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(i) 

Abstract 

Industrially deployed robots are currently very dependent on human guidance and support. 

They rely on operator intervention to maintain a stable, known environment within which they 

perform specific well-defined tasks. Such constraints limit the extent to which robots can be 

employed. Many useful applications await the development of self-reliant, autonomous robots- 

applications ranging from exploring Mars to cleaning factory floors. New design techniques are 

evolving to meet this challenge. One technique that has met with considerable success is 

“behaviour-based” control. In this form of control, the modules or “behaviours” within the 

robot’s control system take their cues primarily from the environment, rather than from each 

other as in more traditional schemes. Robots constructed in this way need to make fewer 

assumptions about their environment, and so are more robust. However, it can be difficult to 

control the interaction of such behaviours. In this thesis, a novel scheme for orchestrating the 

actions of collections of behaviours is presented, and implemented on a physical robot.  

Another major challenge for autonomous robots is how to learn about their surroundings so 

they can navigate from place to place efficiently. Much of the literature addressing how robots 

can construct maps of their environment is oriented towards robots with vision sensors, and 

relies on computationally expensive image processing algorithms. However, there is currently 

considerable research interest in investigating the potential applications of groups of small, 

cheap, miniature robots. Such robots are typically limited in their sensing ability and processing 

power. This thesis examines how a miniature robot can build and maintain a useful map of its 

environment with short-range proximity sensors only, and do so in real-time even with the 

restricted processing power of such robots. This is a desirable ability because it could allow 

robots to be used in a range of niches where sophisticated sensing and image processing 

would be impractical. Again, the technique described is implemented on a physical robot that 

behaves as a sentry. 
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1. Introduction 

The field of robotics is advancing along two fronts, both of which find expression in this thesis. 

Firstly, progress is being made through the sheer weight of experience gained by researchers 

as they attempt to apply robots with varied capabilities to widely different and novel tasks. 

Secondly, the field is advancing as the lessons learned in these specific applications are 

encoded in reusable structures called “robot architectures” which act as frameworks to 

simplify the development of future applications. 

This thesis contains contributions to both fronts. It shows how a robot possessing only short 

range sensors can successfully perform “sentry duty” by exploring, mapping, and patrolling its 

environment- tasks which would normally be expected to require long range sensors, such as 

sonar or vision. In parallel with the development of this application, a new robot architecture 

called Lateral is evolved which makes behaviour co-ordination much simpler to implement 

than in other related architectures such as Subsumption [[7]]. The “sentry duty” application 

plays a dual role as a “proof of concept” of the new architecture, and as an innovative 

application in its own right. 

This chapter outlines the nature of the two threads of the thesis, what problems they seek to 

solve, and interesting features of the proposed solutions. It describes how the two threads 

relate to each other, and how the thesis is structured. The “Novel Application” thread is 

discussed first, then the “Robot Architecture” thread, and finally a “road-map” for the thesis is 

given, capturing the structure of the thesis and how each part of it relates to the whole. 

 

1.1 Novel application contribution 

The novel application discussed in this thesis is to build a robot capable of performing “sentry 

duty” (prowling, patrolling, exploring, etc.) with only very short-range sensors. The idea is to 

take a second look at what is possible with minimal sensing equipment, because there is a 

range of potential niches for robots where sophisticated sensing and image processing would 

be impractical- particularly where the robot has to be small and inexpensive, as when large 

swarms of cheap “gnat” robots are to be used. 
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The application is implemented on both a physical and simulated robot. The robot used is the 

Khepera miniature robot (see Figure 1-1, and Section 7.2.1, page 207).  

 

Figure 1-1: The Khepera Robot 

For a discussion on the importance of making an “embodied” implementation of a robot 

system, see Section 2.4.7 (page 22). Serious reservations have been expressed on the 

usefulness of work that is entirely simulated [[10]], at least for the purposes of working 

towards truly autonomous robots. The fact that the application in this thesis, although quite 

complex, is still physically implemented was considered an important goal to achieve. 

1.1.1 The problem 

The major problems to be solved to build a sentry robot with no long range sensors are: how 

to detect landmarks with such restricted sensing equipment; and how to build, use, and 

maintain a useful map of the robot’s environment in real-time. 

1.1.2 The solution 

The thesis presents a novel approach to detecting landmarks in a robot’s environment using 

minimal sensing equipment. Landmarks are important for robust cartographic systems because 

they act as reference points from which the robot can correct its estimate of its position from 

time to time and avoid losing track of its location. When rich sensor data are available, plenty 

of cues are present from which landmarks can be recognised. Landmarks are difficult or 

impossible to extract from the sparse sensor data available from coarse short range proximity 

sensors. The solution proposed in this thesis is that, while landmarks may not be recognisable 

directly from any sensor signature, they can be identified by monitoring the robot itself when it 

interacts with them. For example, while it may not be possible to identify the presence and 

shape of a corner from sensor data, if the robot performs an algorithm to follow the curve of a 

boundary (a very simple task even with limited sensor data) then the characteristics of the 

corner become obvious by analysing how the robot itself moves around it. The landmark could 
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be said to be an emergent feature from the combination of the robot’s behaviour with its 

environment. This is the key idea that allows the proposed cartographic system work with low 

bandwidth sensors. 

How a map can actually be put to use effectively is equally as important as the mechanics of 

maintaining it. Any form of map will generally grow in size proportionately with the total area 

the robot has explored, so care is needed to ensure the map remains usable as it gets larger. 

This paper presents a method for maintaining continuously updated local “windows” onto the 

overall map at different scales, allowing the information needed for different tasks to be quickly 

constrained and filtered. This prevents the robot from being swamped by the mass of detail to 

be considered. This supports the use of the cartographic system on robots with less powerful 

processors. 

The thesis shows how these ideas together give a useful cartographic system with less sensing 

and processing requirements than comparable systems, and describes the constraints it places 

on the behaviour of a robot using it. 

1.1.3 Novel features 

The main innovations of this section of the thesis are:- 

• The cartographic system, capable of maintaining a useful map from proximity sensors alone. 

• The set of behaviours of the robot, designed to achieve an overall “sentry”-like behaviour 

using the cartographic system and operating symbiotically with it to ensure it receives the 

data it needs to map correctly. The behaviours also allow general goal seeking ability.  

These areas are explored in Chapters 4 and 5 (see Figure 1-2 at the end of this chapter for a 

thesis “road-map”). 

 

1.2 Robot architecture contribution 

The novel contribution to robot architectures in this thesis is embodied in “Lateral”, a new 

robot architecture. Lateral is a “behaviour-based” control technique where the desired 

functionality of the robot is implemented by building and combining a set of “behaviour” 

modules (see Chapter 3).  
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1.2.1 The problem 

Behaviour-based control has many advantages over traditional techniques in terms of reaction 

speed, robustness, and ease of design, as exemplified by the best known of such control 

architectures, “Subsumption”. The characteristic feature of Subsumption is that the robot’s 

control system is implemented as a series of layers, each enhancing the layer below it (by 

selective suppression, inhibition, and replacement of dataflows) to give an incrementally more 

competent robot. If a layer becomes disabled, the robot can still operate by reverting to a 

lower level of competence. This simple organising principle is naturally robust, and has proven 

remarkably powerful. It is less helpful, however, for structuring control systems which cannot 

easily be made to fit into a simple layered hierarchy. 

1.2.2 The solution 

In this thesis a new behaviour-based robot control architecture, called “Lateral”, is presented 

that supports structured behaviour combination rather than requiring the strict layering 

mandated by Subsumption. It allows behaviours to be organised in whatever decomposition is 

natural for the control system, while still retaining Subsumption’s ability to implement 

behaviours incrementally and the natural robustness that this gives.  

Lateral’s structural flexibility is achieved by a corresponding flexibility in its priority system. 

The priority system in a behaviour-based architecture is critical since it determines how conflict 

between behaviours is resolved. In Subsumption, the priority of a module is determined by the 

layer it is in, so it is fixed at a level decided at design time. In Lateral, the priority of a module 

is instead determined by the importance of the task it performs. This is a dynamic property 

which can change as the robot’s situation and goals change. While the hierarchy of behaviours 

in Subsumption is rigidly fixed, in Lateral it changes fluidly according to need using a system 

called “sponsorship”.  

A tool for simplifying the implementation of a design made using Lateral structures is also 

developed. This tool, Zac Script, is then used to implement the “sentry” behaviours designed in 

Chapter 5. A complete discussion of the nature and utility of Zac Script is given in Chapter 6. 

The details of the Lateral architecture are presented in Chapter 3. It is compared with other 

robot architectures in general and Subsumption in particular, and the advantages it has for 

building a behaviour-based robot control system are elucidated. 
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1.2.3 Novel features 

The main innovations of this section of the thesis are:- 

• The flexibility of the decomposition of a robot’s control system that can be supported. 

• The new ways behaviours can be combined using “sponsorship”. 

• The Zac Script tool for encoding Lateral constructs in a straightforward and 

platform-independent way. 

 

1.3 Overview of thesis content 

The thesis is structured in the following way:- 

• First, a review is made of the literature relevant to both threads of the thesis- the robot 

architecture, and the sentry application (Chapter 2). 

• The new robot architecture, Lateral, is then described, justified, and compared with other 

architectures (Chapter 3). This is done before any discussion of the sentry application 

because that application is built using the Lateral architecture, so the nature of the 

architecture must be clear first. The architecture acts as a guide for and a set of constraints 

on the design of the sentry application. 

• Next, the design of the sentry application is discussed. This involves two main issues- 

cartography (Chapter 4), and the choice of behaviours for the robot (Chapter 5). Both are 

examined and related to each other in this pair of chapters. 

• The Zac Script tool for implementing behaviours in Lateral is then introduced (Chapter 6). 

The design of the sentry application and the discussion of the Lateral architecture are 

related to each other to show how the application is built from the architecture. 

• An implementation chapter (Chapter 7) next shows how the entire architecture and 

application developed so far can be connected to a robot to become a functional control 

system. This chapter discusses the actual robot the work was implemented on, Khepera. 

Figure 1-2 illustrates the structure of the main body of the thesis. 
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Figure 1-2: Road-map, structure of main body of thesis  

Chapter 2 details the state of research relevant to this project. It describes the various 
classes of robot architectures, giving examples of each, and contrasts their 
functionality. It also examines approaches taken to map building and use by 
other researchers. 

Chapter 3 develops the Lateral Architecture, a novel robot architecture for simplifying 
behaviour co-ordination. 

Chapter 4 describes the design of a cartographic system suited to a robot performing 
“sentry duty” 

Chapter 5 describes the design of behaviours for a robot performing “sentry duty”, using 
Lateral. 

Chapter 6 introduces a tool for aiding the implementation of a behaviour-based design 
called “Zac Script”.  

Chapter 7 discusses implementation of the sentry design on a physical and simulated 
robot. 

Chapter 8 evaluates the performance of the sentry, and where possible makes 
comparisons with other research.  

Chapter 9 discusses the project, and gives conclusions drawn from the work. 

 References and appendices follow. 
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2. Background 

This chapter presents a literature review of topics relevant to this thesis. It examines the theory 

of robot architectures, and different approaches taken to robot cartography. The overview of 

architectures provides the background necessary to understand the choices and decisions 

made when developing the Lateral robot architecture in Chapter 3. The review of cartography 

is needed for Chapter 4, where an approach to map building and use in a robot with short 

range sensors is described that builds on the ideas reviewed here. 

2.1 Review of Robot Architectures 

At the first International Symposium on Robotics Research, robotics was broadly defined as 

“the intelligent connection of perception to action” [[1]]. This connection is provided by the 

robot’s control system (see Figure 2-1). 

Robotics is:

“the Intelligent
Connection of

Perception to Action”

Reality Robot

Actuators

Sensors Perception

Action

 

Figure 2-1: Definition of robotics 

A robot architecture is a set of guiding principles used to structure a robot’s control system. It 

does this both by providing a scheme for the organisation of the system, and by constraining 

the way in which the system can attempt to solve control problems. Hence the architecture is 

reflected not only in the building blocks from which the control system is constructed, but also 

directs its high level design. In summary, an architecture is responsible for:- 

• providing a set of principles for organising a control system, and 

• imposing a set of constraints on the design of that system. 
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Robots vary greatly in the hardware and software they use, and work done on one robot is 

often impossible to apply directly to others. Robot architectures, however, are reusable and 

for this reason research is often concentrated on them rather than on specific applications built 

from them. A wide range of robot architectures exist, varying in their domains of application 

and philosophical background. Some of the criteria they can be categorised under are as 

follows:- 

• Symbolic or non-symbolic- an architecture may deal with atomic “facts” or may use 

distributed representations, such as neural networks and connectionist models generally.  

• Homogeneous or inhomogeneous- architectures may require that the same single 

fundamental organisational unit be used throughout the control system, or may allow a 

range of such units. In the first case, it is implicitly assumed that a single form of building 

block is sufficient to construct any control system, including real-time human-level 

intelligence, while in the second case it is assumed that control systems may need to be 

composed of structurally different modules. 

• Deliberative or reactive - an architecture may support protracted reasoning, or may be 

geared towards building systems that react directly to environmental cues. In the first case, 

the architecture is said to be knowledge driven, in the second case it is data driven.  

 

2.2 Classical Robot Architectures 

Robotics developed as a sub-field of Artificial Intelligence (AI), so it was natural that it was 

heavily influenced by the methodologies that had proved successful in that area. AI has 

evolved a useful toolbox of techniques applicable to problem solving and planning, whereby 

given a suitable description of the state of the world, powerful search algorithms can be 

applied to find the appropriate manipulations to move from that state to a desired goal state. 

This is strongly reminiscent of what robots need to do, and AI-based or “classical” robot 

architectures try to make use of such techniques. To do this, it is necessary to translate from 

sensor data to a description of the state of the world, and from manipulations on that 

description to physical actuator commands. In terms of the criteria listed in the overview, an 

architecture constructed in this way is:- 

• Symbolic- AI techniques are based on manipulating systems of symbols. 
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• Homogeneous- symbols are used throughout the control system for all stages of reasoning- 

for describing the world, expressing plans, etc. 

• Deliberative- AI is strongly biased towards describing a problem, carrying out extended 

reasoning, and generating a solution. 

This initial decomposition leads naturally to a “pipelined” approach to interacting with the 

environment, where the overall system is divided into a number of subsystems arranged in 

series, as shown in Figure 2-2. 

Sensors

C
onstruct

R
epresentation
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Interpret
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Actuators 

 

Figure 2-2: Applying AI to robotics  

Typically the decomposition shown is further refined to consist of the following modules:- 

1. Perception- this interfaces to the sensing devices connected to the robot. 

1. World modelling- this subsystem uses the results of perception to update an internal 

model of the robot’s environment, and to keep track of where the robot is with respect to 

that model. 

1. Planning- this attempts to work out how it will achieve its goals given the current world 

state and the state of the robot. 

1. Task execution- this breaks down the plan developed by the previous subsystem into 

detailed motion commands. 

1. Motor control- this interfaces with actuators to express motion commands generated 

during task execution. 
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These modules still act in series, with each one in turn processing the results of the previous 

module, as shown in Figure 2-3. 

Sensors

Perception

M
odelling

Planning

Task Execution

M
otor C

ontrol
Actuators 

 

Figure 2-3: “Pipelined” approach of classical control 

2.2.1 Domain of Application 

Each of the subsystems enumerated above is a complex program, and all have to work 

together well for the robot to operate at all. However, some of the subsystems have many 

unsolved problems associated with them, such as perception and world modelling, that make 

them feasible only in very structured environments. The noisy and random nature of the real 

world overwhelms them. In particular, as the complexity of the environment increases, the time 

needed to perceive, model and plan about the world increases exponentially. Hence classical 

robot architectures are most successful in:- 

• Very structured environments, such as industrial applications [[2]], or 

• Simulated environments or “toy worlds” [[3]]. 

A specific example of a classical architecture will now be given. 

2.2.2 An example architecture- RCS (Real-Time Control System), Albus  [[4]] 

This sophisticated architecture in the classical control tradition consists of a nested hierarchy of 

modules, with each layer distinguished by a characteristic bandwidth range, and with tasks at 

each level being decomposed into sequential sub-tasks. The components of this architecture 

are:- 

1. Sensory Processing modules- These filter, mask and correlate sensor data, and perform 

feature detection, pattern recognition etc. 

1. Knowledge Database modules- These embody knowledge about the logical and 

dynamic behaviour of the world. 
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1. World Modelling modules- These model the state of the world and predict the results of 

actions using the output of sensor processing and a knowledge database. 

1. Value Judgement modules- These evaluate states and the reliability of state estimations, 

perform cost-benefit analysis, and may track the match between observations and 

predictions. 

1. Behaviour Generating modules- These are concerned with decomposing tasks into 

achievable sub-tasks using any of a number of planning algorithms- simple look-up, state-

space search, etc. 

1. A communications system between the modules. 

RCS is a reference model architecture for intelligent systems developed at the National 

Institute of Standards and Technology (U.S.) and has been deployed in various applications 

such as a motor assembly testbed, an intelligent workstation for deburring and chamfering 

components of jet engines, a control system for a U.S. postal facility, and in robots for floor-

cleaning and hospital service. It is part of an overall effort to make industrial machinery more 

intelligent by providing an open control architecture supporting advanced AI techniques. 

 

2.3 Reactive Robot Architectures 

Robots built using classical robot architectures are capable of performing sophisticated 

reasoning, but only in well-structured environments. The first family of robot architectures to 

diverge from this pattern were called “reactive”. They attempted to operate in complex 

unstructured environments by reacting to environmental cues rather than trying to 

second-guess the environment by modelling it. As shown in Figure 2-4, this form of control is 

the exact opposite of classical control, at least along the dimensions of environmental and 

cognitive complexity. 
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Figure 2-4: Reactive architectures versus classical control 

This type of architecture was not developed explicitly, but rather emerged repeatedly from the 

work of researchers engaged in widely varying projects, working with totally different 

hardware and software, and using very diverse vocabularies to describe their methodology 

[[5]]. In the robot control systems that began to appear, the robot was controlled by 

programming it with a set of condition ⇒ action rules, or some equivalent abstraction, where 

the conditions are combinations of sensor readings and state variables, and the actions are 

simple functions performed on actuator settings or state variables. By coordinating these rules 

through state variables, robots are produced that, in their limited domain, perform very well 

and give the impression of advanced cognition simply because the complexity of their 

environment finds direct reflection in their actions. Robots controlled in this way, using 

condition ⇒ action rules, are by their nature reactive. There is little processing or modelling 

in the route from sensor data to actuator settings; the condition/action pairs are like reflexes in 

biological systems. 

