | | | Secondary (| Primary Next with same || | :
primary target Target Target primary target :

l y

Figure 3-26: Connection implementation+ a link

To demondgtrate the use of mesh links, consider the set of connections shown in Figure 3-27.

Primary sources, secondary sources, primary targets and secondary sources are al present.

Secondary Sources of C

OROR®

Primary

Primary | .
Target :

© | o
0

Secondary Targets of C

Figure 3-27: An example group of interacting connections

Figure 3-28 shows how the connections attached to C in the various different ways can be
determined. The primary sources and targets are found directly. The group of secondary
sources is found by firgt following the hook that C has to one of them, and then tracing around
the double-linked lig of dl links with the same primary target as that link. The group of
secondary targetsis found in an andogous way.

75

Lateral Chapter 3

Same primary target

—— Same primary Same primary
target target

_.
Al Previous Next A2 Previous ~ Next A3 Previous

A Secondary
Source

Primary source Primary Target
S | T
A Secondary
Target
Previous ~ Next Previous Next Previous
—
Bl Same primary 82 Same primary B3
source source

Same primary source

Figure 3-28: Evaluating the relationships between connections

The advantage of this arrangement, as opposed to each link maintaining its own list of
secondary sources and targets, isthat it is more efficient in terms of memory, and much smpler

to maintain.
3.6.4 Coding Lateral through C++

It was considered desirable to make the Zac implementation of Laterd portable across robots
with different onrboard processors'®. C++ is a popular progranming language for which
cross-compilers are available for the processors commonly used in autonomous robots, so this
was the implementation language chosen. The reasons for this decision are discussed in more
detall in Chapter 6. The C programming language would have been an equdly good choice,
but the object- oriented nature of C++ was agood match for Lateral’ s design as a collection of
behaviour and connection “objects’.

The gpproach adopted in usng C++ to implement Latera was to embed the functiondity of
Lateral behaviours and connections in corresponding behaviour and connection C++ classes.
Then a control system for a robot implementing a particular set of competences could be
congtructed by deriving appropriate new behaviours using inheritance and attaching connection

13 This was particularly important since, as remarked earlier, the robot that the work in this thesis was to be
implemented on was not known until that work was quite advanced.

76

Lateral Chapter 3

objects between them as necessary. The result would automaticaly support the Laterd’s
priority scheme, the pull system, and dl the functiondity described in this chapter.

The “mesh link” data structure for storing connections discussed in the previous section was
implemented as a class cdled “MeshLinkBass” (see Figure 3-29). This dass was only
concerned with modelling the abstract relationships between connections, and not with a
connection's role as a chand of communication. From this, a class cdled
“ZACMeshLinkBass® was derived which implemented Laterd’s priority scheme, the pull
gystem, etc. Inheriting from this, atemplate class was set up that alowed a set of classesto be
derived to implement links carrying particular types of data This use of templates dlows the
compiler to check that only links carrying the same kind of data are attached to each other’4.
Also it alows the programmer to easily derive anew type of link that carries a different kind of
data needed for a particular gpplication.

Connections Behaviours
MeshLinkBase Mesh
(models relationships (acts as a container of
between connections) Mesh Links)
F T
ZACMeshLinkBase ZACMesh

(adds priority system,
pull system etc.)

?

(acts as a container of
ZAC Mesh Links)

ZACMeshLink<Type>
(adds ability to carry a
specific type of data)

’

/TN

ZACProcess
(adds ability to act as
a state machine)

/TN

New behaviours derived
from this class

New connections created
with this class template

Figure 3-29: Behaviours and connections - meshes and links

The base cdlass for implementing behaviours was cdled “Mesh”, and smply acted as a
collection of mesh links. Like the base class for connections, this class was only concerned

with moddling the abstract rationships in the control system. For a behaviour, this means

14 This use of templates to make a “type-safe shell” is particularly effective when, asin this case, the class template is
aminor enough extension to the base class for al its member functions to be made inline. The compiler then need

77

Lateral Chapter 3

storing a set of input and output connections. Thisiswhy it is gppropriate for the base class of
behaviours to be a smple container for a collection of mesh links. Next, the class“ZACMesh’
was derived which could co-operate with the “ZACMeshLink” class to implement Latera’s
priority system, the pull system, etc. Findly, the ability to act as an augmented state machine
was added, giving the “ZACProcess’ class. This class represented a complete behaviour,
except that it lacked any connections and an actud state machine to execute. The programmer
could derive new behaviours by smply inheriting from this dass and adding a Sate machine
(implemented by overriding a virtua function) and gppropriate connections (member variables
derived from the ZACMeshLink class). Such new behaviours would be automaticaly
executed and managed by the Laterd support inherited from the ZACProcess class.

While it is sraightforward to use the classes described here to build aworking control system,
it was found that the congtructs and modularity of Laterd were different enough from those of
C++ to result in a gnificant amount of repetitive, indegant, clumsy code being necessary to
express various common dructures, eg. state machines. A tool called the “Zac Trandator”

was developed to automate the generation of this code. With this tool present, Laterd
congructs could be written in a specidly desgned syntax cdled “Zac Script”, and the
trandator would then convert those constructs © pure C++ for compilation. This tool is
described in more detail in chapter 6. The Zac Trandator was aso important for pragmatic
reasons. The implementation of the Lateral architecture presented here evolved over severd

design cycles, changing frequently. These changes would normally have required application
code written using the architecture to be updated too- but instead, if the source code was
written in Zac Script, only the trandator needed to be modified.

3.7 Summary

This chapter has introduced the Laterd architecture, a behaviour -based robot architecture that
extends on the successful Subsumption architecture developed by Brooks [[7]]. The nove
features of Lateral were discussed, in particular the flexibility it brings to how behaviours can
be organised. Further ideas were presented on how to actualy implement support for the
Latera architecture that would be light-weight enough for downloading to lower-end robots

not generate code for a separate set of functions for each class (important when memory is limited), but type-
checking is gtill as strong asiif it did.

78

Lateral Chapter 3

with limited memory resources. These idess lead to “Zac’, a particular implementation of
Laterd. Findly a suitable way to use C++ as a vehicle for implementing Laterd in a portable
fashion was examined.

Many of the chapters to follow rely on the work presented here. In Chapter 5, Latera is used
to build a st of behaviours. In Chapter 6, the Zac Trandator mentioned in Section 3.6.4 is
presented in detail. Then in Chapter 7, a complete syssem decomposition for the entire control
system of a robot is presented, with the dements discussed here finding expresson in the
components of the system in Section 7.6, page 227.

79

The Cartographic System Chapter 4

4. The Cartographic System

This chapter presents a cartogrgphic system cgpable of building and maintaining an effective
map of the robot’s environment with the use of short-range proximity sensors only. While the
gpproach developed has some common ground with the techniques reviewed in Section 2.7
(page 39), the unique chalenges which the absence of long-range sensors pose for map-
building are resolved by using a novel representation scheme specificaly talored to the
uncertainties involved. At the same time, the nature of the cartographic system developed here
is carefully chosen to be consistent with behaviour -based design principles, which place severe
congtraints on the use of representation (see Section 2.4, page 15).

The firgt section in this chapter establishes why a cartographic system is of such importance to
an autonomous robot. Following thet, the use of maps is reconciled with the limits behaviour-
based design places on the role modelling can play in arobot’s control system. A form of map
representation which meets these congtraints is then developed. Techniques are presented to
make the representation practica for use on robots with limited memory and rdaively dow
processors. The issue of recognising landmarks in the environment with proximity sensors only
is then examined in detall, because it is crucid to the success of the cartographic system.
Findly, a st of servicesis described for dlowing a behaviour to interact with the robot’s map
without compromising the behaviour’s essentialy reactive nature.

4.1 Motivation for using maps

An autonomous robot needs to maintain a map of its environment for a number of reasons.
Ore of the mogt important is that if the robot fals to maintain a map, it will be proneto cyclic
behaviour. As an example, consder Figure 4-1. Here the robot is shown trying to move in a
particular direction, but being blocked by an obstacle. The robot then tried to move around
the boundary of the obstacle until it isfree to movein the desired direction again. Unfortunately
in this case the shape of the obgstacle is such that following its boundary leads the robot into
turning back on the path it has dready followed. If the robot does not have away of detecting
that this has happened, it may enter a behaviourd cycle in which it repests the same motion
again and again.

The Cartographic System Chapter 4

O

Pathof | @
robot

O

y O

O

O
Obstacle

Figure4-1: Robot without map caught in behavioural cycle

Maintaining a map based on what the robot experiences as it moves would give the robot the
“memory” needed to detect and break out of cycleslikethis. Also, asthe robot explores more
of its environment and becomes better informed, its map becomes a useful tool in planning
efficient routes to targets. It allows the robot to anticipate obstacles in the way and avoid
entering into Stuations such as the one consdered above by just bypassng the obstacle
atogether.

Another basic use of mapsisto prevent the robot losing track of its position reletive to the rest
of the environment. While a reasonable estimate of the robot’s position and the direction it is
facing in can be maintained by tracking its movements and integrating them, as will be shown in
Section 7.4.1 (page 217), errors in the feedback from the robot’ s motors, and environmenta
interference, will accumulate over time to make these estimates increasingly inaccurate. By
detecting landmarks in the environment and comparing them with the map, the robot can
compensate for this accumulating error and keep better track of where it is reative to its
environment.

For the specific “sentry” robot gpplication developed in this thess, maintaining a map is
particularly important. The map is used to locate any aress in the environment that the robot
has not yet explored so that the robot will not neglect to patrol these regions. The map isdso
fundamenta to supporting agorithms which ensure that the robot patrols its entire territory in a
timely, reliable fashion (see Section 5.3.2, page 143).

81

The Cartographic System Chapter 4

Having judtified the need for maps, the following section will reconcile their use with the
congraints placed on the design of a behaviour-based robot, particularly in terms of the use it
may make of representetion.

4.2 Using maps in a behaviour-based robot

At firgt glance, usng maps seems to violate many of the criteria outlined in Section 2.4 (page
15) for a behaviour- based system, particularly the following:-
“Modules tend to be more reactive than deliberative’ - Building and maintaining amap
seems very much an act of deliberation. Also, any module that uses the map will not be
deciding its actions based entirdly on the current state of the environment, and so that
module will not be purdly reective in nature.
“Modules tend to be relatively ssimple’ - Inserting and extracting information to and from
amap would seem to require a good ded of complexity in any module involved in doing
0.
“Modules use distributed representations’- Modules in a behaviour-based system
should wse representations tailored to their particular needs, and should not share these
representations with other modules. A group of modules using information from a map
would gppear to be in contradiction of this.
“The world is considered its own best model” - Modules should consult direct sensor
data whenever practica, rather than relying on information from other modules. The world
itsdf is never out-of-date or inaccurate, whereas derived sources of information may well
be either or both.
The above congderations do not in fact rule out the use of maps- rather they place limits on
what the nature of that map can be and particularly how it can be used. Examining once more
the points listed above, these limits are asfollows-
Constraint: “ Modules tend to be more reactive than deliberative’ - Congtruction and
maintenance of the robot's map should not require any time-extended computation. It
should be possible for the robot to update its map in red time, quickly integrating its
perception of the immediate surroundings into the map as it moves. Equally importantly, it
should not take excessive ddiberation to actudly interpret the map- the robot should be
able to make use of the map immediately.

82

The Cartographic System Chapter 4

Constraint: “Modules tend to be relatively ssimple”- It should be possible for a
behaviour that needs to use the map to do so at the Smplest possible level that is adequate
for the task it is performing. The complexity of the map should not be reflected in the
behaviours thet useit.
Constraint: “Modules use distributed representations’ - While a mep is by its nature
dependent on the use of representation and modelling?®, the information the map provides
should be accessible without shared representation. This is Smilar to the last point.
Behaviours should be &ble to extract information from the map without needing to know
anything about its structure or how it is maintained.
Constraint: “ The world is considered its own best model” - The world should be
consulted in preference to internd information sources “whenever precticd”. While
surprisingly complex tasks can be achieved smply by reacting to the current state of the
environment, those tasks are limited to ones that can be done without any form of
“memory”. For any other tasks a behaviour-based robot has no choice but to make use of
some form of map. This is acoeptable as long as it only resorts to using the mep if there is
no way of extracting enough information from the immediate environment to perform its
task- i.e it dill consults the world itsdlf “whenever practicd”.
These requirements congtrain both how the cartogrgphic system should be implemented, and
the nature of the sarvices it should provide. Implementation issues are tackled in the next
section, where a map representation scheme is developed thet is consstent with the design
principles of a behaviour-based system outlined here. Interfacing with that representation

scheme to provide useful servicesis discussed later in the chapter.

4.3 “Marker” -based map representation scheme

This section develops a suitable representation for modelling the environment in a form thet
mests the design congtraints outlined in the previous section.

The two most widdly used map representation schemes in robotics are grid-based and
topologica (see Section 2.7, page 39). A grid-based scheme assumestheworld isarranged in

B Subsumption-inspired cartographic schemes such as that used in Toto [8] claim to avoid representation by building
a network of behaviours instead of a map, but this seems to be simply another implicit form of representation
athough with many advantages over traditional symbolic models.

83

The Cartographic System Chapter 4

a manner somewhat analogous to a chess board, with dl the objects in it arranged in definite
locations that can be known exactly by the robot. If the robot can know its own postion
precisdly, and is able to sense objects perfectly, there is no problem with this, but otherwise
the scheme becomes essentidly unworkable. 1t is very difficult to dlow for any uncertainty in
the robot’s podtion in it, and limitations in the robot’s sensing cgpability are particularly
troublesome. Hence it is unsuitable for use with an autonomous robot, athough it may work
perfectly well in asmulaed environment.

Topologica schemes, in contrast, depend less on the exact bcation of the objects in the
robot's environment, and concentrate more on trying to capture the basic shagpe of the
environment in terms of its essentid topology. In other words, the robot tries to determine
which areas can be reached from each other, which are cut off from each other by
obgtructions, etc. As such the precise details of the robot’ s surroundings are not as significant,
only the overal form, so uncertainty in the robot’s position becomes less important. However
the price pad for this is the extra computation necessary for recognising abstract topological
features in the environment. For a robot with no long-range sensors, such features cannot be
directly observed. The only way to observe them is indirectly, by keeping track of the
discernible atributes of the immediate environment, combining that information into amodd of
the overal environment, and then andysing that modd for topologica festures. In other words,
in the absence of long-range sensors it is effectivdly necessary to build a map before
topological festures can be detected, so such features cannot be used in building the map in
the firgt place.

The map representation scheme this section will develop is quite different from either of the
orid- based or topologica approaches. Instead of seeing a map as amode of the environment,
it is viewed more as a “record of experiences’. At any particular moment, the robot
experiences the environment in itsimmediate vicinity, as percaeived through the robot’ s sensors.
It also experiences feedback from its motors indicating any movement it is making, which can
be used to caculate its pogtion. It is clear the most well informed robot conceivable is one
which archives dl this information exhaustively, continuoudy recording the state of the sensors
aong with the associated postion of the robot, and never discarding any of this data. Such a

The Cartographic System Chapter 4

robot is an upper bound on the information a cartographic system can havels, snce it contains
every piece of data ever available to the robot. An attractive feature of recording datain this
form is that it makes no assumptions about the environment- no attempt is made to build a
mode of what is actudly in the environment. The gpproach used in this project takes this
trividly smple idea of archiving dl the robot’s experiences as a sarting point, and modifies it
into aform that is actudly practica to implement.

Firgly, a complete archive of sensor state and motion feedback for al the time the robot isin
operation is obvioudy hopdesdy impractica- the robot would quickly “drown” in the
information deluge, with too much data to process. To reduce this burden, it would seem
reasonable to eiminate any records in the archive that apply to the same position of the robot
as a new record being added, since the new record will have the most up-to-dateinformation
about the State of the environment at that position. However there is a problem with this. The
robot’s pogtion is deduced by integrating the motion feedback from the robot’s motors.
Errors in the motion feedback are unavoidable, so the position estimate will gradudly drift
from the robot’ s true position. Hence two records showing the same “nomina position” of the
robot cannot be assumed to correspond to the same physical position if there is a sgnificant
timeinterval between when they were recorded. However, if the robot were in some way able
to use features in the environment to keep its estimate of its position consistent, then it would
be acceptable to keep only the most recent record corresponding to a given position and
discard dl previous records for that location.

At this point an initidly unjustified assumption is made that this is indeed the case- that the
cartographic system eventualy constructed will be able to keep track of its pogtion in some
way. Given that, we can discard as out-of-date any entries in the archive that are marked at
the same position estimate as the current position when we add a new record. This step will be
judtified in Section 4.4 (page 95), where it is shown that the representation scheme which the
assumption made here leads to will in fact dlow the robot to keep track of its podtion by
detecting stable features of the environment called landmarks

Another change to the archiving Strategy needs to be made before it becomes practicd.

Obvioudy records of sensor state versus robot position cannot be made for every continuous

1 Of course, trying to make use of this huge archive of data sensibly would be another matter entirely.

The Cartographic System Chapter 4

point dong the robot’s path, as this would ill demand unlimited storage space. Instead, it is
acceptable to record “samples’ at pogitions with a certain minimum distance between them- so
the robot has information about representative points in every areait has been. The minimum
distance between records is chosen based on how much memory is available to store the
samples- the smdler the distance, the more samples in a given area and the more memory that
will be required (see Section 4.3.2, page 93).

At this point, the “record of experiences’ has been re-cast in aform that is actudly practica to
implement. The records of sensor sate versus nomind pogtion are caled ‘markers” in the
rest of this chapter. The example shown in Figures 4-2, 4-3, and 4-4 reviews and clarifies the

proposed nature of the “marker”-based representation scheme.

The diagram opposite shows the robot
od \ b moving through a smple environment. As the
@ ")

. robot moves, it records markers a fixed
...,-f"' minimum distances from each other dong its

! ® : : o
i path. Recording a marker is cdled “laying” it,

, ;....._._..,___.-'
') as if the robot were laying down some
'S physca trace in the environment as it moved.
¢ [[@] Recentmarker | | The jnformation in these markers details the
Path of Robot
readings from the robot’ s sensors the last time
Figure 4-2: Laying markers it was in the areathey werelad

86

The Cartographic System

Chapter 4

. |I| Recent marker
_.5::] Older marker
"' Replaced marker

Path of Robot

Figure4-3: Replacing markers

When the robotisin an areawhere it has lad
markers before, those markers are removed
and replaced. The new markers contain the
most up-to-date information that the robot
has about the environment in that location,
and hence the older markers become
redundant. If the environment should have
changed since the robot was last in the area,
the new makers will reflect the present
redity. Hence the ability to cope with a
dynamic environment is built in a a very basc

level to this representation scheme.

O i
i 4 -
O e o
. Gl b
o 6—_(,, . o,
' i [S s 8
o g P
H i oy
; o G
- II' Recent marker
YT - = Older marker
o0 & o 0 Replaced marker
Path of Robot

Figure4-4: A map as a collection of markers

The diagram oppodite is for a condderable
time aftewards, when the robot has
exhaudtively explored the environment. It now
has makes didributed evenly a
representative points throughout its territory.
The robot till continues to replace markers
asit moves, keeping them up to date with any
changesin their area. The markers as a group
ae effectivdy a map of the robot's

environment.

By usng markers, the robot can deduce what its sensors were reading the last time it wasin a

particular position. But it is not as easy to work the other way, and use markers to estimate the

robot’s position from its current sensor readings. This is because there may be many markers

with the same sat of sensor readings associated with them, and the robot will not be gble to

distinguish them. The robot’s sensors are not rich enough to record its environment a a level

of detail that would make this digtinction possible- for example, dl the markersthat are away

from boundaries look the exact same to the robot: zero proximity readings on al sdes. Thisis

why it is important to try to isolate specid “landmark” feetures in the environment tha the

87

The Cartographic System Chapter 4

robot can digtinguish from other aress and use to keep track of its position. Although most
markers of themselves cannot be used as landmarks, there are some markers- or groups of
markers: that can. These will be discussed in Section 4.4 (page 95).

The robot’s “map” in this form of representation is Smply a collection of markers. Since the
collection is potentidly large, it is important that it be structured in a way thet lets the robot
extract the information it needs from the map in a timely fashion, without having to do any
computationdly expensve searching. The following section discusses a method for achieving
this by structuring markersinto a hierarchy of “neighbourhoods’.

4.3.1 Neighbourhoods

As the robot moves, it needs to congtantly discard outdated markers and replace them with
ones that reflect the current state of the environment. To do this, the robot must be able to
determine which markers were laid in the same locations as the new markers it is currently
laying, so thet it can diminate them. Hence, it is vitd that the robot can quickly find dl the
markers whose positions are close to the current location of the robot. As well as this, it is
useful to be able to determine which markers are in the genera locdlity of the robot even if
they are nat in its immediate vicinity- so that the robot can gain an impresson of what the
environment beyond its sensor reech is like in the area through which it is moving. In generd,
the closer amarker isto the current position of the robot, the more relevant it is to the robot.
“Neighbourhoods’ are structures for filtering groups of markers by their distance from the
robot so thet it can find out about its locdlity in a timely fashion without seerching the entire
archive.

The ided Stuation would be if afully sorted list of markers could be maintained such thet at
any ingtant the markers are ordered by their distance from the robot. The robot could then
eadly access the markers relevant to it. A difficulty with thisis smply thet it takes too long to
do. A fast sort agorithm such as a hegp sort has a complexity of O(nlogn) . Thisis not bad,
but would be a drain on the resources of the robot- acutely so for the lower-end robotswith
limited processors the work in this thesis is aimed at. A more serious problem is that the robot
will not stop moving and wait for the sort to complete- since that could lead to pauses of the

order of minutes for atypica robot. Therefore, the “metric’ by which the information is being

88

The Cartographic System Chapter 4

sorted- distance to the robot- is continualy changing as the robot moves. Fast clever sort
agorithms are not designed with this in mind, and so their performance would be difficult to
predict under these unique conditions.

Investigation with Khepera, the robot the work in tis thesis was implemented on, showed

that, practicaly spesking, the magp maintainer could rely on being alowed on the order of 10
“updates’ to the sorting process per second. Within an update, only a handful of markers
could be processed, or system performance would degrade badly. Given these condtraints, it
is not possible to maintain an ordered list of markers using norma sorting agorithms unless the
robot islimited to moving extremey dowly.

However, the robot does not actudly need to sort its markers fully. It is important thet the
robot can identify markers thet are in its immediate vicinity, or its generd locdlity. Beyond this,
it does not need to know which markers are closer than others. This would suggest a “bucket
sort”, where dl markers are examined and placed in one of three “buckets’ labelled
“immediate’, “near”, or “distant’, depending on how close they are to the robot. In a
conventiond bucket sort, al the markers would be examined in turn and classified one by one.
Experimentd tests proved this to be impractical because the sort couldn’t keep up with the
rate & which the robot could move- the full sort took on the order of a minute, while the set of
markers that should be in the “immediate’ bucket changed every few seconds (and the “near”

bucket every few tens of seconds). The reason for this high rate of change is because, while a
marker that is distant from the robot tends to stay distant for some time, amarker thet isin the
immediate vicinity of the robot at one moment may not be so in the next. The robot only hasto
move asmd| distance to completely change which set of markers are in itsimmediate vicinity.
A smilar argument gpplies to the “near” bucket, except the robot has to move further for a
given marker to no longer be near it, so the rate of turnover of markersis not as high.

A sgnificant improvement to the sorting process can be achieved by observing that in generd

the number of markers in a bucket will be roughly proportiond to the area it encompasses.

Hence there will be fewer markersin the “near” bucket than there are in the “distant” bucket,

and fewer dill in the “immediate’ bucket. If the robot were to devote the same length of time
to sorting each individua bucket, then the “immediate” bucket would be worked through at the
fastest rate (Since it has the fewest markers), the “near” bucket would be processed somewhat
more dowly, and the “distant” bucket would be worked through dowest of al. Effectively, the

89

The Cartographic System Chapter 4

rate a& which al the markers would be updated in a given bucket will be higher the fewer
markers there are in that bucket. But the buckets with the fewest markers are the ones closest
to the robot, which are aso the ones with the grestest rate of change. Hence this is very

desirable behaviour since it means that the robot will process the buckets at arate that mirrors
the speed at which changes take place in them.

So the sort can be improved by smply modifying it so that in one “cycle’ it takes a sngle
marker from each of the buckets, sorts them, then repesats the cycle!’. Hence the same amount
of time is spent sorting each bucket. Because there are just a few markers in the “immediate’

bucket, the bucket sort cycles through them very quickly, so they are updated at a rate that
can keep up with the robot’s movement. The “near” bucket has some more markers, and

takes dightly longer to pass through, which is acceptable because the turnover of markersis
not asfast asin the “immediate’ bucket. The “distant” bucket has many markersinit, and so is
passad through most dowly. In practice experimentd tests proved it was passed through too
dowly- markers that should be moved to “near” were not detected quickly enough. For that
reason, an intermediate bucket between “near” and “distant” was inserted, called “locd”, to
hold markers that were indeed distant from the robot, but sill near enough to be worth
monitoring more closdy o that they could be moved to the “near” bucket in atimey fashion

when appropriate.

The “buckets’ discussed above will be cadled “neighbourhoods” in this chepter, snce they

represent a collection of markers dl at the same genera distance range from the robot (see
Fgure 4-5).

¥ The robot will not run out of markers because, when it has processed all the markers in a given bucket, it should
simply start over and begin processing them all again. This is because the robot will have moved in the meantime,
and the markers may now need to placed in different buckets.

0

The Cartographic System Chapter 4

Yy
‘ Near Local Dlstant

‘ Immediate

Index to marker
currently being sorted

Index of next marker L
to be sorted | | |

In each cycle of the sorting process, one marker from

: each neighbourhood is examined and moved to another
neighbourhood if appropriate. The next cycle repeats the |
; process for another set of markers.

Figure4-5: Sorting markers using neighbourhoods

The properties of neighbourhoods will now be formdised. Each neighbourhood has an
asociated nominal distance range (see FHgure 4-6). The robot attempts to keep markers
whose pogtions are within that distance range from the current robot postion in the
appropriate neighbourhood. The distance range associated with a neighbourhood is caled
nominal because in generd the distance of some markers in a neighbourhood from the robot’s
current podtion will in fact lie outsde the neighbourhood's specified distance range. This
happens when a movement of a robot changes the distance from the robot to a marker
aufficiently to make it ingppropriate for the neighbourhood it is in. The marker will be re
classfied into the correct neighbourhood the next timeiit is examined by the sorting process.

91

The Cartographic System Chapter 4

@)

O
@ Immediate
Neighbourhood

O
O Near
Neighbourhood
O Local @
Neighbourhood
O Distant 0O
Neighbourhood

@ Current position
0] O o 0] of robot

E Markers

Figure 4-6: Distance ranges associated with neighbourhoods

If the robot were ationary long enough for the sorting process to place dl the markersin their

appropriate neighbourhood, then the neighbourhoods would contain the following:-
Immediate Neighbourhood- this contains any marker whose position is very close to the
current robot position, and which would need © be discarded if a new marker was laid at
that point. The minimum distance enforced between markers keeps the number of markers
here very low- ether zero, one, sometimes two. The sze of the immediate neighbourhood
should correspond to this minimum distance (see Section 4.3.2).
Near Neighbourhood - this contains any marker located in the general surroundings of the
robot. These markers let the robot gain an impression of the environment just beyond the
reach of its sensors. The minimum distance enforced by the marker laying system will dso
keep the number of markers in this neighbourhood relatively low. For the choice of
minimum distance used in this work, the number of markers here was kept at about haf a
dozen.
Local Neighbourhood - this contains any markers which do not qudify as “Near”, but
which might do so in the foreseeable future. It acts as a buffer zone between “Near” and
“Digant”, increasing the speed a which it is possible to detect markers that have become
“Near” because of movement of the robot. The extent of this neighbourhood is not criticdl,
but if possible it should be chosen so that its distance range is greater than the distance the

92

The Cartographic System Chapter 4

robot can move in the time it takes to sort through al the markers in the neighbourhood
once. For the speed a which the robot this project was implemented on could process
markers compared with the speed it could move through the environment, this condition
was satisfied by choosing a distance range that kept on the order of 20 narkersin this
neighbourhood.
Distant Neighbourhood - this contains any other markers too distant from the robot to
fdl into any of the other neighbourhoods.
The process of sorting markers is a continuous one, because effectively the “god- posts move’
during the sort because the position of the robot keeps changing. Hence the robot cannot
expect to ever have dl the markers ordered correctly unless the robot is stationary for an
extended period. But the neighbourhood system alows the robot to concentrate its effortson
those areas that are most relevant to it- the immediate and near neighbourhood- and process
distant markers at a dower rate.
The system developed here is dedicated to making sure the robot aways has good local
knowledge of its environment. It is not very suitable if the robot needs to examine the map a
particular pogtions digant from it. No way could be found to dlow that and ill have
acceptable run-time performance’®. Such an dbility is not generdly desrable in a behaviour-
based robot anyway- the robot is mosly concerned with supplementing its immediate
perception of the loca environment with information from the map about that same locdlity.

4.3.2 Marker Laying System

The marker laying system is designed to try to keep exactly one marker in the “immediate’

neighbourhood. This enforces a minimum distance between markers so that the robot does not
become swamped with many markers dl corresponding to the gpproximately the same
location. When a marker is laid, dl other markers in the “immediate’ neighbourhood are
congdered to be superseded by this marker, and are deleted. A new marker islaid every time
the robot moves beyond the chosen minimum distance from the last marker laid.

B |n Section 4.5.4 (page 115) a method of searching the robot’'s map even at locations distant from the robot is
presented, but it is not a technique that can be applied i n redl-time, only as a background task.

93

The Cartographic System Chapter 4

This marker laying system leads to the memory requirements of the cartographic system
growing with the ratio between the area of the robot's environment and the area a sngle
marker covers (i.e the “level of granularity” a which the environment is mapped). A good
choice for the area a Sngle marker should cover is afairly large fraction of the area of the
body of the robot itself, since features smadler than the robot have little impact on it. In this
project, markers represented an area of about one third of the robot's body. The minimum
distance between markers is deduced as the radius of the area a sngle marker is chosen to

represent.

4.3.3 Adding annotationsto markers

Markers are essentially records containing data derived from the robot's sensors- its
“experiences’- dong with the postion that the robot was in when it laid the marker. In practice
it is useful to dso include a timestamp to indicate when the marker was laid, but thet is dl the
information specificaly needed by the basic marker representation scheme,

However, as discussed in Section 4.3, the vdidity of the marker representation scheme
depends on the ability of the robot to recognise landmarks in its environment. This will be
examined in the next section. For now, it isimportant to observe that the landmark system will
need some way to store data about landmarks it has detected, so that the next time it meets
them it will have something to compare them againgt. Detecting landmarks is of no use unless
deductions can be drawn from thent®. The way this is handied is by letting the landmark
system “hook on” its own data to the marker. Keeping this data with the marker, rather than
setting up separate storage for it, means that the landmark system is effectively dlowed to
“annotate’ the robot’s map, and have those “annotations” brought back to its attention when
the robot returns to the area where they were made.

This ability to add “annotetions’ to the mgp by induding data in markers is quite useful for
other components of the cartographic system as well. In Figure 4-7, the full structure of a
marker is shown, including al the annotations added by various parts of the cartographic
system discussed later in this chapter. The diagram is given smply to demondrate that a

B |n fact for one of the two types of landmarks that will be examined the basic marker data is sufficient, but the other
will indeed need to store extra data characterising the landmark it detects (see Section 4.4.3, page 108).

A

The Cartographic System Chapter 4

marker acts as a single “hook” onto which diverse information for different parts of the

cartographic system can be hung- the actua data stored in the annotations are not relevant yet.

/[Basic Data \/

Annotations

~

General Connectivity Landmark Tag&Search
Properties Properties Properties Properties
Nominal Position Connectivity Corner Ta Best-Solution
xy) Links 9 Value
Data derived Boundary Pre-Corner Best-Solution
from Sensors Angle Angle Hop Count
Time Stamp Reachable Post-Corner Best-Solution
Information Time Stamp Angle Distance
Housekeeping Reach Failure Best-Solution
Pointers Count Gradient
Marked Region

NN —

Figure 4-7: Marker structure with annotations

This completes the discussion of the marker representation scheme. Remember however that
an initid assumption was made when developing the scheme that has not yet been justified.
The assumption was that a landmark recognition system could be built usng the marker
representation that would be able to keep the robot’s estimates of its position and direction
consstent over time. The next section demonstrates how this can be done, and so confirms

that a map composed of markers can be maintained for extended periods.

4.4 Using Landmarks

It is important that the robot has some means of recognising landmarks in its environment-
otherwise the robot will lose track of its pogition and direction, and be unable to continue to
maintain its mgp. A fundamental assumption was made in Section 4.3 (page 83), where it was
assumed that the cartographic system, when constructed, would be able to keep track of its
position by using landmarks. That confidence in the robot's estimate of its position was a

95

The Cartographic System Chapter 4

necessay darting point for the marker-based map representation scheme. Now that
assumption needs to be judtified.

The robot’s estimate of its podtion is generated by tracking the movements of the robot and
integrating its motion to give its positior?®. The robot determines its motion by feedback from
its motors. However, this feedback will contain some error due to occasona motor dippage
and environmental interference with the robot’'s progress. Since the motion feedback is
integrated to give position, these errors will aso be integrated, and the robot’s estimate of its
position will grow less accurate over time as the error builds up. The robot’s estimate of the
direction it is facing in is generated in a Smilar way, by keeping track of every turn the robot
makes. The direction estimate will dso grow less accurate over time for the same reasons as
the position estimate.

The purpose of building a landmark recognition system is to find gtable features of the
environment that can be used as reference points to deduce how much error there is in the
robot’s position and direction estimates, and make the appropriate corrections to compensate
for that error. This section presents a scheme for recognising landmarks in the environment
with proximity sensors only, using the marker system developed in the previous sections.

A robot with proximity sensors only cannot Smply “look” a an object and recogniseiit. It can
only sense the small portion of an object thet isin itsimmediate locality. And even that portion
may not be sensed very accurately. For example, the proximity sensors of the robot that the
work in this thess was implemented on gave a distance reading that was nortlinear, noisy,
influenced by ambient light, and the colour, texture, and other features of the object. Such

readings are not even remotely suitable for direct use in landmark recognition. There are

smply no stable features to recognise. As an example of the difficulties, the same object in the
same postion relative to the robot may give varying proximity readings depending on how

sunny the day is. The basic problem is that, because of dl the uncertainties involved, there is
no way to take a reading from a proximity sensor and actualy convert it to an exact disance
measurement to the object.

However, such nortided sensor data is sufficient to allow the robot to perform a smple task
like following the boundary of an object. The details of how this is done are discussed in

® The details of how thisis achieved will be described in Section 7.4.1 (page 217)

The Cartographic System Chapter 4

Section 5.2.3 (page 129), but essentialy the robot smply comes close to the object, turns at
right angles to its boundary, then moves forward continuoudy, turning to the left or right as it
detects the edge coming closer or faling away (see Figure 4-8). The robot never needs to
know the exact digance it is from the object, only whether that distance is increesng or
decreasing. This relative information can be extracted reasonably rdiably from proximity
readings, even though the absol ute distances the readings represent cannot.

The reason this is relevant to a discussion of landmarks is that when the robot is following the
edge of an object, the path it moves along will trace the outline of that object’s boundary (see
Figure 4-8). The distance the path is from the object will depend on the exact nature of the
object’s surface- but whatever the distance is, it will be congstent, since the nature of surfaces
tends to be remain congtant. So if the robot follows the same boundary twice, the path it
follows will generdly be consstent. Hence recognisable features such as corners and edges
that appear in the path will regppear in the same places the next time the robot follows the
boundary. Therefore these features can act as landmarks for the robot.

Corner Feature

Feature
«Turning right if boundary gets
closer
Raobot’s path

traces the outline
of the object

Move left Move right

Robot follows boundary by:

<Moving forward continuously

«Turning left if boundary gets
further away

Figure 4-8: Tracing the outline of an object

The sections that follow discuss how the ideas developed here can be implemented using the

marker-based map examined earlier.

4.4.1 General gtrategy for trusting landmarks

There are two sections of a boundary which are particularly well suited to act as landmarks

corners and straight edge sections. These segments of the boundary have well-defined, stable
97

The Cartographic System Chapter 4

features from which congstent information can be extracted, as will be shown soon. With

caeful use of this information, it is possble to compensate for accumulating error in the
robot’s estimates of its position and direction. Before looking at the details of how this can be
done, some generd difficulties with landmarks need to be addressed.

While the idea of landmarks is that they provide reference points that the robot can use to
keep track of its pogtion, it isimportant to remember that the robot’ s environment is not Satic.
It cannot be assumed that a change in the agpparent position of alandmark automaticaly means
that the robot’s estimate of its position has become inaccurate- it may equaly well be that the
landmark has smply moved. A change in the pogdtion of a landmark and an error in the
robot’s estimate of its pogition are indigtinguishable while the robot is close to that landmark.
However, an important point to redise is that they can be distinguished once the robot moves
away fromthat area. A changein the position of alandmark will not change the position of any
other landmark, whereas a drift in the robot’'s sense of postion will change the perceived

position of every landmark. Oneisalocd change, the other isagloba change. So if the robot
finds that every landmark it meets seems to have moved, then it becomes more and more
likely that the movement is only apparent, caused by a drift in the robot's estimate of its
position. Essentidly, the “consensus’ of the landmarks in the environment is used to determine
what has occurred in a particular part of that environment. This use of landmarks ensures that
the map is kept salf-consisent by essentialy averaging error over the entire map?.