2.3.1 Domain of Application 

Reactive robots have good real-time characteristics, which is an important advantage over 

classically controlled robots because “An oncoming truck waits for no theorem prover” 

[[6]]. They can keep pace with changes in a dynamic environment, since the path from change 

in sensor reading to change in actuator setpoint is short, providing a direct coupling of 

perception to action. 
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2.3.2 Example architecture- The Niche Robot Architecture, Miller [[5]] 

This is a very typical reactive architecture. Niche robots are programmed using a set of 

condition ⇒ action rules, with the following semantics:- 

• “Conditions” are tests of the state of sensor values and internal state variables. If they 

become true, the associated action is executed. 

• “Actions” are simple manipulations of actuator settings or state variables. 

There is no hierarchy mandated, but if the robot needs to switch between sets of rules under 

different conditions, it is useful to collect rules into “scenes”, recognised by having a common 

component in their conditions, and to control switching between scenes using another batch of 

rules called the “sequencer” (see Figure 2-5). 

Sensors

Sensors
Scene Implementation
condition⇒action rules

(“behaviours”)
Actuators 

Scene Selection
condition⇒action rules

(“sequencer”)
Actuators 

 

Figure 2-5: Niche Robot Architecture 

Robots built using this architecture are suitable for applications where very tight real-time 

constraints must be met. They are relatively easy to design, but any given robot is very limited 

in scope (hence the term “niche” robots). Within their restricted domain the robots can 

perform very well and appear to exhibit a higher level of cognition than is actually the case. 

The architecture described here has been essentially re-discovered time and again by 

numerous researchers working in different contexts [[5]]. 
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2.4 Behaviour-Based Robot Architectures 

Behaviour-based robot architectures developed as a more sophisticated alternative to classical 

architectures than purely reactive architectures, which are limited in their ability to perform 

time-extended tasks [[7]], as Figure 2-6 illustrates. 
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Figure 2-6: Behaviour-based robot architectures  

Behaviour-based control architectures are characterised by the following principles and 

constraints [[8]] :- 

• Modules are somewhat time-extended. 

• Modules tend to be more reactive than deliberative. 

• Modules tend to be relatively simple. 

• Modules interact with each other through the environment, not the system, as much as 

possible. 

• The world is considered its own best model- it is never out of date or inaccurate- so 

modules consult it directly whenever practical, rather than trusting the judgements of other 

modules. 

• Modules uses distributed representations tailored to their particular needs, and do not share 

their representations with other modules. 

• Execution of modules is not serialised. 

• The system is incrementally implemented, with a working system existing from the very first 

module. 
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Behaviour-based architectures are dominated by the first and most well known of all such 

architectures, “Subsumption”. This architecture will now be examined in detail, as the work 

presented in this thesis builds on this architecture. 

2.4.1 Subsumption 

Subsumption uses a “horizontal” decomposition of a robot’s control system, rather than the 

“vertical” decomposition used in classic control. If a robot is drawn as a “black box” with 

sensor input entering on the left and actuator output exiting on the right, then the system 

decomposition used in classical control slices the black box vertically into a sequential pipeline 

of modules, with sensory information entering only one, and being processed by each in turn 

until it has passed through the entire pipeline and emerges as actuator commands. 

Subsumption, in contrast, divides the system “horizontally” into layers arranged in parallel 

rather than in series, each of which have simultaneous access to both sensors and actuators 

(see Figure 2-7). 
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Figure 2-7: Classical AI architecture versus Subsumption architecture 

Rather than using a functional decomposition, as is favoured in classical control, the system is 

divided into “task achieving behaviours”. In general this type of horizontal decomposition is the 

one used in all behaviour-based robot architectures. Comparing the kind of modules present in 

classical control and Subsumption side by side as in Table 2-1, the classical modules are seen 

to be concerned with transformations on representations, while modules in Subsumption have 

direct expression as externally observable behaviour. 
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Table 2-1 

Modules in Classical AI Architecture  Modules in Subsumption Architecture  

Perception Work Usefully 

World Model Use Maps 

Planning Explore 

Task Execution Wander 

Motor Control Avoid Obstacles 

Each individual “horizontal layer” will contain elements of all the “vertical” tasks found in a 

classical system, but implemented in a form tailored to the requirements of the behaviour it is 

responsible for, such as the ability to move away from an obstacle, to move around an area in 

a random fashion, or to explore the robot’s environment. Any given module need not tackle 

the whole business of getting the robot from A to B; instead, it only performs that part of 

perception, planning, etc., which is appropriate to the task it has to perform. 

The horizontal decomposition used in behaviour-based systems introduces a new issue that 

does not affect classical control. Since more than one module can now potentially attempt to 

control an actuator at the same time, conflict is possible if two or more modules attempt to 

gain control of an actuator simultaneously. Every behaviour-based system must have some 

way of resolving this conflict, and it is the different approaches to doing this that distinguish 

behaviour-based architectures (of which Subsumption is just one) from each other. 

Subsumption resolves conflict by arranging layers in a fixed hierarchy, with higher layers given 

priority over lower layers, as explained in the following sections. 

2.4.2 Levels of Competence 

In Subsumption, a robot’s control system is specified by defining a number of desired levels 

of competence for the robot. Each level of competence is an informal description of how the 

robot should behave for any environment it will encounter. The levels are arranged sequentially 

by their degree of sophistication, with each level enhancing the competence supplied by the 

level before it to provide a higher competence. 

Table 2-2 shows an example set of competences used by Brooks [[7]]. 

Table 2-2 
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Level Behaviour of robot 

0 Avoid contact with objects (whether the objects move or are stationary) 

1 Wander aimlessly around  without hitting things 

2 “Explore” the world by seeing places in the distance which look reachable and 

heading for them 

3 Build a map of the environment and plan routes from one place to another 

4 Note changes in the “static” environment 

5 Reason about the world in terms of identifiable objects and perform tasks related 

to certain objects 

6 Formulate and execute plans which involve changing the state of the world in some 

desirable way 

7 Reason about the behaviour of objects in the world and modify plans accordingly 

Each level of competence assumes the existence of all lower levels. For example,  the 

exploration competence is free to move as it pleases, secure in the knowledge that the lower 

level competence designed to avoid contact with objects will prevent it from entering into 

collision with an obstacle. Once the obstacle avoidance competence is present, higher levels 

do not need to be aware of the problems of avoiding objects, because if there is something in 

the way, this competence will resolve that problem for them. Note that while higher level 

competences are aware of lower level competences, lower level competences are permitted 

no knowledge of higher level ones. 

2.4.3 Layers of Control 

Each level of competence is implemented incrementally by adding a corresponding layer of 

control to the robot. Suppose that a robot currently has layers of control implemented 

corresponding to all competences up to the nth competence. Then the (n+1)th layer of control 

can be built. This layer is allowed to examine data from the nth layer. It may also place data 

into the internal connections within this layer, overriding the normal data flow. The nth layer 

remains unaware of the new layer above it, and runs as usual, except for the occasional 

intervention by the higher layer to make the refinements to its behaviour necessary for a higher 

level of competence. This is the essential characteristic of Subsumption (see Figure 2-8). 
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Figure 2-8: Subsumption architecture 

A successful implementation of a layer of control is a functional robot exhibiting the new 

competence and with all other previously implemented competences retained. 

2.4.4 Implementation of Individual Layers 

How each layer is implemented is a separate issue to the main thrust of the Subsumption 

architecture specified above. The only constraint is that the implementation should allow higher 

layers to examine and modify internal dataflows in lower layers. Brooks [[7]] chooses to build 

layers from fixed topology networks of Augmented Finite State Machines, with communication 

via connecting “wires” (see Figure 2-9). The wires, since they carry dataflow, are the elements 

that higher layers interact with to enhance lower layers. The “Augmented” in Augmented Finite 

State Machines denotes that the state machines are not constrained to be pure state machines 

in the mathematical sense, but are permitted some internal storage (in the form of registers) and 

timers. 

For a higher layer to examine data flow in a lower one, it attaches an extra wire to whatever it 

wishes to monitor. There are a number of schemes for overriding normal data flow. An extra 

wire can terminate at the target of another wire (an “input site”). If any message flows in the 

extra wire, it inhibits any message along the other wire for some pre-determined time (the 

“characteristic time” of the system). An extra wire can also terminate at the source of another 

wire (an “output site”). Any message flowing in the extra wire will not only inhibit the other 

wire, but will be inserted on to it, suppressing and replacing the normal dataflow. A variant of 

this type of connection appears in later versions of Subsumption [[9]], called defaulting, 
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where priority is given to the original wire, with dataflow from the new wire only being 

accepted when there is no data on the original wire for a given time. 

Augmented Finite
State Machine

s

d i

Suppressing

Defaulting Inhibiting

Inputs Outputs

 

Figure 2-9: The use of wires in Subsumption 

2.4.5 Development Strategy 

Brooks strongly advocates a particular approach to the development of a Subsumption system 

beyond the specific details of levels of competence and layers of control [[7]] :- 

• Implement the control system incrementally. 

• Use “data driven” design. 

• Avoid using simulation. 

• Avoid using a shared world model. 

Each layer should be implemented in turn, and debugged until flawless before proceeding to 

the next higher layer. This approach ensures that all bugs must belong to either the layer being 

added or the interface between that layer and the previous one. This incremental testing 

method is a software engineering principle recommended generally, not just within the specific 

context of robot control systems. 

The control system should be “data driven” (reactive rather than deliberative). This means that 

the action of a part of the control system should be primarily a consequence of events or 

opportunities in the environment, and only secondarily dependent on interactions with the rest 

of the control system. Such a system avoids dependence on a centralised planner, since 

planning under these conditions will occur in a distributed fashion. 
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There should be no simplified test environments. Robots using Subsumption should be 

embedded in the real world, and interact with it directly, without depending on human 

assistance. 

No central representation or “World Model” should be used. Brooks has claimed that in a 

Subsumption system, no variables should be instantiated, no rules matched, and no choices 

made. Certainly if representation is used, it should be distributed, and never shared between 

layers. 

While Subsumption need not necessarily be implemented in the form of finite state machines, 

many of the criteria Brooks associates with his particular implementation should be retained. 

The implementation should avoid the use of global data and should not require “dynamic 

communication”– when a message is sent, there should be no need of an indication as to 

whether it has been received or not. This last point is a pragmatic one geared towards 

facilitating a fast control system. 

2.4.6 Practical Arguments for Subsumption 

Before examining the philosophical arguments for and against Subsumption, it is worth looking 

at its practical consequences. The most significant aspect of Subsumption is its incremental 

nature. This is the primary factor in its success in producing complete functioning physically 

realised robots. 

Consider a robot in its initial state without any control software present. At this point the robot 

is essentially a hardware “trolley” carrying a collection of sensors and actuators. If signalled to 

move in a certain direction, it will do so, until it hits something and breaks. 

Suppose a conventional AI module is added to the raw robot. A natural one to implement first 

is Motor Control. With the addition of this module, the nature of how the robot is commanded 

will have changed; it will now be easier and at a higher level of abstraction. But the nature of 

the robot has not changed. If commanded to move in a certain direction using the new 

interface, the robot will again move forward until it hits something and breaks. If another AI 

module is implemented also, Task Execution for example, then the robot becomes even easier 

to control. Now it could be given a more complex path to follow rather than moving in a 

straight line. But it will still smash into any obstacle it meets- it can’t get any smarter until the 

Planning module is implemented, and that can’t be done until the modules working from 
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Perception up are implemented. In short, the robot remains just as brittle as its raw hardware 

until all the AI modules of its control system have been implemented. Before anything works, 

everything must work. 

If instead a Subsumption layer were to be added to the raw robot, the nature of the robot 

changes immediately. The most natural layer to add first is the Obstacle Avoidance module. 

Once this is added, if the robot is signalled to move in a given direction it will do so, until it 

meets something and stops to avoid a collision. The robot has become “smarter” immediately. 

As each layer is added in turn, the robot is given an increasing vocabulary of behaviours. But it 

is functional at each stage- the robot starts working from the time the first layer has been 

added. 

2.4.7 Philosophical Arguments for Subsumption 

Philosophically, Subsumption is rooted in a rejection of the Symbol System Hypothesis, or at 

least of the main body of work which developed in AI under its influence. 

The Symbol System Hypothesis 

This hypothesis asserts that “intelligence” arises through the manipulation of symbols in a 

domain-independent manner, where the meaning of the symbols is irrelevant to the reasoner 

[[10]]. “Meaning” enters the picture only when observers of the system identify symbols in the 

system with some corresponding entity within their own experience. The symbol system 

hypothesis is an implicit assumption behind much work in Artificial Intelligence. When applied 

to robotics, it is implicit  in the hypothesis that perception and action, which are by their nature 

non-symbolic, should have symbolic interfaces so they can be reasoned about. Brooks 

suggests that this interface between the symbolic and the non-symbolic is critical, and has been 

mishandled by conventional AI. To reason at a certain level of abstraction, a system of 

symbols representing entities and their relationships at that level of abstraction is required. It is 

tempting to assign the task of generating such a representation to the pre-symbolic part of the 

system, i.e. the interfaces to the real world. But in Brooks’ opinion this whole emphasis on 

abstraction from the real world is damaging because:- 

• It directs researchers towards the elusive goal of building a general purpose system to 

deliver complete descriptions of the world in symbolic form, rather than more realistic task 

driven perception systems such as active vision [[10]]. 
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• It builds into the system the assumption that knowable objective truth exists, with much 

added complexity needed to work around that assumption so the robot can deal with 

incomplete information about complex environments [ibid.]. 

• Brooks believes this process of abstraction is the difficult part of the problem posed by 

robotics, and that there is no clear dividing line between it and reasoning. Hence 

considering it just an “interfacing issue” is misleading. That this is so is attested to by the 

wealth of anecdotal evidence of robot simulators (which don’t have to perform this 

interfacing) that performed fine but proved utterly incapable of being generalised to working 

in the real world [[11]]. 

Assuming that the state of the world can be known completely by a reasoning entity is 

acceptable when, for example, the entity is a compiler and the “world” is its host operating 

system. It is not so realistic when the entity is a robot, operating in an environment much more 

complex than that experienced by any disembodied software entity, and of which it can only 

sense a small slice at a time. Hence, for robots, the Symbol System Hypothesis, although not 

necessarily invalid, has proved misleading. In replacement, Brooks advances the Physical 

Grounding Hypothesis. 

The Physical Grounding Hypothesis 

The Physical Grounding Hypothesis states that “to build a system that is intelligent it is 

necessary to have its representations grounded in the physical world” [[10]]. The system must 

be connected to the real world- only embodied entities can be physically grounded, unlike with 

symbol systems. Physical grounding requires that all the robot’s knowledge must be extracted 

from physical sensors and that its goals must eventually be expressed as physical action. 

Brooks places great importance on embodiment. He suggests that concentrating on abstract 

“reasoning” is missing the fundamental nature of intelligence. The evolution of insects from the 

first single-celled entities took about 3 billion years; from there to the immediate predecessors 

of the great apes took about 430 million years; and from there to present day humans just 

another 18 million years. This last step in which “human intelligence” (language, reason, 

problem solving behaviour, etc.) developed seems small compared with the time taken to 

evolve to just before that level, and suggests that the more general type of intelligence 

concerned with simply existing and surviving in a complex world is much more important, and 
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much harder. By enforcing Physical Grounding and requiring robots to be physically realised, 

Brooks hopes to advance research in this neglected area which is often just “abstracted away” 

into non-existence. He believes that simulated robots have their intellectual work done for 

them by those creating their input, and that a fundamental paradigm shift is necessary for a 

robot that can cope for itself with the unpredictability of the real world seen through noisy, 

inaccurate sensors. 

Brooks enumerates the following key aspects of his work that he views as crucial for making 

genuine progress in robotics research:- 

• Situatedness- robots should deal with the real world, not with abstract representations of 

it. 

• Embodiment- a robot is part of its environment; its actions change the environment and 

this effect is fed back to its sensors. 

• Intelligence- the robot, as part of its environment, appears intelligent to an observer. That 

intelligence lies not only in the robot, but in its situation in the environment, the 

characteristics of its sensors, and how the robot’s physical form interacts with the world. 

• Emergence- external action may not be identifiable with any concrete entity or cause 

within the robot’s control system, and instead the action may emerge from interactions of 

components both between themselves and with the world. 

Brooks summarised the conclusions of his robotics research as follows:- 

We have reached an unexpected conclusion (C) and have a rather 

radical hypothesis (H) 

C  When we examine a very simple level intelligence we find that 

explicit representations and models of the world simply get in the way. It 

turns out to be better to use the world as its own model. 

H  representation is the wrong unit of abstraction in building the 

bulkiest parts of intelligent systems.” 

2.4.8 Experiences with Subsumption 

MIT Robot “Allen” [[10]] 

This early robot implemented obstacle avoidance, random wandering, and simple exploration 

where the robot targets a distant area and tries to reach it. Despite the robot’s simplicity, it 
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exhibits all the hallmarks that have come to be associated with Subsumption-based robots- it 

is robust, autonomous (it does not need to be fed external goals), and solves tasks using a 

hierarchy of behaviours. 

MIT Robot “Herbert” [[10]] 

This robot was designed to wander through a lab and pick up empty soda cans. It did this in 

an interesting way, where the sequencing of behaviours needed to pick of a can was produced 

by environmental cues rather than an explicit internal sequencer. This allowed it to take 

advantage of opportunities in the environment by skipping behaviours that were redundant, 

and made it easier to recover when the unexpected happened because so few expectations 

were built into the robot. This is difficult in conventional AI, but very natural under 

Subsumption. 

MIT Robot “Toto” [[8]] 

Toto, like all of the Subsumption robots at MIT, implemented obstacle avoidance and 

wandering, but also demonstrated boundary following, landmark detection, map construction 

and path finding. It kept track of where it was by building an internal “map”, so it could find its 

way back to a specific area if commanded to do so. The nature of this map-building is 

interesting, given the prohibition within Subsumption against building world models. First, 

landmarks are detected by a group of behaviours each of which monitors the robot’s motion 

and the state of its sensors to detect a specific set of conditions that identify a particular 

noteworthy feature such as a “corridor”. When one such landmark is detected, an empty 

“behaviour-shell” is associated with it. In effect, the robot acquires a new behaviour 

specifically geared to identifying that landmark, and new “behaviour-shells” will only be 

assigned if no existing behaviour recognises the robot’s current location. Behaviours 

constructed in this way are attached to each other to reflect their observed topological 

relationships. The resulting collection of behaviours acts as Toto’s map. Toto can plan a path 

towards a particular target by activating the behaviour associated with that target. The 

activation will spread through the topological links between behaviours until it reaches the one 

associated with the robot’s current position, and from there the robot need only trace the trail 

backwards to arrive at its target. This method of map construction and use makes use of 
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“active representation”- it is procedural and distributed, rather than declarative and centralised 

as in conventional AI. 

The Nerd Herd [[8]] 

This experiment in group behaviour consisted of 20 mobile robots cooperating in collecting a 

scattered set of “pucks”. In building the robots’ control systems, the idea of “basis behaviours” 

was introduced, and the Subsumption methodology was extended to facilitate the grouping of 

such behaviours into composite behaviours. Two types of grouping were used, direct and 

temporal. Direct combination summed the effects of the behaviours per actuator, while 

temporal combination switched between behaviours, with only one being active at a time. The 

structure these ideas lead to is good for multi-robot scenarios where robot’s behaviours 

interfere with each other. It is also a suitable foundation on which to apply learning, where the 

robot learns what behaviours are useful under what conditions. 

The Reactive Accompanist [[12]] 

The reactive accompanist is a program whose goal is to derive the chord structure of a melody 

(played live) in real time, mimicking the ability of musicians to “play along” unfamiliar melodies. 

In contrast to the examples of Subsumption given so far, the accompanist is not a traditional 

robot, although it has many of the properties of one. This program is interesting because it is 

implemented in a totally different software environment to the MIT robot series, yet retains all 

the key features of Subsumption. 

2.4.9 Limitations of Subsumption 

Brooks originally proposed that a Subsumption architecture be comprised of a hierarchy of 

control layers where each layer is capable of overriding all inferior layers at any time and 

taking control of the robot for as long as it wishes [[7]]. It then relinquishes control to 

whatever inferior layer was previously in command of the robot. The layer which “subsumes” 

control of the robot at any point need have no knowledge of what is currently controlling the 

robot at that point, and similarly the “usurped” module need have no information about the 

“subsumer”. 
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It can be argued that this scheme has a number of weaknesses:- 

1. In practice it has been found that this very loose coupling between layers is not sustainable. 

Layers often need to pass information back and forth, but “pure” Subsumption control only 

allows this on an ad-hoc basis. 

1. The division between layers is quite rigid. Thus, if a layer 2 competence decides that it 

wants to control the robot, a layer 0 competence cannot resist it. Such a decision is 

potentially hazardous if the layer 0 competence has abilities that the layer 2 competence 

neglects. If layer 2 does not understand the behaviour required to retreat in the face of an 

on-coming truck, but layer 0 does, layer 0 cannot stop disaster from occurring. This leads 

to the requirement that each layer implement the full competence of all lower layers in 

addition to its own tasks, which is undesirable because it wastes resources and makes it 

difficult to alter a given competence at a later stage. The typical solution adopted by the 

MIT robots is for higher layers to “grope around” in the internals of their subordinates- 

which is also undesirable, this time from a software engineering standpoint. The difficulty 

seems to arise from the rigid and early decision about what competences belong “above” 

others. 

 

2.5 Hybrid Robot Architectures 

Reactive robot architectures avoid the need for explicit planning, at least for basic robot 

behaviour. At some level, however, it may prove beneficial to integrate AI-inspired modules 

into the robot for conventional goal-oriented behaviour (although Brooks denies this). 

Unfortunately, traditional planning methods are proving difficult to apply, as they are just not 

designed for use in “situated agents” (objects that are in continuous interaction with the 

physical world). 

The most straightforward form of plan to generate and execute is a simple sequence of 

instructions, each of which is executed in order. Such plans are applicable to domains where 

operations never fail, or where it is acceptable for an entire plan to fail if one of its steps fails. 

This clearly does not correspond to a real unconstrained environment, but will correspond to 

the environment of an industrial robot (which explains the success of such robots). 
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There are two basic ways to improve on such plans. It is possible to retain the plan-making 

process as it is, but to use a more sophisticated executive or plan-user which follows the plan 

closely but has greater freedom in the detailed actions it follows. An example of this is to 

formulate a plan as if it were controlling a robot entirely, but to add reactive control to the 

robot so it can, if necessary, suspend plan execution to navigate small unforeseen obstacles 

etc. Such a capability is a definite improvement. However the robot is still limited by being 

strongly committed to a single inflexible plan. 

A second approach is to change the nature of the plan, by enhancing it to take account of the 

possible failure of a step and provide alternative responses based on the various failure modes. 

Although such enhancements can be continued ad infinitum and so would seem to be capable 

of giving arbitrarily sophisticated behaviour, in practice it is difficult to second-guess the 

environment, since the number of possible results of any action is exponentially large. 

Given the problems with these two approaches, a large number of alternative mixes have been 

developed.  A sample of these will now be described. 

 

2.5.1 “Reactive Deliberation” Robot Architecture, Sahota [[13]] 

This robot architecture tries to integrate reactive and goal-directed activity. The control system 

is built from two distinct entities, an Executor and a Deliberator, with the only essential 

difference between them being that the two modules operate on different time-scales (see 

Figure 2-10). The deliberator decides what to do and how to do it, while the executor 

interacts with the environment in real-time. This is the basic idea between a large number of 

hybrids combining conventional AI with reactive approaches. In effect, the reactive part of the 

robot is used as a form of “sub-conscious” for more reflexive tasks with local solutions, while 

the conventional deliberative component acts as the “conscious” goal-oriented component. 
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Figure 2-10: Reactive Deliberation 

• Executor- this is a collection of “action schemas”. Action schemas are units that, when 

provided with a set of run-time parameters, can accomplish specific tasks. The tasks 

themselves are independent of the robot’s goals. The Executor partition of the system runs 

in real-time. 

• Deliberator- this is a collection of “behaviours”. Behaviours in this context are units that 

select an action schema, compute suitable run-time parameters to complete the schema, 

and make a “bid” based on a metric of the appropriateness of the schema given the robot’s 

goals. Bids from different behaviours are compared, and a single action schema is selected 

for execution based on the results. The Deliberator partition operates on a longer timescale 

than the Executor. 

The name of this robot architecture sounds like an oxymoron, given that reactivity and 

deliberation are so fundamentally different, but it is consistent with Artificial Intelligence 

nomenclature (e.g. “Reactive Planning”). This architecture has been used to build the control 

system of a pair of soccer-playing robots. 

One constraint of the architecture is that it requires a strong system partition between modules 

implementing actions and modules that choose actions and the parameters for the actions. The 

first set of modules is run at real-time speeds, the other at a lower rate. This two-tier division 

requires all modules to be run at either of the two rates, with no in between. It is more useful if 

modules can be graded along a continuous spectrum from fast/reactive to slow/deliberative. 

Another constraint is that the architecture is built around the fundamental requirement that only 

one action is in progress at a time- so actions cannot be combined or actively compete. 
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2.5.2 GLAIR (Grounded Layered Architecture with Integrated Reasoning), 

Hexmoor [[14]] 

This architecture divides the robot’s control system into three levels (see Figure 2-11) :- 

• Knowledge Level- this embodies deliberative modules, and deals with plans, beliefs, 

goals etc. Slower response time than other levels, but can implement complex control. 

• Perceptuo-Motor Level- this embodies reactive modules that are in a tight interaction 

loop with the environment. Good response time, without complex control. 

• Sensori-Actuator Level- this embodies reflexive modules, with very high response time, 

and very simple control. 

Sensors 

Sensors 

Sensori-Actuator Level
(processes)

“unconscious”

Perceptuo-Motor Level
(processes and representations)

“unconscious”

Knowledge Level
(processes and representations)

“conscious”

Actuators 

Actuators 

 

Figure 2-11: GLAIR Architecture 

This is similar to the Reactive Deliberation architecture in that the system is partitioned into 

divisions operating at different speeds (in this case there are three divisions instead of two, 

allowing more flexible trade-offs to be made between speed and deliberation). Concurrency is 

allowed at the reactive and reflexive level, and conflicting actuator commands can arise. 

Therefore the architecture must provide an arbitration scheme for resolving such conflicts. The 

particular scheme used is to give commands from reflexive modules priority unless explicitly 

suppressed. This method of arbitration is less sophisticated than that allowed by Subsumption. 
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And, like the “Reactive deliberation” architecture, partitioning requires global decisions about 

speed versus deliberation trade-offs. 

 

2.5.3 ACBARR (A Case BAsed Reactive Robotic system), Moorman&Ram [[15]] 

This combines reactive techniques with case-based reasoning (see Figure 2-12). This scheme 

uses a reactive controller similar to that described for the “reactive deliberation” architecture in 

Section 2.5.1 (page 28), but the rest of the system is more sophisticated, providing support 

for:- 

• Fine-tuning control parameters based on the success or difficulty a reactive “schema” is 

having in the environment. 

• Recognising that a change in the environment makes a different set of parameters and active 

schemas appropriate, using a library of useful parameter/schema combinations. 

A
ctuators 

Sensors

Environmental

Monitor

Failure
Identifier

Reactive Controller
(schemas)

Motor
Control

Case
Selector

Adjustment
Module

Case Library

 

Figure 2-12: ACBARR 

It is difficult to make a fair comparison between this architecture and those enumerated 

previously in this chapter, since it is quite different in its overall approach. If a “case” is thought 

of as an overall behaviour or strategy of the robot, then the criticism can be made that 

strategies cannot be combined in this architecture (although lower-level schemas can). Again 

this architecture draws a sharp artificial partition between the robot’s actions and how those 

actions and their parameters are chosen.  
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2.5.4 Action Selection Network, Maes [[16]] 

This technique for building “situated agents”1 allows planning-like activity to occur without the 

presence of a classical controller. Instead, the “competence” modules (which are the objects 

of planning) are connected by a network which spreads an “activation level” dynamically 

between the modules in a way that combines deliberation with speed. Philosophically, this 

system is based on the notion that you should not “tell” the robot how to achieve goals, but 

instead let it find a control loop involving both the system and the environment which will 

converge towards the goal. Planning is therefore a situated dynamic activity. 

The action selection network is a collection of “competences” which are individually 

characterised by enumerating the following:- 

• A “precondition list” of propositions that must be true before the competence can be 

activated. 

• A threshold specifying the activation level a competence must reach before it can be 

activated. 

• An “add list” of conditions/propositions that become true after the competence has been 

activated and completed its action.  

• A “delete list” of conditions/propositions that become false after the competence has been 

activated and completed its action.  

A network is constructed of “successor”, “predecessor”, and “conflicter” links based on these 

descriptions. 

• For every proposition in an “add list” of one competence and a “precondition list” of 

another, a successor link is added from the former competence to the latter. This models 

the fact that the first sets up a precondition of the second. 

• A predecessor link is added everywhere there is a successor, but reversed. 

• For every proposition in a “precondition list” of one competence and a “delete list” of 

another, a conflicter link is added from the former competence to the latter. This models the 

fact that the first is made unexecutable by the second. 

                                                 
1 The term “agent” is very broad, and in general usage it refers to any software entity that is in some sense 

autonomous. Situated agents are software entities with a physical embodiment- i.e. robots.  
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Once the static network has been constructed, it is dynamically and continuously updated. If 

all the propositions in the “precondition list” of a competence have been met, then it is 

“executable”- there is nothing preventing it from being executed, except the presence of other 

similarly executable competences with higher activation energy levels. 

• If a proposition in the “precondition list” of a competence is observed to be currently true, 

activation energy is inserted into that competence. 

• If a proposition in the “add list” of a competence is a global goal of the robot, activation 

energy is inserted into that competence. 

• If a proposition in the “delete list” of a competence is a protected goal of the robot (one it 

has completed and does not want to undo), activation energy is removed from that 

competence. 

• If a competence is executable, then a fraction of the competence’s activation energy is 

spread to its successors- this allows the system to anticipate in advance the consequences 

of a competence being activated. 

• If a competence is not executable, then a fraction of the competence’s activation energy is 

spread to its predecessors- this allows the system to encourage suitable competences to 

work to make a desirable competence executable. 

• Every competence decreases the activation energy of its conflicters by a fraction of its own 

activation energy (with provision to prevent mutual inhibition). This allows competences to 

try to disable other competences that would undo their preconditions. 

• A decay function is used to keep the overall activation level constant. 

With the action selection network running, all that remains is to choose the “best” (highest 

activation) executable competences at any given time and activate them. The network can be 

tuned using various parameters controlling the spread of activation.  

The major constraint of this system is that it implicitly requires that all actions of the system can 

be described symbolically in before-and-after terms. So although action selection networks 

move away from classical planning to an approach that utilises the robot’s physical 

embodiment, they still retain the Symbol System bias. 
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2.5.5 Reactive Action Package (RAP) System, Firby [[17]] 

The RAP system facilitates the reactive execution of symbolic plans (see Figure 2-13). Plans 

or “tasks” are implemented by giving a list of methods for performing the task, along with the 

conditions under which the methods are useful. Methods are either primitive actions or a list of 

sub-tasks. Suitable methods are attempted sequentially until they either finish or fail. On failure, 

alternate methods are tried in turn. Such a task description is called “situation driven”.  

Sensors

A
ctuators

Active Sensing
Processes

Behaviour Control
Processes

RAP Executor
Tasks

 

Figure 2-13: The RAP System 

In the original RAP system, actions were assumed atomic- i.e. that they had a well-defined 

finish and that success and failure of the actions were equally well defined. It was also assumed 

that it is appropriate to complete one action before moving on to another. Both of these 

assumptions are limiting, so later versions of the system moved towards removal of the idea of 

“success” and “failure”, and a change of focus from process steps to time-extended activities. 

This architecture again retains the need to operate at a symbolic level, with all the difficulties 

that entails (see Section 2.4.7, page 22). 

 

2.5.6 ATLANTIS, Gat [[6]] 

This is a combination of a reactive control substrate with a classical planning system. Planning 

is seen as an attempt to transform one world state to another using “operators” which map on 

to associated physical actions when executed. In the classical approach, operators are 

executed in an atomic fashion, so there is a strict one-to-one correspondence between 
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operators and actions. This is not amenable to continuous, overlapping, interruptible actions. 

ATLANTIS reallocates the role played by operators to “activities” and “decisions”. Decisions 

are operators, but do not directly affect the world. Instead they start or stop “activities”, which 

in turn affect the world. Activities are potentially long-running processes, and since atomicity is 

no longer an issue there may be several activities in progress at any time, interleaved or 

executing in parallel.  

ATLANTIS has three main components:- 

• The controller- this is concerned with activities that are mostly reactive. “ALFA” (A 

Language For Action) [[18]] was designed to aid the engineering of this component. 

• The sequencer- this is concerned with controlling sequences of both physical activities 

and deliberation. It is designed around the idea of “cognisant failure”. Rather than trying 

to design algorithms which never fail, it is of more practical worth to build algorithms which 

may fail but will detect that they have failed, so the system can take corrective action. The 

sequencer manages the activation of modules in the controller, monitors them, and 

providing them with suitable parameters for their operation. Decisions are based on tasks 

the robot has to perform. Like in the RAP system, tasks are described as a list of methods 

for performing the task, along with the conditions under which the methods are useful. 

Methods are either primitive actions or a list of sub-tasks. Tasks are attempted sequentially 

until they either finish or fail. On task failure, alternate methods are tried in turn. A resource 

list is attached to all activities to prevent conflict. 

• The deliberator- this performs computationally expensive, long term tasks such as 

planning and maintaining a world model. Such computations are initiated by the sequencer 

and may be terminated by it if resources are scarce. The deliberator acts as an advisor only 

to the sequencer, with overall control of the robot remaining with the sequencer. 

ATLANTIS uses the idea of “plan-as-communication” rather than “plan-as-program” 

[[19]]. 
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The ALFA language used in the controller is described in some detail in Section 2.6.1 (page 

37). It is similar in ways to the language used with Subsumption. In particular, when priorities 

are used to resolve conflicts, those priorities are hard-coded as with Subsumption2. 

 

2.5.7 The Architecture Control Kit, Rosca [[20]] 

This hybrid reactive/deliberative architecture is built from:- 

• “Objects”- these are declarative entities, containing attributes, with knowledge sources 

attached, and connected with other objects. Objects are used to represent input sensors, 

and system “beliefs” in fixed symbolic form. 

• “Knowledge Sources”- these are procedural entities, specifying how objects are 

processed. These can act like rules in a rule-based system, and may be expressed in the 

form:- 

WHEN (opportunity-test) IF (appropriateness-test) THEN (body)  

If the value of an attribute changes, all knowledge sources connected to the object the attribute 

belongs to are activated. These knowledge sources may affect other attributes in the same or 

other objects in turn, causing a cycle to occur. This is the main execution loop. 

The main advantage of this simple architecture is that making knowledge sources act in parallel 

is straightforward, and is just a question of ensuring they do not affect the same attributes. It is 

a conceptually simple architecture, combining general purpose computation and representation 

with a “triggering” system reminiscent of PLC devices for controlling industrial machinery- very 

much a reactive idea. 

Again, this architecture is symbol-oriented, and thus difficult to ground. 

                                                 
2 The priority system in ALFA is arguably an improvement on Subsumption, in that the hard-coded priorities are set 

at the point of connection rather than at the source, which means that the information for resolving conflicts is 
available locally - this is better from a software engineering viewpoint. 
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2.6 Review of Languages for Robot Architectures 

Some of the architectures discussed above have languages associated with them to support 

some aspects of their organisation and structures. Examples of these are described in the 

following sections. 

2.6.1 ALFA (A Language For Action) [[18]] 

This language is used in the reactive controller partition of ATLANTIS (see Section 2.5.6, 

page 34), but can support other architectures such as Subsumption. A program in ALFA 

consists of a set of “modules” connected by “channels”. 

• A module is a control element that transforms a set of inputs to a set of outputs using either 

dataflow or state-machine computations. Dataflow computations have no history (and are 

therefore constant time functions), while state-machines may have history (and so may have 

time dependencies). Modules consist of internal registers, timers, and a set of methods that 

are tried in turn on failure. 