A draegy for gpplying corrections to the robot’ s estimates is now presented that follows from
the above considerations. It is first assumed for the purposes of calculation that apparent
changes in the environment are entirely due to drifts in the robot’s position and direction
edimates and not to changes in the podtion of landmarks. Then, having computed the
corrections to the robot’s estimate of its position and direction that would be appropriate

under that condition, only a conservative fraction of each correction is actualy applied. If the
goparent changes in the environment are in fact due to drifts in the robot’s estimates, then

every landmark the robot meets will continue to apply these corrections until they build up

aufficiently to compensate for the drifts. If, on the other hand the gpparent changes are red,

2 Note that this averaging process, while it keeps the map self-consistent, does not prevent the coordinate system of
the map drifting over time. This point has no bearing on landmark recognition, but does have bearing on the nature
of the services the map can provide- see Section 4.5.1, page 113.

98

The Cartographic System Chapter 4

and due to an actud change in the position of alandmark, the correction will not be reinforced
a any other landmark. In fact, a other landmarks the “incorrect correction” will be
compensated for, since the error introduced into the robot’s estimates will seem judt like a
naturd drift from accumulating error and can be corrected as such. The “ conservative fraction”

mentioned earlier should be one chosen o that if a correction is applied in error, it is smdl

enough to be recovered from through the same process that dedls with normd drift. Suitable
vaues will be quoted for straight-edge and corner landmarks when they are discussed. It is
important to note that corrections to the robot’'s estimate of its direction must be made
particularly conservetively, because smdl eroneous corrections to the direction will be
multiplied into very large errorsin its position as the robot moves. Erroneous corrections to the
position estimate do not become amplified in this way?.

This ability of the landmark system to “hed itsdf” if errors are introduced while attempting to
make corrections is quite generd, so long as the errors are not large enough to prevent
landmarks being recognised. One useful consequence of this is that it is acceptable to make
approximations when caculating the corrections to the robot’ s estimates from alandmark. The
difference between the approximation and the exact answer can be seen as introducing an

error component into the corrections the robot makes which nay add to the drifts in the
edtimates rather than removing them. This will Smply appear as an extra component in the
position and direction drift calculated in future corrections and be diminated.

The following sections now look at the details of detecting particular landmarks and using them
to make gppropriate corrections to the robot’ s position and direction estimates.

4.4.2 Straight-edge landmarks

This section discusses how sraight sections of an object’'s boundary can be used as
landmarks.

As the robot moves, it lays markers representing what it senses, replacing markers adready
present that represent what the robot sensed last time it was in the area (see Section 4.3.2,

2 |1f you aim a cannon at a target, but shoot a few degrees in the wrong direction, you will miss the target by a
distance that keeps increasing the further the cannonball goes. If, on the other hand, you aim the cannon exactly on
target, and move it a few paces left or right before firing still facing the same direction- then the cannonball will
miss the target by just the distance you moved no matter how far away the target is.

9

The Cartographic System Chapter 4

page 93). If the robot follows a straight edge section of a boundary that it has passed before, it
should find that the markers it is laying are collinear with the ones being replaced. In practice
this may not happen, either because the robot’ s estimate of its position may have drifted dueto
accumulating error, or its direction estimate may have drifted, or both. Of coursg, it is dso
possible that the position of the edge may have changed. This possibility will be ignored for
now, and then accounted for later. The logic of doing this was given in the discusson in the
previous section.

It is possible to assess the amount by which the robot’s estimates have drifted since the last
time it passed a particular straight edge segment. Thisis done by working backwards from an
examinaion of the gpparent difference between the edge asiit is perceived currently with how
it was perceived in the past, as recorded in the markers the robot laid at that time.

The effect of adrift in the robot’ s postion estimate is shown in Figure 4-9. Therobot is shown
following the same edge segment twice. As the robot follows the edge for the first time, it lays
markers in a straight line at regular intervals dong it. When the robot returns to the edge at a
later stage, any drift in the robot’s podtion estimate will cause the markers it lays this time
around not to be callinear with the ones laid origindlyZ.

Situation @ The robot following a straight
o edge segment
'—> -
First pass Second pass o the robot following the same
wall edge again at a later date
Marker representation First Pass
The robot follows the edge segment, laying
Markers fch\nm first pass markers at regular intervals along the way-

A replacing any markers already present.

B
- o @ o @< [® SecondPass
“ - The robot follows the same segment. In the

v
Markers from second pass meantime the robot’s estimate of its position
Difference present in has drifted, so the edge appears to be at a
p L different position.
apparent edge position

Figure 4-9: Effect of position estimate drift

3 Unless the drift happened to take place along the direction of the edge itself. This possibility will be discussed
soon.

100

The Cartographic System Chapter 4

If the robot finds itsdf following an edge while replacing markers that suggest the past

exisence of an edge very similar to the one it is following?, but dightly offset, that is a good
indication that the robot’s position estimate has drifted and the two edges are in fact the same.
Of course, it is necessary to be cautious in deducing corrections from this since the edge may

in fact have moved in the environment. Thisissueis discussed in more detall further on.

The amount of information the robot can extract about the drift in its postion esimate varies. If
the drift occurs in the same direction as the edge itsdf extends in, then it will be undetectable,
snce the markers the robot lays will ill be collinear with the ones laid previoudy. If the drift
was a right angles to the edge, it will be detected in full. In generd, the component of the drift
perpendicular to the edge can be deduced.

In Figure 4-10, the effect of a drift in the robot’s direction estimate is portrayed. This type of
drift is more serious, Since even asmal drift in direction can produce alarge drift in podtion as

the robot moves.

Marker representation -

Difference present in direction in
which the edge appears to extend

First Pass [@] Second Pass

The robot follows the edge segment, laying The robot follows the same segment. The

markers at regular intervals along the way- robot’s estimate of the direction in which it

replacing any markers already present. is facing has drifted, so the edge appears to
extend in a different direction.

Figure 4-10: Effect of direction estimate drift

The drift in the direction estimate can be found in full from the difference in the direction the
edge appears to extend in currently compared to the direction in which the previous set of
markers laid dongside the edge extend.

In genera both position and direction drift may be present. Figure 4- 11 illudirates this Stuation.
Note that the point at which the drifts are being cdculated islabelled. Thisis because direction

% The robot can tell if the markers it is replacing indicate the presence of an edge by examining the proximity sensor
datarecorded in them.

101

The Cartographic System Chapter 4

drift causes a drift in pogtion that changes as the robot moves, so the position drift calculated
will depend on where dong the robot’ s path it is measured. The direction drift can be found by
comparing the direction the two sets of markers are digned in as before. The detectable
component of the pogtion drift & a particular point adong the robot's path can then be
caculaed by drawing the imaginary line that the robot would have followed if the direction
drift had been corrected at that point, and then finding the perpendicular distance between that

line and the one formed by the recorded markers.

Marker representation
Point at which drifts

are being calculated -
I v e @@
Path with direction drift corrected ..
- b
dg
Difference present in I Difference present in direction in
apparent edge position which the edge appears to extend
First Pass [@] Second Pass

The robot follows the edge segment, laying The robot follows the same segment. The

markers at regular intervals along the way- robot’s estimate of the direction in which it

replacing any markers already present. is facing has drifted. Its position estimate
has also drifted.

Figure 4-11: Combined effect of direction and position estimate drift

The practicd issues involved with actudly performing the caculaions for the drifts in the
robot’ s position and direction estimates will now be examined.

Cdculding drifts involves continuoudy comparing markers recently laid with the markers they
replaced. This can be done by maintaining alist of the last n markerslaid and the markers they
replaced. By applying metrics to these markers it can be determined if they indicate that the
robot is following a Sraight edge that it has met before. If thisis found to be the case, the two
sets of markers can be compared to cdculate drifts in the robot's position and direction
edtimates as outlined earlier.

Because of the steady computationa burden these continual comparisons make on the robat,

it is crucid that the robot can make the relevant calculations quickly and efficiently. This was

102

The Cartographic System Chapter 4

done by carefully choosing metrics that mede little use of transcendental functions?s, and by
limiting the number of markers that were compared to a manageable number. It was decided
to involve only the last three markerslaid (and the markers they replaced) in calculations. This
decision was based on a number of factors-
The more markers used, the longer an edge segment needs to remain straight for it to be
accepted as alandmark. Choosing a low number of markers implies that even if the edges
of boundaries are only straight in small sections, these sections can till be recognised.
Usng a low number of markers aso alows edges that have a small curve to be used as
landmarks since these are close enough to a straight line for practica purposes over short
distances.
The mathematics involved is particulaly smple for the three-marker case, minimising the
computationa burden on the robof®.
Fgure 4-12 shows the information the robot has available to it when it maintains alist of the
last three markers laid (o1, p2 and ps) and the markers that they replaced (g, ¢ and). The
marker p; isthe one most recently laid.

o “*

Pobay) P2 e¥) ©

Py (x1y1) __::___'::._._:,:j'_::::::aq_..,._._.

path with direction
drift corrected

. fg

qa(xs‘ Ys')

LG e 2 (o)

G
dq
Difference presentin I Difference present in direction in
apparent edge position which the edge appears to extend
Earlier markers [@] Replacement markers
U1 Most recently replaced marker P1 Most recently laid marker

92 second most recently replaced marker P2 second most recently laid marker

U3 Third most recently replaced marker Ps Third most recently laid marker

Figure 4-12: Computing drifts by comparing three markers

3 Functions such as sine, cosine, sguare root etc. take longer to calculate than multiplication, division, addition, etc.
Therobot isunlikely to have a maths co-processor.

3 |n fact for the physical robot used in this project, three markers was the maximum that could be used without
unacceptable runtime performance degradation.

103

The Cartographic System Chapter 4

Before comparing the two sets of markers, it is important to evauate how confident the robot
can be in the corrections to the drifts in the robot’s position and direction estimates that it
deduces from them. Firdtly, it isimportant that each set represents a straight edge. This can be
tested by measuring how close to being collinear each set of markers are. There are many
possible metrics that can be used- the one described here was chosen because it avoided the
use of transcendental functions.

Congder the angle ¢ formed between the most recent marker laid, the second most recent
marker, and the remaining marker. This Stuation is shown in Figure 4-13. The closer g isto

180-, the closer the three markers are to being collinear.

P3 (X3Y3)

P, (x2y,)

P2 P3

P (1) q (X3X2, Y3°Y5)

(XaX1, Y2 Y1)

Figure 4-13: Testing the collinearity of a set of markers

The inner product of the vectors formed between the markers at the extremes and the marker

inthe centre is:-
%h%® %%O® |%%e ||%nne
PPz B2 Ps =P P2 | P2 5 COST
Rearranging for cos q gives-
Kh%® %h%E
_ 61/p2- F/)z/ps _ (Xz) Xl)(x3 - Xz) +(Y2 - yl)(Y3 - YZ)
COSA = e wne| 2 2 > >
P B || P, pa‘ \/(XZ B Xl) +(y2 B yl) \/(Xs' Xz) +(y3' yz)

Squaring both sides will remove the square roots on the right- square roots are undesirable

since they are transcendenta functions and relatively expensive to caculae.
[(Xz - Xl)(x3 - Xz) +(y2 - yl)(Y?. - yz)]2

(Xz } X1)2 +(y2 B yl)z]’(xs) Xz)z +(y3 B VZ)Z]

At an angle of 180° the markers are collinear, and cos? g isa its maximum vaue of unity. The

cos’q = ’ .(4)

further the markers are from being collinear, the further the angle g will deviate from 180°, and

104

The Cartographic System Chapter 4

the further cos? q fdls from unity?”. Hence the fraction on the right of the above equation can
be used as a metric of the “Sraightness’ of the line formed by the markers ps, p2 and ps. The
same metric can be applied to the markersqz, g2 and gs.

Aswell as being collinear, it isimportant that the two sets of markers form lines that extend in
approximately the same direction. The further their directions diverge, the less confident the
robot can be that the differences can be accounted for by drift in the robot's direction
edimate, and the more likely it is that the difference is caused by an actua change in the
environment. The direction of a set of markers is here gpproximated as the angle formed
between the markers a the extremities as shown in Figure 4-14. The gpproximation is
acceptable because, if it is not reasonably accurate, the collinearity metric will have generated
alow vaue so the robot will know not to have confidence in the markers as alandmark.

P3 (X3Y3)
P2 (x2,Y2)

P1 (x1.y1)

Figure 4-14: The direction indicated by a set of markers

Note that caculating this angle unavoidably involves the use of a transcendenta trigonometric
function, inverse tangent-

-y, 0
f=tario A2
— (42

The same cdculation can be peformed for the markers g1, g and gz Then the closer the
difference in the angles cdculated is to zero, the more confident the robot can be that the lines
represent the same feature. 1t would be reasonable to combine this angle confidence metric
with the callinearity one given in Equetion 4.1. However a better dternative isto only calculate
the angle metric if the collinearity metric is satisfactory, since this reduces the average

7 Of course, cog’ q also approaches unity as q approaches 0°- i.e. when the robot turns about-face. This undesired
possibility could be tested for, but instead a more general idea for eliminating spurious landmarks was used.
Straight-edge landmark detection was only enabled when the robot was following an edge smoothly, and making no
sharp turns. The “curvature” virtual sensor to be described later in Section 4.5.2, page 114 was used to check for
thiscondition.

105

The Cartographic System Chapter 4

computational load on the robot. A cut-off confidence of 0.9 for the collinearity metric was
found to work well. A cut-off confidence of +10° was smilarly placed on the angle metric, so
that if it was not satisfactory the robot would perform no further computation. These numbers
were chosen based on an estimate of the rate at which position and direction drift occurred on
the particular robot used in this project. The use of such “magic numbers’ could be avoided by
amply not usng cut-off confidence thresholds, and factoring the metrics into an overdl
confidence in the find calculated corrections to the robot’ s drifts. This was not done because it
required the robot to complete al stages of the calculations, rather than only performing them
when it would be able to have high confidence in the results The cut-offs reduced the
computationa burden on the robot sgnificantly with only a smdl price in missed opportunities
to fix drifts

The actua corrections to the robot’ s estimates of its position and direction are now caculated.
The drift in direction is Smply the difference in angles calculated earlier, as shown in Fgure 4-
15.

Current O -
position of D P3 O
robot A o
. 1 e dge
path with direction I Xo,Yo) g T e
grift corrected . ¢ q
i 3
e Q; 92
Drift in position, l/ aa Drift in direction,
(Dx, Dy) dqg
Current position of robot - I (xo,Yo)

Figure4-15: Calculating driftsin position and direction estimates

The obsarvable component of the drift in postion is found by considering what minimum
displacement (Dx, Dy) is necessary to trandate the robot’s current position onto the recorded
location of the edge it is following. The gtuation is dso shown in Figure 4-15. This
displacement can be estimated by finding the intersection of the line formed through g, and ¢
with the perpendicular dropped fromr.

The dope of the line through qx and gs is -

106

The Cartographic System Chapter 4

m= y§- Vi
Xg- x¢
Hence the equation of that lineis-
y- yf=m(x- xf)

The perpendicular to thisline through the point (x,, y,) is-

1
y- yo =- E(X' Xo)
Theselinesintersect a -

_MOX X - MY, - Vo)

X 2
1+m
y= M’Yo + Y1 - M(X, - %)
1+ m?
Hence the displacement is -
2
Dx=Xx- X, = M (X, - %o) sz(yl Yo)
1+m
—v-. _ =M% - %) + (Y1 - Yo)
Dy=y-Y,= Tor?

Dx and Dy are the appropriate corrections to the robot’ s postion estimate, if it is assumed the
boundary has not changed since the robot last saw it. In practice this correction is made with
one quarter weighting so that the map is changed conservatively, and can be repaired if the
correction turns out to be misguided. The correction to the robot’s direction estimate was
trusted at one half weighting because experimenta tests found it to be very reliable. However it
was found that any fractional weighting for both position and direction estimates that was not
too large produced perfectly acceptable results. This is consstent with the remarks made in
Section 4.4.1 about the resilient nature of alandmark system.

As discussed a the dart of this section, draight-line landmarks do not dlow the full
component of the position drift to be calculated, only the component perpendicular to the
surface of the edge. The robot could only detect the position drift fully if two straight-line
landmarks have been passed that are at a 90> angle to which ather. For practical purposes, it
is reasonable to condder two draight-line landmarks a an angle of 45° or greater to each

other to be enough to extract asingle fairly accurate “ position fix” from the environment?2,

B This is the assumption made by the “confusion” virtual sensor to be discussed in Section 4.5.2

107

The Cartographic System Chapter 4

4.4.3 Corner landmarks

Consder the stuation where the robot is following an idedlised boundary as shown in Figure
4-16. The boundary is draight initidly, then turns, then continues straight again in another
direction. The robot's movement will reflect the sgpe of the boundary. By monitoring its
motion, the robot can detect corners such as the one in the boundary shown here, and use
them as landmarks. This section discusses how this can be accomplished.

~".].>», Robot moves in constant

Ll 'f' direction along edge before
corner, facing angle g,

- Robot changes

direction rapidly

at corner Robot moves in

\. RSN constant direction
VN T > along edge after
\ corner, facing angle g,

Figure 4-16: Robot moving around a concave cor ner

It is possble to estimate how sharply an edge is turning smply by measuring how quickly the
direction of the robot is changing as it follows that edge. Therefore there is no difficulty in
detecting and characterisng curves in the boundary. The problem is making use of that
information. There is no specid point dong a curve that the robot can diginguish from al
others and use as alandmark. However, the sharper acurveis, the less distance it can extend.
A gentle curve can extend a great distance, but a sharp curve must end quickly or the
boundary will turn back in on itsdlf. If acurve is sharp enough, then the distance it extends will
gppear as a point to the robot. More specificdly, if the distance a curve extends is close to the
granularity at which the robot is mapping its environment (see Section 4.3.2, page 93), then
that curve can be used to isolate a point in the environment that can be treated as alandmark.

108

The Cartographic System Chapter 4

For the robot used in this project, a “corner” was considered to be any curve that made the
robot turn 30° or more in one second of motion. Such a curve appeared as a well-defined
point. Note that concave corners are useful, convex ones are not. The reason is that the
distance the robot has to travel to turn a convex corner cannot decrease lower than a fixed
limit caused by the shape of the robot itsdf (see Figure 4-17).

Very sharp convex turn-

but robot cannot turn an arc with a
radius less than the robot itself

In concave corner, robot turns more
sharply than the curve itself

Figure 4-17: Concave versus convex turns

A marker with a specid “corner” tag (see Section 4.3.3, page 94) islad at the location of
every concave corner the robot meets. Whenever the robot meets a corner, it first checks if
any of the nearby markers were tagged in thisway. If there is such amarker, then it is possible
that it represents the same corner that the robot is a now- any apparent differencein postion
being caused by the robot’'s edtimate of its postion drifting due to accumulating error?®,
However, pairs of corners often appear in close proximity (such as a the end of a cul-de-sac;
see Figure 4-18) so it is dangerous to assume the markers represent the same corner without

meaking further tests.

® Or, of course, the corner may havejust moved.

109

The Cartographic System Chapter 4

l‘((0°,90 Case B Corner detected here

(0°,270°)
X°,Y°) 90°
(0°,90°) Direction of robot
before and after
(0°,270°) corner. Orderis 180° 0°

not important.
270°

Figure4-18: Distinguishing close corner landmarks

This difficulty is resolved by storing the direction the robot is moving in before and after the
corner as an “annotation” in the marker representing the corner (see Section 4.3.3, page 94).
This ensures that the robot could distinguish between the corners in Figure 4-18, for example.
In practice, the Stuation in Case B isthe only one in which the robot could potentialy confuse
corners. In Case A the distance between the corners is twice the radius of the robot plus the
width of the boundary, which would make position drift an unlikely explanation for the large
difference in corner postions. In Case B there is no such limit on the distance between the
corners®, so confusion may occur.

Of course, corners do not aways occur with perfectly straight edges before and after them, so
the direction of the robot as it enters and leaves the corner will not generdly be well defined.
However the directions do not have to be a dl accurate to perform the discrimination
between nearby corners described above. Case B occurs when two concave turns are met
one after the other, and in any such case one of the directions will be gpproximately the same
(the direction lying along the shared edge segment between the corners), and the others will

differ by an amount equa to the sum of the angles the corners turned. Each corner must turn a
minmum of 30° to be classified as a corner in the first place (see earlier discussion in this
section), so the tota difference in the directions the corners do not share must be at least 60°.
In fact in the case shown in the diagram it is 180°. Hence corners such asthosein case A will
aways have one direction that differs by at least 60°. Therefore the directions do not need to
be known a dl accurady, since there is a tolerance of +60° dlowed. In this project a
conservative tolerance of +15° was chosen, and the direction of the robot a second before

and a second after it turned the corner were used as the directions recorded with the corner

@ Although if they come very close they will appear as one single turn to the robot- it will no longer be able to
distinguish them.

110

The Cartographic System Chapter 4

landmark. This proved perfectly satisfactory for distinguishing between corner landmarks that
would otherwise be confused.

Once a corner has been recognised, it can be used to correct the robot’s position estimate.
Any difference between the postion at which the robot turns the corner and the position of the
marker laid at the corner by the robot the last time it turned it may be due to a change in the
environment or to a drift in the robot’s pogtion estimate. It was decided to give the current
and previous corner position equa weighting in caculating the corrected position of the robot,
but any conservative ratio produced satisfactory results.

Note that corner landmarks cannot be used directly to correct the direction estimate. The
directions of the robot before and after the corner are not known accurately enough for this.
However, pairs of corners can be used indirectly to correct the direction estimate. Consider
the gtuaion shown in Figure 4-19. Here the robot has passed two corners. At the first corner
it met, it found a discrepancy between its current podtion etimate (b)) and the position at
which the corner had been detected the last time the robot passed it (ay). It used this
discrepancy to compute a corrected position, ¢, that was smply the average of a; and b;. At
the next marker, it repeated the same process. However it can then be observed that when the
robot passed these corners last, they were in the positions a, and a,, but thistime round they
have appeared to be in locations ¢1 and b*!. This indicates a direction drift of Dg as shown,
which can be gpplied as a correction (weighted conservatively, as dways).

& b, is used in the calculation rather than c, because the position correction applied at the second corner actually
obscures the direction drift by compensating for some of the position drift it caused as the robot moved fromc, to
b,. Remember that as the robot moves, any error in its direction estimate is reflected as a growing position drift. To
compute the error in the direction estimate, all the position drift should be taken into account.

111

The Cartographic System Chapter 4

" Previous Corner | Dlagramnot b, .
; i drawn to scale J position |
correction
@ i

bl direction C2)

K Dq\) drift

position\\

correction ¥¥g | . Current Corner |

Position at which corner is detected
E Position of robot after corner is used to correct position drift

Position where corner was detected last time the robot passed it

Figure 4-19: Sequential corner landmarks

The discusson of the use of landmarks is now complete. The two types of landmarks
developed were found in experiments to work wel, and they demondtrate that the marker
representation scheme is in fact workable by showing that the robot can keep its position and
direction estimates consgtent reative to its environment. See Chapter 8 for experimenta
results that illustrate the operation of the landmark system in practice.

The use of landmarks concludes the examination of how the robot's map is built and
maintained. The following sections look a how the map can actudly be accessed by
behaviours thet need to use it.

4.5 Interacting with the map

The chapter so far has concentrated on the issue of building and maintaining a consistent map
of the robot’s environment. Equaly important as building the map is how to go about actualy
making use of it. This section discusses how the cartographic system can provide useful
sarvices to behaviours that wish to interact with the map.

The most important congraint placed on the services that the map may provide and till be
“behaviour-based” is that the services must not require a shared representation between the
user and the provider of the service (see Section 4.2, page 82). A suitable set of servicesto
meet this congtraint and till provide al the necessary functionality described in Section 4.1 is
not obvious, and was evolved in a number of iterations of exploratory research. The following

112

The Cartographic System Chapter 4

st of sarvices were found satisfactory in providing an interface to the map with little or no
shared representation:-
Position and Direction Service- this gives behaviours access to estimates of the robot’s
position and the direction it is facing relative to its environment.
Virtual Sensors- these provides useful gatigtics about the state of the robot and its
environment that are derived from the map but appear to behaviours in a form that is
exactly analogousto physica sensors.
Tagging Service- this alows locations of specia interest on the map to be marked so that
they can be referred to later, without requiring the user of the service to know anything
about how the map is represented.
Goal Seeking- this alows the map to be used to plan an efficient route to a target. Again
this is supported without requiring the user of the service to know anything about how the
map is represented.

These sarvices are now individualy examined in detall.

45.1 Position and Direction Service

The most basic function of amap is to keep track of where the robot is and what direction it is
facing in relative to its environment. This service makes the cartographic system’s own position
and direction estimates available to behaviours. These edtimates are given as a smple
coordinate and angle. No shared representation is required between this service and its user.
However there is a shared “understanding” that the estimates quoted are relative to a
coordinate system that may drift with time, so that the readings should not be retained and

used over an extended period. In particular, if a behaviou wishes to make note of a specia

location it wishes to return to later, it should not just store the estimated podtion of that

location, since the coordinate system of the magp may drift with time and render the position

edimate usdless. Instead, the Tagging Service described in Section 4.5.3 should be used.

As described in Section 4.3 (page 83), the position and direction estimates are generated by

fallowing the movements of the robot and integrating its motion to giveits position. The details
of this for the particular robot the work in this thesis was implemented on will be discussed in

Section 7.4.1, page 217. The robot then uses landmarks to cross-check and correct its

113

The Cartographic System Chapter 4

edimates of the robot’s location and direction (see Section 4.4, page 95). Although using
landmarks necessarily involves considerable complexity, that complexity is entirely transparent
to the user of this service In fact if the use of landmarks was removed and smple motion
integration alone was used for estimating the robot’s position, a behaviour using this service
would be entirdy unaffected except of course that its performance would be degraded
because the information it isworking with grows less accurate as time passes.

45.2 Virtual Sensors

Often behaviours do not need detailed quditative information from the map, just answers to
smple quantitative questions like “how familiar does the current location of the robot seem?’
or “how confident is the robot of its position estimate?’. These statistics can be provided in the
form of “virtual sensors’ that gppear to behaviours just like physical sensors, but are interndly
generated. The virtua sensors provided are as follows:-
Familiarity- this sensor indicates whether the robot is currently in a region that the
cartographic system recognises, and if so how long hasit been snce it has lagt there. This
gives the robot a sense for how recently it has passed through a particular ares, or if the
areais totadly unknown to it. Familiarity is generated very smply from a comparison of the
current time with the timestamp of the nearest marker to the robot which has not been laid
recently, if oneis present. This sensor results in a smple number, yet cannot be supported
without the full effort of the cartographic system.
Confusion this sensor measures how uncertain the catographic system is about the
accuracy of its best guess at the robot’s position. This uncertainty grows with the length of
time the robot is moving &fter it has last managed to get a fix on its podtion from a
landmark. This gives the robot a sense of how long it has been in motion without getting
some fix on its location. Confusion is zeroed when the robot meets a corner landmark, or
when two edge landmarks are passed with edges that are at an angle of a least 45° to
each other (see Section 4.4.2, page 99).
Curvature- The robot monitors the rate a which it turns and produces a virtua sensor
proportiond to thet rate of change. This can be used to detect when the robot is moving
smoothly, and when it isturning sharply.

114

The Cartographic System Chapter 4

Curiosity- As the robot moves, it watches out for any nearby areas in which it has never
been. Such areas can be detected smply by the absence of any markers there. When the
robot notices such an areq, it generates a vector pointing in its direction cdled the
“curiodty” virtud sensor.
The estimates generated by the position and direction service could also be seen as a pair of
virtual sensors, but they have been treasted separately because of their specid place in the
cartographic system.

4.5.3 Tagging Service

It is useful to have a system whereby certain locations can be marked on the map as “ specid”
(so, for example, goals could be set for the robot to navigate between). Storing such locations
separately from the map would require that the mgp maintain a coordinate system that remains
the same over dl time, so the same reatworld location would aways have the same
coordinate. In contrast, storing the locations with the map means that the cartographic system
only needs to ensure that the overal map remains cong stent, without necessarily maintaining an
absolute coordinate system over time. This is what results from the approach to the use of
landmarks described in Section 4.4 (page 95), S0 the tagging service was implemented this
way?2. A behaviour can hand the cartographic system a “tag” to assign to the current position
of the robot, and from then on that position on the map can be accessed through the tag
without having to worry about drifting coordinates. A second advantage is tha this avoids
shared representation the behaviour can specify aregion it is interested in without knowing
anything about how it is represented.

454 Goal Seeking

It is ds0 useful to have a service that uses the map as aresource to plan an efficient route to a
given target location. This is a particulaly difficult dtuation in which to avoid shared

representation between the service and the user. Fird there is the problem of how to set the

2 This is why the robot's position and direction estimates are specified as being “relative to the rest of the
environment”. The co-ordinate system of the map is allowed to drift over time, with landmarks being used to keep
the co-ordinate system of the robot’ s position and direction estimates in step with that drift.

115

The Cartographic System Chapter 4

target without requiring the behaviour using the service to have access to the mep. This is
achieved by usng the Tagging Service described above. A limitation of thisis that targets may
only be places the robot has passed through at some point in its history- but thisis reasonable
snce the map would be of no use for planning routes to areas in which the robot has never
been®. Another problem is how to communicate the route this service generates back to the
behaviour that uses it without a shared representation of locations and paths. The solution
adopted was to implement a virtua “scent” sensor. This sensor was generated in such away
that the robot could reach the target smply by moving in directions of increasing “scent”, and
moving away from directions in which the scent’ sintengity decreased. Thisisasmple reective
drategy, with no shared representation with the cartographic system needed. The “scent”

sensor represents the gradient of the cartographic system’s estimate of some cost function
from the robot’s current location to the target, but none of the complexity of caculating that
function is vigble to the user. This idea works out to be something quite smilar to the
“Interndlised Plans’ technique discussed in Section 2.7.3, page 41. The ddalls of how
planning is achieved within the marker map representation scheme are now examined.

Markers are sored in a system of neighbourhoods designed to efficiently filter out which
markers are close to the current position of the robot, since these are the most relevant to it for
most purposes. However, in planning routes to arbitrary targets, information about markers
distant from the robot's current position is needed. Specificdly, it is important to be able to
determine which markers can be reached from each other, and how grest a distance the robot
has to travel to do s0. The use of neighbourhoods only alows the robot to determine which
markers are close to the current position of the robot, and it cannot be used to determine
which markers are close to some other arbitrary marker.

To solve this problem, extra “connectivity” data is added as an annotation to markers (see
Section 4.3.3, page 94). As the robot moves, the neighbourhood system determines which
markers are close to its current position. When the robot lays a marker and moves away from
it, that information about adjacent markers can be captured and stored in the marker as
connectivity data. It isthen possible for planning to be done a alater stage, using these “frozen

® Thisis true for autonomous robots, which are entirely responsible for generating their own map of the environment
and hence cannot know anything about places they have never been. It would not apply if the robot had a built-in
map of some form.

116

The Cartographic System Chapter 4

images’ of the information caculated by the neighbourhood system. Figure 4-20 shows an
example of a collection of markers with connedivity information overlad that would be

suitable for planning routes with.

Distances between
markers not to scale —i -\. ,/ }

\>/ A
/>/\/ o

P ‘l'\‘:\:'

Figure4-20: Soring connectivity data with markers

Figure 4-20 draws attention to the fact that the robot cannot assume that, just because two
markers are close to each other, it is possible to move from one to the other- they could be on
opposite Sdes of a wadl, for example, as is the case with markers A and B in the diagram.
Care must be taken to detect such conditions. Connectivity links should only lead from one
marker to other nearby markers which the robot can move to without hitting an
obstruction- otherwise they will be mideading and usdess for planning routes with. Hence
two markers being close to each other is a necessary condition for them to be considered
connected, but it is not sufficient.

One sufficient reason for considering two markers to be connected is if they are laid one after
the other by the robot (see Figure 4-21). Such markers represent successive points along the
path of the robot, so it is reasonable to assume that they can be reached from each other since
the robot has actualy just done so.

117

The Cartographic System Chapter 4

Markers not laid successively
cannot be assumed to be
reachable from each other,
even if they are close

Markers laid successively as robot / \
moves can be assumed reachable ;%

from each other P

[re®

Path of robot ;
-

Figure4-21: Conditions on connectivity of markers

From the connectivity information this gives, the robot can deduce further gppropriate
connections to make. Two markers that are close to each other but were laid at different times
can be deduced as being connected if markers close to one of them are connected to markers
close to the other. Figure 4-22 illustrates a common stuation where this form of deduction
becomes useful. The robot is shown following a path that leads it back into an area where it
has dready laid markers. When the robot lays marker A, it is quite close to marker B- but
they were not laid successively. If the two markers are close enough that the robot can be sure
there is no undetected boundary between them, then it can assume they are connected. But the
robot has only short-range sensors, so the markers could be quite close and yet the robot
cannot determine from its sensors if they are reachable from each other. Assuming thisis the
case here, the robot will not add a connectivity link between A and B. However, when the
robot reaches C and lays a marker there, it finds that there is a marker dready present for that
area. Since the marker being laid and the marker being replaced represent the same physica
areq, connectivity data from the replaced marker can be transferred over to the new one (with
some caution, as will be discussed in a moment). At that point there is a path from markers A
to B through asmdl number of other markers. This, in combination with the fact that A and B
are close, gives the robot enough confidence to mark them as connected (again, subject to

some conditions that will be discussed).

118

The Cartographic System Chapter 4

Markers close to each other

but not laid successively can
be deduced as connected if a short
path between them can be found
through other connected markers

-

Figure 4-22: Determining connectivity indirectly

Connectivity information is different to other data about the environment stored in markers
because, by its very naure, it cannot be derived from purely loca consderations. In contrast,
information about whether an area is beside a boundary, for example, can be constructed
entirdly from immediate sensor data. It makes sense for the robot to dways discard such data
when it is replacing markers, and derive it anew for the current state of the environment. The
robot should aways trust its sensors over any other source of information it has (as discussed
in Section 4.2), so the map should be overwritten with actual sensor data whenever possible.
However, when working with connectivity data, information is logt if the old markers are
smply discarded because connectivity information cannot be reconstructed completely from
immediate sensor data. If the new marker being laid a C in Fgure 4-22 had replaced the
older marker without copying its mnnectivity data, the robot would no longer know that the
area the markers represent is connected to D. Therefore, connectivity data should be
transferred across to new markers from the markers they replace.

If the links are Smply copied to the new markers, the system works reasonably well for a
while. However the markers the robot lays are not congtrained to be in the exact same
location as the markers they replace and in generd they will not be. Hence as the robot
moves back and forth across the same aea, and the links are copied between successive

replacements to the originad marker, it is quite possible that the postion of the marker holding

119

The Cartographic System Chapter 4

the links may have drifting quite a distance from the podtion of the origind marker. The links
will then give atotaly inaccurate picture of the redlity.

To step around this problem every marker is given a“Reachable’ timestamp. When the robot
passes close enough to a marker to be confident that there is no boundary between the
robot’s current position and the marker, this timestamp is set to the current time. Thisiit taken
to indicate that this marker was reachable by the robot at the given time. The timestamp is
actively spread to any markers that are linked to it (with some time subtracted to represent
roughly how long it would take to get to that marker). This is taken to indicate that those
markers could have been reached at the calculated time if the robot had chosen to do so.
These timestamps continue to spread from marker to marker. Then, when the robot replaces
markers, connectivity can be reconstructed by comparing “Reachability” times with other
markers in the locdity (see Figure 4-23). If two markers are close in position and both could
have been reached within a short time from the robot’s current position (as indicated by them
having reachability timestamps close to the current time), then those two markers can be
consdered reachable from each other and have their connectivity links updated approprietely.
Thisisrobust, and not subject to marker drift as smply copying connectivity datawould be.

Neighbourhoods Near neighbourhood; Reachability is only
and marker density spread in “near”

Immediate oL
are not drawn to ighbourhood and “immediate
scale nel? < our. 500 neighbourhoods.

Direction of spread
III Most reachable
IZI Least reachable

Figure 4-23: The use of reachability

120

The Cartographic System Chapter 4

To limit the computetiond burden on the robot, reachability is only spread within the
immediate and near neighbourhood of the robot (see Section 4.3.1, page 88). Any markers
outside of these neighbourhoods are not reachable from the robot’s current position within a
short time, S0 it is reasonable to diminate them from consderation anyway.

There is one specia case that needs to be catered for to ensure the correct operation of the
reachability system. It is possble that reachability could spread to a smal extent around a
narrow wal asshownin Figure 4-24.

Reachability could spread
around the corner of a

narrow wall

Figure4-24: Connectivity spreading around a narrow wall

This is not an error, since it is true that markers A and B can be reached easily from each
other, so connecting them would not midead the robot if it was planning a route- it would not
make the robot choose a path leading to a dead-end. Thisisdl the robot needs from the map-
its own basic competences will let it navigate minor obstacles. However, it is smple to
introduce a heuridic to stop connectivity cregping around awal, by smply disalowing links to
be made between close markers that are both on a boundary, with the boundaries facing in
oppodite directions away from each other- i.e. on opposite Sides of anarrow wall.

There is one find prectical congderdtion that is useful for storing connectivity information
efficiently. It has been shown that if the robot is avare that two markers are linked, it may
deduce that other markers are reachable from each other by spreading reachability. Hence not
every link between markers needs be stored, only a sufficient number to alow reachability

121

The Cartographic System Chapter 4

spreading to deduce the rest. Due to the memory limitations of the robot this work was
implemented on, the number of links from each marker was limited to four. By applying criteria
that favoured gtoring links to markers lying in different directions over links to markers
clustered in the same direction, four links were found to be more than adequate for correct
functioning of the reachability system (i.e. by spreading reachability, the robot successfully
avoided losing connectivity information when it replaced old markers with fresh ones). The first
diagram in this section, Figure 4-20 on page 117, in fact showed connectivity data constructed
with a maximum of four links from each marker.