• A channel is a control element that combines a set of inputs into a single output using purely 

dataflow computations. Inputs and the output come from and go to modules or the outside 

world. There are four ways inputs can be combined:- 

A) By selecting the minimum 

A) By selecting the maximum 

A) By selecting the average 

A) By selecting the highest priority input that is active, given a fixed priority ordering of 

the inputs 

The idea of implementing a control system using objects corresponding to “channels” and 

processing “modules” is used in this thesis, but with the semantics of the channels considerably 

modified (see Section 3.3.1, page 48). 
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2.6.2 The Behaviour Language/”New Subsumption”, Brooks [[21]] 

This language is used to specify the augmented finite state machines needed in Subsumption. 

The smallest procedural unit  is a “real-time rule”, equivalent to reactive condition ⇒ action 

rules [[5]]. These appear either in isolation,  or grouped into “behaviours”.  

Rules have two forms:- 

• Whenever- a rule of this form continuously monitors for a condition, and executes a 

procedural body if it becomes true. 

• Exclusive - this type of rule is composed of a set of Whenever rules, each of which is 

continuously monitored. As soon as one succeeds, it is committed to and the others are not 

checked again until the successful rule’s body terminates. 

When a number of rules are collected together to form a “behaviour”, a list of inputs and 

outputs to that behaviour are specified. “Wires” are one method of communication between 

behaviours. A wire can transmit messages from a single source to multiply targets. Or, instead 

of transmitting copies of a message to its target, it can suppress, inhibit, or default its output. 

• Suppress- sends messages to target and blocks messages from any other source to target. 

• Inhibit- blocks messages from any source to target. 

• Default- messages are sent to target if no messages have been received from another 

source. 

Behaviours can be active or inactive. When inactive, rules tagged as “haltable” are stopped, 

and rules tagged as “inhibitable” are left running but have their outputs inhibited. Each 

behaviour has an associated “activation level” and “activation threshold” used to determine if it 

should be active. Activation levels can be managed in two ways:- 

• The Hormone System- this uses entities called “conditions” which have an activation level 

that can be “excited” by any rule, and decays with time when not excited. Functions of 

these conditions can be used to control the activation levels of behaviours. 

• Spreading of Activation- this uses an action selection network [[16]], as described in 

Section 2.5.4 (page 32).  

The work described in this thesis tackles many of the same issues as those addressed in this 

language, such as the various ways “wires” can be connected, and how activation of modules 

should be managed- but the solutions advanced are quite different (see Chapter 3). 
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2.7 Review of Cartographic Schemes for Robot Navigation 

In the following sections, approaches in the literature to map building and use are discussed. 

This review is needed in Chapter 4 as background for the cartographic issues associated with 

the sentry application.  

2.7.1 Grid-based and topological methods  

If the robot has very accurate knowledge of its position, it can construct accurate maps simply 

by representing the environment as a “grid”, rather like a chess board. When a robot’s 

estimate of its position is not perfect, as is normally the case, this representation scheme 

breaks down because it has no way to cope with uncertainty in the motion of the robot [[48]]. 

“Topological” maps try to overcome this difficulty by abstracting away from the environment. 

They try to represent which regions are connected to each other, rather than trying to capture 

the exact shape of objects. Such maps are much simpler to plan with. This type of map 

representation is useful for robots with long-range sensors, such as sonar or vision sensors 

[ibid.]. As will be argued in Section 4.3 (page 83), it is not useful for robots with proximity 

sensors alone, because such a robot cannot detect topological features in the environment 

directly. 

 

2.7.2 Potential Fields, Arkin [[22]] 

In this system, all the entities in the robot’s environment are seen as generating individual 

“potential fields” which, when evaluated and summed at the robot’s current position, give the 

direction and speed at which the robot should move. Each field is controlled by a “motor 

schema”. As an example, for each static obstacle known to be in the environment, an “avoid-

static-obstacle” motor schema is instantiated which gives strongly repulsive vector 

contributions when the robot is near the obstacle they are associated with (see Figure 2-14). 
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Figure 2-14: Potential fields of sample motor schemas (simplified) 

The motion of the robot is determined by summing the required vectors of all motor schemas 

at its current position. A “noise” schema is added to remove problems of local minima. The 

actual global path the robot is to traverse is never calculated. Cartographic information in the 

form of a static map of the robot’s environment is used to construct a set of linear path 

segments for a particular robot mission, then behaviours and schemas appropriate for 

implementing this path are chosen. The actual path is evaluated dynamically through the 

interaction of motor schemas as the robot moves. 

 

Figure 2-15: Path of robot resulting from combined potential fields 



Background  Chapter 2 

 41 

This system allows a reactive robot to negotiate complex terrain. The overall path followed 

can have the appearance of being the result of elaborate planning, but in reality arises from 

purely reactive decision making (see Figure 2-15). This system is suited to situations where the 

environment is static and all the obstacles within it have been mapped. It is not ideal for 

dynamic situations or situations with incomplete information. 

 

2.7.3 Internalised Plans, Payton [[23]] 

When plans are constructed using state-space search, the planning process generally finds an 

optimal path, returns this as the result, and if the assumptions under which the planning was 

done change, the process is repeated from the beginning. In particular, if the robot is forced to 

make even a minor deviation from the plan, it can only recover by generating a new plan for its 

changed circumstances. Internalised plans offer a way to avoid this. In the planning process, 

the cost from various intermediate points to the goal will typically be considered, and then an 

“optimal” route selected to minimise the cost. Instead of committing to such a route, 

internalised plans store this costing information for all points in the map, then construct a 

gradient field showing the optimal direction to move in when at a given point (see Figure 2-

16). Now the robot always knows the best direction to move in, no matter where it happens 

to be. To reach the goal from any point, it simply needs to follow the gradient field. Because 

the field is generated from cost information, the path it directs the robot along will be optimal, 

rather than a heuristic guide as for potential fields (see Section 2.7.2). It also does not have the 

problem of local minima possible with potential fields. 
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Figure 2-16: Internalised plan, gradient field 

Figure 2-16 shows the gradient field associated with an example of an internalised plan. Note 

that the vectors are the result of planning, so for example the vectors at A, B or C show true 

optimal direction for the robot to move in at that point. This direction could not be calculated 

from purely local considerations, and so is superior to potential fields. The diagram shows that 

the technique has the useful feature that if the robot deviates from the optimal path to its goal, it 

can immediately continue to move towards the goal again without having to stop and re-

calculate its plan. This is important for good real-time performance, since it allows the robot to 

make diversions around unforeseen obstacles and then return without interruption to 

approaching its target. One drawback of this technique is that it involves more computation 

than either the potential field approach or traditional planning. Also, if the target moves, the 

field must be recalculated. If an autonomous robot was entirely dependent on its internalised 

plan, then the burden of generating it whenever the target moved would threaten the robot’s 

ability to operate in real-time. Internalised plans are best used as “advice”- information that 

improves the robot’s behaviour when it is available but which the robot can function without. 

When used this way, the plan can be constructed by a background task without freezing the 

robot. The technique developed in this thesis for target-seeking has some similarities to 

internalised plans, and is described in Chapter 4. 
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2.8 Summary 

This chapter has reviewed the literature relating to robot architectures and robot cartography. 

Representative examples of work from both fields have been presented- both are too large for 

exhaustive coverage. The review of robot architectures will serve as background to Chapter 3, 

in which a new architecture is developed that extends and improves on comparable work. The 

review of cartography provides context for Chapter 4, in which a cartographic system for a 

robot with proximity sensors is developed. 
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3. Lateral 

This chapter presents Lateral, a novel behaviour-based robot architecture. Lateral extends the 

popular Subsumption architecture developed by Brooks [[7]]. It allows behaviours to be 

combined in a much more flexible way than is possible in Subsumption. The techniques used to 

allow this are examined here, and a number of comparative examples are presented. Also 

discussed are practical issues concerning the problem of implementing the Lateral architecture 

in a form that is “light-weight” enough to be used with lower-end robots with limited memory 

and simple on-board processors. The architecture developed in this chapter is used in Chapter 

5 to build a specific robot control system. 

3.1 Overview 

Lateral is a behaviour-based robot control architecture. In other words, the robot’s control 

system is composed of a collection of modules called “behaviours” that operate in parallel (see 

Section 2.4, page 15). This contrasts with the arrangement favoured by traditional 

architectures, where the control system is divided into a sequence of modules that 

progressively transform sensor input through various representations until actuator output is 

produced (see Section 2.2, page 9). As a consequence, behaviours all have access to sensors 

and actuators, rather than being “sandwiched” between modules that abstract away from 

perception and motor control. Behaviour-based architectures must provide a scheme to 

resolve conflicts in the case of different behaviours attempting to control the same actuator. It 

is here that Lateral diverges from Subsumption. The Lateral architecture does not require that 

behaviours be strictly layered in a rigid hierarchy to determine which should take precedence 

in the case of conflict, as Subsumption does (see Section 2.4.3, page 18). Instead it 

implements a dynamic priority system where the priority of a given behaviour is affected by the 

priority of any other behaviours that make use of it for their own purposes. As the demands of 

behaviours on each other change, the flow of priority between them changes to reflect that, 

and the effective precedence hierarchy of the behaviours in the control system alters 

dynamically. 
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Figure 3-1: Lateral architecture 

In Lateral, as the priority of a behaviour rises, its ability to exert influence over other 

behaviours increases. In Figure 3-1, the sea is used as a visual image to suggest the analogy of 

“waves” of priority lifting behaviours up to higher precedence. As one behaviour rises on a 

“wave” of priority, it can pull any behaviours it uses up with it to this higher level of priority by 

passing on its priority to them. It can do this selectively, by choosing how much of its priority it 

is willing to pass on or “sponsor” other behaviours with. The idea of sponsorship provides a 

principled way to resolve conflicts between groups of competing or co-operating behaviours. 

The architecture is thus more scaleable than Subsumption, which does not lend itself to 

managing groups of behaviours, as will be discussed in Section 3.4, page 59. This is the main 

benefit of Lateral- it extends the range of application of behaviour-based systems by improving 

their scalability (see Figure 3-2). 

The ideas introduced here are presented in more detail in the sections that follow, with 

numerous examples to illustrate the nature of Lateral’s priority system. 
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Figure 3-2: Lateral in relation to other robot architectures 

3.2 Conflict Resolution in Lateral 

To clarify the ideas presented in the previous section, consider the example control system 

shown in Figure 3-3.  

Wander Explore

Use Map

Command Seek Target Move

High priority

Medium priority

Low priority

In control
Failing to control

Lines show communication
channels between behaviours

 

Figure 3-3: An example control system in Lateral 

The “Command” behaviour shown has a high priority. Behaviours with high priority can take 

precedence over behaviours with lower priority when they compete with them for control of 

other behaviours they wish to make use of. They can also choose to sponsor selected 

behaviours they favour with their own high priority so they can rely on those behaviours taking 

precedence over competition as well. In the example, the “Command” behaviour chooses to 

sponsor the “Seek Target” behaviour, pulling it up to its own level of priority. As a 
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consequence that behaviour is able to win control of further behaviours (“Move” and “Use 

Map”) despite competition by “Wander”- which does not have as much sponsorship. 

The choices a behaviour makes about who to sponsor, and at what level, are allowed to 

change at any time in Lateral. Figure 3-4 shows the same example control system, but with the 

“Command” behaviour choosing to sponsor “Wander” rather than “Seek Target”. Compared 

with Figure 3-3, the priorities of a number of behaviours have changed significantly. Some 

have lost priority, some have gained priority- and the changes are not confined to the 

behaviours that “Command” controls directly, but extend throughout the system. 

Seek Target

Explore

Command MoveWander Use Map

High priority

Medium priority

Low priority

 

Figure 3-4: The example control system, with different sponsorship 

While the potential advantages of a dynamic priority system over static systems such as 

Subsumption have long been noted [[47]], there have been a number of stumbling blocks to a 

practical realisation of that potential.  The basic problem is that for a module to correctly 

choose its priority, it must know how important it is compared to all other modules in the 

system.  Implemented directly, this would seem to require every module to have an excessive 

amount of global knowledge.  The Lateral architecture side-steps this problem by 

implementing the priority system more within the channels of communication between modules 

than within the modules themselves.  It uses the system of “sponsorship” mentioned above, 

where the priority of a behaviour module is set to the level that the highest priority behaviour 

using it requests it should be.  This recursive definition of priority allows the absolute priority 
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of behaviours to be determined while only requiring that each behaviour make a local decision 

about the relative importance of the behaviours it uses3. 

The following sections introduce the elements from which the Lateral architecture is built, and 

how the priority system is implemented within them. The ideas discussed in this section will be 

returned to in detail in Section 3.3.2, page 55. 

3.3 Elements of Lateral 

The Lateral architecture consists of behaviours and connections. Behaviours implement 

competences of the robot, while connections channel information and commands between 

behaviours. Arbitration between conflicting commands is resolved within connections using 

Lateral’s dynamic priority system. Priority flows from behaviour to behaviour through the 

connections, “piggy-backed” on the information flow. The details of this system will now be 

discussed, and then a comparison with Subsumption will be made to illustrate the advantages 

the system has. 

3.3.1 Connections 

All control information passed between behaviours in Lateral is channelled through objects 

called connections. It is important for behaviours to interact through such intermediaries so 

that the conflict resolution always necessary in a behaviour-based architecture can be enforced 

(see Section 2.4.1, page 16). Connections in Lateral are analogous to wires in the 

Subsumption architecture (see Section 2.4.4, page 19), except that as well as carrying values 

and messages from their source to their target, they also carry the priority of the originator of 

their content. This reflects the fact that the conflict resolution scheme in Lateral relies on 

dynamic priorities, in contrast to the simpler fixed priority scheme of Subsumption (see Section 

2.4.3, page 18). 

3.3.1.1 Advantages of explicit information channels 

A benefit of having objects that explicitly channel the information flow between behaviours is 

that higher-level behaviours may now “tap in” to this flow and selectively modify it to suit their 

own purposes, without having to rebuild any of the behaviours or modify the information 

                                                 
3 Normally modules would be connected in a tree structure, but cycles are possible and acceptable- see Section 3.6.1. 
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channels already present. This is fundamental to the operation of Subsumption- in fact this is 

where the idea of higher-level behaviours “subsuming” lower-level ones takes its name. Lateral 

retains this capability, and expands on it. 

The two useful ways to “tap in” to the communications between behaviours are :- 

• Accessing the information flow in a channel. 

• Selectively overriding the information flow in a channel. 

It should be possible to achieve both of these without having to rebuild any of the information 

channels being tapped. Also, it is useful if the tap itself can also be seen as an information 

channel, since then that tap can be accessed and overridden in turn by higher-level behaviours. 

3.3.1.2 Implementing information channels as connections 

In Lateral, connections implement the ideas presented in the previous section. A connection 

has a single source and a single target, both of which can be attached to other connections. 

At its simplest, the connection accesses the information flow at its source, and tries to 

override the information flow at its target with a replica of what it reads from its source. It will 

only succeed in overriding its target if the information flow it is copying from has a higher 

priority than the information flow in its target.  

Subsume

Source

Target

Source

Target

Typical Use

Connection accesses
the information flow

at its source

Connection tries to
override the

information flow at
its target

Access

C

S

T

S
C

C
T

 

Figure 3-5: Basic use of connections 
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An example connection is shown in Figure 3-5. Connections are drawn as an arrow, with a 

bar to mark their source and an arrowhead to mark their target. In Lateral, the connection C in 

the diagram could itself be made the target of some other connection, and in this case it will 

access either its normal source or this new connection, depending on which has the higher 

priority. This is how overriding of an information channel occurs. In fact any number of 

connections can have the same target, in which case the information flow in the connection 

they target will be a copy of whichever of them has the highest priority- or a copy of its normal 

source if none of them were of a high enough priority to override that. This situation is shown 

in Figure 3-6. The connection C could also be made the source of some other connection. 

This has no effect on C, as the connection using it as its source will only access C and will not 

attempt to override it- connections only attempt to control their targets, not their sources. Any 

number of connections can have the same source. This is also illustrated in Figure 3-6. 

General Case

C

. . . . . . .

. . . . . . .

Source Target

Connections with C
as their target

Connections with C
as their source

C accesses the information
flow at whichever of S and

A1..Am has the highest
priority, and attempts to

override T with that.
S

A1 A2 Am

B1 B2 Bn

T
Each of the connections

B1..Bn interact with C in the
same way that C interacts
with S - they will access C
unless overridden by some

other connection.

 

Figure 3-6: Using connections, general case 

The priority of a connection is always the same as that of the connection from which it is 

reading. Hence a connection carrying high priority data will propagate that priority to any 

connection to which that data is passed. 

3.3.1.3 Attaching connections to behaviours 

So far, methods for attaching connections to other connections have been shown, but no way 

of attaching them to behaviours has been given yet. To achieve this, each behaviour is given 

two sets of connections, inputs and outputs. A behaviour can read and write directly to its 

input and output connections. Output connections can have their targets attached to other 
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connections, outside the behaviour, with which communication is desired- such as input 

connections in other behaviours. Output connections generally do not have their source 

attached to anything4, because the behaviour that owns them is directly controlling the 

information they carry and so they need no source to read from. Input connections generally 

have neither their source nor their target attached to anything, leaving them free to be 

controlled by any external connection that attaches their target to them. Alternatively, they 

could have their sources attached to other connections which the behaviour wishes to monitor. 

These possibilities are illustrated in Figure 3-7.  

Behaviour Object
Inputs Outputs

Targets of outputs are
attached to connections the
behaviour tries to control

Sources of outputs are left
unconnected- the behaviour
controls them directly

Targets of inputs are left unconnected-
the behaviour accesses them directly

Sources of inputs may also
be attached to connections the
behaviour wishes to monitor

Sources of inputs may be left
unconnected, and attached to
later by external connections

 

Figure 3-7: Input and output connections in a behaviour 

Leaving both the source and target of an input connection unattached is  a convenient 

arrangement when the semantics of the input are such that it is used to control some aspect of 

a behaviour, rather than provide raw data for the workings of the behaviour. In such cases, the 

behaviour should not be concerned with what is controlling it, only the task that it has to 

perform. Leaving the source unattached reflects this indifference, and means the behaviour 

does not have to be re-configured if it is later decided to change which behaviour controls it. 

An arrangement where the source of an input is left unattached and several external 

connections compete for control of it turns out to be such a common and useful arrangement 

that it is convenient to introduce a “short-hand” way of producing a diagram of the situation 

(see Figure 3-8). 

                                                 
4 This is denoted in diagrams by replacing the bar at the source of the connection with the ground symbol from 

electronics. If the target of a connection is unattached, it is simply drawn curling back, pointing at nothing. 
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priority

A

B

C
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priority

A connection with its
source unattached, and

several connections
attempting to control it

A short-hand way to
diagram this situation-

the connections are
drawn “head to tail”

 

Figure 3-8: Special diagramming convention for inputs with no source attached 

3.3.1.4 Dependencies between connections 

At this stage the dependencies between connections will be looked at more closely, as a 

prelude to examining the full details of Lateral’s conflict resolution scheme. The fundamental 

dependencies are as follows:- 

• The information flowing through a connection C is drawn from either the connection to 

which its source is attached, or from any connection which has C attached as its target 

(since these may succeed in overriding the normal source if they have sufficient priority). In 

the rest of this chapter, the normal source of a connection C is labelled its “primary 

source”, and any connections which have C attached as their target are called its 

“secondary sources”. This is a reasonable label to apply, since these connections may 

effectively become C’s source when their priority exceeds that of its primary source. The 

primary source of a connection will often simply be one that lower-level behaviours have 

configured it to read from, and the secondary sources could be overrides added by higher-

level behaviours. 

• The information flowing through a connection C may be passed on to the connection to 

which its target is attached, and to any connection which has C attached as its source. In 

the rest of this chapter, the direct target of a connection C is labelled its “primary target”, 

and any connections which have C attached as their source are called its “secondary 

targets” (since they may copy from C if it has sufficient priority, effectively behaving as if 

they were C’s target). The primary target of a connection will often simply be one that 

lower-level behaviours configured it to write to, and the secondary targets could be higher-

level behaviours “listening in”. 
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To summarise, primary sources and targets represent the communications channel that the 

connection was created to establish. Secondary sources and targets are added by behaviours 

which wish to monitor or influence that channel respectively. Secondary attachments can be 

made without having to re-configure the original connection (see Figure 3-9). 

C

. . . . . . .

. . . . . . .

Primary
Source

of C

Primary
Target

of C

Secondary Targets of C

Secondary Sources of C

 

Figure 3-9: Connections in Lateral 

Figure 3-9 illustrates the various ways that connections can be attached to each other. 

 

3.3.1.5 Detailed conflict resolution between connections 

Arbitration between connections attempting to control the same target is straightforward when 

they are at different priorities. The information flow that a connection carries is always a copy 

of the information flowing in its primary source- unless there is a secondary source at a higher 

priority, in which case the information flow in the connection is overridden by the secondary 

source with the greatest priority. Put simply, a connection copies the information flow from 

whichever source, either primary or secondary, has the greatest priority. There is no effective 

difference between primary and secondary sources under these conditions- the distinction 

merely reflects whether the source is the one originally configured, or a later override. 

However, when a number of competing connections are at the same priority, it is not obvious 

what the correct way to arbitrate between them is. The normal result in Lateral is that 

messages from every member of a group of competing sources will be passed on when they 

have the same priority. This is called “sharing”. However, connections can be assigned an 

extra “type” tag if it is important to explicitly control arbitration under these conditions. This tag 

is a feature of Lateral designed so that when connections are all at the same priority they may 
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interact in a way that is equivalent to wires in Subsumption. All the different ways wires can 

interact in Subsumption can also be used in connections (see Section 2.4.4, page 19). 

Connections can be tagged as either “Default”, “Shared”, “Preferred”, or “Replace”. The 

semantics of the different possibilities are given in Table 3-1. They are chosen to be consistent 

with corresponding ideas in Subsumption. Remember these distinctions are only relevant when 

connections are at the same priority. 

Table 3-1 

TYPE OF CONNECTION DESCRIPTION 

Default-connection The connection passes on messages only if its target is not 

receiving messages from its primary source. 

Shared-connection The connection contributes its messages to be merged with 

those of its target’s primary source. This is the normal type of 

connection. 

Preferred-connection The connection passes on messages if it has them, blocking its 

target from reading from its primary source.  If not, its target is 

allowed to read from its primary source again. 

Replace-connection The connection passes on messages if it has them. Regardless of 

whether it has messages, it blocks its target from reading from 

its primary source. 

Note that when this form of arbitration is in use, a distinction appears between primary and 

secondary sources of a connection. This mirrors the asymmetry in Subsumption between wires 

and taps on those wires. Suppression in Subsumption corresponds to a “preferred-

connection”, defaulting is equivalent to a “default-connection”, and inhibition can be 

implemented using a “replace-connection” (the connection should however be enabled or 

disabled rather than sending or not sending messages as in Subsumption). See Section 2.4.4, 

page 19 for a description of these Subsumption constructs. If a number of secondary sources 

of the same priority are present, “replace-connection” is given highest priority, then “preferred-

connection”, then “shared-connection”, and “default-connection” is given lowest priority. 

Streams of messages from connections of the same type, if present, are merged.  
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Effectively, the “type” tag allows a static priority scheme to be superimposed on top of the 

dynamic priority scheme used in Lateral. A useful consequence of this is that it allows the 

Lateral priority system to be used simply to merge a collection of Subsumption-like static 

hierarchies. The robot could then dynamically switch between these hierarchies as appropriate 

during its operation, with Lateral taking care of the details of selecting the correct behaviours 

and rearranging them into the new hierarchy. A more complete comparison of Lateral with 

Subsumption is given in Section 3.4, page 59. 

The “type”-tag feature was included to make Lateral a true superset of Subsumption- it was 

not in fact needed for the robot application described in the latter part of this thesis. The 

control system for this application (see Chapter 5) was designed to use the full power of 

Lateral and not simply be a collection of Subsumption-like static hierarchies merged together. 

 

3.3.2 Behaviours  

The abstract nature of “behaviours” was discussed in Section 2.4, page 15. For the purposes 

of this chapter, a behaviour can be seen as a process running on a robot that implements some 

aspect of the robot’s competences. Behaviours are executed in parallel, rather than 

sequentially as modules in traditional AI are. In Lateral, behaviours interact with the rest of the 

system by reading and writing information from a set of input connections and a set of output 

connections. The messages received through the input connections carry priority information 

about their sources as well as actual data, and this is used to calculate the priority of the 

behaviour itself. Before looking at how this calculation is done, it is worth examining what use 

is made of the result of the calculation. Firstly, in Lateral, the behaviour may independently 

choose to set its priority at some other lower level- the calculated priority is a maximum only. 

If the behaviour does not set its priority, it will be set to the maximum by default. Every output 

of the behaviour will carry the final priority chosen, and transmit it to any behaviours they are 

connected to in turn. The behaviour, again, can choose to override this default and set the 

priority of individual outputs at any desired level up to its own priority. It is also free to 

selectively enable or disable its outputs. A disabled connection effectively disappears, and 

means that the behaviour has no requirements of whatever it was connected to. Finally, the 

behaviour can also set a priority factor for each connection. This factor, which defaults to 
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unity, determines what fraction of its priority a connection may impart to the target behaviour it 

connects to (possibly through intermediate connections), as distinct from what priority it should 

have when competing with other connections for control of that behaviour (see Figure 3-10). 

This allows a “sponsoring” behaviour to use its maximum priority to take control of another 

behaviour and yet impart a lower priority to that behaviour (for example, so it will not compete 

with the sponsoring behaviour itself if they conflict elsewhere). An example of this will be given 

later in this section.  

Behaviour
priority P

Priority Control

priority IP1
priority OP1

Behaviour priority P
The priority of the behaviour
is bounded by the highest of
the input priorities

P ≤ max(IPi)

The priority of any output is
bounded by the priority of the
behaviour.

OPi ≤ P

priority OP2

priority OPn

priority IP2

priority IPm

 

Figure 3-10: Priorities in behaviours 

To calculate a behaviour’s maximum priority, its input connection with the highest priority is 

found. That priority is multiplied by the associated priority factor carried by that connection, 

giving the amount of priority the most important user of the behaviour is willing to bestow. This 

is where the term “sponsorship” originated.  

Priorities can change dynamically and are continuously recalculated. Behaviours in Lateral may 

have a special “priority control” section responsible for responding to changes in the input 

connections and propagating those changes to the output connections. If this section is not 

present, the behaviour is assigned the maximum priority it is sponsored, calculated as 

described above. 

Consider the example shown in Figure 3-11. The “Command” behaviour is at a priority of 4. 

It has two outputs, attached to inputs of the “Seek Target” and “Wander” behaviours. It can 

control which of those behaviours finds expression in the action of the robot by choosing 

which to give the higher priority. In this case it sets its output to “Seek Target” at a priority 
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level of 2, and its output to “Wander” at a level of 4. These are the only inputs those 

behaviours have, so the priority of “Seek Target” and “Wander” become 2 and 4 respectively, 

and both accept any messages “Command” sends to them. “Wander” has an output to the 

“Explore” behaviour, which it chooses to drive at a low priority of 1. Since that behaviour has 

no other inputs, its priority becomes 1 and it is controlled by the output from “Wander”. Both 

“Seek Target” and “Wander” attempt to control the “Use Map” behaviour simultaneously at 

their full priorities. “Use Map” is controlled by the connection with the highest priority- in this 

case, the one from “Wander”. The connection from “Seek Target” is ignored, and only 

messages from “Wander” are accepted. Each of “Seek Target”, “Use Map” and “Explore” 

attempt to control “Move”. “Use Map” succeeds because it has the highest priority, and the 

other connections are ignored. 

Command

pri=4

Wander

Seek
Target

pri=2

pri=1 Explore

Use Map

Move

pri=4

pri=1

pri=4
pri=1

pri=4pri=4

pri=2

pri=2
pri=4

pri=4

pr
i=

1
 

Figure 3-11: An example of calculating behaviour priorities 

Figure 3-12 shows the same example, but with “Command” favouring “Seek Target” rather 

than “Wander”. “Seek Target” now succeeds in gaining control of “Use Map”. Note that 

“Command”, by making a local decision about which of the behaviours it directly interacts 

with are more important, actually changes the action of behaviours it has no knowledge of- 

“Use Map” and “Move” are now being used for a different task. 



Lateral  Chapter 3 

 58 

Command

pri=4

Wander

Seek
Target

pri=4

pri=1 Explore

Use Map

Move

pri=2

pri=1

pri=4
pri=1

pri=2pri=2

pri=4

pri=4
pri=4

pri=4

pr
i=

1

 

Figure 3-12: The effect of a change in sponsorship 

A more sophisticated use of Lateral is shown in Figure 3-13. “Seek Target” is still being 

favoured with sponsorship, but it has now decided that although it still wants5 to retain control 

of the “Use Map” behaviour, it wants to control the “Move” behaviour itself. This could be 

because it wishes to try to reach a target by some fast but unreliable guesswork, while waiting 

for “Use Map” to find a better path to the target. For its best chance of retaining control of 

“Use Map”, it should place its full priority on the connection to that behaviour. However if it 

does that, “Use Map” will be able to compete with “Seek Target” itself for control of “Move”, 

which “Seek Target” does not want to allow until it is confident that “Use Map” has a better 

chance of success than its guesswork. To avoid this, it seems that a lower priority should be 

used on the connection- but this does not reflect the fact that “Seek Target” wants to retain 

control of “Use Map” as much as it wants control of “Move”, and it would leave “Use Map” 

open to being taken over by some lower priority behaviour. In this example, if the priority of 

the connection was set to 2, “Wander” could compete successfully for some control of “Use 

Map”. 

The solution is to use priority factors. “Seek Target” can set the connection to “Use Map” at 

its full priority of 4, but with a priority factor of 0.5 (for example). This means that the 

connection will compete for control of “Use Map” at a priority of 4, but when it has gained 

control of “Use Map”, the behaviour only receives a priority of 2 (4×0.5). It therefore cannot 

compete with “Seek Target” for control of “Move”, as desired. Priority factors are 

                                                 
5 Anthropomorphisms are used here to avoid complicating the example with detail.  
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appropriate when a behaviour wishes to sponsor another behaviour, but is not willing to let it 

compete with activities of the sponsoring behaviour itself. 
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Figure 3-13: Use of priority factors 

3.4 Comparison with Subsumption 

Lateral is in a sense a superset of Subsumption, since a Subsumption-based control system 

could be implemented in Lateral by simply placing all behaviours at the same priority. Under 

this condition, connections behave very much like the wires in Subsumption. A set of 

behaviours operating at the same priority in Lateral is called a “priority plane”. Within a single 

priority plane, the control system behaves similarly to how it would act under Subsumption, 

and the same linear enhancement of a behaviour through incremental levels of competence is 

possible. This linear enhancement is akin to single inheritance, since a basic behaviour is taken 

and enhanced to give it more functionality. However single inheritance is not always a good 

model for how behaviours relate. The existence of multiple priority planes in Lateral, with 

behaviours able to influence each other’s priority as described in the preceding sections, 

means that behaviours may be related in ways other than simple inheritance. In the language of 

Software Engineering, links more like HAS-A relationships than the IS-A relationships of 

inheritance can be made between behaviours. Behaviours no longer need to be arranged as a 

strictly ordered series of enhancements. 

For example, consider a Subsumption robot with a control system implemented using the 

levels of competence shown in Table 3-2, similar to the ones described by Brooks in [[7]]. 
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Table 3-2 

Level Competence Description of competence  
0 avoid-contact Avoid contact with objects 
1a wander Wander aimlessly, moving at random 
2a explore-world Explore the world by seeing places in the distance that look 

reachable and heading for them 

And now consider the same robot, programmed to perform a different task with a new control 

system consisting of a different set of linear enhancements from the same “avoid-contact” 

competence (see Table 3-3). 

Table 3-3 

Level Competence Description of competence  
0 avoid-contact Avoid contact with objects 
1b follow-edge Follow the edges of obstacles 
2b seek-goal Move towards a goal by heading in that direction and skirting 

any objects in the way 

Suppose that it became desirable to combine the abilities of both these control  systems, to 

give a robot that can either explore the world on its own, or can be directed to reach specific 

targets. This is difficult to achieve in Subsumption. The problem is that both of the control 

systems above started from the same behaviour, the “avoid-contact” behaviour, and enhanced 

it in different ways. There is no easy way to fit these two different evolution paths into a linear 

layering of behaviours. One possibility is to take the control system that evolved the “explore-

world” behaviour, for example, and then enhance that to include edge following, and then goal 

seeking ability (see Table 3-4). 

Table 3-4 

Level Competence Description of competence  
0 avoid-contact Avoid contact with objects 
1a wander Wander aimlessly, moving at random 
2a explore-world Explore the world by seeing places in the distance that look 

reachable and heading for them 
3 explore-world-

or-edge-follow 
Explore the world by seeing places in the distance that look 
reachable and heading for them, or follow the edge of an 
obstacle  

4 explore-world-
or-seek-goal 

Explore the world by seeing places in the distance that look 
reachable and heading for them, or move towards a goal 
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The problem is that neither edge following nor goal seeking have anything to do with exploring 

the world, and seeing them as enhancements of the “explore-world” behaviour is artificial and 

leads to unnecessary and undesirable dependencies between the behaviours.  

Another possibility would be to make sure that the “explore-world” behaviour and the “seek-

goal” behaviour are never active at the same time, so that effectively one control system is 

turned off and replaced with the other as needed. This will work6, but places the burden of 

resolving conflicts back on the designer. The more the control systems try to share behaviours 

(such as “avoid -contact” in the examples above) the more complex the logic necessary to 

avoid conflict will be. 

Lateral does not require behaviours to be shut off so as not to affect one another. Instead it 

moves them to separate “priority planes” based on the importance of what they are being used 

for, as opposed to assigning fixed priorities to the behaviours themselves (see Figure 3-14). A 

priority plane is simply the set of all behaviours and connections at a given priority. A 

behaviour on a lower priority plane is guaranteed not to affect anything on a higher priority 

plane. Since the priority of a behaviour is determined by the priorities of its input connections, 

a behaviour can be “pulled up” to a higher priority plane by an input connection having that 

higher level of priority. And since the priority of a behaviour’s output connections reflects the 

behaviour’s own priority, these connections may also be “pulled up” to the higher priority 

plane, and the behaviours they connect to, and so on.  

 

                                                 
6 The idea of switching between different static hierarchies of behaviours to extend Subsumption is called “moods” 

[46] 
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Figure 3-14: Priority planes  

For example, if the robot is engaged in one task (which can use any number of behaviours), a 

higher priority task can “hijack” any behaviours it needs and not have to worry about turning 

off parts engaged in the lower task that do not concern it. This “hijacking” happens 

automatically through sponsorship. In the above diagram, behaviour “A” could choose to 

sponsor “C” to have a priority of 3. If so, “B” will no longer have control of it since “C” will 

now be on a higher priority plane. If “C” passes on its sponsorship to “D” in turn, then “B” will 

lose control of “D” as well. These behaviours have been “hijacked” for a higher priority task. 

When this task finishes, its priority falls and sponsorship diminishes, so control will 

automatically return to lower priority tasks. Since behaviours are designed to be reactive, and 

to be able to deal with environmental interference, the temporary subversion of components to 

another task can be recovered from through mechanisms that are already naturally present. 

Interruptions are a normal part of the operation of a behaviour-based system, in contrast to 

being treated as abnormal exceptions as they are in traditional AI. 

Returning to the problem of merging the two control systems described earlier, it should be 

clear that Lateral can handle this without any problem. The control systems can simply be 

merged directly, as they stand. Because the hierarchy is no longer linear, it can no longer be 

drawn clearly as a table, and is presented graphically in Figure 3-15. 
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avoid-contact

wanderexplore-world

follow-edgeseek-goal  

Figure 3-15: Control systems merged using Lateral 

The two control systems can be implemented independently of each other, except where they 

share the common “avoid -contact” behaviour. Conflicts will be resolved according to the 

priority plane the behaviours are on at any given time. If “seek-goal” is at a high priority, it will 

pull “follow-edge” up with it, and that in turn will pull up “avoid-contact” (see Figure 3-16). 

“Avoid-contact” will therefore be guaranteed to be entirely unaffected by “explore-world” and 

“wander”, since they are on a lower priority plane, and lower planes cannot affect higher 

planes.  

seek-goal

High priority

Low priority

In control
Failing to control

follow-edge avoid-contact

explore-world wander

 

Figure 3-16: Merged control system, with seek-goal at high priority 

If “seek-goal” becomes a low priority relative to “explore-world”, the position will be reversed 

(see Figure 3-17). “Seek-goal” and hence “follow-edge” will be on a low priority plane, and 

“explore-world” will pull “avoid-contact” up to its higher plane, guaranteeing that it will be 

entirely unaffected by either “seek-goal” or “follow-edge”. 

explore-world

High priority

Low priority

In control
Failing to control

wander avoid-contact

seek-goal follow-edge

 

Figure 3-17: Merged control system, with explore-world at high priority 
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 This is a very simple example of the advantages of Lateral in terms of the system 

decomposition it facilitates. More complete examples will be given in the next section.  