Given that connectivity links are being maintained, god seeking is straightforward to achieve
by any standard search technique. One smple way it can be done isto assign a*“hop count” to
every marker to represent how many other markers the robot would need to pass through
when going from that marker to the target. Obvioudy the hop count of the target iszero. Any
markers linked to the target will take on a hop count of one, and markers linked to them in
turn will take a hop count of two, etc. In generd, a marker M determines its hop count by
finding which of itslinks leads to the marker with the lowest hop count. It should assign itsdlf a
hop count of one grester than that, and tag the link as shown in Figure 4-25.

Marker

Best link leading to goal | {lr---t b poryeeen
s H -

EI Link not on optimal path g
4 e

No spreading yet 5\’3 f \3

Hop count from goal I 'V"{ 3 v

. 0 I . 1

Figure4-25: Goal Spreading in action

122

The Cartographic System Chapter 4

Once this process “goreads’ out to markersin the vicinity of the robot, it can smply follow &l
the tagged links to the target. Thisis cdled “Goa Spreading’. It can be improved by usng
cumulative distances between markers on the route to the god instead of smple hop counts,
or a combination of both (as was used for the robot this work was implemented on). The
computation required for God Spreading is extensve and takes time, athough the work done
for each marker is quite ample. The cdculaions should be performed as a background task
so that they do not affect the red-time performance of the robot.

Thereis one find improvement that can be made to God Seeking. If multiple goalswere set
for the robot, everything described so far would still work- Goa Spreading would Smply
spread paths out from each god, and whichever reached the robot first would be the one it
would move towards. This is suitable for a Stuation where a number of gods are equaly
acceptable to the robot. It is smple to extend Goal Seeking o that it can dso handle cases
where some gods are more desirable than others. This is done by associating a “ desirability”
factor with the gods when they are set, and spreading that factor to markers that point along
routes to that god. In other words, when a marker scans the markersiit is linked to for the one
with the lowest hop-count/cost to a god, it should only consider those with the highest
“dedirability” present, and then accept that desirability level for itsdf. Hence as paths to more
desirable goas propagate, they can “take over” markers that were leading to less desirable
gods- even if those gods were closer.

The results of god spreading are made available through the “scent” virtual sensor, which
smply gives a vector corresponding to the direction of the tagged link of the marker nearest
the robot’ s position, if god spreading has reached thet link. The image is of a scent released at
the god spreading outwards until the robot picks it up and follows it to its source. This
involves no shared representation between the service and its user. Another advantage of the
use of this sensor rather than returning an explicit optima path is thet if the robot wanders off
course, the path does not have to be reca culated.

4.6 Summary

In this chapter, a complete cartographic sysem has been developed that is capable of
condructing and maintaining a map of the robot’s environment in reak-time, and with the use of

123

The Cartographic System Chapter 4

short-range proximity sensors only. The representation scheme used was based on unitscalled
“markers’. The mgp congged of a collection of these markers- records of the robot’s
experiences a particular locations rather than being an explicit modd of its environment.
Strategies for maintaining this collection of markersin a date that reflected the condition of the
environment were discussed in detail. Then the issue of landmark recognition was addressed,
showing that the robot could maintain an estimate of its podtion that remained consistent
relative to its environment over time. Thisis the ultimate test of a cartographic system. Findly,
a st of services were presented that alowed the map to be used without requiring any
knowledge of how it is represented.

The following chapter relies heavily on the work presented here. In it, a set of behaviours
implementing a robot “sentry” are developed. These behaviours use the services provided by
the cartographic system to perform many of the activities discussed in Section 4.1- checking
and escgping from behaviour cycles, backing out of dead-ends, planning routes to targets,
patrolling and exploring the environment, etc.

124

Sentry Behaviours Chapter 5

5. Sentry Behaviours

This chapter develops a set of behaviours for a robot which together dlow it to act as a
“sentry”, exploring and patralling its environment autonomoudy. The overdl sentry-like
behaviour of the robot is produced by combining a set of lower-leve behaviours performing
ampler tasks, which are in turn combinations of still smpler behaviours. The &bility to combine
behaviours in thisway is supported by the Latera robot architecture, developed in Chapter 3,
and isthe mgor advantage of this architecture.

For convenience, the behaviours in this chapter are grouped into three broad categories-
“motion” behaviours, “informed” behaviours, and “user interfacing” behaviours. The chapter
begins by giving an outline of the role each of these groups play in the overal behaviour of the
robot. Each of the groups is then examined in turn. The functionality of each behaviour is
described both in terms of itsindividua actions and its influence on other behaviours.

5.1 Overview

The basic “sentry-like’ action of the robot is implemented within a set of five behaviours cdled
the “informed behaviours’. These behaviours are cdled “informed” because cartographic
information is vitd to ther successful operation. One of these behaviours, the map
maintaining behaviour, is responsible for actudly generating and updating the robot’s map.
The others- prowling, patrolling, exploring, and location seeking behaviours- make use of
the map to implement various agorithms necessary to perform sentry duty.

A lower-level set of behaviours cdled the “motion behaviours’ are concerned with direct
control of the robot's movement. These are the edge following, turning, nudging, and
motor control behaviours. They control the movement of the robot in a more immediate and
“reactive’ way than the highe-levd behaviours that use them, and have no need of
cartographic information.

Findly there is a set of high-level “user interaction behaviours’ that dlow the robot to be
controlled by externd commands, rather than operaing autonomoudy. Some of these

125

Sentry Behaviours Chapter 5

behaviours use cartographic information, some do not3*. Behaviours under this classfication
are proxy control, manual control, reporting, and region seeking. These are the highest-
level behaviours, since they control which of the other behaviours are dlowed to act.

The full suite of behaviours that will be described in this chapter is shown in Figure 5-1. The
diagram illugtrates that the decomposition is certainly not strictly layered as would be required
under Subsumption.

Sensors

. Actuators |

Figure 5-1: The complete set of behaviours implemented

Roughly spesking, the highest level behaviours (to the left) are for user interaction, the lowest
leve (to the right) are motion behaviours, and the informed behaviours lie in between the
extremes. Each of the groups of behaviours will now be examined in turn, starting with the
low-level motion behaviours,

34 The grouping of behaviours adopted in this chapter is for convenience only, and there is some overlap between the
categories.

126

Sentry Behaviours Chapter 5

5.2 Motion Behaviours

This set of behaviours dictate the robot’s movement without any reference to the cartographic
system, taking only the state of the robot’s immediate environment into congderation. The
place of these “motion behaviours’ in relation to other behavioursis shown in Figure5-2.

________________ . Sensors
‘Maintaini |

. Map
Ra— Mamaal
Proxy | ‘Control -
iControl; \\ P .
T | Seek i

" Region i}

...................

? R} 'V Seek [
k : : 5 : v [
§ Report i P Location;

. Actuators |

All commands to the robot’ s motors are channelled through the motor control behaviour.

Figure 5-2: Motion behaviours

The turning behaviour and the nudging behaviour are both concerned with changing the
direction of the robot- the turning behaviour makes the robot face in a specified direction,
while the nudging behaviour dlowsit to turn very smoothly. Both of these behaviours are quite
ample. The edge following behaviour, on the other hand, is relatively sophisticated. This
behaviour is concerned with tracing around the boundary of an obstacle, and since this activity
is fundamentally important to detecting landmarks (see Section 4.4, page 95), it is carefully
crafted to operate as smoothly as possble. These behaviours will now be described
individudly.

127

Sentry Behaviours Chapter 5

5.2.1 Motor Control Behaviour

This behaviour is the channd through which al commands to the robot’s motors are sent. It
interfaces directly with the robot’s kernel to control the motor®s. It has asingle input, carrying
a setpoint for the robot’s motors. This setpoint is expressed in two components, “speed” and
“nudge’ (see Section 7.5.2, page 225 for adiscussion of why thisis useful). “Speed” controls
the rate of the forward mation of the robot, while “nudge’ controls the rate a which the robot
turns. For each of the behaviours in this chapter, a state machine will be given, but for this
behaviour, the state machine is entirdy trivid (see Figure 5-3). There is no need for any state
information- the behaviour smply passesitsinput on to the robot kernd.

Trivial state machine- | ~*xggsi ™.
No state information ~ : : Motor .-

Update necessary

Setpoint

Figure5-3: State machine for motor control behaviour

The reason that this behaviour is used rather than sending commands directly to the motorsis
that it prevents different behaviours from sending conflicting commands. By sending the
commands to the inputs of a behaviour, Laterd’s priority system will be invoked to resolve
any conflicts that might occur. There are extra benefits as well. The motor control behaviour
can detect when there is no behaviour controlling its inputs, and bring the robot to a stop. If
commands were sent directly to the robot, there would be no way to detect when nothing is
controlling the robot’s speed, and the robot would smply continue to move a whatever rate it
was last commanded to move at.

This behaviour adso contributes to implementing the “confusion” virtual sensor (see Section

4.5.2). Whenever the robot is in motion, the behaviour increases the vaue of this sensor

35 See Section 7.3, page 213. Aswill be discussed in this section, the robot kernel has “common sense” built intoiit to
prevent the robot from moving in a direction that collides with an obstacle, so there is no need to implement
obstacle avoidance again within this behaviour.

128

Sentry Behaviours Chapter 5

dightly. Hence the longer the robot is in mation, the higher the robot's “confuson” or
uncertainty of its podtion becomes. Confusion is reset to zero by the cartographic system
when it detects suiteble landmarks (Section 4.4, page 95). The rate a which confusion
increases is chosen to suit the rate a which accumulating error builds up in the robot’s position

and direction estimates.

5.2.2 Nudging Behaviour

For the robot on which these behaviours were implemented, motor speed could only be set in
discrete increments. The result was found to be too jerky for the edge following behaviour (to
be discussed next), so this smple but useful behaviour was introduced to adlow the robot to
turn more smoothly. It does this by duty cycling the motor speeds between two setpoints for a
varigble “mark-space’ time ratio. This alows fine tuning of the rate at which the robot turns,
which leads to much better behaviour when edge following.

28

Mark Space

Motor
Control

Figure 5-4: Sate machine for nudging behaviour

The input to this behaviour is a desired mark- space ratio (see Figure 5-4). The output goes to
the motor control behaviour. This behaviour passes whatever sponsorship it receives from its
input on to its output unchanged, since it is essentidly just converting amotion command from
oneformto another- therefore the priority of the commands it issues should be the same as the

priority of the commandsit recelves.

5.2.3 Edge Fallowing Behaviour

This behaviour makes the robot move around the boundary of an obstacle, turning as the
boundary’s edge turns. It is important that this behaviour is very robugt, and that the robot
follows the shape of the edge accurately, because the robot tracks its motion while edge

129

Sentry Behaviours Chapter 5

following to indirectly determine the shgpe of the boundary it is moving beside (see Section
44, page 95). Detecting landmarks therefor depends on a well-behaved edge following
behaviour.

The basic drategy for following an edge with proximity sensor information is sraightforward.
For example, if the robot is following an edge on its left hand Sde it need smply do the
following-

1. Moveforward if there is nothing directly ahead.

1. If the edge is greater than a desired distance away, veer towards the edge somewhat®.

1. If the edge islessthan a desired distance away, veer avay from the edge somewhat.

1. Repesat indefinitely.

If the edge does not turn too sharply, this smple dgorithm works satisfactorily, asillugtrated in
Figure5-5. Thiskind of mation islabelled “waddling” for the purposes of this section.

'

AR

Figure 5-5: Following a reasonably smooth edge

If, however, the edge turns sharply at a convex corner, the robot may not veer fast enough to
reect to the change, and could lose sensor contact entirely with the boundary. Aswill be seen
further on, the readings from the robot’s proximity sensors dwindle very rgpidly as it moves
away from a boundary, o it is very easy for the robot to lose contact with the edge. It is
important that it can re-establish contact with the edge gracefully. The smple agorithm above
may work asit is- but it might lead to the robot losing the edge entirdly if it veerstoo dowly, or

% The robot in fact has a desired “praximity reading” rather than actual distance which it seeks to maintain. Thiswas
discussed in Section 4.4 (page 95), and will be clarified further on in the discussion of this behaviour.

130

Sentry Behaviours Chapter 5

the robot might spin around backwards if it veers too quickly. A specialy adapted Strategy
cdled “capturing” is implemented for this Stuation. Here the robot veers rapidly initidly in the
hopes of re-establishing contact immediately, but if that does not succeed it recovers itself and
executes a graceful sweep in search of the edge.

If the edge turns sharply a a concave corner, on the other hand, there is no danger of the
robot losng contact with the edge. This is because the edge actudly starts obstructing the
robot’s path- rather than diverging away fromit, asit did at a convex corner (see Figure 5-6).
Hence the smple dgorithm described earlier will work. However it may be quite jerky since
the robot will be continualy trying to move forward a any chanceiit gets, and being continudly
frustrated until it veers enough for the edge to no longer be obgiructing its way forward.
Ancther specidly adapted Strategy, labelled “turning”, is implemented for this Stuation. This
samply stops the robot from attempting to move forward, turns until the way forward is clesr,
then reverts to the robot’s original behaviour. The desired action of the robot under capturing
and turning is shown in Figure 5-6.

A

TE

Figure 5-6: Moving around sharp corners

An gppropriate state machine for edge following isgivenin Figure5-7.

131

Sentry Behaviours

Chapter 5

Capture

Following

Start
Stroll
\ Face /

Waddle

Compensate

: Sensors

Turn

Figure 5-7: Sate machine for the edge following behaviour

Motor
Control

Nudging

The behaviour takes a single input to determine whether the robot should follow boundaries

with itsleft or itsright Sde facing them. It has two outputs, one to the motor control behaviour,

and one to the nudging behaviour. It passes on its sponsorship to the motor control behaviour

a dl times, to keep the robot moving forward or turning as gppropriate. When following a

smooth edge, it passes on full sponsorship to the nudging behaviour to turn the robot more

finely than is possible directly through the motor control behaviour.
Thegatesin Figure 5-7 have the sgnificance shown in Table 5-1.

132

Sentry Behaviours Chapter 5

Table5-1

State Action Sponsorship to..

Start The edge following behaviour isinitiised None

Face The robaot gracefully turns until it is at right angles to the | Motor Control
edge before garting to follow it

Waddle The robot follows a smooth edge Motor Control

Nudging

Turn The robot turns in a sharply concave corner Motor Control

Capture The robot tries to find an edge &fter it has lost sensor | Motor Control
contact with it

Compensate | The robot aandons trying to find an edge, and turns | Motor Control
back to the direction it was travelling before it logt it

Srall The robot moves in a draight line, looking for an edge | Motor Control

to follow

The design so far would be gpplicable to any robot with proximity sensors. However, for very

smooth edge following, it is necessary to take the exact sendng capabiilities of the robot into

consideration, at agreater level of detail than proves necessary for any other behaviour.

The proximity sensors of the robot used to implement this work have a non-linear reaionship

with distance, asillugtrated in Figure 5-8. Note that the “proximity” readings depend on the

colour and texture of the object being detected as well asits distance from the robot.

—a— Wood

—e— White Plastic

—a— Pink sponge
—e— Black Plastic

Measured reflection value

o o o o o o o o
- N (9] < Lo © ~

Distance to the object [mm]

Figure 5-8: Distance to object versus proximity sensor reading (from Khepera User Manual [24]])

For smooth, accurate edge following, it isimportant to operate within the doping section of the
graph shown. This is because the characteridtic is flat if the robot is either too close or too far

133

Sentry Behaviours Chapter 5

from the edge. In those sections, therefore, the robot receives no feedback on how the
distance to the edge is changing so the distance from the edge could change by a large
amount before the robot could detect that and attempt to compensate. Within the doping
section, the robot can detect very smal changes of the distance to the edge and compensate
immediatdly.

The relationship between the proximity sensor reading and the actua distance to an edge
varies widely depending on the object being sensed. Black objects are essentidly invisble-
snce the robot has to dmost collide with them before it can detect them. For lighter shaded
objects, once the proximity sensor vaue fals off from its maximum of about 1000, the robot is
guaranteed to be at least 20mm from the edge. The reading fdls off rapidly after that. For edge
following, a reasonable satpoint for the proximity reading to be maintained at is around 400 to
500. For most objects the robot can detect, this will keep the robot at a conservative distance
while till being well insde the doping section of the characterigtic. 425 was the figure chosen
for the actud implementation, but anything from 400 to 500 did indeed prove perfectly
satisfactory.

Another congderation is how quickly proximity readings fdl off as the angle between the
sensor and the object being sensed increases. This relaionship is shown in Figure 5-9. After
45° the sensor reading has approximately halved. After 90°, the reading has fdlen to zero.

900
800

700 \\

600

500

400 ™

300 \\\
200

N
100
0 : : — : N,

0 10 20 30 40 50 60 70 80 0

Measured reflection value

Angle [degrees]

Figure 5-9: Response of a proximity sensor to an object at different angles (from Khepera User Manual [[24]])

This information will now be used to determine how quickly the robot should veer as the
distance to the boundary varies, such that the proximity reading of the sensor facing the edge
will remain close to a setpoint value Osepoint O, for example, 425 (the value suggested earlier).

134

Sentry Behaviours Chapter 5

The sensors of the robot on which this work was implemented are arranged about its
circumference as shown in Figure 5-10. When following an edge, three of these sensors are
particularly useful- the one facing the edge directly, here cdled the “ SideSense’, the one facing
at a 45° angle to that, cdled the “Diagond Sensg’, and the one facing forward on the same
Sde of therobot, called the “ForwardSense’.

Infrared sensors
(Siemens SFH900)

Figure 5-10: Arrangement of sensors

If the robot is moving parald to a straight edge &t the desired proximity level of Osepoint, then
SdeSense will have a vaue equa 10 dspoin: itself, Diagonal Sense would have a vaue of
goproximately haf that (snce it is a 45 to the boundary- see Fgure 5-9), and
ForwardSense would have a vaue of approximately zero (nceit is a 90° to the boundary).
If these vaues change, then the robot is not pardld to the edge at the desired distance. The
robot’s task is therefore to try to maintain these values by veering towards or away from the
edge.

If SdeSense is greater than dswpoint, then the robot is currently too close to the edge and

should veer outwards.

If Diagonal Sense is grester than 2= the robot is heading too close to the edge and

2
should veer outwards. This sensor gives an indication of what the robot's postion will
shortly be rather than what it is now. This reading is more important than SideSense. For
exampleif SdeSense shows that the robot is currently dightly too close to the edge, but
Diagond Sense shows that the robot will soon be too far from it, the robot should start to

turn inwards in preparation, rather than veering outwards and making the Stuation worse.

135

Sentry Behaviours Chapter 5

If ForwardSenseis sgnificantly above zero, then the robot is heading straight for the edge

(or some other obstruction) and it should start turning outwards to avoid it. This takes

precedence over either SdeSense and Diagonal Sense
It is quite possible that the sensors might not be consistent in which direction they suggest the
robot should veer, and that is why it is necessary to know the relative importance assigned to
each as described above. The smplest way to implement this hierarchy of importance is to
generate a weighted sum of the three sensor readings, with the weights for each sensor being
chosen to reflect its relative sgnificance-

w; SdeSense + w,Diagonal Sense + wz;ForwardSense

Then, the difference between this and its ided vaue of

a8l i O
Wl(dsetpoint)+W28 Sﬁ; té+w3(0)

gives a measure of how much the robot should veer. A good choice of weights was found to
be w;=1, w,=2, and ws=4. This reflects the fact that the Diagonal Sense reading is more
sgnificant than the SdeSense reading, and the ForwardSense reading is more significant than
either of them.
This metric was developed by assuming that the edge the robot was following was perfectly
draight, and that the robot was facing in the wrong direction and trying to correct that.
However, if the edge is not graight, any turn in the edge can be compensated for just asif it
was the robot which had turned instead. Hence the above metric is in fact suitable to drive the
motor of the robot whileit is following a curved edge, dthough some minor modifications are
necessay:-
The units must be scaled appropriately
It is agood idea to apply a non-linear function to the metric, so that the robot veers more
gently when close to the setpoint and more sharply when far from it. The smple linear
metric given would lead to a “wobble’ around the setpoint if implemented as it stands, due
to overshoot in the robot’s motors.

A good metric for the robot used in this project was :-

éSdeSense+ 2Diagonal Sense + 4ForwardSense- 8500

metric=8 00 i

136

Sentry Behaviours Chapter 5

In the edge following behaviour, this metric is used to control the robot’ s direction through the
nudging behaviour (see Section 5.2.2, page 129). The nudging behaviour dlows finer control

over the rate a which the robot turns than would be possible if the motor was controlled
directly.

By smply moving continuoudy forward and veering according to this metric, the robot will

follow a boundary smoothly. While the discusson so far has assumed that the boundary is
continuous, the robat will in fact be able to follow boundaries with smal discontinuities. Thisis
because, as seen earlier in Figure 5-9, the proximity sensors respond to any objects in the
generd direction they point, not just to objects directly in that direction so they will Smply be
unable to detect smal fesatures of the boundary, and will instead return an average distance to
the boundary. For edge following, this is useful because it makes the above agorithm more
robust.

5.2.4 Turning Behaviour

This behaviour turns the robot to face in a given direction. This is a very smple behaviour - it
merely compares the direction setpoint it is given with the robot’ s estimate of the direction it is
facing in currently, and turns to decrease the difference between the two. A certain amount of
sophigtication is given to the behaviour so that it turns “gracefully”, at a rate that dows as the
difference between the actud direction and the direction setpoint decreases, so that the robot
will not overshoot.

Motor

;, Control
g Set-up Reduce-
5 Sensors difference

Figure 5-11: Sate machine for turning behaviour

137

Sentry Behaviours Chapter 5

This behaviour has a sngle input determining the angle the robot should face, and a single
output going to the motor control behaviour (seeFigure 5-11). It passes on any sponsorship it
receives.

Thisisthe lagt of the low-level mation behaviours. The higher-leve “informed behaviours’ are

now examined.

5.3 Informed Behaviours

Thiscollection of behaviours consists of the behaviours required to alow the robot to act as an
autonomous sentry. Cartographic information is vitd to the successful operation of these
behaviours. The robot’s map is generated and maintained by the map maintaining behaviour,
and is used by the other behaviours in this group- prowling, patrolling, exploring, and
location seeking. These behaviours are shown in relation to al other behavioursin Figure 5-

12.
‘ Sensors
Wainta
H Map
Proxy/ Manua!
. H }_: H .
5 ; iControl; !
:Control \\ T COtO. .
T Seek || Edge
Region | " Follow |
1
H Prowl Turn '4>?Control

b

. Actuators |

The basic “sentry-like’ action of the robot is orchestrated by the prowling behaviour, the

Figure5-12: Informed behaviours

highest level autonomous behaviour of the robot. Prowling combines the actions of the other

138

Sentry Behaviours Chapter 5

lower-level behaviours to meet a number of smultaneous gods necessary for good sentry
behaviour. These behaviours will now be described individudly.

5.3.1 Location Seeking Behaviour

In the behaviours that follow, the robot will often need to move towards a given marker. It is
convenient to control the robot’s motion using a behaviour which can be fed the co-ordinates
of such a marker, and which will do everything necessary to get as close as possible to that
target- navigating around obstacles, backtracking out of dead-ends, etc. Since the robot’s
edimate of its position may have drifted snce the co-ordinates of the target marker were s, it
can only hope to approach the approximate locdity of the marker, but, especially over short
distances, this is perfectly acceptable. None of the behaviours that use location seeking will
rely onit being entirely accurate.

The behaviour starts by moving directly towards its target. If it strikes a boundary, it will start
following that boundary in whichever direction seems “best”- whichever direction seems to
require the least deviation from the robot’s current path, at least in that locality (Snce thet isthe
only area it can sense or evauate from the map). It will continue to follow the boundary until
conditions become suitable for it to resume its path towards the target. This will occur if the
boundary turns sufficiently to no longer be an obstruction. With this smple strategy, the robot
is able to negotiate many obstacles. However, it may lead to cyclic behaviour for obstacles
with certain shapes, such asthe onein Figure 5-13.

o090
o o
O o
00 00

0 00 00

Figure 5-13: Obstacle makes robot loop back on its path

139

Sentry Behaviours Chapter 5

A loop can occur if the robot meets an obstacle, follows its boundary until it again becomes
possible to move in the target direction, and then runsinto the same obstacle, hence entering a
cycde. One smple solution to this, using the “familiarity” virtud sensor generated by the
cartographic system (see Section 4.5.2, page 114), is to make the robot aternate in the
direction it chooses to move in after it hits a boundary a a familiar location™, as shown in
Figure5-14.

©
©
©
Oooo © ©0 O
o o)
o %
o)

© o ;

. Familiar location- tries
 following boundary in —
i opposite direction :

Figure 5-14: Robot uses familiarity to avoid cyclic behaviour
This smple improvement is enough to alow the robot to navigate most common boundaries.

Looping can Hill occur, however, in stuations like the one shown in Figure 5-15, where the

obstacle resembles a“cave’.

%7 That is, any location whose familiarity indicates that it was visited after the robot started seeking its current target.

140

Sentry Behaviours Chapter 5

©
@//
| ©
a)
© 4 o 0~ 0
© © ©
o © ©
5 © o © ©
o
©O000PDPDDLP o

Figure 5-15: Behaviour cyclein “ cave’ -shaped obstacle

Here, because the boundary-following strategy turns the robot back on its path twice, it again
enters aloop. Cases like this can be handled using the familiarity sensor in a more generd way
than described above. The robot should take an opportunity to return to moving in the

direction of itstarget only if it isfollowing aboundary in unfamiliar territory. Then, if the robot
is following a boundary in familiar territory- territory that it has moved through before while
seeking the current target it “knows’ that it should not return to moving in the direction of its
target even if it seems desirable to, since thisis what it would have done last time it was there.
Ingteed it should wait until it reaches unfamiliar territory again, and then turn whenever

appropriate. This results in an expanding search that can get the robot out of awkward

gtuationslikethe “cave’ obstacle, as shown in Figure 5-16.

© | Familiarity
© © : expands until

| @)<)/““‘”’7§§9§EEJ§J?9§§U“e

ooo N
0 © 8

flﬂ@ o @ﬂ@ﬁ@

© © ©
o © © O
O DO®OODDOOEO o®

Figure5-16: Robot escapes from cave-shaped obstacle

141

Sentry Behaviours Chapter 5

It is easy to see that this approach should never result in looping behaviour. If the robot makes
adecison to turn a a particular location, and that decison results in it looping back to that
same location, the next time around that areawill be familiar to it so it will not turn there again.
While the obstacles the robot has been shown navigating are large scale, this behaviour isin
fact mostly used for moving to places near the robot’s current podition. It is given a high leve
of intdligence so0 that the robot’s behaviours will be robust in the face of changes in the
environment, without the robot having to exhaugtively check for such changes every single time
it prepares to make a movement. The region seeking behaviour that will be described in
Section 5.4.1 (page 158) enhances this behaviour for moving over long distances.

A auitable state machine for implementing this behaviour is shown in Figure 5-17.

Edge
CaptureEdge O_>O FollowEdge

4AVA

MonitorEdge

Turning

:\I

SteadyTurn

Motor

E Sensors i
ey Control

Figure 5-17: Sate machine for location seeking behaviour

The behaviour has a single input, specifying the location of its target. It has outputs to the edge
following, turning, and motor control behaviours. It decides which of these to sponsor
according to its needs a a given time. If it is following a boundary, it sponsors edge following.
If it wishes to leave that boundary, it Sponsors turning to change the robot’ s direction to point
towards the target. And if it is smply moving forward in an @pen areg, it controls the motor
directly by sponsoring the motor control behaviour to move forward at the desired speed (see
Table 5-2).

142

Sentry Behaviours Chapter 5
Table5-2
State Action Sponsorship to..
Start The behaviour is initidised. Provision is made so thet if | None
location seeking is sponsored repeatedly to move
between markers close to each other, the movement of
the robot will be smooth and not jerky.
CaptureEdge | The robot evauates the shape of a nearby boundary to | None
determine whether to leave it gracefully if it is not an
obgtadle, or follow it smoothly if it is.
FollowEdge | The robot starts following an edge, setting up timers, | Edge Following
checking the familiarity of the region to avoid looping
behaviour etc.
MonitorEdge | The robot follows an edge, watching out for | Edge Following
opportunities to leave the boundary and approach the
target directly that it has not tried before.
SteadyTurn The robot turns gracefully to face towards the target. Turning
Wak The robot moves towards the target directly in a free | Motor Control

area

5.3.2 Patrolling Behaviour

The patrolling behaviour is concerned with ensuring that the robot repeatedly re vists every

area tha it has ever passed through before. It is the main sub-activity of the “prowling”
behaviour to be discussed in Section 5.3.4. Prowling is taken to be the entire co-ordinated

activity of patrolling familiar territory, exploring new aress, and ensuring that the cartographic

system gets a chance to find and use landmarks. Hence the patrolling behaviour need not

concern itsdf with any of these other issues.

The difficulties encountered in trying to implement patrolling are asfollows-

The robot’s map is dways changing, so approaches that assume the environment and the

robot’ s representation of the environment are Satic will fall.

143

Sentry Behaviours Chapter 5

The patralling activity may be interrupted at any time- for example, if the robot needs to

gart following a boundary to find a landmark before it loses track of its position. Hence

gpproaches that assume they have full and continuous control of the robot will fail.
In this section, an gpproach called the “Satic patrolling strategy” is given that would work well
for agtatic map with uninterrupted operation, but is not guaranteed otherwise. Another smpler
gpproach caled the “dynamic patrolling strategy” is described which is less efficient but which
will work for a dynamic map and interrupted operation. Then a scheme is presented which
merges the two gpproaches. This “combined srategy” normaly behaves much like the first
approach (giving good runtime behaviour most of the time), but there is aso an influence from
the second approach that builds up over time and will “rescue’ the robot if the first approach

fals.
Static patrolling strategy

The cartographic system maintains amap of the robot’ s environment in the form of a collection
of markers, with links formed between adjacent markers (see Section 4.5.4, page 115). These
markers possess a timestamp that indicates when the robot last visited the area they are
associated with. The robot can make use of these features of the cartographic system to
repegtedly patrol the environment using an adgorithm that is very smple, yet guaranteed to
patrol every part of the robot’'s map reachable from the robot’s starting point. However this
guarantee only holds if the markers and links between markers do not change while the robot
is executing the dgorithm. Hence thisis a“datic strategy” for petralling. A “dynamic srategy”

will be given in the next section which does not have this limitation, and then the two Strategies
will be merged into acombined strategy that has the advantages of each.

The datic srategy is to use the following extremey smple agorithm for contralling the robot’s
motion-

1. Set the timestamp of the marker associated with the robot’ s present loceation to the current

time

144

Sentry Behaviours Chapter 5

1. Choose the marker linked to the current one which hasthe least recent timestamp®.
Move to that marker, and repeat from step 1. If more than one marker has the same
timestamp, choose any one of them.

This will be shown to cause the robot to repestedly vist every marker in its map which is

reachable from its sarting point, assuming markers and links are static. Figure 5-18 shows

an example of the dgorithm in action for a smal number of markers. For this example, dl the
markers are initialy given atimestamp of zero. In practice, no two markers will ever have the

same timestamp since the robot cannot be in two places a the one time, but the agorithm

@'0 0'@ @'9 9'9 0'9
© @ @ @ 9
© og:o ’ 0"00 ° 0"@@ c o“o@ y o"mm

9'9 @—3 @—3)

@

%

(]
(]

©

©
‘eQ

©

I\
;

&

N
‘@9
N

P |oF 0 |
@"g @"g @"e

Timestamp @ Current position of robot EI Markers reachable from each other

Figure 5-18: Satic patrolling strategy in operation

The diagram shows that the robot does indeed repeatedly visit each marker, without neglecting
any of them. While the operation of the agorithm may be intuitively quite dear, it is not
immediatdly obvious that it will work under dl stuations, and that there are not some
pathologica cases that could lead it to neglect markers. Therefore the dgorithm will now be
anadlysed in some detail to show that it isin fact guaranteed to function correctly.

35 |f there is no marker linked to the current one, this is a degenerate case where there is nothing for the robot to
patrol- so it should simply stay at its current position.

145

Sentry Behaviours Chapter 5

For this discussion, “patrolling a marker” is formaly taken to mean that the robot vigts that
marker repeatedly, with a finite time interva between each vist. “Neglecting a marker” is the
logicd opposite- meaning thet the robot after some point fals to vigt that marker for an

unbounded length of time,

The dgorithm will be shown to work by demongtrating first thet if the robot patrols any marker
A, it will dso patrol any marker B linked to A. Now that B is known to be patrolled, this
argument can be repeated, so any marker C linked to B will aso be patrolled. Therefore, by
repeating this argument as many times as required, any marker which can be reached through
any number of intermediate links from the marker A can dso be shown to be patrolled. It will

then be demondtrated that the robot patrols at le ast one marker, and hence it must patrol every
marker reachable from that marker.

Congder any marker A that the robot is known to petrol. Let B,, B,, ... B, be dl the markers
linked to A, as shown in Figure 5-19. When the robot visits A, the next marker it chooses to

vigt will be whichever of these markers has the least recent timestamp.

Figure5-19: A group of markers linked to a patrolled marker

Label the marker that the robot chooses to move to next “B;”. When the robot moves to B,
the timestamp of that marker will be set to the current time. In the succeeding vigts of the
robot to A, it will not choose to leave through B again a least until dl the other nodes
connected to A have been visted- since until then a least one of those nodes will have aless
recent timestamp than B, and therefore that node will be selected by the robot in favour of B,

This observation will now be used to show that each of the n markers connected to A will be
visted at least once in the time interval between n successive passes of the robot through A.

146

Sentry Behaviours Chapter 5

This can be seen by consdering the consequence of assuming thet thisis not the case, and that
thereis at least one marker B, which isnot vigted in thistimeinterval.

Consder the scenario where the robot has passed through A n-1 times since B, was last
visited, and has just arrived back a A for the n" time. Each of the n-1 times the robot passed
through A, it must have chosen a different next marker to visit- since eech time it left A, the
timestamp of the next marker would have been st to the current time and hence would
become more recent than that of B,, and so could not be chosen again & least until B, was.
The robot therefore will have left A through n-1 different markers, and it cannot leave through
any of these again until B, is visited, since they will have more recent timestamps than thet
marker has. Hence when the robot leaves A for the n™ time it must leave through B,, because
it is guaranteed to have a less recent timestamp than any of the others. This shows that it is
impossible for the robot to every fall to vist a marker linked to A for atime interva greater
than n passes of the robot through A*. Hence, since there is a finite interva between the
robot’s visits to A, and n is finite®, every marker connected to A will dso be patrolled,
because the robot is guaranteed to vist them with afinite interva between visits.

It is now necessary to show that there is a least one marker that the robot patrols. If the
converse was true, and the robot patrolled no markers, then that would mean that there is no
marker that the robot vists repeatedly, with a finite time interval between each vist. This
implies that for each marker, there is some finite time beyond which the robot fails to vist that
marker for an unbounded length of time. Therefore, by taking the maximum of these times for
dl the markers, there is afinite time after which the robot will never vist any of the markers.
But this does not make sense- the static strategy will dways give the robot a marker to move
to*!. Therefore the initid assumption must be wrong, and there must be at least one marker
that the robot patrols. Let this be the marker A in the argument given earlier. It can therefore
be shown that dl the markers linked to A are patrolled. By repeeting the argument, the

markers linked to these markers in turn can dso be shown to be patrolled, and so forth.

3% Note that this does not imply that the marker will be visited through Ain that interval. If the marker were to be
visited through some other route, the argument given does not apply, and it is quite possible that the marker would
not be visited through A at all. The argument only applies when a marker is being neglected, and places an upper
bound on how long it may be neglected for.

0 Thisis guaranteed by how the links are formed- in fact, n istypically four (see Section 4.5.4, page 115).

1 Unless there are no markers at all- in which case, the robot has no territory to patrol.

147

Sentry Behaviours Chapter 5

Therefore it can be shown that al the markers which can be reached through any number of
intermediate links from the marker A will be patrolled. Since A must have been reachable from
the robot’sinitial position, or else the robot could never have reached it to patral it, this shows
that the robot will patrol dl markers reachable from that initia pogition.

The ddtic grategy, while experiment shows it to generdly give good runtime behaviour, is not
safe to use as it stands for patrolling. The robot's map was assumed datic, but in actua

operation it is dynamic- markers are removed, added, and frequently have the links between
then modified. This occurs even if the environment itsdlf is etic, due to the nature of the
marker laying system (see Section 4.3.2, page 93). Once the markers and their links can

change while the robot moves, the guarantees for the Static Strategy are not so strong.

Dynamic effects could potentidly lead to looping behaviour. The dtetic patrolling dgorithm is
aso difficult to apply, because it relies on the map being static at the robot’s position and this
is precisely where the map is most in flux, since the robot continually updates the map &t its

current location as it moves.

Dynamic patrolling strategy

Ancther possible strategy is as follows. The cartographic system could adlow the robot to
detect the marker with the least recent timestamp in the entire map. If the robot moves
according to the rule “dways move towards the location of the least recent marker in the
mep”, then it will not neglect any location in the map- sinceif it did, the marker associated with
that location would become the least recent in the map and the robot would then devote its
effortsto reaching that location.