The idea of priority spreading from module to module sounds superficially similar to the 

“spreading activation” system used in the New Subsumption (see Section 2.5.4, page 32). 

However, it is quite distinct. “Spreading activation” involves spreading an activation level 

between modules which, when compared with threshold levels, determines if they are active or 

not.  It amounts to a way of automating the task of turning on and off modules to prevent them 

from inappropriately interacting or conflicting with each other. The Lateral system uses 

“spreading priority” to eliminate the need for such a system. It allows control of the relative 

weighting that the outputs of a behaviour have compared to other behaviours. This is fixed in 

the Subsumption scheme- the only way to change it is to turn a module off.  

The Subsumption architecture is specified at a finer granularity than Lateral. It is described at 

the level of wires connecting a collection of augmented finite state machines to implement a 

single behaviour (see Section 2.4.4, page 19). While Lateral can support this level of 

granularity when incremental enhancement of a behaviour is desired, it is for the most part 

described here at a coarser level, with individual behaviours as the smallest unit. A behaviour’s 

input and output connections comprise its public interface; no support is given in the 

architecture for accessing anything internal to a behaviour. This is good for modularity.  

3.5 System Decomposition using Lateral 

Further examples are presented in this section to clarify the influence of the choice of 

architecture on the system decomposition used for a given robot control system. The example 

is in fact a simplified extract from the robot application developed later in this thesis (see 

Chapters 4 and 5). 

Suppose a simple robot is to be constructed which can move from its current location to a 

specified target location. The robot has a partial map of its environment in memory- but the 

map may be out of date, and searching the map to try and find a path to the target is a slow 

process. In such a scenario, the robot could combine two strategies in an attempt to reach its 

target. The first, physical search, is the most direct, and involves the robot simply moving 

towards the target and attempting to work its way around any obstacles it meets along the 

way. In the second, map search, the robot plots a path to the target using its internal map, and 
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when that is complete, attempts to execute that path. Attempting to reach a target by physical 

search alone will work well for situations with few obstacles between the current position and 

the target, but will be slow in more complex situations. Using just map search will perform 

better when there are complex obstacles to be negotiated, but will slow the robot down in 

simpler situations. By switching between the two types of search as circumstances indicate, the 

robot can gain the advantages of each. For this example, this combined search strategy will be 

called “smart search”.  

If such a robot were implemented using Subsumption, behaviours like the following would be 

implemented, each incrementally enhancing the one that came before it:- 

• Avoid- this behaviour keeps the robot from bumping into anything.  

• Edge Follow- this behaviour allows the robot to follow the boundary of an obstacle, while 

retaining the competence of the “Avoid” behaviour. 

• Local Motion- this behaviour makes the robot move “sensibly”- so that it can manoeuvre 

gracefully both close to a boundary and in open areas. 

• Physical Search- this behaviour gives the robot the ability to try to approach targets using 

a collection of techniques that do not require map information. 

• Smart Search- this is the required behaviour of the robot, implementing both physical 

search and map search.  

These behaviours are illustrated in Figure 3-18. 

Smart
Search

Physical
Search

Local
Motion

Edge
Follow Avoid

Sensors

Actuators
 

Figure 3-18: Decomposition using Subsumption 

Physical and map search are distinct techniques, so it makes sense to implement them 

separately. But Subsumption only allows behaviours to be enhanced linearly, so one of the 

techniques must be picked as more “basic” and the other one added to it as an enhancement. 

For example, the choice of implementing physical search first in the decomposition in Figure 3-
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18 was entirely arbitrary, and map search could have been chosen instead, as shown in Figure 

3-19. 
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Figure 3-19: Alternate decomposition using Subsumption 

Whichever technique is taken as basic, the other one must be derived from it even though they 

have no relationship other than that they work towards achieving the same task. This is 

undesirable from a software engineering point of view. 

Because Lateral is not restricted to linear enhancement of behaviours, a more satisfactory and 

natural decomposition can be used, as shown in Figure 3-20. Physical and map search are 

implemented separately, and the “smart search” module need only implement the heuristics for 

switching between the two when circumstances dictate. 
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Figure 3-20: Decomposition using Lateral 

This is more satisfactory, since each module need only know the minimum information required 

to accomplish its task. Note that in the decomposition, the dependencies between local 

motion, edge following, and avoidance have been similarly rearranged. This more accurately 
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reflects the nature of local motion, which sometimes makes use of edge following but does not 

need to use it when the robot is in open areas. “Making use” of a behaviour cannot be 

captured in Subsumption except by the crude approximation of linear enhancement. 

To move away from simple examples, Figure 3-21 shows the main body of the decomposition 

used for the sentry application7 (Chapter 5). The diagram is similar in nature to the ones seen 

already, but more complex. Implementing the decomposition in even approximately the form 

presented would not be feasible in Subsumption- it cannot be made linear without losing the 

advantages of using such a decomposition in the first place. 
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Figure 3-21: An actual decomposition 

This decomposition is the source of the (very much simplified) example given at the very start 

of this chapter (see Section 3.2, page 46). For most purposes, the decomposition need 

operate on only two priority planes, high and low, indicating behaviours that need to be active 

and those that do not. The patrol behaviour may be sponsored at an intermediate level, since it 

can be used to perform the “map search” discussed earlier while a “physical search” is 

operating at a higher priority. The diagram of the decomposition differs from earlier diagrams 

                                                 
7 Maintain-Map is shown straddling the sensor line because its outputs act as virtual sensors accessible to all the 

other modules. 
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in that it shows “Actuators” underneath the Motor behaviour. This reflects that fact that while 

in a behaviour-based system any behaviour can attempt to control the actuators, in this 

decomposition the motors are in fact always controlled through the Motor behaviour. This is 

done because that behaviour implements obstacle avoidance. Other behaviours are still 

technically free to attempt to drive the motors directly, but by doing so they do not have the 

protection of obstacle avoidance and risk damage to the robot. In effect, the Motor behaviour 

has become a “virtual actuator”.  

3.6 Implementing Lateral 

The rest of this chapter is concerned with taking the abstract properties of the Lateral 

architecture discussed thus far and showing how they can be supported in an actual 

implementation. The most important single constraint on how the architecture can be 

implemented is the level of operating system support available to it. Autonomous robots 

generally have limited processing power and memory, and techniques that are perfectly 

adequate for use with simulated robots running on a workstation may be totally unsuited for 

downloading to a much less computationally powerful physical robot. 

Lateral could be implemented most naturally under a full distributed system with asynchronous 

message passing. However, since the work in this thesis was to be implemented on a physical 

robot, it could not expect such sophisticated operating system support. In fact, an 

implementation that demanded any multi-tasking ability at all would contradict one of the aims 

of the work, which was to see what could be done with the cheapest robots with minimal 

processing power and minimal sensing equipment. Given that, it was decided to make the 

Lateral implementation itself responsible for running behaviours concurrently, without 

depending on operating system support. The implementation of multi-tasking could only be 

“bare-bones” however, to avoid swamping the limited memory of lower-end robots. It was 

obviously important to leave sufficient space for useful applications to be built. The approach 

used was to allow context-switching between behaviours at a coarse granularity only, in the 

following way:- 

• Behaviours were required to be written in the form of augmented state machines, as in 

Subsumption (see Section 2.4.4, page 19). 
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• Code associated with a single state of a behaviour was always executed without pre-

emption. 

• Context switching between behaviours occurred only at state transitions or on completion 

of the code associated with a state. 

The advantages of this approach were that it made for a very light-weight implementation with 

low memory overhead, and it required no platform-dependent code to be written8. The 

disadvantage is that it places an extra burden on the programmer to ensure that code within 

states completes or transitions in a timely fashion and does not “hog” the processor. This was 

considered an acceptable trade-off, since using this light-weight system meant that less time 

had to be spent “re-inventing the wheel” implementing a multi-tasking system, and more time 

could be spent concentrating on the novel features of the Lateral architecture. Also, the burden 

on the programmer in practice is less than might be imagined, because states of behaviours 

written to be reactive naturally have very short duration so that they can respond to the 

environment as it is now rather than as it was at some time in the past. 

For clarity, the implementation of Lateral developed in this thesis is given its own name, “Zac”, 

separate from the architecture itself. This is to clearly distinguish the general concepts behind 

the architecture from the particular way chosen to implement them. Restrictions had to be 

placed on the support for Lateral developed in this thesis so as to satisfy the constraints the 

work took place under, particularly the desire for the work to be applicable to lower-end 

robots. These limitations are not intrinsic to the architecture- hence the careful distinction being 

made. 

3.6.1 Executing Behaviours: The Scan Cycle 

To run the control system in the Zac implementation of Lateral, every active behaviour 

(defined as a behaviour with non-zero priority) is executed in turn for one state. When all the 

behaviours have been executed, the cycle is repeated for another state. This process is called 

the “scan cycle”. Before a behaviour is executed for another cycle, its input connections are 

updated, and its priority is recalculated accordingly as described in Section 3.3.2, page 55. 

                                                 
8 This was an important pragmatic consideration, since when the work for this thesis was begun, the robot it was to 

be implemented on was not known. 



Lateral  Chapter 3 

 70 

Updating a connection means applying the arbitration rules of Lateral to determine which of its 

sources it should read from (see Section 3.3.1.5, page 53). 

The order of evaluation of behaviours is chosen so that if there is a chain of dependencies 

between any behaviours, effects from the start of the chain will reach behaviours at the end of 

the chain within a single cycle. To clarify what this means, consider an example where a 

behaviour A depends on a behaviour B (i.e. information flow from B is channelled to A 

through some sequence of connections), and B in turn depends on C, and C depends on D. If 

these behaviours are executed in the order A, B, C and then D, three scan cycles will be 

needed before a change in an output from D can affect A, since the change will only propagate 

up the chain at a rate of one behaviour per cycle - as shown in Figure 3-22.  

D C B A

D C B A

D C B A

D C B A

D C B A

D C B A
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A executed first.
Reads from B.

B executes next.
Reads from C.

C executes next. Reads
from D. Effect of change
propagates through C.

D generates new
output again.

Cycles continue. Effect
of changes propagate
through a single
behaviour per cycle.

 

Figure 3-22: Propagation of effects with bad choice of execution order  

In contrast, if the behaviours are executed in the order D first, then C, then B, and finally A, 

then the action of D will affect all the other behaviours within a single cycle, as shown in Figure 

3-23. This will be the order chosen by the implementation of Lateral developed in this thesis. 

How the proper ordering of behaviours is deduced is described in the following section. The 

algorithm used will order any tree-like hierarchy of behaviours so that a single cycle is sufficient 
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to propagate effects from the top of the tree to the bottom. If there is a cyclic dependency 

(e.g. A depends on B, B depends on C, and C depends in turn on A) the order of execution 

chosen will be such that it takes a single cycle for effects to propagate from one behaviour in 

the loop around to that behaviour again.  
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D C B A
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B executes next. Effect
propagates further.

A executes. Effect of
change in D reaches A in
a single cycle.

Cycles continue. Effect
of changes propagate
within a single cycle.

 

Figure 3-23: Propagation of effects with good choice of execution order 

3.6.2 Updating Connections: The Pull System 

Before a behaviour is executed, its input connections are updated so that it is operating on up-

to-date information. In Lateral, updating a connection means applying the arbitration rules of 

the architecture to determine which of its sources it should read from, and then accessing that 

source (see Section 3.3.1.5, page 53). A suitable data structure for implementing connections 

is given in the next section that makes it possible to apply Lateral’s arbitration rules quickly 

and efficiently. 

The implementation of Lateral developed in this thesis makes use of the presence of 

connections to determine the best order in which to execute behaviours to optimise the speed 

at which effects spread through the system. As well as being active instruments of 

communication, connections serve to make the dependencies between behaviours explicitly 
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accessible to the architecture. By applying the following two rules, it is possible to ensure that 

all behaviours are executed in the optimum order:- 

1. To update a connection, update all its sources first. Omit any that have already been 

updated in the current scan cycle or which are in the process of being updated. Then, if the 

connection is an output of some behaviour, update that behaviour using rule 2 (unless that 

behaviour has already been updated in the current scan cycle or is currently in the process 

of being updated). 

1. Before updating a behaviour, update all its input connections first in the manner described in 

rule 1. Then execute it. 

Note that the rules recursively invoke each other as dependencies are traced back though 

connections and the behaviours met along the way are updated. The conditions in rule 1 check 

for cycles and avoid looping. These two rules together are known as the “pull system”, since 

when a behaviour is to be executed, it “pulls” through its input connections to ensure that 

everything it depends on is executed first. A simple example is given in Figure 3-24. 

8

7

6
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3

2
4

1

Pull

Pull stopped, 
cycle detected

Pull started here

Execution sequence: 8, 3, 6, 5, 2
 

Figure 3-24: Pull system in action 

Here behaviour “2” is to be executed. It first updates its input connection, which traces back 

to behaviour “5”. Rule 2 is then invoked to update behaviour “5” before behaviour “2” can be 

executed. Behaviour “5” depends in turn on behaviours “8” and “6”, so these are updated 

before either “5” or “2”. Behaviour “8” has no dependencies, so it may be executed 

immediately. Behaviour “6” depends on behaviour “3”, so “3” must be updated before “6”. 

Behaviour “3” depends cyclically on behaviour “6” again, but rule 1 will detect this cycle and 
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cut it off9. Behaviour “3” has no other dependencies, so it will now execute. This allows 

behaviour “6” to execute in turn. All the dependencies of behaviour “5” have executed, so that 

behaviour may now be executed itself. Finally, behaviour “2” is free to execute. 

3.6.3 Traversing Connections: The Mesh Structure  

To implement Lateral efficiently, it is important that the various relationships between 

connections can be determined quickly and without search. This is because these relationships 

are used extensively both in the arbitration rules for updating connections, and in the “pull 

system” for executing behaviours in the optimum order. This section introduces the idea of a 

“mesh”, a very flexible data structure developed for this architecture which is sufficiently 

powerful to allow all the relationships possible between connections in Lateral to be 

determined efficiently. 

In Figure 3-25, the logical relationships between connections in Lateral are shown for 

reference purposes, copied from Figure 3-2 on page 46. Each connection has a single 

primary source and  primary target. It can also have secondary sources (connections which 

have that connection as their primary target) and secondary targets (which have that 

connection as their primary source). Also, every input or output connection belongs to a 

behaviour called its owner. Intermediate connections outside of behaviours have no owner. 

C

. . . . . . .

. . . . . . .

Primary
Source

of C

Primary
Target

of C

Secondary Targets of C

Secondary Sources of C

 

Figure 3-25: Relations required in Lateral 

                                                 
9 The cyclic dependency still exists, but propagation from behaviour “6” to behaviour “3” will occur in the next cycle 

rather than the current one.  
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Since the pull system and the priority system in Lateral both rely on repeatedly evaluating these 

relationships, it is important that all of the following operations can be performed quickly 

without search:- 

• Finding the primary source of a connection. 

• Finding all secondary sources of a connection (all connections that have the given 

connection as their primary target10). 

• Finding the primary target of a connection.  

• Finding all secondary targets of a connection (all connections that have the given connection 

as their primary source11). 

• Finding the behaviour that owns a connection, if it is an input or output connection.  

• Finding all connections with the same owner as a given connection 

 

The data structure used in this thesis to implement a connection so that all the above 

relationships can be easily determined is called a “mesh link”. A collection of such links is 

called a “mesh”. Each link12 has a direct hook to its owner, its primary source, and its primary 

target. That much is straightforward. Each link has in addition a hook to a single secondary 

source, and a single secondary target. It also acts as an element in three separate linked lists- 

the list of links with the same primary source as the given link, the list of links with the same 

primary target as the link, and the list of links with the same owner behaviour as the link. Note 

that having access to these lists means that only a hook to a single secondary source or target 

need be maintained within a link- the rest can be found by traversing the list of links with the 

same primary source or target as that link. In Lateral, the secondary sources and targets are 

only ever examined as a group- so it is not necessary to be able to find a particular 

secondary source or target without search, only to find the group. The lists are stored as 

double-linked lists for ease of manipulation, as shown in Figure 3-26. 

                                                 
10 If this seems confusing, remember that the primary targets of connections are chosen freely, and do not affect either 

the primary source or the primary target of the connections to which they are attached- just as one electrical wire 
can be attached to another without changing what that wire is connected between. Hence if the primary target of A 
is B, that does not mean that the primary source of B is A (and in general it will not be). 

11 If this seems confusing, the explanation is analogous to that given in footnote 10. 
12 In this thesis, the terms “connection” and “link” are essentially synonymous. The distinction is made as a reminder 

that connections could be implemented in many ways, with the “link” structure being just one of those ways. 
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Figure 3-26: Connection implementation- a link 

To demonstrate the use of mesh links, consider the set of connections shown in Figure 3-27. 

Primary sources, secondary sources, primary targets and secondary sources are all present. 

C
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Figure 3-27: An example group of interacting connections 

Figure 3-28 shows how the connections attached to C in the various different ways can be 

determined. The primary sources and targets are found directly. The group of secondary 

sources is found by first following the hook that C has to one of them, and then tracing around 

the double -linked list of all links with the same primary target as that link. The group of 

secondary targets is found in an analogous way.  
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Figure 3-28: Evaluating the relationships between connections 

The advantage of this arrangement, as opposed to each link maintaining its own list of 

secondary sources and targets, is that it is more efficient in terms of memory, and much simpler 

to maintain. 

3.6.4 Coding Lateral through C++ 

It was considered desirable to make the Zac implementation of Lateral portable across robots 

with different on-board processors13. C++ is a popular programming language for which 

cross-compilers are available for the processors commonly used in autonomous robots, so this 

was the implementation language chosen. The reasons for this decision are discussed in more 

detail in Chapter 6. The C programming language would have been an equally good choice, 

but the object-oriented nature of C++ was a good match for Lateral’s design as a collection of 

behaviour and connection “objects”. 

The approach adopted in using C++ to implement Lateral was to embed the functionality of 

Lateral behaviours and connections in corresponding behaviour and connection C++ classes. 

Then a control system for a robot implementing a particular set of competences could be 

constructed by deriving appropriate new behaviours using inheritance and attaching connection 

                                                 
13 This was particularly important since, as remarked earlier, the robot that the work in this thesis was to be 

implemented on was not known until that work was quite advanced. 
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objects between them as necessary. The result would automatically support the Lateral’s 

priority scheme, the pull system, and all the functionality described in this chapter. 

The “mesh link” data structure for storing connections discussed in the previous section was 

implemented as a class called “MeshLinkBase” (see Figure 3-29). This class was only 

concerned with modelling the abstract relationships between connections, and not with a 

connection’s role as a channel of communication. From this, a class called 

“ZACMeshLinkBase” was derived which implemented Lateral’s priority scheme, the pull 

system, etc. Inheriting from this, a template class was set up that allowed a set of classes to be 

derived to implement links carrying particular types of data. This use of templates allows the 

compiler to check that only links carrying the same kind of data are attached to each other14. 

Also it allows the programmer to easily derive a new type of link that carries a different kind of 

data needed for a particular application.  

ZACProcess
(adds ability to act as

a state machine)

ZACMesh
(acts as a container of

ZAC Mesh Links)

ZACMeshLink<Type>
(adds ability to carry a
specific type of data)

ZACMeshLinkBase
(adds priority system,

pull system etc.)

MeshLinkBase
(models relationships
between connections)

Mesh
(acts as a container of

Mesh Links)

New behaviours derived
from this class

New connections created
with this class template

BehavioursConnections

 

Figure 3-29: Behaviours and connections - meshes and links 

The base class for implementing behaviours was called “Mesh”, and simply acted as a 

collection of mesh links. Like the base class for connections, this class was only concerned 

with modelling the abstract relationships in the control system. For a behaviour, this means 

                                                 
14 This use of templates to make a “type-safe shell” is particularly effective when, as in this case, the class template is 

a minor enough extension to the base class for all its member functions to be made inline. The compiler then need 
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storing a set of input and output connections. This is why it is appropriate for the base class of 

behaviours to be a simple container for a collection of mesh links. Next, the class “ZACMesh” 

was derived which could co-operate with the “ZACMeshLink” class to implement Lateral’s 

priority system, the pull system, etc. Finally, the ability to act as an augmented state machine 

was added, giving the “ZACProcess” class. This class represented a complete behaviour, 

except that it lacked any connections and an actual state machine to execute. The programmer 

could derive new behaviours by simply inheriting from this class and adding a state machine 

(implemented by overriding a virtual function) and appropriate connections (member variables 

derived from the ZACMeshLink class). Such new behaviours would be automatically 

executed and managed by the Lateral support inherited from the ZACProcess class. 

While it is straightforward to use the classes described here to build a working control system, 

it was found that the constructs and modularity of Lateral were different enough from those of 

C++ to result in a significant amount of repetitive, inelegant, clumsy code being necessary to 

express various common structures, e.g. state machines. A tool called the “Zac Translator” 

was developed to automate the generation of this code. With this tool present, Lateral 

constructs could be written in a specially designed syntax called “Zac Script”, and the 

translator would then convert those constructs to pure C++ for compilation. This tool is 

described in more detail in chapter 6. The Zac Translator was also important for pragmatic 

reasons. The implementation of the Lateral architecture presented here evolved over several 

design cycles, changing frequently. These changes would normally have required application 

code written using the architecture to be updated too- but instead, if the source code was 

written in Zac Script, only the translator needed to be modified. 

3.7 Summary 

This chapter has introduced the Lateral architecture, a behaviour-based robot architecture that 

extends on the successful Subsumption architecture developed by Brooks [[7]]. The novel 

features of Lateral were discussed, in particular the flexibility it brings to how behaviours can 

be organised. Further ideas were presented on how to actually implement support for the 

Lateral architecture that would be light-weight enough for downloading to lower-end robots 

                                                                                                                                               

not generate code for a separate set of functions for each class (important when memory is limited), but type-
checking is still as strong as if it did. 
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with limited memory resources. These ideas lead to “Zac”, a particular implementation of 

Lateral. Finally a suitable way to use C++ as a vehicle for implementing Lateral in a portable 

fashion was examined.  

Many of the chapters to follow rely on the work presented here. In Chapter 5, Lateral is used 

to build a set of behaviours. In Chapter 6, the Zac Translator mentioned in Section 3.6.4 is 

presented in detail. Then in Chapter 7, a complete system decomposition for the entire control 

system of a robot is presented, with the elements discussed here finding expression in the 

components of the system in Section 7.6, page 227. 
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4. The Cartographic System 

This chapter presents a cartographic system capable of building and maintaining an effective 

map of the robot’s environment with the use of short-range proximity sensors only. While the 

approach developed has some common ground with the techniques reviewed in Section 2.7 

(page 39), the unique challenges which the absence of long-range sensors pose for map-

building are resolved by using a novel representation scheme specifically tailored to the 

uncertainties involved. At the same time, the nature of the cartographic system developed here 

is carefully chosen to be consistent with behaviour-based design principles, which place severe 

constraints on the use of representation (see Section 2.4, page 15). 

The first section in this chapter establishes why a cartographic system is of such importance to 

an autonomous robot. Following that, the use of maps is reconciled with the limits behaviour-

based design places on the role modelling can play in a robot’s control system. A form of map 

representation which meets these constraints is then developed. Techniques are presented to 

make the representation practical for use on robots with limited memory and relatively slow 

processors. The issue of recognising landmarks in the environment with proximity sensors only 

is then examined in detail, because it is crucial to the success of the cartographic system. 

Finally, a set of services is described for allowing a behaviour to interact with the robot’s map 

without compromising the behaviour’s essentially reactive nature. 

 

4.1 Motivation for using maps 

An autonomous robot needs to maintain a map of its environment for a number of reasons. 

One of the most important is that if the robot fails to maintain a map, it will be prone to cyclic 

behaviour. As an example, consider Figure 4-1. Here the robot is shown trying to move in a 

particular direction, but being blocked by an obstacle. The robot then tried to move around 

the boundary of the obstacle until it is free to move in the desired direction again. Unfortunately 

in this case the shape of the obstacle is such that following its boundary leads the robot into 

turning back on the path it has already followed. If the robot does not have a way of detecting 

that this has happened, it may enter a behavioural cycle in which it repeats the same motion 

again and again. 
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Figure 4-1: Robot without map caught in behavioural cycle 

Maintaining a map based on what the robot experiences as it moves would give the robot the 

“memory” needed to detect and break out of cycles like this. Also, as the robot explores more 

of its environment and becomes better informed, its map becomes a useful tool in planning 

efficient routes to targets. It allows the robot to anticipate obstacles in the way and avoid 

entering into situations such as the one considered above by just bypassing the obstacle 

altogether. 

Another basic use of maps is to prevent the robot losing track of its position relative to the rest 

of the environment. While a reasonable estimate of the robot’s position and the direction it is 

facing in can be maintained by tracking its movements and integrating them, as will be shown in 

Section 7.4.1 (page 217), errors in the feedback from the robot’s motors, and environmental 

interference, will accumulate over time to make these estimates increasingly inaccurate. By 

detecting landmarks in the environment and comparing them with the map, the robot can 

compensate for this accumulating error and keep better track of where it is relative to its 

environment. 

For the specific “sentry” robot application developed in this thesis, maintaining a map is 

particularly important. The map is used to locate any areas in the environment that the robot 

has not yet explored so that the robot will not neglect to patrol these regions. The map is also 

fundamental to supporting algorithms which ensure that the robot patrols its entire territory in a 

timely, reliable fashion (see Section 5.3.2, page 143). 
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Having justified the need for maps, the following section will reconcile their use with the 

constraints placed on the design of a behaviour-based robot, particularly in terms of the use it 

may make of representation.  

4.2 Using maps in a behaviour-based robot 

At first glance, using maps seems to violate many of the criteria outlined in Section 2.4 (page 

15) for a behaviour-based system, particularly the following:- 

• “Modules tend to be more reactive than deliberative”- Building and maintaining a map 

seems very much an act of deliberation. Also, any module that uses the map will not be 

deciding its actions based entirely on the current state of the environment, and so that 

module will not be purely reactive in nature. 

• “Modules tend to be relatively simple”- Inserting and extracting information to and from 

a map would seem to require a good deal of complexity in any module involved in doing 

so. 

• “Modules use distributed representations”- Modules in a behaviour-based system 

should use representations tailored to their particular needs, and should not share these 

representations with other modules. A group of modules using information from a map 

would appear to be in contradiction of this. 

• “The world is considered its own best model”- Modules should consult direct sensor 

data whenever practical, rather than relying on information from other modules. The world 

itself is never out-of-date or inaccurate, whereas derived sources of information may well 

be either or both.  

The above considerations do not in fact rule out the use of maps- rather they place limits on 

what the nature of that map can be and particularly how it can be used. Examining once more 

the points listed above, these limits are as follows:- 

• Constraint: “Modules tend to be more reactive than deliberative”- Construction and 

maintenance of the robot’s map should not require any time-extended computation. It 

should be possible for the robot to update its map in real time, quickly integrating its 

perception of the immediate surroundings into the map as it moves. Equally importantly, it 

should not take excessive deliberation to actually interpret the map- the robot should be 

able to make use of the map immediately. 
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• Constraint: “Modules tend to be relatively simple”- It should be possible for a 

behaviour that needs to use the map to do so at the simplest possible level that is adequate 

for the task it is performing. The complexity of the map should not be reflected in the 

behaviours that use it. 

• Constraint: “Modules use distributed representations”- While a map is by its nature 

dependent on the use of representation and modelling15, the information the map provides 

should be accessible without shared representation. This is similar to the last point. 

Behaviours should be able to extract information from the map without needing to know 

anything about its structure or how it is maintained. 

• Constraint: “The world is considered its own best model”- The world should be 

consulted in preference to internal information sources “whenever practical”. While 

surprisingly complex tasks can be achieved simply by reacting to the current state of the 

environment, those tasks are limited to ones that can be done without any form of 

“memory”. For any other tasks a behaviour-based robot has no choice but to make use of 

some form of map. This is acceptable as long as it only resorts to using the map if there is 

no way of extracting enough information from the immediate environment to perform its 

task- i.e. it still consults the world itself “whenever practical”. 

These requirements constrain both how the cartographic system should be implemented, and 

the nature of the services it should provide. Implementation issues are tackled in the next 

section, where a map representation scheme is developed that is consistent with the design 

principles of a behaviour-based system outlined here. Interfacing with that representation 

scheme to provide useful services is discussed later in the chapter. 

4.3 “Marker”-based map representation scheme 

This section develops a suitable representation for modelling the environment in a form that 

meets the design constraints outlined in the previous section.  

The two most widely used map representation schemes in robotics are grid-based and 

topological (see Section 2.7, page 39). A grid-based scheme assumes the world is arranged in 

                                                 
15 Subsumption-inspired cartographic schemes such as that used in Toto [8] claim to avoid representation by building 

a network of behaviours instead of a map, but this seems to be simply another implicit form of representation- 
although with many advantages over traditional symbolic models.  
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a manner somewhat analogous to a chess board, with all the objects in it arranged in definite 

locations that can be known exactly by the robot. If the robot can know its own position 

precisely, and is able to sense objects perfectly, there is no problem with this, but otherwise 

the scheme becomes essentially unworkable. It is very difficult to allow for any uncertainty in 

the robot’s position in it, and limitations in the robot’s sensing capability are particularly 

troublesome. Hence it is unsuitable for use with an autonomous robot, although it may work 

perfectly well in a simulated environment. 

Topological schemes, in contrast, depend less on the exact location of the objects in the 

robot’s environment, and concentrate more on trying to capture the basic shape of the 

environment in terms of its essential topology. In other words, the robot tries to determine 

which areas can be reached from each other, which are cut off from each other by 

obstructions, etc. As such the precise details of the robot’s surroundings are not as significant, 

only the overall form, so uncertainty in the robot’s position becomes less important. However 

the price paid for this is the extra computation necessary for recognising abstract topological 

features in the environment. For a robot with no long-range sensors, such features cannot be 

directly observed. The only way to observe them is indirectly, by keeping track of the 

discernible attributes of the immediate environment, combining that information into a model of 

the overall environment, and then analysing that model for topological features. In other words, 

in the absence of long-range sensors it is effectively necessary to build a map before 

topological features can be detected, so such features cannot be used in building the map in 

the first place. 

The map representation scheme this section will develop is quite different from either of the 

grid-based or topological approaches. Instead of seeing a map as a model of the environment, 

it is viewed more as a “record of experiences”. At any particular moment, the robot 

experiences the environment in its immediate vicinity, as perceived through the robot’s sensors. 

It also experiences feedback from its motors indicating any movement it is making, which can 

be used to calculate its position. It is clear the most well informed robot conceivable is one 

which archives all this information exhaustively, continuously recording the state of the sensors 

along with the associated position of the robot, and never discarding any of this data. Such a 
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robot is an upper bound on the information a cartographic system can have16, since it contains 

every piece of data ever available to the robot. An attractive feature of recording data in this 

form is that it makes no assumptions about the environment- no attempt is made to build a 

model of what is actually in the environment. The approach used in this project takes this 

trivially simple idea of archiving all the robot’s experiences as a starting point, and modifies it 

into a form that is actually practical to implement. 

Firstly, a complete archive of sensor state and motion feedback for all the time the robot is in 

operation is obviously hopelessly impractical- the robot would quickly “drown” in the 

information deluge, with too much data to process. To reduce this burden, it would seem 

reasonable to eliminate any records in the archive that apply to the same position of the robot 

as a new record being added, since the new record will have the most up-to-date information 

about the state of the environment at that position. However there is a problem with this. The 

robot’s position is deduced by integrating the motion feedback from the robot’s motors. 

Errors in the motion feedback are unavoidable, so the position estimate will gradually drift 

from the robot’s true position. Hence two records showing the same “nominal position” of the 

robot cannot be assumed to correspond to the same physical position if there is a significant 

time interval between when they were recorded. However, if the robot were in some way able 

to use features in the environment to keep its estimate of its position consistent, then it would 

be acceptable to keep only the most recent record corresponding to a given position and 

discard all previous records for that location.  

At this point an initially unjustified assumption is made that this is indeed the case- that the 

cartographic system eventually constructed will be able to keep track of its position in some 

way. Given that, we can discard as out-of-date any entries in the archive that are marked at 

the same position estimate as the current position when we add a new record. This step will be 

justified in Section 4.4 (page 95), where it is shown that the representation scheme which the 

assumption made here leads to will in fact allow the robot to keep track of its position by 

detecting stable features of the environment called landmarks. 

Another change to the archiving strategy needs to be made before it becomes practical. 

Obviously records of sensor state versus robot position cannot be made for every continuous 

                                                 
16 Of course, trying to make use of this huge archive of data sensibly would be another matter entirely. 
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point along the robot’s path, as this would still demand unlimited storage space. Instead, it is 

acceptable to record “samples” at positions with a certain minimum distance between them- so 

the robot has information about representative points in every area it has been. The minimum 

distance between records is chosen based on how much memory is available to store the 

samples- the smaller the distance, the more samples in a given area and the more memory that 

will be required (see Section 4.3.2, page 93). 

At this point, the “record of experiences” has been re-cast in a form that is actually practical to 

implement. The records of sensor state versus nominal position are called “markers” in the 

rest of this chapter. The example shown in Figures 4-2, 4-3, and 4-4 reviews and clarifies the 

proposed nature of the “marker”-based representation scheme. 

 

Path of Robot

Recent marker

 

Figure 4-2: Laying markers 

The diagram opposite shows the robot 

moving through a simple environment. As the 

robot moves, it records markers at fixed 

minimum distances from each other along its 

path. Recording a marker is called “laying” it, 

as if the robot were laying down some 

physical trace in the environment as it moved. 

The information in these markers details the 

readings from the robot’s sensors the last time 

it was in the area they were laid 
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Replaced marker

Path of Robot

Older marker

Recent marker

 

Figure 4-3: Replacing markers 

 

When the robot is in an area where it has laid 

markers before, those markers are removed 

and replaced. The new markers contain the 

most up-to-date information that the robot 

has about the environment in that location, 

and hence the older markers become 

redundant. If the environment should have 

changed since the robot was last in the area, 

the new markers will reflect the present 

reality. Hence the ability to cope with a 

dynamic environment is built in at a very basic 

level to this representation scheme. 

Replaced marker

Path of Robot

Older marker

Recent marker

 

Figure 4-4: A map as a collection of markers 

The diagram opposite is for a considerable 

time afterwards, when the robot has 

exhaustively explored the environment. It now 

has markers distributed evenly at 

representative points throughout its territory. 

The robot still continues to replace markers 

as it moves, keeping them up to date with any 

changes in their area. The markers as a group 

are effectively a map of the robot’s 

environment. 

 

By using markers, the robot can deduce what its sensors were reading the last time it was in a 

particular position. But it is not as easy to work the other way, and use markers to estimate the 

robot’s position from its current sensor readings. This is because there may be many markers 

with the same set of sensor readings associated with them, and the robot will not be able to 

distinguish them. The robot’s sensors are not rich enough to record its environment at a level 

of detail that would make this distinction possible- for example, all the markers that are away 

from boundaries look the exact same to the robot: zero proximity readings on all sides. This is 

why it is important to try to isolate special “landmark” features in the environment that the 
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robot can distinguish from other areas and use to keep track of its position. Although most 

markers of themselves cannot be used as landmarks, there are some markers- or groups of 

markers- that can. These will be discussed in Section 4.4 (page 95). 

The robot’s “map” in this form of representation is simply a collection of markers. Since the 

collection is potentially large, it is important that it be structured in a way that lets the robot 

extract the information it needs from the map in a timely fashion, without having to do any 

computationally expensive searching. The following section discusses a method for achieving 

this by structuring markers into a hierarchy of “neighbourhoods”. 

 

4.3.1 Neighbourhoods 

As the robot moves, it needs to constantly discard outdated markers and replace them with 

ones that reflect the current state of the environment. To do this, the robot must be able to 

determine which markers were laid in the same locations as the new markers it is currently 

laying, so that it can eliminate them. Hence, it is vital that the robot can quickly find all the 

markers whose positions are close to the current location of the robot. As well as this, it is 

useful to be able to determine which markers are in the general locality of the robot- even if 

they are not in its immediate vicinity- so that the robot can gain an impression of what the 

environment beyond its sensor reach is like in the area through which it is moving. In general, 

the closer a marker is to the current position of the robot, the more relevant it is to the robot. 

“Neighbourhoods” are structures for filtering groups of markers by their distance from the 

robot so that it can find out about its locality in a timely fashion without searching the entire 

archive.  