This smple grategy will work in a dynamic map without any problem, since the least recent
part of the map will not be in flux until the robot actudly gets there, at which point the robot
just moves on to the next least recent marker. It aso works better when interrupted- since it
has a “globa” target rather than a “locd” target, changing the postion of the robot through
some other activity has less of an effect. It is guaranteed to work if the interruption does not
move the robot further away from the target than it dready is- if that were to happen, there
would be some potentia for a behavioural cycle where the robot approaches the target,
triggers some condition thet interrupts the robot and moves it further away for whatever

reason, then the robot happens to be gpproach the target again dong the same vector, and the

148

Sentry Behaviours Chapter 5

same condition triggers, etc. When the prowling behaviour is discussed in Section 5.3.4, it will
be seen that for the most part it aternates between patrolling activity and moving around
boundaries- and when it interrupts patrolling, it will circle boundaries completely and returns to
the same point before resuming patrolling again. This effectively prevents the posshility of a
behaviourd loop, since the robot is left a the same distance from the target after the
interruption.

The problem with the dynamic petralling strategy is that it becomes inefficient. In prectice, it
encourages the map to fragment into scattered areas of widely varying ages, with the robot
“bouncing” back and forth between areas that are close in age but far apart in postion. Thisis
because there is nothing in the Strategy to bias the robot towards preferring targets close to its
current location. Also, while in the static Strategy every motion of the robot is chosen to patrol
a location, in this grategy only the end-points of the robot’s motion contribute to petrolling-
the path it takes is not controlled. Thisis inefficient.

Combined Strategy

A much improved drategy can be formed by combining both the satic and dynamic
gpproaches using the “Goal Seeking” ability of the robot (see Section 4.5.4, page 115). Goal
Seeking dlows multiple targets for the robot to be set with different levels of “desirability”.
Patralling can be achieved by setting all the markers to be targets, with their desirability made
to be higher the less recent their timestamps are. If the robot then smply follows the vector
indicated by the “scent” virtud sensor, it will autometicaly patrol the markers in a way that
combines both the tetic and dynamic strategy, as will now be explained.

In God Seeking, markers are continuoudy updated in an effort to find the shortest path from
them to the most desirable god. This is done in an iterative way, and takes time. Information
“goreads’ outwards from the gods through the links between markers until it reaches the
robat. It is possible that information from one god will reach the robot firgt, and then later be
superseded by information from a more distant but more desirable god. This is why making
every marker agoa implements patrolling. Information from the nearest markers to the robot’s
current pogition reaches it fird. The most desirable markers were configured to be those with
the lead recent timestamp, so the “scent” a the robot’s position will lead it to move to these,
just as the gtatic patrolling strategy would have it do. But if the robot fails to patrol a distant

149

Sentry Behaviours Chapter 5

marker, information from it will eventudly be spread to the robot. Since that marker will be
less recent and therefore more desirable than the markers in the robot’s vicinity that it has
been patrolling, the “scent” will lead it to now go towards that distant marker- just as the
dynamic patralling srategy would have it do. So the combined Strategy has both the efficiency
of the static Strategy, and the long-term guarantees of the dynamic srategy.

I mplementation of patrolling

While the discusson of this behaviour has been quite extensve, its implementation is
comparatively sraightforward because it Smply sSits on top of the cartographic system. It is
only necessary to configure God Seeking to derive makers desrability from ther
timestamps, and then the behaviour can follow the “scent” virtua sensor in areactive way.

The gate machine for this behaviour is very sraightforward (see Figure 5-20). The robot
cycles between waiting for information from a god to “spread” to it, and moving towards that
god. To move towards agod, the behaviour smply sponsors an output to the location seeking
behaviour and passesthe god ontoit.

o b

Set-up Wait Move

Location

Select Seeking

. Sensors

Figure 5-20: Sate machine for patrolling behaviour

The behaviour does not need any inputs, as it is complete in itsdf. However, an input is
provided so that sponsorship can be passed to the behaviour- effectively to “sdect” the
priority level a which the behaviour operates.

5.3.3 Exploring Behaviour

Thisis a graightforward behaviour which smply moves the robot into an areathat it has never
explored before. Again this is a behaviour that Sits on top of the services of the cartographic

150

Sentry Behaviours Chapter 5

system. The “curiogity” virtud sensor described in Section 4.5.2 (page 114) can detect

directions in which the robot has not explored. Such aress are indicated by a lack of any

markers in a particular direction, and the absence of any boundary blocking the robot from

moving that way. When such a condition is detected, it is passed on to the rest of the control

system through the curiogity sensor as a Smple vector. The exploration behaviour is given this
vector to venture dong by the prowling behaviour (which is responsible for deciding if the
robot can afford to engage in exploration a the moment or not). The exploration is considered
complete if the vector has brought the robot to a new boundary*2. Thisis a particularly smple
behaviour- it gtarts moving, and keeps moving until it detects a new boundary, and then stops
(see Figure 5-21). Again it moves by passing the vector it is given on to the location seeking
behaviour, and sponsoring that behaviour to move on its behalf.

Location

Wieiay Seeking

" e B

Set-up Move End

i Sensors
Figure 5-21: Sate machine for exploring behaviour

5.3.4 Prowling Behaviour

“Prowling” is a high-level behaviour of the robot designed to implement its overal “sentry-
like’ functiondity. It orchedtrates the action of a set of lower-level behaviours to meet a
number of requirements necessary for good sentry behaviour. The nature of these
requirements will now be examined, to motivate the decisons taken in the design of this
behaviour. Acceptable sentry-like behaviour requires the following of the robot=-

The robot musgt find and explore any areas in which it has never been.

“2 1t may also be terminated prematurely by the prowling behaviour to prevent the robot losing track of its position,
but the behaviour itself need make no provision for that.

151

Sentry Behaviours Chapter 5

The robot must repeatedly patrol back and forth through every arealit has ever explored in
atimely fashion. Thisisthe basic action of a sentry, and is dso necessary o that the robot
can detect if any part of itsterritory has changed.

The robot should not spend an extended length of time exploring at the cost of neglecting
patrolling, nor should it concentrate on patrolling to the exclusion of exploring. Either of
these would be undesirable in asentry.

The robot must be able to keep track of its position relative to the environment, otherwise it
will not know where it needs to patrol and where it needs to explore.

Thislast requirement is an important one, and will now be examined in detall.

Constraints on robot behaviour while prowling

To act as a sentry, the robot needs to build and maintain a map of its environment. A suitable
cartographic system for achieving this was described in Chapter 4, and is implemented within
the map maintaining behaviour (see Section 5.3.5, page 156). This section examines the
congraints that must be met by the overdl behaviour of the robot so that the cartographic
system may perform correctly.

No matter what the behaviour of the robot is, if it needs to keep track of its position then there
are some concessions it must make to alowing time for finding landmarks. When moving in
open aress away from any boundary, the robot receives no information from its proximity
sensors. This means that the robot has no externd references it can use to help keep track of
its position. It is forced to rely on smply integrating its motion to get its position. As discussed
earlier (see Section 4.4, page 95), this unavoidably introduces accumulating error in the
robot’s estimate of its position relaive to its environment. The longer the robot remains in
motion, the grester the uncertainties in its podtion become. Therefore, if the robot needs to
keep track of its pogtion rddive to its environment, then it must be designed to behave in a
manner that leadsiit to avoid operating in open spaces for extended lengths of time.

When moving in an area near a boundary, the robot receives information from its proximity
sensors which may give externd cues or landmarks the robot can compare againgt an interna
map and use to complement position tracking derived merely from moation integration (again,
as detailed in Section 4.4, page 95). These landmarks are recognisable boundary features
such as corners, and to detect them from proximity data, the robot needs to physicaly follow

152

Sentry Behaviours Chapter 5

the boundary o that it traces the outline in its own motion. If the robot does not follow the
boundary, the information it receives from its sensors is virtudly usdess without complicated
processing- both for interpreting data to determine what it says about the environment, and in
correlating that with the map to deduce position corrections. Therefore the type of information
the robot can extract from the environment varies both with the area if finds itsdf in and with
the robot’ s behaviour, as follows-
Absence information when in an open areg, the only information the robot can deduceis
that nothing is present in its current locality. All such places look the same. so they give no
help in indicating the robot’ s position.
Presence information- when in an area close to a boundary, the robot knows that
something is present close to its locdity. This is normdly il not enough to indicate the
robot’s position, since such places generdly appear quite smilar to other places further
aong the same boundary.
Trace information when in an area close to a boundary, and moving so as to follow that
boundary, the robot gains information about the shape of the boundary. This can give an
indication of the robot’s postion when compared with previous traces, as described in
Section 4.4 (page 95).
The fundamentd requirement cartography places on the robot is that it must avoid being in
moation for an extended length of time without correcting its position estimate from landmarks
to keep the estimate consstent with its environment. Thisimplies that:-
The robot should never be in motion in open areas for too long. The robot can detect no
landmarks in open areas, SO arors in its esimate of its postion and direction will
accumulate without any way to correct them. It is important to find a landmark before the
eror grows to such an extent that the map becomes usdess due to the excessive
uncertainties involved. The amount of time the robot can stay in motion in open areas safely
depends on how quickly error accumulates in its position and direction estimates- for the
robot this work was implemented on, anything over about a minute was dangerous.
The robot should never move through previoudy unexplored areas for too long, whether a
boundary is near or not. The robot may detect landmarks in a place it has never been
before, but it has nothing to compare them with, so it is again important that the robot turns
back before accumulating uncertainty endangers the usefulness of its map. The upper limit

153

Sentry Behaviours Chapter 5

on the time the robot can move through an unexplored region is the same as the bound on
the time it can spend in open areas- the problem is the same in both, alack of any way to
compensate for errorsin the robot’ s position and direction estimates.
The robot must frequently engage in behaviour that alows the robot to get trace information
from its environment, s0 tha the cartographic system will be able to detect and use
landmarks.
Thislast requirement in practice means that, however prowling isimplemented, alarge fraction
of the robot’s time should be spent following boundaries, since this is the condition under
which arobot with proximity sensors can detect landmarks (see Section 4.4, page 95).

Suitable algorithm for prowling

Thefollowing basic dgorithm for implementing prowling meets the requirements listed above:

1. When the robot meets a boundary, it should navigate around the circumference of that
boundary in its entirety, arriving back at roughly the same point a which it started.

1. Once this is done, the robot should try to reach parts of its territory which it visted less
recently than its current location- in other words, start patrolling the environment. If it meets
any boundaries after departing from the one it is currently on, it should revert to step 1, then
try again to reach parts of itsterritory less recently visited.

This smple srategy will make the robot spend a good dedl of its time following boundaries,

which is desirable for the proper functioning of the cartographic system. With the design for

patrolling described in Section 5.3.2 (page 143), it dso guarantees that the robot will not
neglect any part of itsterritory.

It isagood ideafor arobot to completely circle any boundary it meets, when practicd. If the

robot follows only part of the boundary, then the boundary will be split into segments of

different age®® in the map. The robot, when patrolling those aress, will generaly retain this
segmentation because when, for example, it moves between a part of a boundary that was
patrolled along time ago into a part that was patrolled recently, it will most likely move off to
some more criticd area before coming back to finish the boundary off. If any further
segmentation occurs for any reason, that will be retained too. So the boundary will become

43 The“age” of an arearefersto how long it is since the robot visited that arealast.

154

Sentry Behaviours Chapter 5

more and more “fragmented”, and the robot will in the long run end up patrolling in sections
too short for landmarks to be detected. Completely circling the boundary avoids that problem.
It dso avoids potentia |ooping behaviour where the robot “bounces’ between two boundaries
without ever finishing either. As well as this, the robot is well informed about where it should
move next, since it has the opportunity to measure the familiarity of al the areas surrounding
the boundary. Another very important reason to completely circle the boundary is that it
makes it possble to give guarantees about the robot’s overal behaviour (see the “dynamic
drategy” discusson in Section 5.3.2).

I mplementation of prowling

The drategy outlined above is only a sarting point for good sentry behaviour. Numerous
refinements need to be superimposed on top of the basic strategy to determine when the robot
should explore areas outside of the robot’s current territory, and how to respond to difficulties
in patralling a boundary and changes in the environment. A suitable state machine diagram is
sketched in Figure 5-22.

Circle
sync

. Edge

el Following

Explore
seek

~O

Start Grab
é Leap
: Leap
5 sync
| Sensors \ /

Leap
Return

Circle

/[

xplore
fly

Patrolling

Exploring

Figure 5-22: Sate machine for prowling behaviour

The diagram shows that the prowling behaviour has a single input through which it may receive
sponsorship. It has three outputs, feeding to edge following, patrolling, and exploring. Prowling

155

Sentry Behaviours Chapter 5

can choose to pass on its sponsorship to these behaviours as it sees fit. Table 5-3 showsthe

meaning of the different states in the behaviour' s state machine, and when the different outputs

are sponsored.

Table5-3

State Action Sponsorship to..

Start The prowling behaviour isinitidised None

Grab The robot finds a boundary from which to Sart Edge Following

Cirde The robot navigates around a boundary completely Edge Following

CirdeSync If the robot gets confused while circling a boundary, it | Petrolling
turns back to familiar territory in search of landmarks

ExploreSeek | Given the opportunity, the robot will follow a boundary | Edge Following
it has not met before

ExploreHy Given the opportunity, the robot will explore an open | Exploring
area (away from any boundary) it has not met before

Leap The robot leaves the current boundary in search of | Patrolling
“older” areas to patrol

LeapSync If the robot gets confused while in an open areg, it will | Edge Following
try to find any boundary at dl in a search for landmarks

LeapReturn If the robot gets confused while in an open area, and | Patrolling
cannot find any boundary nearby, it will turn back to
familiar territory in search of landmarks

5.3.5 Map Maintaining Behaviour

Thisisthe actud module within which the bulk of the cartographic system isimplemented. It is
a direct implementation of the marker representation scheme described in Section 4.3, page
83. In every cycle, this behaviour scans a sngle marker from each of the four neighbourhoods
(see Section 4.3.1, page 88), and updates the rlevant virtual sensors. The state machine for
this behaviour is trivid- the behaviour essentidly dtays in the same date throughout its

156

Sentry Behaviours Chapter 5

operation (see Figure 5-23). The complexity of this behaviour lies in what it does within thet
date. Chapter 4 Amogt in its entirety can be taken as a description of this behaviour.

| ViriGal

é i i Sensors .-

Set-up Update

i Sensors

Figure 5-23: Sate machine for map maintaining behaviour

This completes the discussion of the informed behaviours. The higher-levd “user interaction”

behaviours will now be described.

5.4 User Interaction Behaviours

This collection of behaviours dlow the robot to be guided by externd commands, whether
those commands are to enable the robot’'s own autonomous sentry-like behaviour, or to
impose specific goas on the robot, or to control the movement of the robot directly. The place
of these “user interaction behaviours’ in relation to other behavioursis shown in Figure 5-24.

157

Sentry Behaviours Chapter 5

J— . Sensors
Maintain: |

T
Prox
Contr -
Edge ;
Follow | ™"

-}

iControl

i \i Seek i/
P iLocation! }
e i’

1 Repor iExplore

L powaors |

These behaviours are for the mogt part quite Smple- most of the hard work has been done by
lower-level behaviours.

Figure5-24: User interaction behaviours

5.4.1 Manual Control Behaviour

Thisbehaviour dlows an externa user to control the motion of the robot directly by speeding it
up, dowing it down, and turning it left and right. The state machine for this behaviour is
extremdy ample- it smply listens for commands and changes speed and angle setpoints as
appropriate. It has outputs to both the motor control behaviour and the turning behaviour. It
uses the motor control behaviour to set the forward speed of the robot, and uses the turning

behaviour to set the direction the robot should be facing. It passes on its full sponsorship to
both behaviours.

158

Sentry Behaviours Chapter 5

Motor

Select Control

5

o Set-u Obey-
; Sensors i b COmm);nd

Turning

Figure 5-25: Sate machine for manual control behaviour

It isinteresting to note that the turning behaviour used by this behaviour aso has its own output
to the motor control behaviour. Since that output will have the same priority as the one from
the manud control behaviour itself, commands from both sources will be merged. If the manud
control behaviour attempted to control the speed the robot turned at through its output to the
motor control behaviour, this would conflict with its use of the turning behaviour a the same
level of sponsorship to aso turn the robot. The motor control behaviour would accept the
two conflicting streams of command, and the rate a which the robot would turn would
oxcillate between the two- effectively averaging them. In Stuations where there is danger of
such conflict, behaviours should be sponsored at different levels to establish which takes

precedence.

5.4.2 Region seeking behaviour

This behaviour lets the user command the robot to move towards targets set previoudy (using
the proxy behaviour, see Section 5.4.4). To do this, it Smply passes the co-ordinae of the
target on to the location seeking behaviour. That behaviour is desgned to perform a very
smilar task, but over shorter distances. Because it works with absolute co-ordinates, it is not
accurate over long distances: since the robot’'s position estimate may drift during the journey-

S0 the robot will only move towards the generd region of the target. The location seeking

4 This will usually be reasonably accurate since, because since targets are marked on the map with the “tagging
service” (see Section 4.5.3, page 115), their location will be kept consistent with any driftsin the robots co-ordinate
system. Hence the error is bounded by the drift the robot has suffered since it was last at the target, rather than the
drift it has suffered since the target was originally set.

159

Sentry Behaviours Chapter 5

behaviour will get the robot to its target quite quickly, unless the robot has to back out of
dead-ends (see 8.2.3, page 248). The robot can “hedge its bets’ by using the Goa Seeking
service of the cartographic system in the background to search for a route to the target (see
Section 4.5.4, page 115). This searching process is dow, but if the robot is delayed backing
out of dead-ends as it tries to get to the target the search will have time to succeed, and the
robot can then switch to smply following the “scent” virtual sensor to the godl (see Figure 5-
26). It can dways revert back to using location seeking if the path found by god seeking

proves to be inaccurate due to changes in the environment.

 Inspiration-
i background —
 search succeeds / (8) //
© o O° o
o © (e}

&% o
© o o ®
©)

000 0DDD®EO 6

Figure 5-26: Use of background search

God seeking is only suitable for use as a safeguard, not as the robot’s main strategy for finding
a route to the target. Lower-end robots have insufficient processing power to implement such
a search in anything gpproaching red-time, so they would have to “St and think” before
moving a dl*°. Also, since planning based on a map congtrains the robot to moving through
regions it has aready explored and mapped, opportunities may be missed that the “physica
search” gpproach could have taken advantage of.

A suitable state machine for this behaviour is shown in Figure 5-27. The behaviour Smply
switches between using physical search and map search as gppropriate. It begins using
physicad search, then switches to map search if that succeeds before the robot reaches its
target. It may need to switch back to physical search if the environment has changed and the

map is found to be no longer accurate.

5 For the robot this work was implemented on, a feature was added so that the search could be speeded up a
hundredfold by an external request from the user, with significant degradation of the real -time performance of the
robot (it grinds to a halt for afew moments).

160

Sentry Behaviours Chapter 5

i_ocation
Seeking

Select

(N |

. Set-up Use-physical- Use- I .
; Sensors search background- Patrolling
S search '

Figure 5-27: Sate machine for region seeking behaviour

The behaviour has an output to the location seeking behaviour to perform physical search. It
actudly “hijacks’ the patrolling behaviour to perform the background map search, by
superimposing “infinite desirability” in terms of god seeking on the target marker. The
patrolling behaviour will then, in the long run, lead the robot to that target. The region seeking
behaviour passes on its full sponsorship to both location seeking and patrolling, but places a
low “priority factor” on the output to the patrolling behaviour (see Section 3.3.2, page 55).
This means it will compete for control of patrolling & its own level of sponsorship, but having
received contral it will only pass on a low level of sponsorship to patrolling. Hence it gains
control of patrolling, but ensures it will not compete with physica searching. Thisis the desired
configuration because, while the robot wants the patrolling behaviour to be managing god
seeking, it does not want it to control the movement of the robot. Once the “scent” of the
target is detected, then the sponsorship for location seeking will be dropped and given to
patrolling ingtead.

5.4.3 Reporting Behaviour
This behaviour collects gatistics about the performance of the robot and sends them out dong
the serid connection to the robot every second, so that the status of the robot can be
monitored. The sttigtics include-

Number of scan cycles per second (see Section 3.6.1, page 69).

Average time per cyclefor the last second.

Longest time of acyclein the last second.

161

Sentry Behaviours Chapter 5

Number of connections active.

Current confusion level of the robot.

Current familiarity level of the robot.

Whether the robot is currently following a boundary.
Optiondly, exhaugtive information on the status of the robot’ s behaviours and connections can
be reported. The estimated position of the robot is aso reported at frequent intervas, dong
with the podtion a which various sgnificant events occur a (finding a landmark, laying a
marker, etc.). This can be used for graphicdly visudising the activity of the robot (see Sections
7.8.1and 7.8.2, page 229). The state machine for this behaviour istrivid (see Figure 5-28).

| LT Serial
é ;1 comms <
Set-up Send-
5 Sensors statistics !

Figure 5-28: Sate machine for reporting behaviour

5.4.4 Proxy Behaviour

This is the highest-level behaviour present in the robot. It responds to externa commands,
supplying sponsorship to other behaviours on behaf of the user. The robot is designed to be
able to operate autonomoudy, but this behaviour alows it to aso respond to a smple set of
commands across a serid connection. These were useful for performing experiments with the

robot. Table 5-4 givesalig of the commands implemented.

162

Sentry Behaviours Chapter 5

Table5-4

Command Description

Prowl Sponsors the prowling behaviour, which starts the robot performing its
basic autonomous “ sentry-like” activity.

Patrol Sponsors the patralling behaviour done, making the robot continualy
move through every part of its territory. If thisis used for an extended
length of time ingtead of prowling, the robot will lose track of its pogtion
because the behaviour makes no provison for seeking landmarks.

Edge Sponsors the edge following behaviour, to make the robot follow the
edge of any nearby obstacle.

SetMark Takes note of the current location of the robot using the Tagging Service
(see Section 4.5.3, page 115).

SeekMark Sponsors the region seeking behaviour to move the robot towards a
location tagged a an earlier sage.

Explore Chooses whether the “curiosity” virtud sensor should be enabled or not.
If dissbled, the robot will never move out of its current territory to
exploreitsenvironment.

Renew Controls whether the marker laying system is enabled (see Section 4.3.2,
page 93).

SendMap Requedts the robot to tranamit its interna map on the seria connection
for externd inspection.

Think Increases the rate of “god spreading” a hundredfold for a short interval.
This has the consequence of degrading the robot’ s redl-time performance
for thet interva.

Conquer Requests that the robot take over the world?®.

Manua Sponsors the manua control behaviour so that the robot will follow
external motion requests.

Halt Puts the robot into an idle behaviour.

6 Not fully implemented as yet.

163

Sentry Behaviours Chapter 5

Basic commands such as pausing, resetting, and restarting the control system are implemented
in the robot’s kernel (see Section 7.3, page 213) rather than in this behaviour so the user is
guaranteed to always be able to stop, pause, or restart the control system, even if it hangs or
crashes.

The state machine for the proxy behaviour is shown in Figure 5-29. It has severa outputs,
some of which it gponsors continuoudy- map maintaining and reporting: and the rest of which
it chooses to sponsor according to commands it receives. It has asingle input called “root”. A
connection is attached to thisinput at an arbitrary fixed priority, and it is from this Sngle source
that priority is distributed to dl the behaviours in the control system.

Prowling

o3

e Set-up Respond-to-
E Serial .‘.j command
. Comms .

Map
Maintaining

Reporting

Manual
Control

i | Region
. |_Seeking

Figure 5-29: Sate machine for the proxy behaviour

5.5 Summary

This chapter described the design of a set of behaviours for the robot which together combine
to make it act as a sentry, alowing it to explore and petrol its environment autonomoudy. The
behaviours influence each other by controlling how they choose to pass on the sponsorship
they recaive. This sponsorship flows from the highest-level behaviour down to the lowest, with

164

Sentry Behaviours Chapter 5

each behaviour dong the way free to pass on its share of sponsorship any way it chooses.
Each behaviour makes a loca decison, and from that the overd| hierarchy of control at any
ingant is determined. Nowhere in this chapter was any mention made of any absolute level of
priority- al that is needed is that each behaviour decides which of its outputs to sponsor, and
a what fraction of its own level of sponsorship.

There is an interesting point about the Laterd architecture that the behaviours developed here
bring into focus. Consder the edge following behaviour. In congtructing this behaviour, alarge
amount of detailed consideration of the robot’s sensing ability was required. But as soon as it
was congructed, other behaviours could use it for their own purposes without needing to
know how it worked. The location seeking behaviour was one of the behaviours that used it.
This behaviour in turn had its own different set of concerns about the topology of obstacles,
but once constructed it could aso be used by other behaviours without them having to share
its concerns. Location seeking was used by patrolling, patrolling by prowling, and prowling by
proxy- none of them needing to be concerned with how the behaviours they used did what
they did. This showsthat the Laterd architecture supports a modular design, and suggests that
it should be a scdesgble architecture, since the complexity of lower-level behaviours does not
cause complexity to accumulate in behaviours that use them as it tends to do in Subsumption

(seeSection 2.4.9, page 26).

165

Zac cript Chapter 6

6. Zac Script

This chapter presents an extenson to the C++ programming language caled Zac Script which
amplifies the process of implementing control systems designed using Laterd’ s behaviour and
connection congructs. The first section in this chapter carifies the nature, purpose and utility of
Zac Script. An outline is then given of the process whereby Zac Script can be converted to
executable code using a tool caled the Zac Trandator. This is followed by a section
describing the details of how Zac Script is used to specify behaviours and connections. The
complete syntax of the language extension is then presented formdly, dement by dement. An
extended example is presented to demongtrate how a full a hierarchy of behaviours can be
implemented using Zc Script. Findly, the limitations of Zac Script in its current form are

examined.

6.1 Overview

In Chapter 3, issues related to implementing the Laterd architecture using the C++
programming language were discussed (see Section 3.6, page 68). Structures for a “light-
weight” versdon of Latera suitable for running on lower-end robots were presented. This was
cdled the “Zac” implementation of Lateral”. It was noted that, while C++ is an excellent
choice of implementation language for portability reasons, the congructs of Laterd are
different enough from those native to C++ to make coding them in C++ a somewhat difficult
and tedious process. Hence a specid language extension to C++ for Lateral constructs seems
judtified. The following sections examine the arguments in favour of such alanguage extenson
in detail, explaining:-

Why robot architectures may require new language structures.

Why it was decided to implement Laterd structures by mapping them on to C++.

Why it was decided to add new syntax to C++ and to automate this mapping, rather than

choosing to directly code Lateral congtructsin C++ itself.

47 «zac” is derived from the first name of Isaac Asimov, a science fiction writer known to many as the “Father of
Robotics’.

166

Zac cript Chapter 6

6.1.1 Languagesfor robot architectures

Robot architectures are a collection of condraints and guiding principles for organisng a
control system, as was described in Chapter 2. “Congraints’ and “principles’ are high-level
concepts, and are of more help in the design of control systems than in their implementation.
However, when an architecture has well-defined structural elements associated with it, such as
the wires and augmented finite date machines of Subsumption, then it can guide
implementation as wel as design. One way of providing this guidance is to encapsulate the
dructures of the architecture in a*“language’ supporting the architecture' s constructs, and then
implement dl or part of the robot’s control system in that language. Examples of languages
developed for robot architectures include the Behaviour Language [[21]] for Brook's
Subsumption and ALFA (A Language For Action) [[18]] for Gat's ATLANTIS. The reason
why it is useful to provide explicit support for the congtructs of an architecture rather than just
converting them to dements of some exiging language is Smply that this conversion can be
difficult or tedious to perform. The structures and modularity of a robot architecture can be
quite different from those supported by pre-existing languages. This was the case for Brook’s
Subsumption, and it is also the case for Laterd. In particular, the idea of usng “connections’

as explicit representations of the communication channds between modules (see Section
3.3.1, page 48) does not have a direct analogue in the popular programming languages. It can
of course be emulated in them dl, but thisis exactly the extralayer of difficulty and tedium that
introducing extra language constructs avoids.

6.1.2 Mapping Lateral structuresto C++

It was desirable that, whatever the method used to implement Laterd, it should be applicable
to aswide arange of target platforms as possible. There are few hardware sandards yet in the
field of robotics, so tying Latera to one particular configuration would limit its use®. A good
way to achieve this platform independence is Smply to map the structures of Lateral on to a
language that is widdy supported, and then compile the result for the gppropriate platform.

48 As mentioned in Chapter 3, this was also important for pragmatic reasons- since when the work for this thesis was
begun, the robot it was to be implemented on was not known.

167

Zac cript Chapter 6

C++ is an excdlent choice for the target language. Compilers for C++ are available for most
platforms- for example, GNU CC is a free C/C++ compiler and cross compiler which can be
configured to work with a wide variety of processors (see Appendix A3). An extra bonus of
mapping Laterd structures in this way is that it is then possible to “borrow” dl the congructs
native to the target language, such as expression evauation, and avoid “re-implementing the
whed”. The reasons for choosing C++ over C was that the object- oriented nature of C++ isa

closer match for Lateral, and hence Lateral congtructs can be mapped on to it with less effort.

6.1.3 Supporting Zac Script through C++ extensions

It was decided to create a collection of extensons to the C++ language called “Zac Script”
that support Lateral constructs directly, and can be mapped on to C++ automaticaly by a
trandator tool. A natural question, given the arguments advanced in the previous section in
favour of C++ as a target for mapping Latera on to, is whether the advantages such an
gpproach can bring are sufficient to make it worth using instead of coding directly in C++
itsdf. If the benfits are not sgnificant enough, then there will be more effort in condructing
support for the language extensions than those extensons actudly save. The full lig of
advantages of using Zac Script instead of C++ aoneis asfollows-
Converting state machines and connections to their C++ implementations by hand is
tedious because, dthough it is quite straightforward to do, it results in asignificant amount
of repetitive, indegant, clumsy code. It is ussful to automate this.
Simple but tedious “housekegping” functions are also needed to generate interfaces to
behaviours so that they can be correctly managed at run-time by the robot’ s control system
(see Section 6.3.3, page 179). It is hepful to automeate this as wll.
Once Laterd structures have been mapped on to C++, they become difficult to edit or
maintain, because of the extra level of detal involved. For example, changing a date
machine implemented in C++ may require re-ordering of identifiers and deding with
forward references. Hiding such details makes maintaining and modifying code smpler.
Separdting Latera sructures from how they are implemented in C++ means that the
implementation of congtructs can be changed quite radicaly without requiring source code

168

Zac cript Chapter 6

to be re-writter?®. If changes are made to how Lateral congtructs are implemented, only the

trandator used to convert urce code to C++ need be modified to reflect the new

mapping.
The last two points were consdered particularly important. By alowing explicit syntax for
Lateral congtructs, the detail of how they were mapped on to C++ was hidden with a benefit
of increased clarity and ease of maintenance of source code, and the pragmatic advantage that
the mapping could afterwards be changed without having to rewrite dl source code. All these
condderations led to the decison to introduce explicit language extensons into C++ to
support Latera congructs. These extensions were cdled “Zac Script”. Header files and
libraries, the conventiona ways to extend the C++ language, were not sufficient to encode the
sgnificantly different structures of Laterd, so atool caled the Zac Trandator was devel oped
that essentially acted as a pre-processor, taking source code written in Zac Script and
trandating dl the extended syntax into pure C++. The trandation could then be compiled,
linked with suitable libraries, downloaded to the robot, and executed. This process is outlined
in the following section.

6.2 Outline of translation process

In Figure 6-1, the process whereby a set of behaviours and connections eventualy becomes
executable code is outlined.

System
Decomposition

Zac
Translator

Zac Script
=>| i &

C++
Source

C++ C++
Cross-compiler Compiler
‘ Compiled E

code for <%Complled

Robot 4’code for PC

Cross-linked with Linked with
Lateral Runtime Lateral Runtime

Support/ Support

Control Control
System for System for
5 Robot = Simulator

Figure 6-1: The path from Lateral structures to executable code

9 This was particularly important for pragmatic reasons, since the “sentry” application described in the previous
chapter was developed side by side with the Lateral architecture implementation, and could not wait for it to be

169

Zac cript Chapter 6

The stepsin the process are as follows-

1. Initidly, the control system is designed in terms of behaviours and the connections between
them.

1. This dedgn is then expressed in Zac Script, which has specid syntax for representing
behaviours and connections.

1. Next, the Zac Script source code is converted into pure C++, mapping any of the Lateral
congtructs on to C++ gtructures. Thistrandation is performed by the Zac Trandator.

1. The resultant C++ code is compiled appropriately for whatever target platform it is amed
a, either for aphysica robot or asimulated one on a PC.

1. The compiled code is linked with a module containing the runtime support necessary for the
Zac implementation of the Laera architecture (see Section 3.6, page 68). Modules
gpecific to ether the smulator or the physicad robot are dso linked in, and the resultant
executable code will exhibit the behaviours specified in the origind design.

An introduction to the actud language extensions to C++ present in Zac Script is now given.

Asthe extensons are introduced, their equivalentsin C++ will be presented.

6.3 Writing Zac Script

Zac Script is an extengon of C++. As such, afile containing nothing but C++ statementsis an
acceptable Zac Script sourcefile.

The most important new construct that is available for source code written in Zac Script isthe
“BEHAVIOUR” congruct, which is intended to be used to implement actud robot

behaviours. The behaviour congtruct appearsin the following form:-

BEHAVI OUR <Nane>
{
<l nput Connecti ons>
<Qut put Connecti ons>
<Vari abl es | ocal to behaviour>
<Functions local to behavi our>

<State nachine inplenenting functionality of behavi our>

mature.

170

Zac cript Chapter 6

Every behaviour can have a set of input connections, a set of output connections, and a Sate
mechine that implements the actud functiondity of the behaviour. These dements are
described in the sections that follow. It is aso useful for behaviours to be able to dlocate loca
dorage, and define locd “helper” functions. To avoid having to invent new syntax to dedl with
this, behaviours are defined as extensions of the C++ “class’ congtruct. Any code dlowed
within a class in C++ is therefore dso dlowed ingde a behaviour and will have the same
semantics. For example, the meaning of the following code segment is essentidly unchanged if
“BEHAVIOUR" isreplaced by “class’:-

BEHAVI OUR MakeTea

{

/1 menber vari abl es

i nt nunmCups, nunBags;

/1 member functions

void PluglnKettle();

int AreBagsAvailable() { return numBags > 0; }
3
There is one subtle difference however. A cdassin C++ is used as a “pattern” from which to
create several objects of the same form. Behaviours in a robot, on the other hand, are
generdly unique- there is no need for more than one instance of them. Hence when the Zac
Trandator is converting a behaviour to C++, it will by default cause an intermediary classto
be constructed with the member variables and functions described in the above code, and then
create a single instance of that class cdled by the behaviour name, “MakeTed’ in this case.
The intermediary class will be derived from a shared base class for dl behaviours that
implements the functionality of Laterd. This base dass, ZACProcess, was introduced in
Section 3.6.4 (page 76). The Zac Script code fragment above would be converted to C++
code of thisform:-

cl ass ZACProcess_MakeTea : public ZACProcess
{

/1 menber vari abl es

i nt nunmCups, nunBags;

/'l menber functions

171

Zac cript Chapter 6

void PluglnKettle();
int AreBagsAvailable() { return nunmBags > 0; }

b
ZACProcess_MakeTea MakeTea; /'l create a single behaviour object

/'l called “MakeTea”
The services that behaviours inherit from ZACProcess will be described in examples to come,
and are listed exhaugtively in Appendix C3.
Within the Behaviour condruct, it is possble to specify a state machine implementing the
functionaity of the behaviour, and to st up connections to other behaviours. These eements

are now described.

6.3.1 Specification of state machines

In the Zac implementation of Latera, behaviours are designed as augmented finite dtate
mechines. The “augmented” part of “augmented finite state machines’ smply means that the
gate machines are permitted to have memory. This memory can be crested in Zac Script by
smply placing variables within the behaviour. A specia syntax for streamlining the process of
coding the actua state machines themsalves is available in the behaviour congtruct. Consider
the following example-

#i ncl ude <i ostream h>
BEHAVI OUR Greeti ng
{

/1 menber variables and functions could go here

/] state machine starts here

@payH
cout << “Hello World” << endl

b

If this code is trandated, compiled, linked with the appropriate runtime support (see Section
6.2, page 169), and executed, it will print “Hello World” to standard output. The behaviour
has a sate machine with a single state caled “ SayHi” that prints the given greeting. States are
distinguished from norma C++ code by the “@” symbol preceding them. The symbal is

172

Zac cript Chapter 6

followed by alabd identifying the state, and then arbitrary code to perform whatever that sate
actudly needsto do. A lesstrivid state machineis shown in the following code fragment:-

BEHAVI OUR MakeTea

{
/1 menber vari abl es
/1 menber functions
@l ugln
i f (nunCups >= nunPeopl e && AreBagsAvail able())
{
FillKettle();
SwitchOnKettle();
Put Teabags!| nCups() ;
NEXT Wi t Boi | ;
} else NEXT DrinkMIk;
@i t Boi |
if (Boiled()) NEXT Prepare;
el se NEXT Wit Boil ;
@°r epar e
Pour Wat er () ;
AddM | kAndSugar () ;
/1 finished
@r i nkM | k
cout << “Wouldn’t you nuch prefer sone mlk?” << endl;
/1 finished
3

All the variables and functions referred to in the code are assumed to be locd variables and
helper functions of the behaviour. Note that any code vaid within a norma C++ function can
be used within a state. There is an extra dement dlowed, the “NEXT” statement, which
specifies the identifier of the next date the robot will enter. Every date is assgned a unique
name so that it can be referenced in this way. By default, if no NEXT datement is executed
within astate, the state machine will be halted.

173

Zac cript Chapter 6

When the above state machine is executed, the “Plugin” state will run first. From there the
behaviour may trandtion to “WaitBaoil” or “DrinkMilk”. The “WatBoil” dae loops until
Boailed() is true, then moves on to “Prepare’. Both the “Prepare’ and “DrinkMilk” States
contain no trangtions in the form of NEXT statements, so the state machine will be halted after
either of them are executed.

The next section shows how the syntax in the above code fragment is converted to C++ by
the Zac Trandator.

6.3.2 Implementation of state machines

A gate machine within a behaviour is converted to C++ by building a function to implement it
as a “switch” statement. The base class from which dl behaviours are derived contains a
virtud function cdled “ZAC Run” which is expected to be overidden to perform the
functiondity of the behaviour. The function is passed the current state of the behaviour, and

returns the next state to which it should trangtion. Its prototypeis as follows-

virtual int ZAC Run (int ZAC state);

The Zac Trandator generates this function from the state machine, and takes care of informing
the Lateral runtime support module of the existence of each behaviour, so that their sate
machines will be automaticaly executed (see Section 6.3.3). The code generated by the Zac
Trandator for this function is a switch statement, with each “case’ corresponding to a single
date in the state machine. Unique identifiers are generated from dl the state names to use as
case labels before the compiler meets the switch statement. This means that forward
references between states will not cause difficulty. To illustrate these idess, the code generated
by the Zac Trandaor from the state machine example in the previous section will now be
examined®. Firdly, code is written to set up unique identifiers for use as case labels in the

switch statement implementing the state machine.

%0 This code is taken directly from the output of the Zac Translator, with explanatory comments added.

174

Zac cript Chapter 6

enum

ZAC LI NE(MakeTea, Pl ugl n), /'l ZACLi ne_MakeTea_Pl ugln

ZAC LI NE(MakeTea, Wai t Boi |), // ZACLi ne_MakeTea_Wit Boi |

ZAC LI NE(MakeTea, Prepare), /'l ZACLi ne_MakeTea_Prepare

ZAC LI NE(MakeTea, Dri nkM | k), [/ ZACLi ne_MakeTea_DrinkM I k

ZAC LI NE(MakeTea, ZAC_STATE_COUNT)
b
ZAC LINE isatrivid macro to create unique identifiers based on its arguments. It is used to
make the code in the switch statement easier to read. ZAC_LINE(x,y) Smply corresponds to
the identifier ZACLine X_y. An extraidentifier of the form:-

ZACLi ne(Behavi our Nane, ZAC_STATE_COUNT)

is automatically added at the end of every identifier list that the Zac Trandator cregtes to give
the number of dates in that behaviour. Once the identifiers have been set up, the function
implementing the state machine can be generated. It is passed the State to run as an argument,
and should return the desired next state of the behaviour. It congists of a“switch” based on the
dtate to run, with each case being of the form:-

case ZAC LI NE(Behavi our Nane, St at eNane) :

/'l Code fromstate is copied to here

br eak;
The code from the state is copied into the case statement dmost verbatim. The only specid
provison that has to be made is for the “NEXT” statement. This should set the sate that the
function will return as the desired next state of the behaviour. Thisis done by setting up aloca
variable ("*ZAC next”) and trandaing

NEXT St at eNane;

into

ZAC next = ZACLi ne(Behavi our Name, Stat eNane);

The entire funcion will be asfollows-

i nt ZACProcess_MakeTea:: ZAC Run (int ZAC state)
{

/1l Local variable to store the next desired state. The

/1 default value ZAC LI NE_DEFAULT stops the state machine.

175

Zac cript Chapter 6

int ZAC next = ZAC LI NE_DEFAULT;

/] switch to the correct state to run
switch (ZAC_ state)

{
/1 Code corresponding to the “Plugln” state

case ZAC_LI NE(MakeTea, Pl ugln):

I/ C++ code fromstate gets copied directly

if (nunCups >= nunPeopl e &% AreBagsAvail able())

{
FillKettle();
SwitchOnKettl e();
Put Teabagl nCup() ;
/1 “NEXT WaitBoil” is translated into the follow ng
ZAC_next = ZAC_LI NE(MakeTea, Wi tBoil);

} el se ZAC next = ZAC_LI NE(MakeTea, Dri nkM [k) ;

br eak;

/'l Code corresponding to the “WaitBoil” state
case ZAC LI NE(MakeTea, WaitBoil):

if (Boiled()) ZAC next ZAC LI NE(MakeTea, Prepare);
el se ZAC_next = ZAC_LI NE(MakeTea, Wai t Boil) ;

br eak;

/1 Code corresponding to the “Prepare” state
case ZAC LI NE(MakeTea, Prepare):

Pour Wat er () ;

AddM | kAndSugar () ;

/1 finished

br eak;

/! Code corresponding to the “DrinkMIk” state
case ZAC_LI NE(MakeTea, Dri nkM | k) :

cout << “Wouldn’t you nuch prefer sone mlk?” << endl;
/1 finished

br eak;

/1 Code corresponding to the any invalid state

defaul t:

/'l Special return code to indicate an invalid state.

ZAC next = ZAC_LI NE_NOTSET;

176

Zac cript Chapter 6

br eak;
} // End of switch on ZAC state

/]l return next state the behavi our shoul d execute

return ZAC next;
} /1 End of ZACProcess_MakeTea: : ZACRun

As can be imagined, it is eadier to write and modify stete machines in the syntax that Zac
Script alows than it would be to use switch statements directly. Also, now that state identifiers
are handled automaticdly, it is possible to introduce convenient short-cuts into how a state
meachine can be specified-
To trangtion from one date to the state immediately after it in the ligt of Sates, it is useful
to be able to issue a “NEXT;” command without specifying the dae's identifier
explicitly. The fewer times a date is referred to by name, the less code that hesto be
changed if that State is renamed. Hence the following code is allowed:
@i rstAction
DoSonet hi ng() ;
NEXT; // equivalent to witing “NEXT SecondAction;”
@econdActi on
DoSonet hi ngEl se();
When used thisway, NEXT istrandated as

ZAC next = ZAC state + 1;
i.e it amply moves on sequentialy to the next sate. If thisis used in the lagt state of the
state machine, it will be halted.
States often need to loop continuoudy, waiting for some specific condition to occur.
With the Zac Trandator, The “@” symbol can be used within a Sate to refer to the

identifier of that state. For example, aloop could be implemented as follows:-
@.oopi ngSt at e
DoSonet hi ngThat NeedsRepeati ng();
NEXT @ // equivalent to witing “NEXT LoopingState;”

Writing loops this way means thet if the name of the state is changed later, no codein its
body isaffected.
Frequently a state machine will have a number of trivid intermediate states that are not

177

Zac cript Chapter 6

worth naming. However the switch statement in C++ will require the states to have
unique names. To get around this, if the “@” state marker is repeated where the name
of the ate should be, the Zac Trandator will automaticaly substitute a unique identifier
for that sate. The following code will then be legd -

@ /1 No nanme given to this state
DoSonet hi ngTrivial ();
NEXT;
(@3) /1 No nane given to this state either, but it is
/1 distinguished fromthe previous state for C++
DoSonet hi ngEqual | yTri vi al ();
NEXT | nportant St at e;
Often the logic of a state can be expressed most clearly by specifying a default next
gate that the robot will trandtion to if no other NEXT gtatement is executed. It would
be attractive to be able to write code like the following:-

@)
DEFAULT NEXT Defaul t Action;

/| DefaultAction will be transitioned to unless one
/1 of the follow ng conditions succeeds

if (conditionl) NEXT Responsel;

if (condition2) NEXT Responsez;

However, by referring back to how NEXT is implemented, it can be seen that if two
NEXT statements are executed, the last one to execute will be the one that actudly
chooses the next state. Hence the DEFAULT keyword in the above code could smply
be omitted, and the code would work as it ands. The DEFAULT keyword does
make the logic of the state clearer, so the Zac Trandator will accept it and Smply treat it

asapiece of documentation.

Portions of the state machine example given earlier could have been written using these short-
cuts, in the following way-

@Nai t Boi |
DEFAULT NEXT @

178

Zac cript Chapter 6

/'l This sets the default next state to be
/1 the “WaitBoil” state itself
if (Boiled())
NEXT; // This will transition to the next state
/1l in the list of states- the anonynous one

/1 directly follow ng

@@ /'l Anonynpus state

Pour Wt er () ;
AddM | kAndSugar () ;
/1 finished

As a find detall for completeness, the Zac Trandator recognises one specid date, the
“CONTROL” gate. If such agate isincluded in the state machine, it will be called once every
scan cycle (see Section 3.6.1, page 69) through the ZAC Run function in addition to the
particular Sate the behaviour isin at that time. Thisis useful to alow the behaviour to react to

changesin priorities a the rate they occur.

6.3.3 Discussion of initialisation

Thus far it has not been specified how the state machines written in behaviours actudly ever
come to be executed. The Laterd runtime system must be notified of the existence of each
behaviour in some way, S0 that it may drive their sate machines. The Zac Trandator handles
al the details of performing this notification, so that the programmer who generates the
behaviours need never even consder the issue, and can trest behaviours as units of execution
in their own right. The Zac Trandator generates a Sngle “initidisation function” in each source
file to inform the Laerd runtime system of the behaviours contained in that source, and to
initidise those behaviours. This function is called autometicaly on program start-up without the
programmer needing to know of its exigence. The operations that the initidisation functions
perform in effect construct the “Lateral Object Hooks' interface to be discussed in Section
7.7 (page 228).

179

Zac cript Chapter 6

6.3.4 Specification of connections

A behaviour in Lateral has a set of input and output connections that it can use for interacting
with other behaviours (see Section 3.3.1.3, page 50). In Zac Script, a specid syntax is

introduced to make it easier to set up these connections. The form of the syntax is as follows-

BEHAVI OUR Exanpl e

{
I NPUT (ConnectionType, ConnectionName, Source);
OUTPUT (ConnectionType, Connecti onNanme, Target);

b

Input and output connections are special objects belonging to the behaviour they appear
within. Asfor dl varidbles in C++, they have atype and a name. The type refers to the nature
of the data the connection can carry. The name alows the connection to be accessed within
the behaviour's state machine and helper functions, just like any member varigble. Beyond the
attributes of norma member variables, however, connections also have information about what
they are attached to. Input connections may read from a specified source (another
connection), and output connections may write to a specified target (also another connection).

As an example, consider the following two behaviours, “ ShowlLeve” and “SetLevd”.

BEHAVI OUR ShowLevel {
/1 input connection called “in_level”, carrying integer data,
/1 and | eft unattached

INPUT (int, in_level, NULL);

@i spl ay
if (in_level.Delta()) // check if input has changed
{
/'l display value stored in input
cout << in_level.Value();
}
NEXT @ /'l repeat state forever

BEHAVI OUR Set Level {
/1 output connection called “out_level”, carrying integer data,
/1 and attached to the input of ShowLevel
OUTPUT (int, out_level, ShowLevel.in_level);

180

Zac cript Chapter 6

Gt art

out_level.Set (0); /1 Initialise the output to zero
NEXT;

@et
/'l Increase the output by one, and |oop forever

out _level.Set (out_level.Value() + 1);
NEXT @

ShowLeve has a single input connection caled “in_level”, and SetLeve has a sngle output
connection called “out_level”. This output connection of Setleve is attached to the input
connection of ShowLevel®. The state machine in Setlevel repestedly increments its outpt,
while ShowLeve displays its input whenever it changes. Because the aitput of SetLeve is
atached to the input of ShowLevd, this results in ShowLevd displaying the incrementing
vaues of Setlevd’s output. This could dso be achieved by attaching ShowLeve’s input to
Setlevd’s output, but this is done less commonly because it requires the behaviour being
controlled to “know” about the behaviour controlling it (see Section 3.3.1.3, page 50).
Notice that the connections are accessed within their respective behaviours by name, just as
normd variables are. When the output of SetLevel is being atached to the input of
ShowLevd, it identifiesthe input as “ShowLevel . i n_| evel ”. In generd an input or output
connection of a behaviour can bereferred to in thisway, as-

“<Behavi our Nanme>. <Connect i onName>"
All connections have a st of operations that can be performed on them. The full set of
operationislisted in Appendix C3. The ones used here are givenin Table6-1.

Tableb6-1

51 Hence out_level becomes a secondary source for in_level (see Section 3.3.1.4, page 52). If further outputs were
attached to in_level, it would apply Lateral’ s priority rules to determine which to read from (see Section 3.3.1.5).

181

Zac cript Chapter 6

Operation | Action

Set This places the data from its argument in the connection (the assgnment
operator can be used for thisaswell).

Vdue This returns the data in the connection (the type cast operator for the
gppropriate data type can aso be used for this).

Ddta Thisreturns true if the data in the connection have changed since the last time
the function was called.

It is possible br connections to exist that are not owned by a behaviour. These are caled
intermediate connections, and are pecified as follows:

CONNECT (ConnectionType, ConnectionNane, Source, Target);
Intermediate connections are specified outsde of any behaviours, a file scope. Again, they
have a type and a name, and both a source and target connection can be specified. They are
referred to by their name, without any qudification, just like aglobd varidblein C++.

6.3.5 Implementation of connections

All connections are implemented as objects derived from the ZACMeshLink base class (see
Section 3.6.4, page 76). This class gives support for al the operations thet the Lateral runtime
module needs to manipulate connections. It also defines the operations that can be applied to
connections when they are accessed within behaviours. A full ligt of these operationsisgivenin
Appendix C3.

Because of the amilarity of connections to normd variablesin C++, it would be rdlaively easy
to use them directly without any specid syntax. The only difficulty is how to set the source and
target of the connections. In C++ classes, member variables can only be initidised in the
class's condtructor. Therefore input and output connections would have to be declared first as
member variables, and then have their source and targets set separately in a congtructor. It
was found to be easer to undergand the relationships between behaviours if the declarations
and attachment information for their connections were side by side at the start of a behaviour,
rather than being dispersed. For this reason, the speciad syntax described in the previous
section was used. Connection declarations and attachments were kept together, with the Zac
Trandator automating the “donkey work” of splitting them up for the C++ compiler.

182

Zac cript Chapter 6

6.3.6 Running the trandator

The Zac Trandator is the tool developed for converting Zac Script source code to pure C++
code. It was constructed using FLEX>? and a recursive-descent parser. The trandator works
by building severd files from a sngle source file, corresponding to the declarations, definitions
and initiaisations necessary to implement the Lateral congtructs in C++. These files are then
concatenated into a single C++ trandation of the source. The intermediate files appear only
because by writing the trandator this way it can be made single-pass. For example, when
trandaing a date machine, a ligt of identifiers for dl the sates must appear in the C++
trandation before any code for the actud dtates, otherwise forward references will not be
dlowed by the compiler. But the trandator does not have a list of dl the states until it has
finished parsing the behaviour, o it will not be able to insart this ligt until it istoo late. To get
around this, the trandator places the declarations for the states of dl the behaviours in onefile,
and the actud code for the ates in another, and then after scanning the entire source cade it
will smply append the file containing the code to the end of the file containing declarations. A
smilar argument holds for the generation of a file containing initidisation code. The
declarations, definitions, and initidisations combine to form a sngle C++ source file. The
trandator aso generates a file giving declaraions for any intermediate connections in the
source, and this forms a header file. This header file dlows intermediate connections to be

attached to by behaviours outside of the filein which they were crested.

52 “Fast LEXical analyser”- this general utility for performing lexi cal analysis of filesisideal for building scanners for
parsers. FLEX or the earlier LEX are available under most distributions of UNIX.

183

Zac cript

Chapter 6

.zac
Zac Script Source

.h .cC .icc st
Declarations Definitions Initialisations Connections
Y '
.cCc st
C++ Source C++ Header

Figure 6-2 outlines the stages involved in trandating Zac Script source to C++. The contents

Figure 6-2: C++ trandation of Zac Script source

of the various files are detailed in Table 6-2.

Table6-2
Stage File | Contents Description
Source .zac | Zac Script Source file written in C++ with syntax
source extensgons supporting Lateral congtructs.
Intermediate | .h Dedarations Declarations generated for states, behaviours,
connections, etc.
.cc | Ddinitions Body of state machines, behaviours, definitions
of connections, etc.
dcc | Initidisations Initidisation functions for behaviours, automatic
implementation of the Latera object hook
interface.
I Intermediate A lig of declarations for the intermediate
Connections connections specified in the sourcefile.
Target .cc | C++ source The trandaed version of the sourcefile now in
pure C++.
I C++ header A copy of thelist of declarations for the
intermediate connections specified in the source
file. Suitable for use aslindusion in a heeder file.

6.4 Syntax of Zac Script

The chapter s0 far has given an overview of the important components of Zac Script and how

they are implemented. In this section a complete systematic description of the syntax of Zac

184

Zac cript Chapter 6

Script is given. The syntax is first presented in EBNF notatiorf®, and then each mgjor element
of the grammar is described in turn.

It might seem that, sSince Zac Script extends on C++, aparser for Zac Script would also need
to parse C++. However the full grammar of C++ is very complex, and paraing it is difficult, so
no attempt was made to do so- it would certainly have been more trouble than the language
extensons were worth. Instead the grammar and keywords of Zac Script were carefully

chosen so that the trandator could “skim” over C++ source code, pick out the congtructs it is
responsible for, and parse the bare minimum necessary to convert them to C++. For example,
the character “@”, used as the state identifier, is not used at al in C++, 0 its presence
unambiguoudy indicates the Start of a state machine.

The full grammar of Zac Script is given in Table 6-3. Compilers generdly divide their source
code into units such as identifiers, numbers, white-space, etc. The Zac Trandator does the
same when it is parsing the congructs it is responsible for, but otherwise it trests whole
sections of C++ code as “white-space” which it just passes on unmodified in the trandation.
Such a block of C++ is cdled a “<c-unit>" in the table below, and it is bounded by any

keyword from Zac Script, or dternaively any dement within C++ that indicates the end of a
congtruct, such as a closing parenthesis or closing brace that was not opened within the unit. A
“<c-term>" is the same as a <c-unit>, except it is used when parsng eements of an argument
list, s0 it is also bounded by a comma. The trandator is free format; however provison is
meade to alow formeatting from the source to be copied (with modifications when appropriate)
to the trandation, so that the trandation will be human readable.

Table6-3

53 Extended Backus Naur/Normal Form, atool for describing context-free grammars.

185

Zac cript Chapter 6

Syntax of Zac Script in EBNF notation
<Program> == { <Latera-unit> | <c-unit>}

<Behaviour> | <Connection> | <Object>

<Input-status> == “INPUT_STATUS’ “(* <c-term>"“" <c-term>*“"
___ Dol Ll S
<Qutput-status> == “OUTPUT_STATUS “(* <c-term>*“," <c-term>“"

<C_ta.m> “)n

<Connection> == (“CONNECT” | “CONNECT_STATUS") “(* ... “)"...

The mgor eements of the grammar are now examined in turn.

6.4.1 Program syntax

KP rogram \

Lateral-unit

\J

= J

Figure 6-3: Syntax of a Zac Script program

Zac Script source code consists of blocks of pure C++ code (“c-units’) and blocks of code
written in an extended syntax representing Laterd eements such as connections and
behaviours (see Figure 6-3). C++ dements are not parsed, smply copied verbatim to the
trandation. Only units of code representing Laterd elements are parsed.

186

Zac cript Chapter 6

)

6.4.2 Syntax of Lateral elements

ﬁateral-unit
4

Behaviour
. Behaviour-|
~ O-F=-0) 1~
. /
/Connection h

N
Y
\

’Q

J

(-
Object

e OL ET O)

Figure 6-4: Syntax of Lateral elementsin Zac Script

Thethree main types of Laeral dementsare shown in Figure 6-4. These are -

Behaviours- These represent structures for implementing behaviours of the robot. They
dart with the keyword BEHAVIOUR, followed by the body of the behaviour delimited
with braces. This congtruct was discussed in Section 6.2.

Connections- These represent intermediate connections that do not belong to any
behaviour. Input and output connections appear inside the body of behaviours and are
parsed differently. Intermediate connections are specified with the keyword CONNECT,
followed by arguments insde parentheses indicating their type, name, and target or source
as discussed in Section 6.3.3. There is a variant on norma connections caled
“CONNECT_STATUS’ which does not carry priority information and so does not have
the overhead associated with doing so. This construct was introduced for the sake of
efficiency only, and will not be described in detail as it is Smply a redtricted verson of
normal connections. The structure of the arguments to CONNECT is not parsed, because
the trandation can be arranged o that the C++ compiler itsalf will check the arguments in
the trandated verson of the construct. Whenever possible, checking argument counts and

187

Zac cript Chapter 6

types is left to the C++ compiler to keep the trandator smple, and because the compiler
will be able to generate more informative error messages™.
Objects- This specid congtruct is not part of Lateral, and was introduced for purely
pragmatic reasons. A statement like:

OBJECT (int, status, 1);
isdirectly equivaent to Smply writing

int status = 1;
except that in the first case the Laterd runtime system takes over responshbility for
performing the initidisation. This has the practicd advantage that the control system can be
rest to its origind state by the runtime system, without having to stop and restart the whole
program. For the robot the work in this thess was implemented on, restarting a program
could only be done by downloading the program to the robot again- a dow operation,
hence the usefulness of the OBJECT datement.
This congtruct is specified with the keyword OBJECT, followed by atype, varigble name,
and initid vaue for that variable ingde parentheses. As for connections, the Structure of the
arguments is not checked or enforced by the Zac Trandator, since that can be done by the
C++ compiler working with the trandated version.

54 Errors generated by the compiler while compiling the C++ translation are referred back to the appropriate linein the
original source. This is possible because the Zac Trandator automatically inserts #linedirectives as it is translating.
These directives give the compiler the information it needs to generate error messages that are relevant to the Zac
Script source rather than the C++ translation.

188

Zac cript

Chapter 6

6.4.3 Syntax of behaviour body

KBehaviou r-body

-

Behaviour-unit

Behaviour-
connection

~

-

State-machine

1/

~

L

~

/

Figure 6-5: Syntax of the body of a behaviour

The body of a behaviour is smilar to that of a C++ class (see Section 6.2). Any construct

dlowed in a C++ dassis dso dlowed in a Behaviour- member variables, member functions,

member classes etc. (see Figure 6-5). There are d<o further specia dements alowed within

the body of a behaviour- input and output connection to other behaviours, and alist of ates

gpecifying the behaviour’ s state machine, as described in Section 6.3.1.

189

Zac cript Chapter 6

6.4.4 Syntax of input and output connedions

ﬁehaviour Connection \
4

Input

4 @0000 X
Outut
4 @0000 X

Input -status

i @0000 f

Output -status

B =momEmo=0/),

Figure 6-6: Syntax of input and output connections

Every behaviour can have a set of input and output connections that it uses to communicate
with other behaviours. These connections were discussed in 6.3.3. Althoughin Figure 6-6 the
arguments the connections take are shown for reference, these are not in fact parsed at this
stage- rather they are passed on to the C++ compiler to be checked. As for intermediate
connections, there are dternative INPUT_STATUS and OUTPUT_STATUS connections
that do not cary priority information. These congtruct were introduced for the sake of
efficiency only, and will not be described in detail asthey are Smply very restricted versions of
norma connections. As their name suggests, they generdly carry status information that does
not need an associated priority.

190

Zac cript Chapter 6

6.4.5 Syntax of states

/ state

\J

Identifier

Figure 6-7: Syntax of a single state in a state machine

The behaviour's state machine can be detected by the appearance of the “sate keyword”,
which isthe “@” symbol (see Figure 6-7). Thiskeyword isfollowed with a state identifier- or
the “@" can be repeated for an anonymous state, or the “CONTROL” keyword is used for
the specid control state (see Section 6.3.1). Any C++ code that can appear within afunction
can be placed within a gate. A statement starting with “NEXT” or “DEFAULT” is parsed to
give acommeand indicating a ate trangtion.

This concludes the formal specification of Zac Script. An extended example of its use will now
be given.

6.5 Extended Example-the Robot Wheelbarrow

In the remainder of this chapter an extended example of the use of Zac Script is presented,
clarifying how it is applied in practice for specifying a robot's control system in terms of

behaviours and connections. The target behaviour for the robot in this example isto act as a
“robot wheelbarrow”. The robot is taken to have four proximity sensors- one to the front, one
a the rear, and one to either sde. To start the wheelbarrow moving, the operator smply

gpproaches its rear sensor. As soon as this occurs, the robot will move in the direction it is
facing until it detects an obstacle with its front sensor, at which point it stops. The robot can be
turned left and right while it is moving by approaching the sensor on the opposite side to the

191

Zac cript Chapter 6

desired direction- as if it was being physcaly pushed. To stop the robot, the operator can
amply stand in front of it. Once the robot stops, it will not start again until the operator
gpproachesits rear sensor again.
This overdl behaviour will be implemented by combining two smpler behaviours, one which
smply moves forward, and one which turns. The two behaviours will be developed
individudly as a “MoveForward” and “Turn” behaviour, and then a higher level behaviour
cdled “Push” will be congtructed that uses them both to give the required overal behaviour of
the robot. Findly, a further behaviour called “ImprovedPush” will be built to demondrate the
use of Laterd’s ponsorship system.
For the purposes of this example, the following services will be assumed available:
A low leve “Motor” behaviour is assumed present, with two input connections- “ speed” to
control the rate at which the robot moves forward, and “nudge’ to control the rate a which
it turns™®. The units of these inputs are arbitrary. For this example, 0 is taken as stationary,
and 10 as the robot's highest speed. The robot turns right for positive nudge vaues, and
left for negative ones, with the magnitude of the nudge vaue indicating the rate at which the
turn ismade. Again, 10 is taken as the maximum magnitude.
Access to the robot's sensor data is assumed available through smple functions, as
described in Table 6-4. It is not necessary for sensor data to be transmitted aong

connections, since there should never be any need to subsume or overrideit.

55 For the robot on which this work was implemented, these inputs were combined in a single structure. The two
components are kept separate here for simplicity.

192

Zac cript Chapter 6

Table 6-4
Sensor Description
leftSensy() This returns a high vaue when there is an object
close to the robot on the lft. The units are arbitrary.
In this example, 50 or greeter istaken ashigh.
rightSense() This returns a high vaue when there is an object

close to the robot on the right.

forwardSense() | This returns a high vaue when there is an object in
front of the roboat.

reverseSense() | Thisis high when there is an object to the rear of the

robot.

closestSense() Thisis high if there is an object near the robot in any
direction. It is derived by taking the maximum of al

the other sensors.

Each of the behaviours will be implemented in turn, and then ther interaction will be andysed

interms of priorities. The state machines of the behaviours were made as Smple as possble so

as not to digtract atention from the main focus of the example, and could in many cases be

made more efficient and robust.

6.5.1 The“MoveForward” Behaviour

This behaviour is responsible for sarting the robot moving forward if the operator approaches

it from behind, and stopping it if it meets an obstacle or if the operator gpproaches it from the

front>® (see Figure 6-8). A smple state machine to achieve this behaviour is described in Table

6-5.
Table6-5
State | Action

Wait | Therobot remains stationary, waiting for the operator to gpproach it.

Move | The robot moves forward, watching out for anything in front of it.

%5 |t is important that the robot does not need to behave differently when it meets an obstacle compared to when it

meets the operator, since the robot cannot distinguish between different objects obstructing its sensors.

193

Zac cript

Chapter 6

The behaviour has a single output that drives the speed input of the Motor behaviour. For the

sake of this example, it is dso given an input caled “power” that chooses what fraction of its
highest speed the robot should advance a when it isin motion.

E'MoveForward Behaviour
[speed >

Figure 6-8: The MoveForward Behaviour

The code for such a behaviour in Zac Script would be as follows:-

BEHAVI OUR Push

{

I NPUT (float, power, NULL); /1 “power” input

OUTPUT (int, speed, Mtor.speed); // “speed” output

@i t

@bve

/1 “Wait” state
speed.Set (0); // No forward novenent in this state
DEFAULT NEXT @ /1l State | oops by default
/'l Robot starts noving if there is nothing in front of
/1 it, and it detects sonmething on its rear sensor
if (reverseSense() >= 50 && forwardSense() < 50)

NEXT MoveFor war d; /| Robot starts noving

/1 “Move” state

/1 Robot noves at desired fraction of maxi num speed
speed. Set (10 * power. Value());
DEFAULT NEXT @ /1l State | oops by default
/1 Robot stops noving if it detects sonething in
/1l front of it
if (forwardSense() >= 50)

NEXT Wait; // Robot reverts to staying still

194

Zac cript Chapter 6

The “power” input and the “speed” output are specified in the syntax discussed in Section
6.3.3. The “power™ input caries floating point data (a fraction), and is left unatached. The
“gpeed” output carries an integer speed vaue, and is attached to the corresponding “speed”
input of the Motor behaviour assumed to be present.

The state machine is specified as described in Section 6.3.1. There are two states, “Wait” and
“Move’. The Wait date sets the robot’s speed to zero through the behaviour’s output to the
Moator behaviour. It then loops until there is a significant proximity reeding at the rear of the
robot, and no sgnificant proximity reading to its front, a which point the state machine
trangitions to “Move’. “Move’ sats the speed of the robot to the desred fraction of its
maximum value, and keeps the robot advancing until an obstacle is detected in front of the

robot.

6.5.2 The“Turn” Behaviour

The “Turn” behaviour is even smpler than “MoveForward”, because it is purely reective- that
is, it requires no state information. 1t smply checks the robot’s sensors, and turns depending
on whether it detects something to the left or the right (see Figure 6-9). It has an output
connection to the “nudge’ input of the Motor behaviour to control the rate a which the robot
turns. For the sake of this example, it takes a“power” input connection to determine whether
it is attracted or repelled by objects. The input is positive if it is attracted to turn towards
objects it detects, and negative if it is repdled. The magnitude of the input indicates a what
fraction of the maximum rate the robot should turn.

Turn Behaviour
power > N 5 nudge>
Hg 1ol 0
................. ~OV .
aS\(\g C‘\\le
by oW oure (e

Figure 6-9: The Turn Behaviour

Reective behaviours are implemented as a single looping state as follows-

195

Zac cript Chapter 6

BEHAVI OUR Turn

{
I NPUT (int, power, NULL); /1 “power” input
OUTPUT (int, nudge, Mdtor.nudge); // “nudge” output
int direction; /1 a local variable
(@3) /1 Anonympous state- no point nanming it, with
/'l only one state being present
/'l Robot should turn if it senses something
/[l to the left or the right
if (leftSense() >= 50 || rightSense() >= 50)
{
/'l Choose correct direction to turn
if (leftSense() > rightSense())
direction = -1; /] Countercl ockwi se turn
el se
direction = +1; /1 Clockw se turn
/1l Actually turn the robot
nudge. Set (10*directi on*power);
}
el se nudge. Set (0);
NEXT @ /'l Keep | ooping on sane state
3

The robot repeatedly checks its left and right sensors, and if they are above a certan
threshold, it turns either towards or away from the direction of the closest object.

6.5.3 The“Pusnh” Behaviour

This behaviour combines the two behaviours developed above, MoveForward and Turn, into
a sngle behaviour that implements the desired functionality of the whedbarrow robot as
described earlier (see Section 6.5). For the sake of this example, it dso adds some extra
functiondity rather than just being a smple combination of MoveForward and Turn. If the
robot has been moving for over a certain threshold time without anything being sensed to its

196

Zac cript Chapter 6

rear, the Push behaviour will stop the robot moving. Thisisto prevent the robot from “running
away” too far from its operator.

A smple state machine to exhibit this behaviour is described in Table 6-6.

Table6-6

State Action Sponsorship to..

SayStill | The robot is hed completdly Stationary because the | None
operator has not approached the robot recently.

Operate | The operator has approached recently, so turning and | MoveForward,
moving forward is dlowed. Turn

The behaviour has two outputs, one to each of the two behaviours it uses (see Figure 6-10).
The output to the MoveForward behaviour chooses the speed at which the robot moves, and
the output to the Turn behaviour sets the rate at which it can change directior?’. These
connections aso act as channds dong which the Push behaviour can sponsor MoveForward
and Turn to operate on its behdf. The cut- off time for when the robot should stop moving is
set by an input to the behaviour.

 Push Behaviour
forward »

Figure 6-10: The Push Behaviour

The code to implement this behaviour would be dong the lines of the following:-

BEHAVI OUR Push
{

/1 1nput specifying how |long the robot may nopve on its own
INPUT (int, cutoffTinme, NULL);
/1l Qutput to “power” input of MoywveForward behaviour

OUTPUT (int, forward, MoveForward. power);

57 It also ensures that the robot turns away from the direction the operator approaches from by making the output to
the Turn behaviour negative.

197

Zac cript

Chapter 6

}s

/1 Qutput to “power” input of Turn behaviour

OQUTPUT (int, turn, Turn.power);

@t ayStil |

/1 “forward” chooses what fraction of nax speed the robot
/1 will move at when going forward- here 100%
forward. Set (1);

/1 “turn” chooses what fraction of nmax speed the robot
[l will turn at when going left or right- here 50%

/1 Sign indicates that robot turns away from operator
turn.Set (-0.5);

/1 No priority carried on the “forward” output
forward. SetRel Priority (0);

/1 No priority carried on the “turn” output

turn. SetRel Priority (0);

DEFAULT NEXT @ /1 State | oops by default

/1 1f operator approaches from behind, turning and

/1 moving forward are enabled in the Operate state

if (reverseSense() >= 50) NEXT Operate;

@Dper at e

/1 Full priority of behaviour now carried by “forward”
forward. SetRel Priority (1);
/1 Full priority of behaviour also carried by “turn”
turn.SetRel Priority (1);
DEFAULT NEXT @ /1l State | oops by default
/'l Robot nust stop after specified cut-off tine
if (StateTineSec() >= cutoffTine)

NEXT StayStill;
/1l Every tine the robot is “pushed” by the operator, it
/1l can start timing again from zero
if (reverseSense() >= 50 || leftSense() >= 50

|| rightSense() >= 50)
Reset St at eTi ner () ;

Some new functions are used here. The “SetRelPriority()” function sets the fraction of a

behaviour's priority an output connection may carry on to whatever it is atached to.

“StateTimeSec()" returns the time in seconds for which a given state has been executing

198

Zac cript Chapter 6

continuoudy. “ResetStateTimer()" sets the timer that tracks this interval back to zero. These
are inherited from the base class of dl behaviours (see Appendix C3 for afull lis).

This behaviour has two states, onein which it dlows the behaviours it uses to function without
any interference, and one where it effectively “turns them off”. In the “Operate’ date, the
behaviour’'s two outputs are set to carry the full priority of the behaviour itself. Hence if the
Push behaviour is a a high priority, the MoveForward and Turn behaviours will dso have the
same high priority. However, in the “ StayStill” state, the outputs of the behaviour are made to
carry none of the priority of the “Push” behaviour. Hence MoveForward and Turn will have
no source of priority at al. When the priority of a behaviour fdls to zero, then outputs from

that behaviour are ignored- so the robot will not move forward or turn.

6.5.4 The“ImprovedPush” Behaviour

As a ample example of the use of Laterd’s sponsorship system, an additiona behaviour that
extends on the “Push” behaviour is given here. The Push behaviour stops the robot’s motion
entirdy- it does not dlow the robot to turn when it is not moving forward. It might be desirable
to change this. If the robot were alowed to turn while stationary, then the operator could
smply approach the robot aong the direction he/she wishes the robot to move, and the robot
would turn gppropriately and then move forward. For example, if the operator approaches
from the Ieft, the robot will start turning right- and continue to do that until the operator isin
front of its rear sensor rather than the left sensor, a which point the MoveForward behaviour
will gtart the robot advancing. An analogous argument gpplies if the operator approaches from
the right. Of course, if the operator approaches from the front, the idea bresks down- but it is
aufficient for this example. This behaviour can be implemented very smply. A suiteble Sate
machinefor it isshown in Figure 6- 11, and will be explained in amoment.

199

Zac cript Chapter 6

Figure 6-11: The ImprovedPush Behaviour

The behaviour takes the same “cutoff Time’ time input as the “Push” behaviour, and Smply
passes it dong on an output to “Push”. It dso has an output to the “Turn” behaviour. Code to
implement this behaviour would be dong the lines of the following-

BEHAVI OUR | nmpr ovedPush

{
INPUT (int, cutoffTinme, NULL);

OUTPUT (int, pushTime, Push.cutoffTinme);
OUTPUT (int, turnPower, Turn.power);

@bt ar t
/1 Cutoff time passed on to “Push”

pushTime. Set (cutoffTinme);

/1 Turning speed output set to 75% repul sive

turnPower.Set (-0.75);

/1 Full priority of behaviour carried to “Push”

pushTi ne. SetRel Priority (1);

/1 Half priority of behaviour carried to “Turn”

turnPower. SetRel Priority (0.5);

NEXT; /1l Coes to “Run” state

@run

DEFAULT NEXT @ /'l Loops indefinitely
b
The behaviour is quite smple. It passes onits full priority to Push, and half its priority to Turn.
While Push is sponsoring MoveForward and Turn & full priority, this behaviour’s connection

200

Zac cript Chapter 6

to Turn will be ignoreck. But when Push stops sponsoring those behaviours, the connection to
Turn from ImprovedPush will provide that behaviour with an dternate source of priority, so it
will remainin action.

All the connections between the Whedbarrow behaviours are shown in Figure 6-12. Note
that, as the above discusson suggests, Push and ImprovedPush compete for control of Turn
through its “ power” input.

‘ power /1 speed] 4
Improvi > JM > H Mot
| Turn |

cutoffTime| Pus

Figure 6-12: Behavioursfor the “ Wheelbarrow” example

Figures 6-13 and 6-14 illugrate the operation of ImprovedPush in terms of priority planes.
The connection from ImprovedPush to Push carries the ImprovedPush behaviour's full
priority. When Push isin its “Operate’ Sate, it passes that priority on to both MoveForward
and Turn. When this happens, ImprovedPush falls to control Turn because it assgns it less
sponsorship. ImprovedPush could of course choose to lower its sponsorship to Push and
increase its sponsorship to Turn if it was important that it gain control of Turn- but in this case,

it does not need to.

C

e
Turn '

£ T T
l II'II ”
)

(improvea) _pun |

\ T Full
Motor MW priority

Half
priority

Zero
priority

Figure 6-13: Priorities while Push behaviour is sponsoring Turn and MoveForward

8 The robot will turn at the rate specified by the input from Push (0.5) rather than the rate specified by

201

Zac cript Chapter 6

When Push is in its “StayStill” date, it sops sponsoring MoveForward and Turn. In the
absence of ImprovedPush, these behaviours would now fall to zero priority and no longer
have any effect on the robot. The MoveForward behaviour will in fact do so. However, the
connection from ImprovedPush to Turn now becomes an aternative source of priority for
Turn, so it remains active when the robot is at a stop, as desired. Turn is now being controlled
by ImprovedPush rather than Pudt®.

T T Full
| Improvwm_ﬂ Push priority
s —_-"""""""‘ Half
priority
HHU
I [
Forward, |31 | I
I J g L
Lk EE £ 'y Zero
Al Tun i Motor priority

Figure6-14: Priorities when Push behaviour has stopped sponsoring Turn and MoveForward

This concludes the extended example of the use of Zac Script for specifying behaviours and
connections. The st of behaviours described in Chapter 5 were implemented using Zac Script
in amanner completely anadogous to these much smpler “whedbarrow” behaviours.

6.6 Limitations

Zac Script proved a useful tool when the work described in this thesis was being implemented,
particularly because it dlowed the mapping between the Laterd constructs and their C++
equivaents to be atered without having to modify control system source code that had been
dready written. This pragmatic advantage was the main reason it was developed. Itsuse as a
generalpurpose tool for encoding Lateral constructs was considered important, but of

ImprovedPush (-0.75).

%9 The robot will turn at the rate specified by the input from ImprovedPush (-0.75) rather than the rate specified by
Push (-0.5).

202

Zac cript Chapter 6

secondary congderation, since the Latera architecture is very much exploratory in nature and
doubtless its condructs themsaves would evolve and change condderably in any future
work®, Hence it was unreasonable to develop Zac Script to alevel where the effort put into
its development exceeded the time it saved in easing the mantenance of source code.

Therefore a number of limitations of Zac Script in its current form were considered acceptable
for the sake of ease of implementation. The most important is thet, since Zac Script is not a
complete language in itself, some knowledge of how it is being trandated to C++ is needed
before it can be completely understood. The semantics of Zac Script are dso indegant in
places because of difficulties trandating to C++. For example, input and output connections
are trandated to public member variables by the trandator so that they can be attached to
from other behaviours- but this dso means they could be accessed in other undesirable ways
from these behavious. Neither of these difficulties detract from the use to which Zac Script
was put- maintaining source code- but would detract from its use as a genera-purpose tool

for encoding Latera congtructs.

6.7 Summary

This chapter introduced “Zac Script”, a set of extensions to the C++ programming language
that make it easier to express Lateral condiructs in a program. With Zac Script, control code
can be written in aform that includes specid syntax for behaviours and connections, and then
be trandated automatically to C++ for compilation. The full motivation for introducing these
extensons was given, with the most compelling reasons being that they make it easier to ater
the source code & a later stage, and they alow the mapping between Latera constructs and
their C++ trandaions to be changed without having to modify pre-existing control system
source code. The most important extensions provided are for behaviours and connections, and
these were described in some detall- both in terms of their use and how they were trandated
to C++. Then the complete syntax of Zac Script was examined formaly. An extended
example of the use of Zac Script was given, to demongtrate how behaviours such as the ones

described in Chapter 5 can actualy be implemented. Findly, the limitations of Zac Script were

€0 Also, practically speaking, it is currently rare for arobot architecture to be used in more than a handful of projects.

203

Zac cript Chapter 6

discussed, concluding that it was useful for smplifying the maintenance of source code, but not

suitablein its current form as a genera-purpose tool for encoding Lateral constructs.

204

I mplementation Chapter 7

7. Implementation

The work presented in this thess was implemented in both “embodied” and smulated form,
usng a miniature “Kheperd’ robot [[28]] and its smulator. This chepter examines how the
robot’s control sysem was gructured, and how the Laterd architecture and the sentry
gpplication were interfaced to the robot.

The chapter starts with an overview of the Strategy taken in designing the robot’s control
sysem. A discussion is given of the differing functiondity of the physical and smulated robot,
and how those differences can be reconciled. The control sysem is then examined
systematicdly in terms of the interfaces between the modules within it. These interfaces are
aranged to minimise the dependencies between modules. Findly, supervision tools that
interact with and monitor the control system, but are not part of it, are presented.

7.1 Overview

For the purposes of implementation, the robot's control system was divided into three
Separate sections-
Therobot kernd- Thisis concerned with interfacing to the robot.
The Lateral runtime module- This provides support for the Latera robot architecture.
The “user” control system- This section of the control system implements the specific
behaviours of the robot for a particular gpplication (such as the sentry behaviours described
in Chapter 5).
This partitioning of the control system was useful to do because it made the implementation re-
usable. If the work were to be implemented on a different robot at alater date, only the kerndl
would need to be modified- assuming the new robot could provide at least the same
functiondity as the current one. Similarly, if the behaviours of the robot were changed, only the
“user control systemi’” section would require modification.
This chapter will discuss how the various sections of the control system interact with each
other. The Laterd architecture and the sentry application have aready been described in
chapters 3 and 5 respectively, so only the robot kernel need be examined in detail here.

Because both a physicd and smulated verson of the robot were used, it was useful to

205

I mplementation Chapter 7

dructure the kernd carefully so that the minimum amount of code had to be rewritten for the
two versons of the robot. An abgraction called the “Common Robot’ was developed to
embody the functionality both versons of the robot have in common, and to abstract away

from their differences. Two versons of a module implementing the common robot abstraction
were developed, one for each verson of the robot. Both versons provided the same
interfaces to the rest of the system, and hence any dependence on which form of the Khepera
robot was in use was isolated to this module.

The services implemented by the common robot were kept as Smple as possible, while ill

dlowing complete control of the robot. This minimised the amount of code that had to be
written specialy for each verson of the robot. To provide more sophisticated control of the
robot, a “Logical Robot” module was introduced. This enhanced the services of the common
robot module by, for example, implementing obstacle avoidance “reflexes’. Only one verson
of this module was needed, since it was implemented entirely from the services provided by

the common robot module. The common robot and the logica robot modules together form
the robot’ s kernel through which the rest of the control system interacts with the robot.

This choice of modules leads to the syssem decompostion shown in Figure 7-1. This
decomposition is elaborated on later in this chapter, in Section 7.3 (page 213). In particular,
the exact nature of the interfaces between the modules will be examined.

T I
Latera

A =

..

Robot Kernel
Figure 7-1: Outline system decomposition

The nature of the physical and smulated robots, and the purpose of the common and logica
robot modules are darified in the sections that follow.

206

I mplementation Chapter 7

7.2 Interfacing with the robot

The following sections describe the nature of the physicad and smulated versons of the
Khepera robot in terms of ther functiondity and how they differ. The idess behind the
“Common Robot” and “Logica Robot’ modules are then presented and motivated.

7.2.1 Thephysical robot

The work in this thess was implemented on a Khepera robot [[28]]. Kheperais a miniature
wheded robot weighing about 70g, with a diameter of 55mm and a height of just 30mm. The
robot’ s physical gppearanceis shown in Fgure 7-2.

Fhots Alain Heizog

Figure 7-2: A Khepera robot (diagram from Khepera documentation)

Kheperais designed specificdly as avehicle for academic research. Its specifications are given
in Appendix A1l. Relevant details are included here.

Motors

Khepera sts on two wheels, each of which is moved by an indegpendent motor. The motors
have a resolution of 600 pulses per revolution of the whed, corresponding to 12 pulses per
millimetre advancement of the robot. Incremental encoders on each motor axis give feedback
on the whedls' positions (24 pulses per revolution). The motors are driven by a PID controller
implemented as software on the main processor of the robot. The controller can be used to

either maintain atarget speed or reach atarget distance®™.

Sensors

Khepera can sense the presence of nearby objects and the light level in various directions
around its body. Eight sensor units are distributed around the circumference of the robot as

shownin Fgure 7-3.

207

I mplementation Chapter 7

Infrared sensors
(Siemens SFH900)

Figure 7-3: Sensors present on Khepera

These sensor units embed an infra-red light emitter and receiver pair. This combination alows
both the ambient light hitting a sensor and the light reflected from obstacles to be measured.
Some of the detailed properties of these sensors were examined in Section 5.2.3 (page 129)
for the purposes of edge followingf?.

General specifications

Power- The robot has an onboard battery that allows 30-40 minutes of autonomous
action. It can aso be powered viathe seria connection.

Communications- The robot may communicate with a base PC via an RS232 serid line.
Thisis not necessary for operation of the robot, but it is useful for monitoring its status and
modifying its behaviour for experimenta purposes.

Computing power- Khepera uses the Motorola 68331 processor. It has 128kB of RAM,
and 256kB of ROM, implementing a rudimentary BIOS with a smple multi-tasking
operding system.

Programming- Khepera was programmed using GNU CC, a fredy available C/C++
compiler (see Appendix A3) configured as a crass-compiler. To download programsto
Khepera, they were linked with specid support libraries, and the object code was
converted into a suitable format for transmisson using a utility supplied with the robot.

51 This distance is expressed in terms of revolutions of the individual motors, not the position of the robot. See
Section 7.5.2 (page 225).

52 Because the edge following algorithm depends so heavily on the exact nature of the sensors, it would need to be
updated if the robot were modified- unlike most of the other behaviours of the robot.

208

I mplementation Chapter 7

7.2.2 Thesmulated robot

It was conddered very important that the work presented in this thesis should be implemented
in embodied form (see Section 2.4.7, page 22), and this is what was done. However, to
speed development time, a smulator for the robot was dso used. If a control dgorithm fallsto
work correctly on a smulator it will dmost certainly fal on the physicd robot, given that the
red environment is much more chalenging than the smulated one. Hence smulétion is a
convenient test of an dgorithm’s feasibility, and this was the use made of Khepera's smulator.
If an dgorithm failed on the smulator, there was no point going to the trouble of downloading
it to the robot. However, success on a smulator is no guarantee of success on the physicd
robot, so frequent validations were carried out as a “redlity check’ on the results with the
simulator, to ensure the work did not start to rely on the idedlisations present in the Smulated
environment.

A freeware smulator for Khepera is available from the university where Khepera and an
associated range of robots were initially developed [[28]]. Its visud gppearance is shown in
Figure7-4.

0 T U S R S B |

lilililirlilililiFﬂ neu| load| save| step| [run reset| connand| ?| info| +|-| auit|

Figure 7-4: The smulator for Khepera

209

I mplementation Chapter 7

The smulator display is split into anumber of pands-
One pand shows a plan view of the smulated Khepera robot in a virtua environment
which it can sense and move through in a smilar way to a red environment. This
environment can be controlled to set up different test cases for the robot.
A second panel shows the readings of Khepera's smulated sensors, and the activity of its
motors.
An auxiliary pand is used for displaying arbitrary user-defined data

For added realism, random noise is introduced to the sensors.
Proximity readings are modified by +10% of their amplitude.
Ambient light readings are modified by +5% of their amplitude.

The next section compares the smulated robot with the physcad one, and develops a

“common denominator” aogtraction for interfacing to either.

7.2.3 The common robot

The physical and smulated Khepera robot diverge in a number of respects. The purpose of
the common robot abstraction is to hide these differences from the rest of the control system.
The mgor differences between the two versions of the robot are as follows:-
The physica robot has no intrinsic sense of its position, whereas the smulated robot, by its
nature, has a completely accurate knowledge of its position.
The robots have totdly different “operating systeni’ support- the smulated robot is on a
PC, whereas the physicd robot has a much dower processor and very limited memory
capacity.
The red and smulated sensors and motors have different characteristics. The smulated
versions do a reasonable job of capturing the “essence” of their physical counterparts, but
not their detailed responses.
The only difference that is difficult to ded with isthe physica robot’slack of any knowledge of
its pogition. In generd thisis one of the great obstacles in moving from a smulated robot to a
red one- the robot can no longer do more than guess at its position and the precise nature of

its surroundings, rather than knowing them with complete accuracy. However, dthough an

210

I mplementation Chapter 7

absolutely accurate sense of position is not possible for an autonomous robot®, it is possible
to condruct a reasonable postion estimate by integrating the robot’s motion. Note however
that, as discussed in Section 4.4 (page 95), unavoidable errors in readings from the motors
mean that integrating the robot’s motion to get its pogtion is an gpproximation, and one that
degrades with time. The common robot abstraction supplies a position estimate whichfor the
physica robot is implemented through integration, and for the smulated robot is achieved by
supplying ether the absolute robot postion, or an intentionaly degraded postion
measurement.

In the case of the Khepera robot, the left and right motors can be driven independently at
different speeds. The corrdation between the feedback the motors give on ther activity and
the resultant overall movement of the robot is by no means a direct one. The relationship is
derived later, in Section 7.4.1 (page 217).

7.2.4 Thelogical robot
The common robot module implements the minimum functiondity possible while sill dlowing
full control of the robot. To provide more sophisticated control of the robot, and to make it a
better vehicle for research, a “Logicd Robot” module is built on top of the common robot thet
enhances its sarvices in the following ways.-
The robot is given some “common sense’ so it will not breek itsdf if the higher-level control
system fails and generates spurious motor commands. This is achieved by providing a
Separate “logical’ motor interface implementing basic obstacle avoidance.
Virtud or “logica” sensors are implemented that combine information from the robot’s
physical sensors to provide indicators as to which directions the robot is free to move in.
This is useful in the implementation of many behaviours. These logicad sensors are entirely
concerned with proximity, since this is the primary sense of the robot, and the one needed
for dl motion dgorithms.

These enhancements will now be described in greater detail.

% Unless the robot is “ helped” by supplying a reference “beacon signal”, or giving it access to the Global Positioning
System- both of which detract from the ability of the robot to act in atotally autonomous manner.

211

I mplementation Chapter 7

The logical motors

Enough intelligence is embedded in the logica robot module so that the robot will not attempt
to drive into an obstacle. Only “passve” avoidance isimplemented- the robot will not actively
move away from an obgtacle, but will refrain from moving dangeroudy close to it. Active
avoidance would render the robot usdess, because since it has no long range sensors, its only
useful information about the environment is extracted when it is in the cose proximity of
objects. To facilitate passive avoidance, motor commands are given in two components, one
of which is undterable (to control the overal path the robot is following) and one of which is
opportunistic (indicating “nudges” to make the robot deviate from its current path). Normaly
the two components are smply added. However, when the robot has a close encounter with
an obstacle, the undterable component of motion is blocked, but the opportunistic component
may gill be carried out. The details of this system are described in Section 7.5.2 (page 225). It
isasmpleidea, but very important given that the robot spends most of itstime in the proximity

of obstacles, and close encounters are quite common.

The logical proximity sensors
The suite of logica or derived sensors shown in Table 7-1 proved to be more useful for

control purposes than the raw sensors present on the Kheperarobot.

Table7-1

Logical Sensor | Semantics

leftSense This is a sensor guaranteed to be low if the robot can move left without
immediately bumping into something, and high otherwise,

rightSense This is a sensor guaranteed to be low if the robot can move right without
immediately bumping into something, and high otherwise,

forwardSense Thisis a sensor guaranteed to be low if the robot can move forward without

immediately bumping into something, and high otherwise.

reverseSense This is a sensor guaranteed to be low if the robot can move backwards

without immediately bumping into something, and high otherwise.

closestSense This gives the closest obstacle to the robot under normal operation.

Section 7.5.1 (page 223) will describe how these sensors may be generated for Khepera

212

I mplementation Chapter 7

This concludes the discussion of how the control system interacts with the robot’ s sensors and
motors through the robot kerndl. The entire decomposition of the control system will now be
examined sysematicaly. The implementation of the common and logica robot modules will be
presented in detail in Sections 7.4 and 7.5 (pages 215 on).

7.3 System decomposition

Now that the generd strategy for interfacing with the physical and smulated robot has been
presented, it is ussful to examine where those interfaces fit in with the overdl control system of
the robot before discussing their detailed implementation. The outline decomposition given a
the start of this chapter showed the modules into which the robot’s control system is divided.

Figure 7-5 shows how the modules interact with each other.
[}

‘i
Con

Sys

(behavio
and

Service Interface
Execution Interface

Robot Kernel

Figure 7-5. System decomposition

The system decomposition has the following festures.-
The interfaces between the user control system and the robot kernel modules are one-way.
The user control system can use services provided by the kernel, but not vice versa. This
makes the kernd reusable for different applications.
The common robot, since it embodies the physica/smulated robat, is the actud executing
agent in the system. Both the Latera runtime module and the logical robot module need to
execute, SO one-way interfaces to these modules are present to alow the common robot to

“drive” them.

213

I mplementation Chapter 7

The Latera runtime module and the logica robot module are allowed access to services of
the physical/smulated robot that are not made directly available to the user control system.
Thisisto shield the user control system from the details of the robot’ s “operating systent’.
The interface between the lateral runtime and the user control system is necessarily more
intricate than the other interfaces present. This is because there is no drict dividing line
between an architecture and the control system built from it. The Zac Trandator described
in Chapter 6 manages the structura depend encies between these two modules.
In addition to the interfaces shown, an extrainterface is needed to dlow externd monitoring
and supervisory tools to interact with the robot. These tools are GUI-based and
implemented on a PC. They communicate with the robot through a serid connection, since
thisisthe only way to interact with the physica robot.

All these consderations lead to the more detailed system decomposition shown in Figure 7-6.

-

Lateral
Runtime

Lateral
Interaction ~—
Interface

Lateral)
Execution

Hooks

System
Services

Control

Com
............. Robot
Robot v

Interaction
Control A

Interi
Interface

Logical

Interface Logica Robot

Robo;t

Interaction
Module ’ Robot Kernel ;

Figure 7-6: Detailed system decomposition

The diagram is arranged to emphasise that- from the point of view of the user control module-
the different ways in which the robot may be controlled appear as a single interface. This

214

I mplementation Chapter 7

interface is in fact Solit among the Lateral runtime module, the common robot module, and the
logica robot module, but this divison is not visble to the user control module.
The different interfaces serve the following functions-
The “Common Robot Interaction Interface” and the “Logica Robot Interaction Interface”
provide the means for the user control system to monitor or control the robot's status
through the robot kerndl.
The “Execution Hooks” and “Update Hooks” interfaces alow the common robot module
to drive the Lateral runtime module and the logical robot module. The common robot is not
concerned with what tasks these modules perform, it just invokes them to give them the
opportunity to execute and update their status. Hence these are very smpleinterfaces.
The “System Services’ interface provide “operating system’-type control of the robot that
is not made accessible to the user control system.
The “Laterd Interaction Interface’ embodies dl the services that the Laterd runtime
module gives the user control system, and the “Latera Object Hooks' interface gives the
Laterd runtime module the means to drive the user control system. These hooks are
generated by the Zac Trandator (see Chapter 6).
Each of the modules will now be considered in turn, from the point of view of the interfaces
they supply and the interfaces they use.

7.4 Thecommon robot module

This implements the common robot abstraction described in section 7.2.3 (page 210). It hides
the differences between the physical Khepera robot and its smulator, alowing the rest of the
control system to be portable across both. Two versions of this module were written, one for
the physical robot and one for its smulator, and the rest of the modules described in this
chapter are identical for both robots.
The physicd and smulated robots are made indistinguishable at two levels-
Internal interfacing- By ensuring that both versions of the common robot module
implement identicd interfaces, no dependencies on the version of the robot in use are
propagated to the rest of the control system.

215

I mplementation Chapter 7

External interfacing- Both versons of the module were written to accept a serid stream
of input and generate a serid stream of output. Thisis important for communication with the
externd visudisation and supervison tools (see sections 7.8.1, page 229 and 7.8.2, page
230 for a description of these tools). In the physical robot, the stream is channdled across
a serid port. In the smulated robot, the stream is channdled through a pipe between the
smulaor and the processes monitoring it. The two channds are accessed in an identica
manner by the ret of the control system.

In accordance with the sysem decomposition given in section 7.3 (page 213), the common

robot module supplies the following interfaces-
System Services- this gives access to “operating-systent’ level capabilities of the robot
needed by the Laterd runtime module and by the logicad robot module. This includes
control of task-switching, timing services, and access to the robot’ s sensors and motors.
Common Robot Interaction Interface- this gves access to dl the capabilities of the
robot that are complete in themselves, and not managed by other modules. This includes
odometry support and serid communications.

The module makes use of the following interfaces-
Execution Hooks- this alows the robot to drive the Lateral runtime module, which in turn
drives the user control system. Note that the common robot module need have no
knowledge of the actud control system “gpplicatiori’ that isimplemented in the user control
system. This makes it portable across applications.
Update Hooks- this alows the robot to drive the logica robot module, which maintains
logical motors and sensors. The common robot module need have no knowledge of the
particular motor and sensor models that are being maintained, so these could be modified
without affecting this module.

The different implementations of this module for the physical and ssimulated robots are now

presented. These are the only remaining sections in this chapter specific to ether robot the

remainder gpply to both.

216

I mplementation Chapter 7

7.4.1 Physical robot version of the common robot module

The control system of the physical Khepera robot interacts with the robot’ s hardware through
a built-in BIOS implemented in the robot’'s ROM. The common robot module uses the
services of the BIOS as follows-

Some of the BIOS services are suitable for use by the rest of the control system amost as

they stand, and correspond closdy to similar functiondity in the smulated robot. A “service

sdl” was constructed that provided a means to access such aspects of the BIOS.

A st of concurrently executing tasks® were implemented that interfaced with the BIOS to

manage odometry, monitoring the robot’s serid connection, interfacing to the motors and

sensors, and executing the rest of the control system, as follows:-

P Sensor thread this periodically updates the robot's sensor readings and checks for
callisons or impending collisons, and passes contral to the logica robot module so
that it can update the logical sensors (see Section 7.5.1, page 223).

P Motor thread this periodicaly passes control to the Logica Robot module o that it
can control the motor setpoints dynamicaly according to the setting of the logica
motors and the gtate of the environment (see Section 7.5.2, page 225).

P Odometry thread- this periodicaly updates the robot’s best guess &t its position, and
the direction it is facing in, from knowledge of the motion of the robot since its last
update.

P Communications thread this checks for commands coming across the serid line
and notifies the rest of the system when a command has been received.

P Control thread- this periodicaly passes control to the Laterad component of the
control system s that the “user” control system will be executed.

No direct access to the BIOS by the rest of the control system was dlowed, as shown in
Figure 7-7, since this would prevent the control system from running on the smulated robot,

which does not have the same BIOS®.

% The Khepera robot is reasonably sophisticated, allowing atotal of 14 concurrent user processes to run. Thiswould
not be enough for the sentry application, so the “pseudo-concurrency” provided by Zac Script was used. This
capability did however make the robot kernel easier to write.

% Theimplemented set of tasks deviates slightly from that documented here for reasons of efficiency, but there are no
significant differences.

217

I mplementation Chapter 7

Common Motor
Interaction . | Hooks
Interface
Sensor
Thread BIOS Thread
System : g Execution
services ™~_ Service Control \ _+~"| | | Hooks
Shell Thread

Figure 7-7: Implementation of the common robot module on the physical robot

The physical Khepera robot has no built-in sense of postion- no odometry data is available.
Such a sense is necessary for cartography (see Chapter 4). The odometry thread attempts to
track the robot's pogtion and direction by integrating the motion of the robot. This is an
approximate estimate only, and it is not possible to generate an absolutely accurate sense of
position from it. The rest of this section discusses how this tracking of the robot’'s motion is
achieved.
The robot can move in three ways.-
In agraight line, in the forward or reverse direction. This occurs when the robot drives the
left and right motors at the same speed in the same sense (forward or reverse).
Tuming in-place (i.e. the robot turns while keeping its centre at the same point). This occurs
when the robot drives the left and right motors a the same speed in opposite senses.
Differentia turning, where the robot drives the motors at different speeds.
Idedlly, an example of the path the robot would trace out should look something aong the lines
of Figure7-8.

218

I mplementation Chapter 7

Position of
Left Wheel

Robot Position

Position of
Right Wheel

In-Place turn

Figure7-8: Example path of robot

However, the actua path of the robot will be somewhat different, because the robot cannot
change between speeds ingantaneoudy, but will have a period of accderation. This resultsin
quite a complex path, particularly when the motors are being driven at different speeds. There
may aso be dippage in the whedls. Because of these considerations, odometry is maintained
based on feedback from the motor rather than on the setpoints to which the motors are
commeanded. The generd drategy is to measure the distance the wheds have moved at
frequent enough intervas for the speed of each motor between each sample to be
gpproximately constant over the sampled range (for the Khepera robot, measuring the whed!
positions every time either whee moved by about one tenth of the robot’s diameter was found
to be adequate). Under these circumstances, the wheels will trace two arcs of a circle in the
period between measurements, as shown in Fgure 7-9.

distance travelled by left wheel
distance travelled by right wheel
diameter of robot

distance of robot from centre of turn
distance of far wheel from centre
angle before turn

change in angle after turn

o o
=

N

ge "o o

Figure7-9: Therobot’s motion between motor measurements

219

I mplementation Chapter 7

From the diagram, the length of the arc that the right whed moves through is-
d, =rDq
Smilaly, the length of the arc that the left whedl moves through is-
d, =(r- D)Dg=rDg- DDg=d, - DDq
Since these lengths are known- they are given by the feedback from the motors- the angle the
robot turns can be calculated as--

(dz B dl)
Dg=-—2_—t
9 D

To find the change in position of the robot after the turn, the robot’s position before the turn

can be rewritten as-
(pcosq, psing)
Where p is the distance from the centre of the turn to the centre of the robot-
d D
p=—+—
Dg 2

The robot is a angle q initialy, and then is rotated an extra Dg degrees. Therefore the robot’s
position is mapped to:-
(pcosq, psing) b (peos(+Da), psin(q + Da))
So the changes in position are-
Dx = p[cos(q + Dq) - cosq]
Dy = p[sin(q + Da) - sinq
And the overd| distance the robot travelsis-

(d, +d,)
2
At this point all the information needed to update the robot’s odometry is known. Note that

Ds= pDq =

two sets of cosine and sine values are needed for each update, but one set can be stored for
the next update so0 that only one cosine and sine caculation need be done during each update.
Provision has to be made to prevent the possibility of a divide by-zero occurring. Thiswould
happen if Dq is zero. Such a situation occurs when the robot is moving in astraight line, so it’s
adegenerate case and is straightforward to ded with.

For the Khepera robot, the motor positions were checked 10 times per second, and if either
motor position changed by a distance equivaent to about one tenth of the robot’s diameter,

220

I mplementation Chapter 7

the odometry information was updated using the method described above. This arrangement

was found experimentaly to work well.

7.4.2 Simulated robot verson of the common robot module

This verson of the common robot module is more sraightforward to build than the version for
the physical robot because:-
Odometry is not a problem in this case, snce the smulated robot “knows’ exactly where it
is within the Smulated environment- otherwise the values for the smulated sensors could
not be calculated. In fact, to make the smulation more redligtic, the robot’ s position sense
may be deliberately degraded.
The smulator operates on a PC, which has a faster and more powerful processor than the
physica robot. Hence there is no need for careful speed optimisations and the use of
concurrent tasks to satify red-time condraintss one thread of control is more than
adequate.
Although the services provided by the Smulated robot are smilar in nature to those provided
by the red robot, the programming interface is quite different. The rdlevant interfaces to the
smulator are given in Appendix A5. Khepera's smulator comes complete except for asingle
module, caled the smulator “User” module, which needs to be provided by the user of the
smulator to specify the actud behaviour of the robot (see Figure 7-10). Mapping the smulator
onto the common robot interfaces was done by building a suitable smulator “User” module
implementing those interfaces. Seria 1/0 was directed to a pipe for connection to the
Visudisation and Supervision tools.

221

I mplementation Chapter 7

common Simulator
Robot M <% : | Update
Interaction| : 5 1 . | Hooks
Interface e 5

Simulator

: 5 “User” :

System \ Module Execution
Services N — Hooks

Figure 7-10: Implementation of the common robot module on the simulated robot

The smulator was left dmost entirdy unchanged except for one useful addition: it was
extended so that if the mouse was clicked within the smulator, the robot would sense a
circular obstacle centred at the position of the mouse. This meant that the robot’ s response to
moving obstacles could be tested. The smulator as it stood only permitted static obstacles.

7.5 Thelogical robot module

The ideas behind the logica robot module were introduced in section 7.2.4 (page 211). This
module enriches the interaction interface supplied by the Common Robot module by providing
support for logica motor and sensor models that simplify controlling the robot, and make it
more robugt. The implementation is split into two components, as follows-

An*“Action” partition updates the motor and sensor models at frequent intervals.

An “Interaction” partition alows the status of the motor and sensor models to be queried

and manipulated.
The partition decouples the part of the system monitoring the motor and sensors from the part
of the system manipulating them, removing unnecessary timing dependencies between the two
that would otherwise be present. The organisation of the logica robot module is shown in
Figure7-11.

222

I mplementation

Chapter 7

Logical
Robot
Interaction
Interface

Update
Hooks

Interaction
Interact Interact
with with
Motor Sensors

Update
Sensors

Figure 7-11: Implementation of the logical robot module

System
Services

The action and interaction partitions operate on the sensor and motor model maintained by the

logica robot module. The following sections describe how these models are generated.

7.5.1 Sensor model

The implementation of the logical proximity sensors was introduced in section 7.2.4 (page

211). FHgure 7-12 shows the correspondence between actua and logica sensars for the

Khepera robot.

Left
Sense

IReverse

Sense

Figure 7-12: Logical proximity sensors

Right
Sense

223

I mplementation Chapter 7

forwardSense- as discussed in section 7.2.4 (page 211), the semantics of this sensor
should be such that it is low if the robot can move forward, and high if an obdecle is
detected that blocks forward motion. Referring to Figure 7-12, this judgement can be
made by combining the two direct-forward sensors and the two diagona sensors.
left Sense- this should be low if the robot is free to move left. Again referring to Figure 7-
12, this judgement can be made by combining the direct-left and the diagond- | eft sensors.
rightSense- this should be low if the robot is free to move right, and can be generated by
combining the direct right and the diagona- right sensors.
reverseSense- this should be low if the robot is free to move in reverse, and can be
generated by combining the two direct-reverse sensors. Thisis not entirely guaranteed to
be correct, because the robot has no diagonal sensors in the reverse orientation. Henceiit is
safer to turn 180° to reverse, as this ensures the robot has maximum sensing ability in the
direction of motion.
closestSense- this should be low if the robot is free to move forward, left, or right. It
should be high if there is anything to block the robot’s motion in any of these directions.
This sensor can be generated by combining the other logical sensors.
The logical sensors derived are as accurate as is possible for the actual sensors available on
Khepera. One redtriction on their use is that they assume the robot is driven “head-fird’. In
other words, for the logical sensors to have the semantics described here, the robot should
generdly move in the direction of its sensor-rich “head’ (the hemisphere with 6 sensors rather
than the one with two). If the robot is driven in reverse, then the semantics are no longer vaid-
since the robot does not have enough sensors in that orientation to make the necessary
judgements. The exact implementation of the logicd sensorsisgivenin Table 7-2.

Table7-2

Logical Sensor | Implementation

leftSense The maximum of the left and left-diagond sensors.
rightSense The maximum of the right and right-diagona sensors.

forwardSense The maximum of the two forward sensors, or the left- or right-diagond

sensorsif ether indicate a very close encounter.

reverseSense The maximum of the two backwards-facing sensors.

224

I mplementation Chapter 7

Logical Sensor | Implementation

closestSense The maximum of the left, right and forward logicd sensors. The reverse

logica sensor isomitted for norma “head-firs” operation.

7.5.2 Motion model

The robot's logicd motion mode smplifies controlling the motors, and provides some
inteligence for dedling with “close encounter” Stuations. Thisinteligence is important because,
as discussed in Section 7.2.4 (page 211), the robot has to operate close to obstacles for its
proximity sensors to be of use in characterisgng its environment, and o it is often in Stuations
where it is close to a collison. When constructing a motion modd for the robot, a choice has
to be made between two broad types of modd that are possible-

Displacement oriented where motor commands are expressed in terms of the distance

the robot should trave.

Speed oriented- where motor commands are expressed in terms of the speed at which

the robot should move.
Both dternatives are supported by the Khepera robot’s motor control facilities based around
aclassic PID controller implementation. The moded used in this project was speed-oriented,
because such a modd is more naturaly reactive. Controlling the distance the robot should
trave intringcaly involves decisons about the future, while controlling its speed generdly only
requires congderation of what is happening now- at least in Smple behaviours.
To fadlitate the handling of dose encounters, the speed of the robot was split into two
components- an undterable “mgor” speed, and an opportunistic “nudge’ speed. The mgor
gpeed specifies the basic mation the robot is making- forward, reverse, turning clockwise or
anti-clockwise- and a what rae it is performing tha motion. The nudge component is
superimposed on this speed for a given duration to divert the robot from this basic motion. At
regular intervals the two speed components are combined to generate the appropriate
setpoints for the motor speeds. The speeds are capped so the robot does not move
excessively fagt. Figure 7-13 shows an example of the result of combining the two speed

components.

225

I mplementation

Chapter 7

Path traced using
Major speed plus
anti-clockwise Nudge

Path traced using
Major speed plus
clockwise Nudge

Area in which Nudge component is active

Figure 7-13: Composite paths

Path traced using
Major speed only

If the robot is close to an obstacle, the mgjor motion is blocked by the logical robot module if

such motion is likely to lead to a collison. The Stuations where this could occur are as

follows-

When the mation is in the reverse direction®®, and there is something immediatdy behind

the robot.

When the motion is in the forward directiont”. All such motion is blocked, unless the

space directly in front of the robot is free of obstacles, and:

P When the motion is directly forward, it is dlowed if no obstacle is detected by the

diagonal sensors either.

P When the motion tends to the right, it is dlowed if no obstacle is detected directly to

the right or diagondly to the right, and there is no extremdy close obstacle diagondly

to the left.

P When the motion tends to the left, it is dlowed if no obstacle is detected directly to

the left or diagondly to the left, and there is no extremely close obstacle diagondly to

the right.

5 A reversing motion is characterised by either both motors being in reverse, or one reversing faster than the other

drives forward. Otherwise the maotion is aforward motion.

57 Thisis any motion other than a reversing motion or an in-placeturn.

226

I mplementation Chapter 7

If the mgor motion is blocked, only the nudge component of the mation (if any) should be
dlowed, otherwise a collison is likely. Since the nudge component merely turns the robot, and
the robot can turn in-place, it will never be blocked. The length of time the mgor motion is
blocked is used to generate a logicd “frugration” sensor so that hight level behaviours can ded
with this condition if necessary.

7.6 The Lateral runtime module

This module provides support for behaviours and connections in the user control syslem. This
iswherethe Laterd architecture developed in Chapter 3 fitsin to the actua implementation on
the Kheperarobot. Behaviours and connections are implemented as described in section 3.6.3
and the “pull cyde” for updating them is as described in section 3.6.2 (page 71). Figure 7-14
shows the organisation of this module.

Lateral ; Connections i | Lateral

Interaction L i Object

Interface | - Pull Cycle L . | Hooks
Behaviours

Execution | | i . | System

Hooks o Update Control o Services

Figure7-14: The Lateral runtime module

The Laterd runtime module gains access to the specific connections and behaviours running on
the robot through the Lateral Object Hooks interface generated by the Zac Trandator. Those
behaviours in turn can use the services of the Laterd runtime module through the Laterd

Interaction Interface. All the interfaces are described in full in Appendix C3.

227

I mplementation Chapter 7

7.7 The user control unit

This congsts of actud ingtances of connections and behaviours, implementing a specific
gpplication such as the sentry-like behaviour described in Chapter 5. The organisation of this
moduleis shown in Figure 7-15.

Beh |ours . [Lateral
i | Interaction
Interface

A

Logical
Robot
Interaction
Interface

Lateral
Object
Hooks

Common
Robot
Interaction
Interface

r

Figure7-15: User control system module

Each individua behaviour and component can use the sarvices of the Lateral architecture
through the Laterd Interaction Interface, and each one of them aso suppliesan dement of the
Laterd Object Hooks interface thet lets the Laterd runtime module drive it. Thisinterfaceis
smply two globd registries with which behaviours and connections must be enrolled so that
the Latera runtime knows of their exisence. The Common and Logical Robot Interaction
Interfaces are available for contralling the robot through the kernd.

7.8 External tools

Some useful tools exterrd to the robot’s control code were implemented: a supervision tool
for making it easier for the user to control the robot and monitor its status, and a visudisation
tool for displaying the robot’s path graphicaly, showing the points a which significant events

happen, and the robot’ sinterna map of its environment. These tools are now described.

228

I mplementation Chapter 7

7.8.1 Supervision tool

Thisisatool consgtructed for alowing the user to control the robot (whether real or smulated)
from the PC, and to monitor its status while it is in operation. The gppearance of the tool is

shownin Fgure 7-16.

— High-level behaviour controls
Target-setting
controls — —— Low-level behaviour controls

=| Loco- Mote Control Panel =

Landmark sem'ng" " Explore @ Manuat ontrots @
and seeking

SpeedUp
Set Mark 1| Seek Mark 1 MainMap 5 [

Set Mark 2| Seek Mark 2

Set Mark 3| Seek Mark 3

Set Mark 4| Seek Mark 4 — Left - Best ACt i \V4 i ty I Og

Plan Right - Same
Set Mark 5| Seek Mark § TakeOverviorid Edge

) cycis=50 msicyc=20 worst=20 pull-2 edge=0 fuse=320 unk-240
Stopped activity
Halten Sie Bitte L) W
Exit Cleary

Status display

Figure 7-16: Robot supervision tool

Thetool has the following visua components-
Status display- this shows diagnogtic performance statistics reported by the robot every
second, and the last action the robot reported taking.
Activity log- this records dl acknowledgements from the robot, and optiondly the
performance datistics it generates.
Simple behaviour controls- these alow the user to take direct control of the primitive
behaviours of the robat, by initiating edge-following or by setting its speed and direction of
motion.
Compound behaviour controls- these give control of higher level behaviours, such as
prowling and patrolling. They dso dlow control of the robot’ s mapping abilities.
Target setting controls- these dlow the user to direct the robot to take note of its current
position, and to command it to return to that podition at a later Stage.

The tool isimplemented in Tcl/Tk and Perl. It is designed to expect the robot’s output on its

standard input, and to send its commands to the robot on its standard output. Hence it can be

229

I mplementation Chapter 7

connected by pipes to ether the red or the smulated robot. The following two section outline
what the tool expects to see on itsinput stream, and what it will generate on its output stream.

Expected input

The tool pays attention only to lines that gtart with “/ME” or “/TICK”, which are the tags the

robot uses for acknowledgements and performance statistics respectively.
“IME’- aline starting with /ME describes some action the robot took in response to user
request. The pand shows this on the status digplay, and logsit to the activity log.
“ITICK"- every second the robot generates performance datistics (load, cycle time-
longest and average- cycles per second, etc.) and reports them preceded with a /TICK.
The pand shows these on the Status display, and optionaly logs them to the activity log.
See the “Reporting behaviour”, section 5.4.3 (page 161).

Output generated

Each button on the pand generates output consistent with that expected by the “Proxy
behaviour” described in Section 5.4.4 (page 162). The details of the smple codes involved
aregivenin Appendix B4.

7.8.2 Visualisation tool

This tool visuadises spatid information about the robot's actions. The robot outputs the
following information about its current status and activity:-

Its estimate of its position. The position is tagged to indicate whether an obstacle or edgeis

sensed nesr it.

The position of new markers being placed. These are the unit used by Kheperato build its

dynamic map of its surroundings (see Chapter 4).

The position of markers that have been moved or removed.

Any podition a which the robot detects a landmark.

Any target which the roboat is currently trying to agpproach.
This datais visudised by filtering it, logging it, and piping it to “gnuplot”, agraphing utility. An
example of the result of this process is shown in Figure 7-17. The display is updated in
real-time using a Perl script.

230

I mplementation

Chapter 7

o ewe T[]

Fath of Loco-Hote
2000
cm
o o 8 @ @ & B @ B @ @ O m PO A
5000 H R
Il u
=) . 2]
@ o 1ol
4000 i) : %,
2 po—a "
: o
2000 i : &
[. N o
ok R . O P T N | R
1] B
iy : o n
n 5B g &
-2000 i e a a
b it . L. =]
o o . n =
s o G S B B B0
4000 B o == . =
—EO00 L 1 i L L L
—E000 —4000 =2000 0 2000 4000 E000 2000
X

Figure7-17: The visualisation tool

The robot can be requested to send the current state of its internd map of its surroundings to

the PC. The visudisation tool can display this instead of the default trace of the robot’s path

and the points a which significant events occur, as shown in Figures 7-18 and 7-19.

5000 4000 3000 -2000

Figure 7-18: Robot’ s path and significant events

5000 -4000 -3000 -2000

Figure 7-19: Internal map

The visudisation tool is extremely useful for understanding how the robot is interpreting its

environment.

231

I mplementation Chapter 7

7.9 Summary

This chapter provided details of how the work presented in this thesis was implemented on the
Khepera rabat, in both its physicd and smulated form. The decomposition of the robot’'s
control system maximised the portability of the control system across changes of the robot or
in its gpplication. This chapter clarified the context within which the Laterd architecture and the
sentry application were implemented.

232

Experimental Results Chapter 8

8. Experimental Results

This chapter examines how well the robot’ s behaviours work, and how robust its cartographic
system actudly is. Results from the smulated robot and the physical robot are both presented

and compared. Comparisons are also made with reaults in the literature.

8.1 Simulated Robot

Results derived from the use of the smulated robot are given first, because -
The environment the robot is in is a Smulated one, and is therefore known and can be
superimposed on traces of the robot’ s motion- aiding comprehension of the results.
The robot’s overdl behaviour is more idedlised than with the physical robot, so the results
are easer to understand. For example, the smulated robot does not need to use landmarks

to maintain its sense of pogtion.

8.1.1 Boundary Following

In this test case, the robot demondtrates its ability to smoothly follow the edges of curved,
stepped, and erratic boundaries.

¥ Path of Loco-Mote
8000

T T T T T T —T T T

EO00 |

4000 |

2000 |

[V} T

-2000

-4000

N N Y

O P Y .

-6000
-12000 =10000 -B000 —B000 —4000 —2000]
S

=
=1
=4
=4

Figure 8-1: Edge following
Figure 8-1 shows the performance of the robot’s edge following behaviour under different
conditions.

The robot is not initidly close to a boundary (it arts a A in the diagram), so it performs a

233

Experimental Results Chapter 8

spirdling search for one.
It finds an edge a B and starts following it. The edge is straight, so the path the robot
follows quickly settlesinto a graight line too.
At C the robot meets a concave corner, turns, and continues to follow the edge as before.
Around D the robot navigates around a 180° convex corner. There is alittle bump in the
robot’s path a D caused by the robot finding thet itself losng sensor contact with the
boundary due to the sharp turn and starting an edge recovery procedure.
Around E the robot follows a series of edges at different agles, its own path changing
gracefully to match.
At F the robot meets a very eratic boundary, and follows it smoothly. This is partly a
consequence of how the sensors work, and partly due to the averaging processes within
the edge following dgorithm.
Before and after G the robot follows a convex and concave curving edge just as easlly as a
draight edge.
An even more eratic boundary is shown in Fgure 8-2, and as can be seen the robot has no
difficulty with it.

¥ Path of Loco-Hote
12000

10000

8000 F

EOO0 |

4000 F

2000 |

—8000 —B000 -4000 —2000 0 2000 4000 BO00

Figure8-2: Following an ill-defined edge

234

Experimental Results Chapter 8

8.1.2 Target seeking

8.1.2.1 Direct approach and boundary following

In this test case, the robot negotiates a one-sided concave obstacle without the use of map

search.

12000

10000

8000 |

BO00 |

4000 |

2000

—2000
—8000 -E000 -4000 —2000 0 2000 4000 EO00

Figure 8-3: Negotiating an obstacle

Figure 8-3 shows the performance of the robot’s edge target seeking behaviour with map

search disabled.
The robot starts at A and is trying to reach E. Initidly there is no obgtacle in the way o it
moves directly towards E.
At B it meets an obgtacle and can no longer directly approach its target. The robot
therefore seeks to get around the obstacle by following its boundary. It can follow it either
left or right; the decision is essentialy random (when the robot hits a boundary roughly at
right angles to it), and in this case the robot turns to its right and follows the boundary in
thet direction.
At around C the robot would turn back if no progress was being made towards its goal.
Since it finds that the boundary turns here and dlows it to gpproach its god, it Stays going
in the same direction for awhile longer.
When the robot reaches D it finds it is again free to move directly towards the target, and
50 stops following the obstacle boundary and heads towards E.

There are no further problems; the robot reaches its target without incident.

235

Experimental Results

Chapter 8

8.1.2.2 Boundary search

In this test case, the robot negotiates the same obstacle as in Section

different technique.

¥ Path of Loco-Hote
12000

8.1.2.1, but usng a

10000

8000 |

BO00 |

4000 |

2000

ol

—2000

—8000 -E000 -4000 —2000 0 2000 4000
H

Figure 8-4: Negotiating an obstacle after different guess

EO00

The robot here works in the same test environment as the last one, under the same conditions,

but with a different guess when it meets an obstacle (see Figure 8-4).

The robot gtarts at A, moves directly towards its target, and meets an obstacle a B as

before, but instead of following the obstacle€’ s boundary to itsright, it turns towards its | ft.

Thereisno locad way of knowing which isthe better way to turn, so it might turn either way

(and does in fact do so in successve runs).

At C, the robot has not yet had success in getting closer to itstarget, so it turns back to try

the other direction dong the boundary.

As before, it meets with success at D, and can approach its target once again when it reaches

E.

236

Experimental Results Chapter 8

8.1.2.3 Extended boundary search

In this test case, the robot uses physical search and its familiarity virtua sensor to reach a
target at the opposite side of a bowl-shaped obstacle.

i Path of Loco-hote
12000

10000

8000

EO00

4000

2000

=
I

-EQ00 -4000 —2000 0 2000 4000 B0 8000

Figure 8-5: Use of familiarity in seeking target

Figure 8-5 shows the performance of the robot when seeking a target leads to it becoming
trapped, using physical search only, with map search turned off. It behaves as follows-

The robot moves from A towards the target at G until it hits an obstecle a B.

It turns to follow the boundary to the Ieft (it chooses the direction it hasto turn least to start

edge following). No opening is found, and a C the robot turns back to try going the

oppositedirection.

The robot has no more success to the right ether, and turns back again at D.

Since the areaup to C is now familiar, the robot will proceed a further distance on from C.

At E it gives up again and turns back.

Similarly, the robot continues on past D, but gives up a F and turns back.
Finaly, the robot proceeds past C and E, dl this area being now familiar, and rounds the lip of
the cave and escapes. From there, reaching the target at G is straightforward.

237

Experimental Results Chapter 8

8.1.2.4 Map search

In this test case, the robot demonstrates the use of a background map search while seeking a
target at the opposite side of a bowl-shaped obstacle.

¥ Path of Loco-Hote
12000

T
T T —/

\’ﬁ‘/\'St'ar"[in'g boint'

10000

8000 |

BO00 |

4000 |

2000

—2000
—6000 -4000 -2000 0 2000 4000 EOO0 2000
H

Figure8-6: Use of map search in seeking target

Figure 8-6 shows the performance of the robot using both physica search and map search to
escape from a hollow obstacle. It behaves as follows:-

The robot starts a background map search for the target. This has no immediate effect on

its behaviour.

The robot moves from A towards the target at F until it hits an obstacle at B.

It turns to follow the boundary to the right. No opening is found, and a C the robot turns

back to try going the opposite direction.

The robot has no more success to the right ether, and turns back again at D.
At E, the background map search reaches the robot’ s current position, and the robot switches
from physca search to following the path to the target found. Note that the path will be
through areas the robot has dready travelled through, so it will not take shortcuts. However
the path will be the shortest path possible through familiar territory, so if the robot has had the
chance to make a good exploration, the path it chooses will aso be good.

238

Experimental Results Chapter 8

8.1.3 Prowling

In this test case, the robot demongrates the prowling behaviour within a maze with four
digoint boundaries.

¥ Path of Loco-Hote
2000

EO00 |

4000 |

2000

—2000

—4000 |

-6000 |

—8000
—4000 —2000 0 2000 4000 6000 8000 10000
H

Figure 8-7: Early stages of prowling

The robot garts off by finding any obgtacle, then following its boundary to the full extent (or
until the robot’s confusion level becomes too high). In Figure 8-7 the robot has found its first
obstacle and isfollowing its boundary.

¥ Path of Loco-Hote
8000

G000 |

4000 |

2000 |

—2000

-4000

o
N N Y Y Y A A
[T T T T T T T T IT T TTTTTT

-6000 |

—8000
—4000 —2000 0 2000 4000 Ba00 8000 10000

Figure 8-8: Exploration component of prowling

When the robot finds it has explored a boundary completely, it will find a vector in a direction
it has not yat explored, and follow that vector. In Fgure 8-8, the robot is shown &fter it has
performed itsfirst such exploration. The vector hasin this case lead to another obstacle.

239

Experimental Results Chapter 8

¥ Path of Loco-Mote
2000

BO00 |

4000 F

2000 F

—2000

—-4000 |

—B000 |

-8000
—4000 —2000 0 2000 4000 BO00 8000 10000
H

Figure 8-9: Exploring multiple boundaries

The robot can detect if the obstacle is a new one, and if so it will explore its boundary as
before. In Figure 8-9 the robat is following the new boundary.

¥ Path of Loco-Hote
8000

G000 |

4000 |

2000 |

—2000

-4000

o
N N Y Y Y A A

-6000 |

—8000
—4000 —2000 0 2000 4000 Ba00 8000 10000

Figure 8-10: Further exploration

In Figure 8-10, the robot has completed exploration of the boundary. The robot then picks a
new vector to explore. The vector in this case leads to an obstacle it has aready explored (this
is quite acceptable, the vector exploration is targeted at exploring unfamiliar spaces rather than
necessaxily finding new boundaries).

240

Experimental Results Chapter 8

¥ Path of Loco-Mote
2000

BO00 |

4000 F

2000 F

—2000

—-4000 |

—B000 |

-8000
—4000 —2000 0 2000 4000 BO00 8000 10000
H

Figure 8-11: Exploration combined with patrolling

The robot follows the obstacle' s boundary for a while until it spots a likely vector to explore,
and repests this cycle until a new obstacle is found, or the robot decides some part of the
territory it has explored needs re-exploration (“patrolling”) because it hasn't checked it for a
while. As shown in Figure 8-11, the robot explores the area in the lower Ieft, patrols the first
obstacle again, then finds another obstacle to explore.

¥ Path of Loco-Mote
2000

BO00 |

4000 F

2000 F

—2000

—-4000 |

—B000 |

—8000 L i L x L x
—4000 —2000 0 2000 4000 BO00 8000 10000
H

Figure 8-12: Continuation of prowling cycle

This cycle of vector exploration, boundary exploration, and patrolling continues. In Figure 8-
12, therobot is shown as it discoversthe last obstacle in the test environment.

241

Experimental Results Chapter 8

¥ Path of Loco-Mote
2000

BO00 |

4000 F

2000 F

—2000

—-4000 |

—B000 |

-8000
—4000 —2000 0 2000 4000 BO00 8000 10000
H

Figure 8-13: Eventual result of prowling

At this point the robot has explored al the boundaries in the test environment. From here on,
the robot will patrol what it has dready explored, checking to seeif the environment changes,
asshownin Figure 8-13.

8.2 Physical Robot

8.2.1 Boundary following

In thistest case, the physical robot exhibits boundary following in amaze.

¥ Path of Loco-Mote
12000

i

| | m— m—] ;

10000 |

8000 |

B000

[T T T T T T T 17

4000 |

2000 F

op-

—2000 n n n n
=12000 =10000 -B000 —E000 —4000 —2000 o 2000
H

Figure 8-14: Shape of standard maze

Many of the experiments on the physica robot were carried out in a standard maze, as shown
in Figure 8-14. When the visudisation tool (from which dl these snapshots are taken) is run

242

Experimental Results Chapter 8

with the smulator, it automatically merges a sketch showing the shape of the robot’'s
environment on to the graph of the robot’s position. Thisis not possible for the physica robot,
snce by definition it has no globa knowledge of its environment, and its coordinate system is
only guaranteed localy (so globa graphs may not be consstent). So for reference purposes,
the gpproximate shape of the maze is given here, with the path that the smulated robot follows
when edge following its virtud andogue.

¥ Path of Loco-Hote
5000

T T T
— s -

4500 |

4000 |

3500 F

3000 |

2600 |

2000

1600 |

1000 F

500

) L L L L L L L
—8000 =00 —E000 —5000 —4000 —3000 —2000 -1000 0 1000
H

Figure 8-15: Path followed by physical robot while edge following

Figure 8-15 shows the shape the robot traces out while edge following the standard maze.
Note that it smoothly navigates around both convex and concave turns, and follows edges
accurately. The robot’s odometry is quite accurate during edge following because its motions
are smooth.

¥ Path of Loco-Mote
5000

4000 |

3000 |

2000 F

1000 |

~1000 L L L L x x x i
—8000 —F00 —B000 —5000 —4000 —3000 —2000 -1000] 1000
H

Figure 8-16: Physical robot maintaining consistent map

In Figure 8-16, the robot has fully circumnavigated the maze. At concave corners, such as A,
B, C, and D, the robot can compensate for accumulating error in its odometry by comparing
its best-guess pogtion now with what it was lagt time it passed a Smilar corner in a Smilar

243

Experimental Results Chapter 8

position. Compensdion aso occurs dong straight edges, such as between B and C. As a
result, the robot’s path is kept consistent.

8.2.2 Useof landmarks

8.2.2.1 Corner landmarks

In this test case, the robot follows the boundary of the standard maze, and uses corners as
landmarks at which to cdibrate its postion.

i Path of Loco-Mote
5000 T |
5000 .
| :
awo | o = @
\ d o} =)
i a NG
i
3000 I) n L
a DE
b @ I T @ . m - e
2000 . f 7 'y .
L3 -]
1000
%
O N thee- 1
_too0 L 1 1 1 L L L i
~B000 =7000 -BO00 5000 4000 3000 -2000 -1000 0 1000

®

Figure8-17: Use of corners
Figure 8- 17 shows a magnified view of the operation of the robot a a corner.

The robot starts at position A, and follows the boundary beside it.

A corner is detected at position B.

The robot continues to edge-follow, and eventudly comes back to the same area.
When it meets the corner this time round, its best guess at its pogition is C. It seems to have
changed location. The robot cannot tell if this is due to a change in the environment, or to
accumulating errors in its odometry (as it is in this case). Therefore it averages the gpparent

position of the corner and its previous position to get a new best guess, D.

244

Experimental Results Chapter 8

8.2.2.2 Edgelandmarks

In this test case, the robot follows the boundary of the standard maze, and uses edges as
landmarks a which to cdibrate its postion.

¥ Path of Loco-Mote
BO00

T —

w00 | : _f@ /<E>—<é>_l'—@
B =
o0 b | > ‘

2000 +

1000

[

—1000
—8000 —7000 —E000 -5000 -4000 -3000 —2000 —1000 0 1000
K

Figure 8-18: Use of edges
In the area shown in Figure 8-18, the robot is following a boundary that it has met before, but
which gppears to be at a different position because of accumulated error in its odometry.
Therobot had previoudy placed markersdong theedge a A, B, C, etc.
Asit follows the boundary a second time, it places new markers overriding the out of date
markers, as shown.
When it haslaid markersa A, B, and C, the robot detects that these markers are in a straight
line beside an older set of markers that were dso in a raight line in a direction close to the
current one, and somewheat displaced. This information is used in an averaging process where
the best- guess angle and position of the robot is adjusted, as shown.
Experimentally, the physical robot’s sense of position tends to be most accurate if the robot
makes smooth motions as occur in edge following. Under these conditions, position correction
using corners and edges can maintain a consstent sense of position within the robot. Hence in
the prowling behaviour it was, pragmaticaly, important that the robot spent a good dedl of its
time edge following, since thisis the only time the robot can extract useful information from its

environment for any purpose, not just position correction.

245

Experimental Results Chapter 8

8.2.2.3 Ablation study

In this test case, the utility of the use of landmarks is demongtrated by removing them. The
robot follows the boundary of the standard maze with landmark detection disabled.

¥ Path of Loco-Mote
EOO0

5000

4000

3000

2000

1000

~1000 i L L x x L L x
-1000 1] 1000 2000 3000 4000 5000 Booo F000 8000
¥

Figure 8-19: Position drift
In Figure 8-19 a trace of the robot's best-guess of its podtion over time is shown while
edge-following a closed boundary. Note that when it reaches its starting point around A, error
has accumulated in its position sense and it is starting to deviate significantly from the robot’s

true pogition.

¥ Path of Loco-Hote
EOOG

5000

4000

3000

2000

1000

-1000
-1000 0 1000 2000 3000 4000 5000 E000 000 8000
k)

Figure 8-20: Aliasing of topological features

246

Experimental Results Chapter 8

The error in the robot’ s estimate of its position continues to accumulate as it moves. In Figure
8-20, the robat is circling the boundary for the third time. Topologica fegtures have sarted to
overlap, and the robot’s map is useless worse than usdless, mideading.

000

000
EOO0
]
4000
3000
2000
1000

_1000 x i L L L L L x x x
-2000 -1000 0 1000 2000 3000 4000] =] FO00 2000 9000
k)

Figure 8-21: Recovery when landmarksreintroduced
The robot was left to continue circling for a while, and then the use of landmarks was turned
back on. The trace in Figure 8-21 shows that the robot eventuadly started to develop a
consstent map of the boundary it was tracing. This is seen where a clugter of lines make a
seemingly thicker line, showing that the robot started to trace the boundary in a consistent

manner.

247

Experimental Results Chapter 8

8.2.3 Target seeking

8.2.3.1 Map search

In this test case, the physical robot escapes from a cave-shaped obstacle using a background
map search.

¥ Path of Loco-Mote
Bl

N i .
S ®

2000 F

1000 F

R

0 L L L y

—EB00 —3000 —2500 -2000 -1600 -1000] 0
H

Figure8-22: Target seeking in the physical robot with map search enabled

Figure 8-22 shows the performance of the robot using both physical search and map search to
escape from an obstacle. The robot started at A, then was directed to B by user control. Then
it was asked to find A. (Note that the gpproximate shape of the maze has been superimposed
by hand on the trace).

The robot moved from B towards the target until it hit an obstacle at C.

It turned to follow the boundary to its left for a bit, with no immediate success, so it turned

back to check the other direction.

The robot had no immediate success to its right either, so it turned back again & E.
At F, the background map search succeeded and the robot found a possible path to the target
in its map. At F it switched from physica search to using the results of the map search, by
retracing the path it had been taken from A to B. Note that the robot can still teke loca short
cuts such as a G while following a path, and if a better path is returned by the ongoing
background map search, it will switch to that.

248

Experimental Results Chapter 8

8.2.3.2 Physical search

In this test case, the physical robot escapes from a cave- shaped obstacle using physicd search
aone.

¥ Path of Loco-Hote

=4 i D
G000 | { @]
4000 | /B/ ﬁ

-]
o

3000-:): E o :
6. © 0
I LA :

e 0 -
2000 | : N °
4
u :
1000 b 8, . . :
OF B

-1000
—3000 —2500 —2000 -1500 —1000 —H00 0 500 1000 1500 2000
S

Figure 8-23: Target seeking in physical robot using physical search only
Figure 8-23 shows the performance of the robot using physica search only to escape from an
obstacle. As before, the robot started at A, then was directed to B by user control, and then
was asked to find A.
The robot moved from B towards the target as before, until it hit an obstacle at C.
The robot searched out towards D, then turned back to check the other direction.
The robot had no immediate success towards E either, so it turned back towards D.
This continued with the robot extending its search further out towads D and E until it
escaped the obstacle at F.
Since the target could not yet be directly approached, the robot continued to follow the
boundary until it turned and the robot could go Straight towards the target.

249

Experimental Results Chapter 8

8.2.4 Prowling

In thistest case, the robot explores the standard maze using the prowling behaviour.

5000

4800

4000

3600

3000

2800

2000

1800

1000

500

-B000 —4500 -4000 —3800 —3000 —2800 —2000 -1600 -1000 =500
X

Figure 8-24: Early stages of prowling

Figure 8-24 shows the robot prowling in the slandard maze. It started by finding an obstacle
(at A) and attempting to trace its boundary. In this case, the boundary is very long, and a B
the robot turns back because its sense of confusion has risen above a threshold. This prevents
it from wandering too far and losing track of itself. At C, the robot finds and recognises corner
landmarks, regains confidence, and its confusion reduces. At the firgt likely looking point, D, it

sets out to explore again.

250

Experimental Results Chapter 8

G000

4000

3000

2000

Figure 8-25: Further exploration

In Figure 8-25 the robot continues with its exploration, which because of the shgpe of the
maze tends to lead to somewhere it has adready been. Its territory is extended more by edge
fallowing, as shown, than by vector exploration.

Figure 8-26: Combination of exploration and patrolling

At the stage shown in Figure 8-26 the robot has explored most of the maze. In area A, the
robot was experiencing increasing errors in its position, which were rectified a B. The map,
overdl, retains its consstency despite errors occurring in any part of it. So long as errors are

not too violent, feedback from the rest of the map will correct any damaged section of it.

251

Experimental Results Chapter 8

8.3 Comparative results

Making meaningful comparisons between autonomous robots is a thorny issue. A fird gep in
performing comparisons in any branch of science is generdly to try to eiminate environmental

influences that could interfere with the subject under scrutiny. The problem in roboticsisthat a
robot designed to be autonomous is nothing without its environment- the whole significance of
what such arobot doesis bound up in how it is affected by environmenta influences, and how
it responds to them [11]]. Trying to test an autonomous robot in isolation for this reason

makes little sense, and smulated approaches are aso wesk, as explained in Section 2.4.7,
page 22. The mos satisfactory solution is the use of standard environments with equaly

standard “bench-mark” tasks for the robot to perform. No such standard bench marks
currently exist for autonomous robots that can be implemented by a research group to examine
their own robot or to replicate the results of another group. The closest to them are robot
“Olympics’ where robots compete ether directly against each other (by trying to physicaly
disassemble each other, for example), or indirectly by performing a given task in a given

environment. This lagt is a form of bench-mark, except it cannot be performed a will in a
laboratory to- for example- vaidate someone else's claims for their robot. A bench-mark that
could be gpplied in this fashion is difficult to imagine anyway, given the huge variation that will

exist between any two robots in terms of physicd attributes, sophistication of processor(s),
etc. It is hard to find compare like with like when there seem to be no two “likes’ to be found.

While these issues do make it difficult to compare in detall the particular robot gpplication built
in this project with that of other projects, the problem is not so severe. This is because the
project is less concerned with getting a robot to do something that has never been done before
than it is with showing that behaviour that would normaly be expected to require vision or
sonar sensors can in fact be achieved with much less. So it is sufficient to compare the
operation of the robot in this project with the operation of other robots in the literature with
more sophigticated sensing equipment, and show that it can successfully complete qualitatively
smilar tasks. In this way, abstract arguments of about the relaive merits of robots with

different sets of festures can be avoided.

252

Experimental Results Chapter 8

The rest of this chapter compares robots with long-range sensors performing various tasks
with the Khepera robot performing smilar tasks. The tasks are not chosen very systematicaly,
since they are limited to what is reported in the literature for the different robots.

8.3.1 Comparison with the ACBARR system

This robot architecture was described in Section 2.5.3 (page 31). The results presented for it
are from a amulator- the system was to be implemented on GEORGE, a robot with severa
ultrasonic sensors around its body for long-distance obstacle detection. The schemasusedin
the architecture requires a good estimate of the position of al obstacles to be found from

sensor data and/or pre-entered data, so it was chosen as a good contrast to the robot in this

thesis.
8.3.1.1 Casel- Canyon

First we compare the robots trying to reach atarget, but with a“canyon” in the way. Note that
only an gpproximation to the origind tes-case can be replicated, but it is sufficient for

comparing the qualitative nature of the robot’s behaviour.

Moise-Persistence MHoise-Gain Goal-Gain Obiect—Gain Sensible-Distance
1 0.45 4.00 4.65 2

Steps 120 Contscts 20 Dist 0,84 Obstacles 0.00 Motion 1.00 To Goal 0.990

e

r
Magnitude 1.00 Direction 1,072

Figure 8-27: GEORGE in a closed canyon

253

Experimental Results Chapter 8

il Path of Loco-Mote
12000 T T T T T T

10000 |

2000 F

EOO0 |

4000

2000 F

2000 : : : : . .r
=12000 =10000 —BO00 =000 =4000) =2000] 2000

Figure8-28: Kheperain a closed canyon

Figures 8-27 and 8-28 show that both the robots perform in a smilar way. The diagram
appears to show that Khepera escapes the canyon adong a much smoother path, but
conclusions such as this cannot be backed up without access to more data than is publicly

available about GEORGE.

8.3.1.2 Case2- Opened Canyon
In Figure 8-29 agap is placed in the canyon, and the robots find their way through the centre.

Moise-Persistence Moise-Gain Goal-Gain Obiect—Gain Sensible-Distance
[l 4,65

Steps 60 Contacts 2 Dist 1,39 Obstacles 0,00 Motion 1,00 Teo Goal 0.993

2

-

Magrnitude 1,00 Direction 0,779

Figure 8-29: GEORGE at an opened canyon

254

Experimental Results Chapter 8

iy Path of Loco-Hote
12000 T T T T T T T

10000 F H

8000 F H

BOO0 F W

T T T T T 11

4000 F

2000 F

_2000 1 L L 1 1 i 1
=12000 -10000 -B000 -B000 -4000 —2000 0 2000 4000
kS

Figure 8-30: Khepera at an open canyon

Thetracein Figure 8-30 shows that neither Khepera nor GEORGE have any trouble getting
through gaps like this.

8.3.1.3 Case 3- SimpleWwall

In Figures 8-31 and 8-32, the robots navigete their way around a blocking wall.

Moise-Persistence Moise-Gain Goal-Gain Obiect—Gain Sensible-Distance
1 0.45 4.00 4.65 2

Steps 115 Contscts 12 Dist 2,98 Obstacles 0.00 Motion 1.00 To Goal 1.007

ke

—

Magnitude 1.00 Direction 0,777
Current case 2

Figure 8-31: GEORGE at a wall

255

Experimental Results Chapter 8

i Path of Loco-Mote
12000 T T T T T T

10000

2000

Gaoo

4000 F

2000 F

=2000
=10000 —2000 —E000 =4000) —2000 0 2000 4000

Figure 8-32: Khepera at a wall

The traces show again that Khepera behaves just as well as the robot with ultrasonic sensors.
Note that the robots chose different paths around the wall. In different runs of Khepera for
different start and god positions, it would go in different directions around the wall. If the wall
seemed to be taking it away from its target for too long, Kheperawould turn back and try the
other way for a while. Theoreticdly, a robot with long-range sensors could make a better
guess than Khepera could a which way to move aong the wall to get to its target quickes,
because it can smply look and see which appears shorter. In practice, Khepera' s strategies
work very well even without the ability to do this, as described earlier in this chapter.

8.3.2 Comparison with Scarecrow

This next robot has 16 ultrasonic range sensors. It is shown in Figure 8-33 moving towards a
god through a farly cluttered environment. Notice how the Khepera robot in Figure 8-34

works equdly well, even though it has no access to long range sensors.

256

Figure 8-34: Khepera moving through a room

Experimental Results Chapter 8
* ¥
Gpal Location l
a
-
Starting Locaticn
Figure8-33: Scarecrow moving through a room
Path of Loco-fote
2000 T T T T T T
I I I I I I I I I I I I I I I I I I I
0
-2000 F
-4000 b
-go00 b
-go00 b
] -
-10000 F B
I I I I I I I I I I I I I I I I I - I I
= 2000 1 1 1 1 1 i
-12000 -10060 B0 —G000 -40010) —2000 0 2000

257

Experimental Results Chapter 8

8.3.3 Comparison with Robbie

The robot with which Khepera is compared in this section, “Robbi€’, has stereo vison
cameras. The robot moves through a cluttered environment made of discrete small obstacles
rather than walls. The robot is more complex physicaly than Khepera is- it is a four wheded
vehicle rather than arobot with auniform circular cross section like Khepera,

8.3.3.1 Casel

The robots are shown here moving towards agod in Figures 8-35 and 8-36. Khepera acquits
itsdf quite well- working with scattered small objects as easily asit would with walls

- — o 7
HORERASE = { /\,ii%\,“ | ~$
= g 7/
gy) (A ®
';‘ Wi a)“ BLUESOURCE
(ON ‘ » |
§ Tw) ((@pd . AN
L\ b o'
‘« .d‘ 44"‘ \ ;\\\\ \
v { = 1
\i'\‘\:“i % o] = c@ource
<7 4 &

9 o
T ‘I
oo K g = ®

Figure 8-35: Robbie moving towards a target

258

Experimental Results Chapter 8

i Path of Loco-Hote
8000

EO00 |

4000

2000 F

=2000 F

—4000

—EO00 L L L L L
-12000 -10000 —8000 -E000 —4000 —2000 0 200
H

Figure 8-36: Khepera moving towards a target

8.3.3.2 Case2

In this case, the robots are shown recovering from taking a mistaken navigation decison. At
the source, the robot can move in two directions, both of which seem to lead to the target, but
one of which isactualy blocked from the target. Figure 8-37 shows the action of Robbie.

®
i) ®

V2, BLUESQURCE
vz

==

.‘i GREENSOURCE

-

. U
o9 e @
Figure 8-37: Robbie recovering from a mistake

Two runs of Khepera are shown. For this particular test case, Khepera does not make the
mistake that Robbie makes (Fgure 8-38). By changing the starting point, Khepera can be
mede to take the wrong initid choice, and thisis shown in Figure 8-39.

259

Experimental Results Chapter 8

i Path of Loco-Mote
12000

1000 F

2000 ¢

G000 |

4000 |

2000 F

=2000
-8000 -E000 =400 =2000] 2000 4000 EO00

Figure 8-38: Khepera making the right choice

i Path of Loco-Mote
12000

10000

8000

GO0 |

4000 ¢

2000 F

—2000
-8000 -E000 —4000 -2000 0 2000 4000 G000

Figure 8-39: Khepera making the wrong choice, and recovering

K hepera does succeed in back-tracking out of the trap. It takes more work than for the robot
with vision, because it has to do more searching. Note that it follows the bottom horizontal

260

Experimental Results Chapter 8

wadl for awnhile, in case there might be a gap further on. It gives up when it sees the wal turn
back upwards.

Asisshown in thistrace, Kheperd s physica search behaviour when trgpped can lead to quite
an amount of movement back and forth through the same area as the robot extends its seerch
boundaries in the two directions along the boundary of the obstacle (or in this case, group of
obstacles) blocking it. This was a trade off for the consderable advantage the scheme has of
avoiding the possihility of looping, where an unforeseen boundary shape leads to the robot
entering a search loop from which it cannot escape.

8.4 Summary

This chapter presented results from various test cases gpplied to the physicd and smulated
Khepera robot. They served to demondrate that the cartographic system developed in
Chapter 4 was practica, and that the behaviours developed in Chapter 5 functioned as
anticipated. The robot was shown to compare favourably with other robots possessing better

sengng capability.

261

Conclusions Chapter 9

9. Conclusions

This chapter discusses how well the work presented in this thesis met its ams, and how it
could be built upon and extended in the future.

9.1 Discussion

The discussion of the work is split between the “ sentry gpplication” developed and the Laterd
robot architecture.

9.1.1 Sentry Application

The sentry-like behaviour developed for the robot in this thes's demondtrated that it is possible
to navigate intelligently with proximity sensors only, provided thet the following congtraints are
adhered to:-
The robot must be able to keep track of its position to a good degree of accuracy. It can
do this by summing its motion or other means. The position estimate need only be accurate
on alocd scae- it is acceptable for accumulating error to occur.
The robot must avoid being in motion for an extended length of time in an aea it is
“unfamiliar” with- an areathat it has never been in before. In such a circumstance, it has no
information with which to compensate for accumulating error.
The robot must ensure thet it frequently passes by recognisable fesatures of its environment
that it can use aslandmarks to keep its position estimate consistent acrosstime.
If these condraints are met, then it has been demonstrated that the robot can creste and
maintain a ussful internd map of its environment. A prowling behaviour has been shown to be
practical for arobot with only proximity sensors. The robot can behave as a sentry, exploring
its environment, patrolling it exhaudtively, and reacting to any changes in it. Although the
gpplication is caled “sentry duty”, the exact same behaviour would be useful for any robot that
has to exhaugtively and repestedly traverse a floor-space, such as sweeping, cleaning or
polishing robots, or security robots in a galery, etc. It is dso avery ussful basic behaviour for

262

Conclusions Chapter 9

use as a periodic “learning” phase for a robot engaged in any task involving navigetior® so it
can become familiar with its environment in an autonomous manner, and then use the
knowledge it gains autonomoudy to accomplish specific, externdly imposed tasks. For
example, in this project the robot could be ordered to seek a specia location, and it would
navigate towards thet location using a combination of information from searching its map and
performing intdligent “physical search” drategies that dlow it get around obstacles, back out
of dead-ends, etc.

Chapter 8 showed that the performance of the robot compares favourably with the
performance of other robots using more sophigticated sensing equipment. This demonstrated
that the cartographic sysem implemented was in fact successful in extracting relevant
information from the environment and presenting it to the control system in a timely fashion,
and could maintain a consistent map of the environment over time.

The memory requirements of the cartographic system used grow with the ratio between the
area of the region the robot is required to patrol and the area a sngle marker in the map is
taken to represent (see Section 4.3.2, page 93). In this project, the physica robot had limited
memory available for mapping (approximately 50kB), enough for a region approximeately 400
times its own area (about 20” 20 times its dimensions), with markers representing an area of
about one third of the robot’s body. Features of smdler granularity were found to be
negligible. On a larger robot with less congtrained memory, mapping a floor of a building
would be perfectly feasible, since both storage and processing requirements scale well. The
storage requirements increase proportionately to the area and the processing requirements
increase only with the logarithm of the area because of the neighbourhood system (see Section
4.3.1, page 88).

9.1.2 Lateral Robot Architecture

The motivation for creating the Lateral architecture was to make behaviour combination
smpler than is possble in other behaviour- based architectures. The success of the architecture
can be judged from the nature of the syslem decomposition used in Chapter 5, for example.

% Technically “ steerage” . Sometimes navigation is taken to mean moving through an environment without any a priori
knowledge of that environment, and steerage indicates movement through an environment about which the robot
has a certain amount of information.

263

Conclusions Chapter 9

Instead of being forced to place dl behaviours in arigid layered hierarchy, aricher and more
flexible hierarchy is possible. Subsumption forces behaviours into a sngle inheritance tree,
where a single behaviour is taken and modified to give another more speciaised behaviour
[[7]]. Laterd, on the other hand, lets a behaviour make use of other behaviours as tools,

without necessarily being a specidisation of any of them unless that is gppropriate. The
difference is somewhat anadogous to IS A vesus HAS A rdationships in software
engineering. While a behaviour may be an “enhancement” of one thet is dready present (1S-A
relationship), it may aso be a combination of agroup of other behaviours (Smilar to aHAS-A
relationship). Lateral will dlow ether posshility, while Subsumption supports the firgt
possbility exclusvely. The reason Laterd is more flexible is largely because it has a dynamic
priority system rather than a gtatic one. This means that the effective behaviour hierarchy

(determined by the relative priorities of the behaviours) can change a runtime, wheress in

Subsumption it is fixed. At any particular ingant, a decomposition made using behaviour
combination could be collapsed into one that uses behaviour enhancement only, since thet is
sufficient to represent the relative priorities at that instant. However, when priorities change,
the equivaent decomposition using enhancement changes adso. Hence Laterd in effect dlows
the effective decomposition to change as the priorities of behaviours change.

The practical usefulness of this became gpparent during design. For example, athough the
main sat of behaviours implemented in this project were concerned with petralling, prowling,
and exploring, when it came to implementing a “Region seeking” behaviour, it could be
superimposed on the decomposition aready present, reusing behaviours without disturbing the
exigting decomposition (see Section 5.4.2, page 159). In generd it turned out to be very easy
to “superimpose’ two overlapping behaviour hierarchies, with the architecture handling any

conflicts between them transparently.

Ancther new feature that proved beneficid in Lateral was its use of locd priorities in contrast
to the globd priorities implicit in Subsumption. In Laterd it is not necessary to assign globa

priority levels to behaviours to resolve conflicts between them. Instead each behaviour assgns
priorities to its outputs thet are chosen relative to its inputs, and the Lateral system uses these
to deduce the effective rdative priority of behaviours a runtime. This means that while building

a behaviour, the programmer can concentrate on the loca view done, and the architecture

264

Conclusions Chapter 9

automeates the process of using these loca decisons to determine the globa activity of the
system.

Laterd is a superset of Subsumption, so it does not lose any of the features that made that
architecture so successful. As described above, a any instant a behaviour decomposition
madein Lateral has an equivadent decomposition in Subsumption. There is another more direct
link. If connections are a the same level of priority, then arbitration between them is achieved
using rules andogous to those in Subsumption- there are equivaents to the “suppressing’,
“inhibiting”, and “defaulting” connections of Subsumption. So if the dynamic priority of al
behaviours were st to a single fixed vaue, dl arbitration would be done following the same

rules as Subsumption would use.

9.2 Future work

This section describes how the work presented in this thesis could be built upon and extended

in the future. There are anumber of areasin this project that could be expanded on:-
The Laterd runtime support could be reimplemented in a distributed processng
environment. All the work done in this thesis was geared towards being executable in a
smple processing environment without multi-tasking. This fits the theme of working with
cheaper, lower-end robots and seeing what can be done with them. However it would adso
be useful to implement support for the Laterd architecture with real multi-tasking and
multiple processors, which is the nature of the control system on more sophisticated robots.
There are some “magic numbers’ chosen for various important parameters of the robot
(see Sections 4.4.2 and 5.2.3 in particular, on pages 99 and 129 respectively). It would be
useful if the robot could derive these itsdf to suit its environment, rather than having them
pre-set by the programmer. In particular, the granularity of mapping was manually chosen.
Future work could alow this parameter to be chosen by the robot itsdlf. In fact thereis no
need for the granularity to be constant- it could eesily beincreased in the locdlity of intricate
obstacles and reduces in areas of large empty spaces.
The robot’s behaviours could be improved on dmost indefinitely by implementing dternate
srategies that the robot can use if the ones it has do not succeed, and adding better

265

Conclusions Chapter 9

facilities for cognisant failure (see Section 2.5.6, page 34) so that the robot can recognise
when it isin trouble and should switch srategy.

The use of landmarks could be extended somewhat. Currently two types of landmarks are
recognised- corners and approximately straight boundary sections. There is no theoretica

problem with recognising more complex boundaries- but there is the practical problem of

trying to do this in red-time, avoiding computationdly expensve dgorithms. It would be
interesting to see how much more could be done in this area without Smply requiring the
robot to have a faster processor.

266

Appendices

Appendix A

Appendix A

Al. Khepera specifications

Processor Motorola 68331

RAM 128Kb

ROM 256K b

Motion DC motors with incremental encoder
Sensors 8 infra red proximity and light sensors
Power Rechargeable N Cd batteries or external
Autonomy 30 minutes

Sze Diameter 55mm, height 30mm

Weight About 70g

A2. Implementation platform

The Laterd architecture support developed had to work on:-

O aPCrunning Linux (for the Kheperasimulator)

O the Kheperarobot with its own mini- operating system
O DOS (for an early use of the system with another robot built within the college)

It was important for this project that it be grounded in a physical robot. At the sart of the

project the robot avalable for experimentation was Z80-based with a serid link to a

controlling PC running DOS. It was hoped that funding would become available for purchase

of arobot cgpable of autonomous operation, but the nature of this hypothetica robot was not

known. It was therefore important that the Laterd support be developed to work in systems

that met minima requirements.

267

Appendices Appendix A

A3. GNU CC Cross-Compiler

To compile C++ code for Khepera, the GNU CC Cross Compiler was used, running under
Linux on an x86. To use GNU CC as a cross-compiler, two components are required: the
compiler itself, and some associaed utilities The compiler and utilities are publicly available
software. Ingdlation is straightforward, and conssts of building the compiler for a nomind
target of “sun2’, which is the appropriate target for Khepera. The cross compiler cannot be
built completely without some additiond library and header files tailored specificaly to
Kheperaand its BIOS. These are supplied by the manufacturers of Khepera

A4. Relevant Khepera BIOS Services

A lig of the BIOS sarvices rlevant to this project are given in the table below. Their nature is

summarised here.

O The serid line is represented as standard input and output to Khepera's control system.
No specid function cdls are needed to interface with the serid connection.

O Therobot hasatime service, accurate to milliseconds.

O The robot implements a Smple multitasking system which can execute a most 15 user
processes concurrently using a fixed time quantum task switching scheme. Tasks can be
put to deep for a fixed number of milliseconds and then re-awoken as normal. Task
switching can be blocked if required to dlow operations that must be guaranteed atomic
to be performed safely.

O Asdescribed earlier, control of the robot’s motors is alowed in terms of speed setpoints
(from -10 to +10, fast reverse and fast forward respectively) or distance to rotate. Full
control of the parameters of the robot’s PID contrallers is made available, but is not used
in this project.

O Feedback from the motorsisin terms of the distance each motor has rotated.

O Two LEDs on the robot body can be controlled during norma operation of the robot. At
other times they indicate the progress of adownload or error atus.

268

Appendices

Appendix A

O Proximity and ambient light measurements can be taken from the eight sensors distributed

around the circumference of the robot's body. A proximity leve of O means nothing is

perceived near the sensor, while vaues of around 1000 mean that there is some object

close to the sensor. Light readings vary from about 500 in the dark to about 50 directly in

front of alight source.

tim_get_ticcount

Returns the number to milliseconds since the last reset

tim_new_task

tim_suspend_task

Adds a new function to be executed within Kheperas pre-

emptive multitasking system
Put atask to deep for a specified period

tim_lock Temporarily prevents time sharing. Used when entering a
critica region.
tim_unlock Permits time sharing after atim_lock()

mot_new_speed_1m

Sets a new speed for one of the motors

mot_get_position

Gets the absolute position of one motor

mot_new_position_1m

Sets the absolute pogtion of one maotor

sens get_reflected value

Gets the reflected vaue of oneinfra red sensor (proximity)

sens get_ambient_value

Gets the ambient value of one sensor (ambient light)

var_on_led

Turnson an LED

var_off led

Turns off an LED

var_change led

Toggles the ate of an LED

gandard |/O

The seid link acts as standard input/output

bios _reset

Perform a software reset of the robot

A5. Khepera Simulator Programmatic Interface

Motor interface

struct Motor

{

doubl e X, 'Y, Al pha;

short int Val ue;

269

Appendices

Appendix A

Sensor interface

struct | RSensor

{
doubl e X, 'Y, Al pha;

short int DistanceVal ue;

short int LightVal ue;

General interface

struct Robot

{

u_char St at e;

char Nane[16] ;
doubl e X, Y, Al pha;
doubl e Di anet er;
struct Motor Mot or [2] ;
struct | RSensor | RSensor [8] ;

f* X andY (millimetres), Alpha (radians) */

A6. Communications with Khepera

Khepera can be operated in a number of communication modes, configured by a set of

jumpers. Hereisasummary :-

O Some modes configure Khepera to listen for commands and requests over the serid link at

various baud rates.

O The robot can dternatively be configured to expect a program download in a defined

format across the serid link (again at different baud rates).

O Some auxiliary modes, not specifically concerned with communication, are provided to -

P Runahardwired demongration (based on a Braitenberg vehicle style agorithm)

P Execute some sdf tests and report their outcome across the serid line
p Execute an gpplication stored in an EPROM.

270

Appendices Appendix A

For this project, Khepera was kept in a command accepting mode rather than a downloading
mode, listening for commands a 38400 Baud. This is convenient because in this mode it is
possible to issue a command ordering the robot to transtion to a download mode without
having to change jumpers, while ill being able to make it revert to accepting commands by
performing a software or hardware reset.

ode Purpose

Demongration mode- Khepera executes a Braitenberg vehicle agorithm

Kheperaligtens for commands on the serid link, expecting 9600 Baud

As 1, but Khepera expects 38400 Baud

User gpplication mode- starts an gpplication stored in an EPROM if present

M
0
1
2 As 1, but Khepera expects 19200 Baud
3
4
5

Khepera expects a program to be downloaded to it over the serial link at 9600
Baud (in “Sformat”)

6 As 5, but Khepera expects 38400 Baud
7 Test mode. Parforms a number of tests, and reports their results on the serid
link at 9600 Baud

271

Appendices Appendix B

Appendix B

B1. Edge following behaviour

State ‘ Next State H Condition
Start Capture No edge close
(start edge-fallowing gracefully) Face Edgeclose
Face Face Robot not oriented correctly
(orient robot with edge) Waddle Robot oriented to edge
Waddle Waddle Edge sraight or turning smoothly
(follow a smooth edge) Turn Edge turned sharply concave
Capture Edge turned sharply convex
Turn Turn Way forward is not clear
(turn a concave corner) Waddle Way forward is clear
Capture Capture Still seeking edge
(recover edge if lost) Waddle Edge detected
Compensate | Edgelost
Compensate Compensate | Still compensating
(undo capture gesture) Waddle Edge detected
Stroll Compensation complete
Strall Stroll No edge found
(move forward to nearest edge) Waddle Edgefound

272

Appendices Appendix B
B2. Location seeking behaviour
State " Next State ’ Condition
Start CaptureEdge | Seek used edge-following recently
(dtart seeking gracefully) wak History does not suggest
edge-following as gppropriate

CaptureEdge FollowEdge Edge suitable for following
(evduate edge as obstacle) Wak Edge not an obgtruction
wak wak No obstruction, roughly on target
(move towards target) FollowEdge | Obstruction

SteadyTurn Facing away from target
FollowEdge(start edge-follow) MonitorEdge | (Transition dways occurs)
SteadyTurn SteadyTurn Facing away from target

wak Approximately facing the target
MonitorEdge MonitorEdge | Edge worth following

wak Edge following ingppropriate

SteadyTurn Turn required to resume waking

273

Appendices

Appendix B

B3. Prowling behaviour

State Next State Condition
Sart (start prowling gracefully) Grab (Trangtion aways occurs)
Grab (dart crdling gracefully) Grab No edge close
Cirde Edge close
Circle (patrol a boundary) Cirde Complete circle not yet made
CirdeSync In unfamiliar territory, and confused
ExploreSeek | Infamiliar, well explored territory
Leap Complete circle made of boundary
CirdeSync CirdeSync Still confused
(recover from confusion) Cirde No longer confused
ExploreSeek ExploreSeek | Infamiliar areg, or not confused
(explore a boundary) CirdeSync In unfamiliar territory, and confused
ExploreHy Exploration opportunity spotted
Leap Complete circle made of boundary
ExploreHy ExploreHy Nothing near, and not confused
(explore away from a boundary) Leap Confused
Cirde Boundary found
Leap Leap Not yet at another boundary
(moveto another boundary) Cirde At another boundary
LespSync Confused
LeapSync LeapSync Still confused
(recover from confusion) Leap No longer confused
LespReturn | Away from familiar territory
LeapReturn LespReturn | Sill confused and in unfamiliar area
(recover from loss of familiarity) Leap Confusion not excessve
LeapSync Territory more familiar

274

Appendices Appendix B

275

Appendices Appendix B

B4. Proxy behaviour

Command Code Description

Prowl t Puts robot in prowling behaviour, a composite behaviour
built from al the other autonomous behaviours of the
robot. See Prowl Algorithm.

Patrol X Makes the robot patrol the area it has explored or
passed through- it will repeatedly move through every
reachable part of that area again and again. See Patrol

Algorithm.

Edge g Makes the robot follow the edge of any nearby obstacle
(or it there is none, it'll gpply a search gesture to find
one).

SetMark = Sets the current location of the robot as a landmark for

returning to later.

SeekMark ? Seeks alandmark set earlier

Explore e Turns on exploration mode

Renew n Turns on dynamic environment mapping

SendMap d Trangamit the internd best- guess map to the PC

Think @ Makes the robot plan heavily for an intervad (which
meakes its normal behaviour duggish).

Conquer ! Requests that robot take over the world (service not yet
implemented)

Manud m Ordersthe robot to follow user motion requests

Hdt [space] | Putsthe robot into an idle behaviour

276

Appendices Appendix B

B5. Detailed Map Maintenance

This appendix presents an exhaudtive description of how the robot can implement the
“neighbourhood” system described in Section 4.3.1 (page 88), and how it can keep its
markers up to date so that as a group they reflect its best knowledge of the environment.
Every cycle, one marker from each of the neighbourhoods is updated. Updating a marker
requires the robot to do the following:-
Sort the marker into the correct neighbourhood- Since the robot will have moved since the
last time the marker was updated, it will have become closer or further away. Therefore the
neighbourhood it is kept in may no longer be appropriate. Thisis checked, and the marker
placed in another neighbourhood if necessary.
Update the marker’s goa seeking fields. This advances any search activity the robot might
be working on in the background.
If the marker is “immediate’ or “near”, update the marker's connectivity deta in
accordance with the ideas outlined in Section 4.5.4 (page 115). The marker’s reach time
should be spread into any markers that have been noted as reachable from it. If the marker
is “near” it should be compared with the currently most “immediate€’ marker for
reachability, and if they seem reachable from each other, update their links to reflect that
rdaionship. This dlows connectivity information to be recondructed through normd
running of the sorting process. Note that the reconstruction is completed as the pbot
moves away from a marker, not whileitisa it.
If the marker is the oldest one seen so far, take note of it.
If the marker is in the immediate neighbourhood, and is on an edge, update the marker’s
pass count, since the marker is close enough to consider the robot as passing through it.
If the marker is outside the locadl and immediae neighbourhoods, and has been tagged to
be killed, or its pass count exceeds the maximum limit, destroy the marker since it is
potentialy inaccurate.
The robot needs to keep track of certan makers in the “immediate’ or “nea”
neighbourhoods:-
If the marker is tagged as a corner, then take note of it. The robot is aways aware of the

nearest recorded corner so that if its motion indicates thet it is currently a a corner, it can

277

Appendices Appendix B

compare against the recorded corner. If it can be confident the current and recorded
corner represent the same real-world object, then it can use that to make correctionsto its
position estimate.

Cdculate the marker’s desirability as a target for local motion of the robot, in terms of how
much the robot would need to turn to move towardsiit, and when the robot last passed it. If
it isthe best seen so far, note that.

Check how closeto the search god the marker is. If it isthe best seen so far, note that.

278

Appendices Appendix C

Appendix C

This appendix documents the services supplied by the interfaces of the units of the
decomposition described in Chapter 7. Since the Latera Runtime Unit embodies behaviours
and connections, the services listed for it are those available for Behaviour and Connection

congtructsin Zac Script.

Cl. Common Robot Unit

C1.1. Interaction Interface

The common robot interaction interface can supply the following informetion:-
O Odometry data
p Bed guessat current position
p Bed guessat direction robot isfacing
P Bestguessat totd distance robot has travelled
O Seid communications
P Hagindicating if acommand has been received across the serid line
p Thelast command received, if any
O Collison flag, set if proximity readings indicate a possible impending or actua collison
The interface can be used to do the following:-
O Control the state of the robot’sLEDs
O Control the serid interface
P Issuearesponse across the link (this can aso be done by writing to standard output)
P Mark acommand that was received across the link as read
p Choose whether the kernd should wait for commands to be acknowledged as read
before accepting other commands. By default commands are stored for one scan
cycle so the control system has the opportunity to view them, and then discarded.
O Factor an offset into the robot’ s best guess at its position or direction, to dlow input from a

more informed component of the control system

279

Appendices Appendix C

Notice that sensor data (other than a gross collison detection flag) and motor control
functiondity is absent. Interaction interfaces to these are provided a a higher leve in the
Logica Robot Unit.

xTrack Best guess at current position, x coordinate
yTrack Best guess at current position, y coordinate
angleTrack Best guess at direction robot is facing (degrees)
angleRaw Best guess a direction robot is facing (radians)

dislacementTrack | Best guess at distance robot has travelled

IsCallison Checks for any proximity reading indicating a possible aollison

SatDisplay Sets the gate of one of the robot’s LEDs

Getlnput Reads the last command issued to the robot across the sexid link, if
any

Isinput Checks if acommand has been issued to the robot across the seria
link

Acceptlnput Marks the last command read as processed

Maintainlnput Chooses whether commands should be discarded automatically, or if

an acknowledgement should be waited for

SendOutput Sends a response across the sexid link
AdjustPosition Modifies the best guess a the robot's current coordinates and
orientation

C1.2. System Hooks

Thisinterface provides the following information:-

O Thetime sincethe kernd was last reset in milliseconds

O Readingsfrom the ambient light and proximity sensors

It provides the following control functiondity:-

O Fixing setpoints for the motor speeds

O Disabling and re-enabling task switching, to dlow operations that must be executed
atomically to be performed.

280

Appendices Appendix C

ServerLock Disables task switching so an operation can be guaranteed atomic

ServerUnlock Re-enables task switching after an atcomic operation

SeverGetTick Gets the time in milliseconds

ServerSetMotor Fixes the setpoints for the motor speeds

ServerGetProx Reads from the proximity sensors

ServerGetLight Reads from the light sensors

C2. Logical Robot Unit

C2.1. Interaction Interface

Thisinterface provides the following information:-

O Thelogicd sensors left, right, forward, reverse, and closest logica proximity sensors

O The unprocessed sensor readings can aso be read directly- Ieft reverse, direct left, left
diagond, left forward, right forward, right diagond, right direct and right reverse.

O A frudtration sensor from the logical motor driver warns when the robot is unable to make
any progress a dl in the direction its motors have been commanded to drive.

It provides the following control functiondity:-

O The basic speedsfor thelogica motors can be set.

O The modifying speeds for the logical motors can aso be set. The two sets of speeds are
used as described earlier by the logica motor driver to generate actud speeds that will
diverge from the logica speedsin the presence of obstacles.

281

Appendices

Appendix C

leftSense This is a sensor guaranteed to be low if the robot can move left
without immediately bumping into something, and high otherwise.

rightSense This is a sensor guaranteed to be low if the robot can move right
without immediately bumping into something, and high otherwise.

forwardSense This is a sensor guaranteed to be low if the robot can move forward
without immediately bumping into something, and high otherwise.

reverseSense This is a sensor guaranteed to be low if the robot could move
backwards without immediately bumping into something, and high
otherwise.

closestSense This comhbines the left, right and forward sensors to give the closest
obstacle to the robot under norma operation (turning for reverse).

GetSense Reads from a specific proximity sensor

IsFrustrated Checks if the robot is unable to proceed in the direction its motors
have been commanded to drive

SetMotor Sets the basic motor speeds to request (actual speeds may be different
if thereis an obstacle)

SetNudge Sdats the modifying motor speeds to request, for superimposing a turn

on top of the basic motor speeds

C2.2. Update Hooks

Thisinterface provides the following control functiondity:-

O A manager for the logical motors that combines the requested basic motor speeds and

modifying (“nudge’) speeds, and adjusts the physical motor setpoints to reflect this as
closdly as possble, inteligently dedling with obstacle condiitions

O A manager for the logica sensors that combines the appropriate physical sensor readings

to maintain the semantics of the logical sensors (left, right, forward, reverse, closest)

UpdateMotors

Combines the requested basic motor speeds and nudge speeds, and
adjusts the motor setpoints to reflect this as closdy as possble,
intdlligently dedling with obstacle conditions

282

Appendices Appendix C

UpdateSensors Maintains the vaues of the logica sensors (leftSense, rightSense,

forwardSense, reverseSense, closestSense)

C3. Lateral Runtime Unit

C3.1. Interaction Interface, Static Components

The interaction interface to Latera is divided into three components for convenience- static,

behaviour, and connection components.

Static components of the Laterd runtime are accessble from anywhere within the control

system. Services include-

O A trigger activated on initidisation of the laterd system.

O A pair of triggers that indicate when the system should enter shutdown phase and when it
should stop completely.

O A timer triggered every second for driving dow periodic events.

AutoStart Trigger to sart behaviours on initidisation of the laterd system

SygemActive Flag indicating whether system should continue

SysgemRetain Hag indicating whether system can be hdted. Used in combination
with SystemActive to dlow a shutdown phase.

TickerSecond The number of seconds the system has been active. Signd can be
used to trigger abehaviour every second.

C3.2. Interaction Interface, Behaviour Components

Within behaviours, the following status information is available-

O Whether itisactive, enabled, degping.

O The current priority level of the behaviour, and whether that priority has been fixed or is
being sdlected dynamicaly by the Laterd system.

O Current state of the behaviour’ s state machine

O Timinginformation in milliseconds, seconds, minutes, or other unitsfor :-
p Thetime sncethe sysem wasinitiaised (also available globally)

b Thetime snce the current behaviour sarted
283

Appendices

Appendix C

p Thetime since the current state was entered from a different sate.

b Theaccumulated time the current behaviour has been disabled over its lifeiime.

p Thetime snce the current behaviour was last disabled.
O Thename of the behaviour (ussful for diagnogtics)
Control functiondity within behaviours-
O Priority level can be set, or marked to be controlled by Lateral’s default priority selection

dgorithm

O The behaviour's state machine can be manipulated by

p Making it trangtion to an arbitrary state.

P Resdting it to its Sarting Sate.

P Zeroing thetimer for the current Sate.

IsActive Checksif behaviour is active or inactive

|sEnabled Checksif behaviour is enabled or disabled

ISRunning Checksif behaviour is running (active and enabled)

GetRdPriority Returns the priority of the behaviour

SetRd Priority Setsthe priority of the behaviour

UnSetPriority Leavesthe priority free to be chosen by Latera

GetName Returns the name of the behaviour

GetLine Returns the current Sate of the behaviour

GoStart Makes the behaviour trangtion to itsfirst Sate

ResatStateTimer | Starts the timer for the current state from zero

GetSleeping Checks if the behaviour has been put to deep because no other
behaviour isuang it

IsSolid Checks if the behaviour is been run at a user-selected priority (rather

then dlowing Laterd to choose its priority dynamically)

284

Appendices Appendix C

TT Timein milliseconds

TT(sysem) is the time since the sysem was initidised (dso avalable
globelly)

TT(process) isthe time since the current behaviour started.

TT(date) isthe time since the current state was entered from a different
Sate.

TT(delay) isthetota time the current behaviour has been disabled.
TT(quantum) isthetota time the current behaviour has been enabled.

TS Time in seconds. As for TT. For measuring the time in seconds,
aternate functions such as StateTimeSec, SystemTimeSec, etc. are dso

avaladle.
™ Timeinminutes. Asfor TT.
TF Timein user-defined units (fractions). Asfor TT.
NEXT Trangtion to anew date

C3.3. Interaction Interface, Connection Components

Information:-
O Information on source
P A flagindicating whether the connection has an active source
p A flagindicatiing whether the connection is adirect output from a behaviour
p Thelast source from which the connection received a message
O Information on target
P A flag indicating whether the connection has control of a target to pass on messages
to.
p A flagindicating whether the current contents of the connection have been passed on.
O Statusinformation
p Priority leve of the connection (for competing with other connections).
p Priority factor of the connection (determining the fraction of its priority the source
behaviour of the connection chain iswilling to supply atarget behaviour).
p A flagindicating whether the connection is active or inective.

285

Appendices

Appendix C

O Contentinformation

b The content of the connection.

p Aflagindicating if the contents of the connection have been dtered.

The following operations are dlowed on Connection objects-
O Setthe priority o the connection.
O Setthe priority factor of the connection.

O Activate or deactivate the connection.

O Se the content of the connection.

ISOutput Checksif the connection is a direct output of a behaviour

SetActive Controls whether the connection is active or inactive

GetActive Checks whether the connection is active or inactive

SaRePriority | Setsthe priority level of the connection for competing with others

GetRePriority | Getsthe priority level of the connection when competing

SetOutPriority | Sets the priority fraction the connection supplies to a behaviour it supplies
if it gains control of thet behaviour

GetOutPriority | Gets the priority fraction the connection supplies to a behaviour

ISulfilled Checksiif the contents of a connection have been passed on

IsinPower Checks if the contents of a connection are being passed on

GetLastSource | Getsthe last source the connection read from

IsControlled Checksif the connection has a source to read from

Set Sets the contents of a connection

Get/Vdue Getsthe contents of a connection

Ddta Checksif the contents of a connection have been changed

286

Appendices Appendix C

C3.4. Execution Hooks

Thisinterface provides no information services, just control functiondity:-
O Execute onecycleof thelaterd system.

O Hand over control entirely to the lateral system to run autonomoudly.
O Initidise and denitidise the laterd system.

ZAC_Execute Runs one cycle of the latera system.

ZAC Drive Hands over control to the lateral system to run autonomoudly.
ZAC Initidise Initidises the laterd system- cdls dl dat up functions in the
behaviours.

ZAC Deinitidise | Shuts down the laterd system. The system can be re-initidisad if
desired.

C4. User Control Unit

C4.1. Lateral Object Hooks

Each behaviour can implement one or dl of the following:-

O A globd start-up hook, cdled on initigisation of the Laterd system.

O A locd gart-up hook, caled when a behaviour becomes active.

O A hook caled whenever abehaviour is put to deep.

O A hook implementing a state machine for the behaviour.

Generating this interface is smplified by use of the Zac Trandator (Chapter 6). Note that only
a few hooks other than the state machine hook are required, since most conditions except the

ones enumerated can be caught in the state maching' s control section.

STARTUP Code executed for globd initidisation of the behaviour

LOCAL_STARTUP | Code executed for initidisation of the behaviour whenever it
becomes active

SLEEP Code executed whenever the behaviour is made to deep

287

Appendices Appendix C

ZAC Run State machine is trandaed into a function of this name (performed
automdticaly)

288

Appendices (Verson: 10/7/2001) Page 289

References

[1] Proceedings of Firgt International Symposium on Robotics Research, MIT, 1983, MIT
Press, 1984

[2] Brady, M., Hu, H. Software and Hardware Architecture of a Mobile Robot for
Manufacturing, Proceedings of the AAAI Spring Symposium “Lessons Learned from
Implemented Software Architectures for Physical Agents’, AAAI Technical Report SS-
95-02, Menlo Park: AAAI Press, pp. 35-43, 1995.

[3] Brooks, RA. 1991. Inteligence without Reason. Proceedings of the 1991 Internationd
Joint Conference on Artificid Intelligence: 569-595

[4] Albus, JS: A Reference Modd Architecture for Intelligent Systems Design, An
Introduction to Intelligent and Autonomous Control, pp. 57-64, Kluwer Academic
Publishers, 1992.

[5] Miller, D.P. 1995. Experience looking into niches, Proceedings of the AAAI Spring
Symposium “Lessons Learned from Implemented Software Architectures for Physical
Agents’, AAAI Technical Report SS-95-02, Menlo Park: AAAI Press, pp. 141-145, 1995.

[6] Gat, E.: Integrating Planning and Reacting in a Heterogeneous Asynchronous Architecture
for Controlling Rea-World Mobile Robots, Proceedings of the 10th National Conference
on Artificid Intelligence, pp. 809-815, MIT Press, July 1992.

[7] Brooks, R.A. 1986. A Robust Layered Control System for a Mobile Robot. |EEE Joumd
of Robotics and Automation. RA-2: 14-23

[8] Mataric M.J.: Behavior-Based Control: Examples from Navigation, Learning, and Group
Behavior, JETAI Journd of Experimentd and Theoreticd Artificid Intelligence, specid
issue on Software Architectures for Physicd Agents, Vol. 9, Nos. 2-3, Hexmoor,
Horswill, spec.iss. on Software Architectures for Physica Agents, Vol. 9, Nos. 2-3, 1997.

9 Brooks RA.: A Robot That Waks. Emergent Behaviors from a Carefully Evolved
Network, Al-Laboratory, Massachusetts Institute of Technology, Cambridge, MA, Al-
Memo 1091, 1989.

[10] Brooks, R.A.: Elephants Don’'t Play Chess. Robotics and Autonomous Systems 6 3-15,
1990

[11] Brooks RA.: Achieving Artificid Intelligence through Building Robots, Al-Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, Al-Memo 899, 1986.

289

Appendices (Verson: 10/7/2001) Page 290

[12] J. Bryson, A. Smaill, and G. Wiggins. The reactive accompanist: Applying Subsumption
architecture to software design. Research Paper 606, Dept. of Artificia Intelligence,
Edinburgh, 1992.

[13] SahotaM.K.: Reactive Deliberation: An Architecture for ReakTime Inteligent Control in
Dynamic Environments, in Proceedings of the Twelfth Nationa Conference on Artificia
Intelligence, AAAI PressMIT Press, Cambridge, MA, pp.1303-1311, 1994.

[14] Hexmoor, H. Smarts are in the architecture!, Proceedings of the AAAI Spring Symposium
“Lessons Learned from Implemented Software Architectures for Physical Agents’, AAAI
Technica Report SS-95-02, Menlo Park: AAAI Press, pp. 116-122, 1995.

[15] Moorman, K., Ram, A.: A Case-Based Approach to Reactive Control for Autonomous
Robots, AAAI Fal Symposium on Al for Rea-World Autonomous Robots, Cambridge,
MA, October 1992

[16] MaesP.: Situated Agents Can Have Gods, Designing Autonomous Agents, pp. 49-70, The
MIT Press: Cambridge, MA, 1990.

[17] Firby, R. J: Task Networks for Controlling Continuous Processes, Proceedings of the
Second International Conference on Al Planning Systems, Chicago IL, June 1994.

[18] Gat, E. ALFA: A Language for Programming Resctive Robot Control Systems,
Proceedings of the 1991 IEEE International Conference on Robotics and Automation,
Sacramento, Cadlifornia, April 1991.

[19] Agre P.E. Chapman D.. What are plans for?, Maes P. (ed.) New Architectures for
Autonomous Agents. Tasklevel Decomposition and Emergent Functionality. MIT Press,
Cambridge, Massachusetts, 1990.

[20] Rosca, J. P, Riopka, T.. A Constraint-Based Control Architecture for Acting and
Reasoning in Autonomous Robots, Proceedings of the AAAI Spring Symposium “Lessons
Learned from Implemented Software Architecturesfor Physical Agents’, AAAI Technica
Report S$-95-02, Menlo Park: AAAI Press, pp. 159-166, 1995.

[21] Brooks RA.. The Behavior Language;, Users Guide, Massachusetts Inditute of
Technology, Al Laboratory, A.l. Memo 1227, 1990.

[22] Arkin RC.: Integrating Behavioura, Perceptud, and World Knowledge in Resctive
Navigation, Designing Autonomous Agents, pp. 105-122, The MIT Press. Cambridge,
MA, 1990.

[23] Payton, D. W.: Interndized plans : a representation for action resources, Journal of robotics
and autonomous systems(1& 2), June 1990, Val. 6, pp. 89-104, 1990.

290

Appendices (Verson: 10/7/2001) Page 291

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

K-Team SA, Kheperd® User Manud

Franzi, E. Khepera BIOS 4.00 Reference Manua

Flanagan, C., Tod, D., Strunz, B. 1995. Subsumption Control of a Mobile Robot.
Moscardini, A. O., Smith, P. (eds.), Proceedings Polymodel 16, Applications of Artificia
Intelligence, Sunderland, UK, pp. 150-158, 1995

Ferrell, C. 1993. Robust agent control of an autonomous robot with many sensors and
actuators. MIT Al Laboratory Technica Report 1443

Mondada, F., Franzi, E., and lenne, P. 1993. Mohile robot miniaturisation: a tool for
investigation in control agorithms. Proceedings of the 3rd International Symposium on
experimenta robotics, Kyoto, Japan, October 28-30 1993, Springer Verlag, London, 1994:
501-513

Bryson, J: The Resctive Accompanist, Madters theds, Universty of Edinburgh
Department of Al, 1995

Brooks R.A., Stein L.A.; Building Brains for Bodies, Autonomous Robots, 1, pp. 725,
1994.

Martin, F. & co.: Interactive C User’s Guide, Newton Research Labs,
http://www.newtonlabs.com/ic/ic_1.html

Ga, E.: On therole of stored interna state in the control of autonomous mobile robots, Al
Magazine, 64-73, Spring 1993, 14(1), 1993.

Arkin, R. C. Just What is a Robot Architecture Anyway? Turing Equivalency versus
Organizing Principles, Proceedings of the AAAI Spring Symposum “Lessons Learned
from Implemented Software Architectures for Physical Agents’, AAAI Technica Report
SS-9%5-02, Menlo Park: AAAI Press, pp. 7-10, 1995.

Michel, O. Khepera Smulator Verson 2.0 User Manud

Colombetti, M., Dorigo, M. Training Agents to Perform Sequential Behavior. Adaptive
Behavior, MIT Press, 2 (3), 1994

Dorigo M.: ALECSYS and the AutonoMouse: Learning to Control a Red Robot by
Distributed Classfier Systems, Machine Learning, 19(3), 1995.

Ram, A., Santamaria, J. C. Continuous Case-Based Reasoning, AAAI Workshop on Case-
Based Reasoning, Washington DC, July 1993. 1993.

Ram, A., Arkin, R., Boone, G., Pearce, M.: Using Genetic Algorithms to Learn Reactive
Control Parameters for Autonomous Robotic Navigation, Adaptive Behavior, 2(3):277-305,
1994

291

Appendices (Verson: 10/7/2001) Page 292

[39] Kaehing L.P., Rosenschein S.J.: Action and Planning in Embedded Agents, Robotics and
Autonomous Systems, Val. 6, No. 1; adso in Designing Autonomous Agents, The MIT
Press, 1991

[40] Macolm C., Smithers T.: Symbol Grounding via a Hybrid Architecture in an Autonomous
Assembly System, Robotics and Autonomous systems(1& 2), June 1990, Val. 6, pp. 123-
144, 1990.

[41] Anderson, T. L., Donath M. Anima Behavior as a Paradigm for Developing Robot
Autonomy, Designing Autonomous Agents, pp. 145-168, The MIT Press. Cambridge,
MA, 1990.

[42] Beer, R. D, Chid, H. J, Sterling, L. S. A Biological Perspective on Autonomous Agent
Design, Designing Autonomous Agents, pp. 169-185, The MIT Press: Cambridge, MA,
1990.

[43] Minsky M.: The Society of Mind, Simon & Schuster, New Y ork, 1985.

[44] Franklin, S., Graesser, A. Is it an Agent, or just a Program? A Taxonomy for
Autonomous Agents. Proceedings of the Third Internationa Workshop on Agent Theories,
Architectures, and Languages, Springer -Verlag, 1996

[45] Song, H., Franklin, S., Negatu, A. SUMPY: A Fuzzy Software Agent, Proceedings of the
5th ISCA International Conference on Intelligent Systems, Reno, Nevada, June 1996.

[46] McLurkin, J Antware, MIT Artificid Intdligence Lab web-pages,
http:/iww.ai.mit.edu/projectyantsantware.html (no formal reference available)

[47] Sdfridge, O.G. “Pandemonium: A Paradigm for Learning,” in D.V. Blake and A.M. Uttley
(eds.)), Proceedings of the Symposium on Mechanisation of Thought Processes (National
Physical Laboratory, Teddington, England; London: H.M. Stationary Office, 1959), pp.
237-50.

[48] Kortenkamp, D., Weymouth, T.. Topologica mapping for mobile robots using a
combination of sonar and vision sensing, Proceedings of the Twelfth National Conference
on Artificid Inteligence (AAAI-94), duly, 1994.

292