The ideal situation would be if a fully sorted list of markers could be maintained such that at 

any instant the markers are ordered by their distance from the robot. The robot could then 

easily access the markers relevant to it. A difficulty with this is simply that it takes too long to 

do. A fast sort algorithm such as a heap sort has a complexity of O n n( log ) . This is not bad, 

but would be a drain on the resources of the robot- acutely so for the lower-end robots with 

limited processors the work in this thesis is aimed at. A more serious problem is that the robot 

will not stop moving and wait for the sort to complete- since that could lead to pauses of the 

order of minutes for a typical robot. Therefore, the “metric” by which the information is being 
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sorted- distance to the robot- is continually changing as the robot moves. Fast clever sort 

algorithms are not designed with this in mind, and so their performance would be difficult to 

predict under these unique conditions. 

Investigation with Khepera, the robot the work in this thesis was implemented on, showed 

that, practically speaking, the map maintainer could rely on being allowed on the order of 10 

“updates” to the sorting process per second. Within an update, only a handful of markers 

could be processed, or system performance would degrade badly. Given these constraints, it 

is not possible to maintain an ordered list of markers using normal sorting algorithms unless the 

robot is limited to moving extremely slowly. 

However, the robot does not actually need to sort its markers fully. It is important that the 

robot can identify markers that are in its immediate vicinity, or its general locality. Beyond this, 

it does not need to know which markers are closer than others. This would suggest a “bucket 

sort”, where all markers are examined and placed in one of three “buckets” labelled 

“immediate”, “near”, or “distant”, depending on how close they are to the robot. In a 

conventional bucket sort, all the markers would be examined in turn and classified one by one. 

Experimental tests proved this to be impractical because the sort couldn’t keep up with the 

rate at which the robot could move- the full sort took on the order of a minute, while the set of 

markers that should be in the “immediate” bucket changed every few seconds (and the “near” 

bucket every few tens of seconds). The reason for this high rate of change is because, while a 

marker that is distant from the robot tends to stay distant for some time, a marker that is in the 

immediate vicinity of the robot at one moment may not be so in the next. The robot only has to 

move a small distance to completely change which set of markers are in its immediate vicinity. 

A similar argument applies to the “near” bucket, except the robot has to move further for a 

given marker to no longer be near it, so the rate of turnover of markers is not as high. 

A significant improvement to the sorting process can be achieved by observing that in general 

the number of markers in a bucket will be roughly proportional to the area it encompasses. 

Hence there will be fewer markers in the “near” bucket than there are in the “distant” bucket, 

and fewer still in the “immediate” bucket. If the robot were to devote the same length of time 

to sorting each individual bucket, then the “immediate” bucket would be worked through at the 

fastest rate (since it has the fewest markers), the “near” bucket would be processed somewhat 

more slowly, and the “distant” bucket would be worked through slowest of all. Effectively, the 
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rate at which all the markers would be updated in a given bucket will be higher the fewer 

markers there are in that bucket. But the buckets with the fewest markers are the ones closest 

to the robot, which are also the ones with the greatest rate of change. Hence this is very 

desirable behaviour since it means that the robot will process the buckets at a rate that mirrors 

the speed at which changes take place in them. 

So the sort can be improved by simply modifying it so that in one “cycle” it takes a single 

marker from each of the buckets, sorts them, then repeats the cycle17. Hence the same amount 

of time is spent sorting each bucket. Because there are just a few markers in the “immediate” 

bucket, the bucket sort cycles through them very quickly, so they are updated at a rate that 

can keep up with the robot’s movement. The “near” bucket has some more markers, and 

takes slightly longer to pass through, which is acceptable because the turn-over of markers is 

not as fast as in the “immediate” bucket. The “distant” bucket has many markers in it, and so is 

passed through most slowly. In practice experimental tests proved it was passed through too 

slowly- markers that should be moved to “near” were not detected quickly enough. For that 

reason, an intermediate bucket between “near” and “distant” was inserted, called “local”, to 

hold markers that were indeed distant from the robot, but still near enough to be worth 

monitoring more closely so that they could be moved to the “near” bucket in a timely fashion 

when appropriate. 

The “buckets” discussed above will be called “neighbourhoods” in this chapter, since they 

represent a collection of markers all at the same general distance range from the robot (see 

Figure 4-5). 

                                                 
17 The robot will not run out of markers because, when it has processed all the markers in a given bucket, it should 

simply start over and begin processing them all again. This is because the robot will have moved in the meantime, 
and the markers may now need to placed in different buckets. 
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In each cycle of the sorting process, one marker from
each neighbourhood is examined and moved to another
neighbourhood if appropriate. The next cycle repeats the

process for another set of markers.

Immediate Near Local Distant

Index to marker
currently being sorted

Index of next marker
to be sorted

 

Figure 4-5: Sorting markers using neighbourhoods 

The properties of neighbourhoods will now be formalised. Each neighbourhood has an 

associated nominal distance range (see Figure 4-6). The robot attempts to keep markers 

whose positions are within that distance range from the current robot position in the 

appropriate neighbourhood. The distance range associated with a neighbourhood is called 

nominal because in general the distance of some markers in a neighbourhood from the robot’s 

current position will in fact lie outside the neighbourhood’s specified distance range. This 

happens when a movement of a robot changes the distance from the robot to a marker 

sufficiently to make it inappropriate for the neighbourhood it is in. The marker will be re-

classified into the correct neighbourhood the next time it is examined by the sorting process. 
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NearNear
NeighbourhoodNeighbourhood

DistantDistant
NeighbourhoodNeighbourhood

ImmediateImmediate
NeighbourhoodNeighbourhood

LocalLocal
NeighbourhoodNeighbourhood

Markers

Current position
of robot

 

Figure 4-6: Distance ranges associated with neighbourhoods 

If the robot were stationary long enough for the sorting process to place all the markers in their 

appropriate neighbourhood, then the neighbourhoods would contain the following:- 

• Immediate Neighbourhood- this contains any marker whose position is very close to the 

current robot position, and which would need to be discarded if a new marker was laid at 

that point. The minimum distance enforced between markers keeps the number of markers 

here very low- either zero, one, sometimes two. The size of the immediate neighbourhood 

should correspond to this minimum distance (see Section 4.3.2). 

• Near Neighbourhood - this contains any marker located in the general surroundings of the 

robot. These markers let the robot gain an impression of the environment just beyond the 

reach of its sensors. The minimum distance enforced by the marker laying system will also 

keep the number of markers in this neighbourhood relatively low. For the choice of 

minimum distance used in this work, the number of markers here was kept at about half a 

dozen.  

• Local Neighbourhood - this contains any markers which do not qualify as “Near”, but 

which might do so in the foreseeable future. It acts as a buffer zone between “Near” and 

“Distant”, increasing the speed at which it is possible to detect markers that have become 

“Near” because of movement of the robot. The extent of this neighbourhood is not critical, 

but if possible it should be chosen so that its distance range is greater than the distance the 
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robot can move in the time it takes to sort through all the markers in the neighbourhood 

once. For the speed at which the robot this project was implemented on could process 

markers compared with the speed it could move through the environment, this condition 

was satisfied by choosing a distance range that kept on the order of 20 markers in this 

neighbourhood. 

• Distant Neighbourhood - this contains any other markers too distant from the robot to 

fall into any of the other neighbourhoods. 

The process of sorting markers is a continuous one, because effectively the “goal-posts move” 

during the sort because the position of the robot keeps changing. Hence the robot cannot 

expect to ever have all the markers ordered correctly unless the robot is stationary for an 

extended period. But the neighbourhood system allows the robot to concentrate its efforts on 

those areas that are most relevant to it- the immediate and near neighbourhood- and process 

distant markers at a slower rate. 

The system developed here is dedicated to making sure the robot always has good local 

knowledge of its environment. It is not very suitable if the robot needs to examine the map at 

particular positions distant from it. No way could be found to allow that and still have 

acceptable run-time performance18. Such an ability is not generally desirable in a behaviour-

based robot anyway- the robot is mostly concerned with supplementing its immediate 

perception of the local environment with information from the map about that same locality. 

 

4.3.2 Marker Laying System 

The marker laying system is designed to try to keep exactly one marker in the “immediate” 

neighbourhood. This enforces a minimum distance between markers so that the robot does not 

become swamped with many markers all corresponding to the approximately the same 

location. When a marker is laid, all other markers in the “immediate” neighbourhood are 

considered to be superseded by this marker, and are deleted. A new marker is laid every time 

the robot moves beyond the chosen minimum distance from the last marker laid. 

                                                 
18 In Section 4.5.4 (page 115) a method of searching the robot’s map even at locations distant from the robot is 

presented, but it is not a technique that can be applied in real-time, only as a background task. 
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This marker laying system leads to the memory requirements of the cartographic system 

growing with the ratio between the area of the robot’s environment and the area a single 

marker covers (i.e. the “level of granularity” at which the environment is mapped). A good 

choice for the area a single marker should cover is a fairly large fraction of the area of the 

body of the robot itself, since features smaller than the robot have little impact on it. In this 

project, markers represented an area of about one third of the robot’s body. The minimum 

distance between markers is deduced as the radius of the area a single marker is chosen to 

represent. 

 

4.3.3 Adding annotations to markers 

Markers are essentially records containing data derived from the robot’s sensors- its 

“experiences”- along with the position that the robot was in when it laid the marker. In practice 

it is useful to also include a timestamp to indicate when the marker was laid, but that is all the 

information specifically needed by the basic marker representation scheme. 

However, as discussed in Section 4.3, the validity of the marker representation scheme 

depends on the ability of the robot to recognise landmarks in its environment. This will be 

examined in the next section. For now, it is important to observe that the landmark system will 

need some way to store data about landmarks it has detected, so that the next time it meets 

them it will have something to compare them against. Detecting landmarks is of no use unless 

deductions can be drawn from them19. The way this is handled is by letting the landmark 

system “hook on” its own data to the marker. Keeping this data with the marker, rather than 

setting up separate storage for it, means that the landmark system is effectively allowed to 

“annotate” the robot’s map, and have those “annotations” brought back to its attention when 

the robot returns to the area where they were made. 

This ability to add “annotations” to the map by including data in markers is quite useful for 

other components of the cartographic system as well. In Figure 4-7, the full structure of a 

marker is shown, including all the annotations added by various parts of the cartographic 

system discussed later in this chapter. The diagram is given simply to demonstrate that a 

                                                 
19 In fact for one of the two types of landmarks that will be examined the basic marker data is sufficient, but the other 

will indeed need to store extra data characterising the landmark it detects (see Section 4.4.3, page 108). 
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marker acts as a single “hook” onto which diverse information for different parts of the 

cartographic system can be hung- the actual data stored in the annotations are not relevant yet. 
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Figure 4-7: Marker structure with annotations 

 

This completes the discussion of the marker representation scheme. Remember however that 

an initial assumption was made when developing the scheme that has not yet been justified. 

The assumption was that a landmark recognition system could be built using the marker 

representation that would be able to keep the robot’s estimates of its position and direction 

consistent over time. The next section demonstrates how this can be done, and so confirms 

that a map composed of markers can be maintained for extended periods. 

 

4.4 Using Landmarks 

It is important that the robot has some means of recognising landmarks in its environment- 

otherwise the robot will lose track of its position and direction, and be unable to continue to 

maintain its map. A fundamental assumption was made in Section 4.3 (page 83), where it was 

assumed that the cartographic system, when constructed, would be able to keep track of its 

position by using landmarks. That confidence in the robot’s estimate of its position was a 
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necessary starting point for the marker-based map representation scheme. Now that 

assumption needs to be justified. 

The robot’s estimate of its position is generated by tracking the movements of the robot and 

integrating its motion to give its position20. The robot determines its motion by feedback from 

its motors. However, this feedback will contain some error due to occasional motor slippage 

and environmental interference with the robot’s progress. Since the motion feedback is 

integrated to give position, these errors will also be integrated, and the robot’s estimate of its 

position will grow less accurate over time as the error builds up. The robot’s estimate of the 

direction it is facing in is generated in a similar way, by keeping track of every turn the robot 

makes. The direction estimate will also grow less accurate over time for the same reasons as 

the position estimate. 

The purpose of building a landmark recognition system is to find stable features of the 

environment that can be used as reference points to deduce how much error there is in the 

robot’s position and direction estimates, and make the appropriate corrections to compensate 

for that error. This section presents a scheme for recognising landmarks in the environment 

with proximity sensors only, using the marker system developed in the previous sections. 

A robot with proximity sensors only cannot simply “look” at an object and recognise it. It can 

only sense the small portion of an object that is in its immediate locality. And even that portion 

may not be sensed very accurately. For example, the proximity sensors of the robot that the 

work in this thesis was implemented on gave a distance reading that was non-linear, noisy, 

influenced by ambient light, and the colour, texture, and other features of the object. Such 

readings are not even remotely suitable for direct use in landmark recognition. There are 

simply no stable features to recognise. As an example of the difficulties, the same object in the 

same position relative to the robot may give varying proximity readings depending on how 

sunny the day is. The basic problem is that, because of all the uncertainties involved, there is 

no way to take a reading from a proximity sensor and actually convert it to an exact distance 

measurement to the object. 

However, such non-ideal sensor data is sufficient to allow the robot to perform a simple task 

like following the boundary of an object. The details of how this is done are discussed in 

                                                 
20 The details of how this is achieved will be described in Section 7.4.1 (page 217) 
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Section 5.2.3 (page 129), but essentially the robot simply comes close to the object, turns at 

right angles to its boundary, then moves forward continuously, turning to the left or right as it 

detects the edge coming closer or falling away (see Figure 4-8). The robot never needs to 

know the exact distance it is from the object, only whether that distance is increasing or 

decreasing. This relative information can be extracted reasonably reliably from proximity 

readings, even though the absolute distances the readings represent cannot. 

The reason this is relevant to a discussion of landmarks is that when the robot is following the 

edge of an object, the path it moves along will trace the outline of that object’s boundary (see 

Figure 4-8). The distance the path is from the object will depend on the exact nature of the 

object’s surface- but whatever the distance is, it will be consistent, since the nature of surfaces 

tends to be remain constant. So if the robot follows the same boundary twice, the path it 

follows will generally be consistent. Hence recognisable features such as corners and edges 

that appear in the path will reappear in the same places the next time the robot follows the 

boundary. Therefore these features can act as landmarks for the robot. 

Corner Feature

Edge
Feature Robot follows boundary by:

•Moving forward continuously
•Turning left if boundary gets

further away
•Turning right if boundary gets

closer

Move left Move right

Robot’s path
traces the outline
of the object  

Figure 4-8: Tracing the outline of an object 

The sections that follow discuss how the ideas developed here can be implemented using the 

marker-based map examined earlier. 

 

4.4.1 General strategy for trusting landmarks 

There are two sections of a boundary which are particularly well suited to act as landmarks- 

corners and straight edge sections. These segments of the boundary have well-defined, stable 
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features from which consistent information can be extracted, as will be shown soon. With 

careful use of this information, it is possible to compensate for accumulating error in the 

robot’s estimates of its position and direction. Before looking at the details of how this can be 

done, some general difficulties with landmarks need to be addressed. 

While the idea of landmarks is that they provide reference points that the robot can use to 

keep track of its position, it is important to remember that the robot’s environment is not static. 

It cannot be assumed that a change in the apparent position of a landmark automatically means 

that the robot’s estimate of its position has become inaccurate- it may equally well be that the 

landmark has simply moved. A change in the position of a landmark and an error in the 

robot’s estimate of its position are indistinguishable while the robot is close to that landmark. 

However, an important point to realise is that they can be distinguished once the robot moves 

away from that area. A change in the position of a landmark will not change the position of any 

other landmark, whereas a drift in the robot’s sense of position will change the perceived 

position of every landmark. One is a local change, the other is a global change. So if the robot 

finds that every landmark it meets seems to have moved, then it becomes more and more 

likely that the movement is only apparent, caused by a drift in the robot’s estimate of its 

position. Essentially, the “consensus” of the landmarks in the environment is used to determine 

what has occurred in a particular part of that environment. This use of landmarks ensures that 

the map is kept self-consistent by essentially averaging error over the entire map21. 

A strategy for applying corrections to the robot’s estimates is now presented that follows from 

the above considerations. It is first assumed for the purposes of calculation that apparent 

changes in the environment are entirely due to drifts in the robot’s position and direction 

estimates and not to changes in the position of landmarks. Then, having computed the 

corrections to the robot’s estimate of its position and direction that would be appropriate 

under that condition, only a conservative fraction of each correction is actually applied. If the 

apparent changes in the environment are in fact due to drifts in the robot’s estimates, then 

every landmark the robot meets will continue to apply these corrections until they build up 

sufficiently to compensate for the drifts. If, on the other hand the apparent changes are real, 

                                                 
21 Note that this averaging process, while it keeps the map self-consistent, does not prevent the coordinate system of 

the map drifting over time. This point has no bearing on landmark recognition, but does have bearing on the nature 
of the services the map can provide- see Section 4.5.1, page 113. 
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and due to an actual change in the position of a landmark, the correction will not be reinforced 

at any other landmark. In fact, at other landmarks the “incorrect correction” will be 

compensated for, since the error introduced into the robot’s estimates will seem just like a 

natural drift from accumulating error and can be corrected as such. The “conservative fraction” 

mentioned earlier should be one chosen so that if a correction is applied in error, it is small 

enough to be recovered from through the same process that deals with normal drift. Suitable 

values will be quoted for straight-edge and corner landmarks when they are discussed. It is 

important to note that corrections to the robot’s estimate of its direction must be made 

particularly conservatively, because small erroneous corrections to the direction will be 

multiplied into very large errors in its position as the robot moves. Erroneous corrections to the 

position estimate do not become amplified in this way22. 

This ability of the landmark system to “heal itself” if errors are introduced while attempting to 

make corrections is quite general, so long as the errors are not large enough to prevent 

landmarks being recognised. One useful consequence of this is that it is acceptable to make 

approximations when calculating the corrections to the robot’s estimates from a landmark. The 

difference between the approximation and the exact answer can be seen as introducing an 

error component into the corrections the robot makes which may add to the drifts in the 

estimates rather than removing them. This will simply appear as an extra component in the 

position and direction drift calculated in future corrections and be eliminated. 

The following sections now look at the details of detecting particular landmarks and using them 

to make appropriate corrections to the robot’s position and direction estimates. 

 

4.4.2 Straight-edge landmarks  

This section discusses how straight sections of an object’s boundary can be used as 

landmarks. 

As the robot moves, it lays markers representing what it senses, replacing markers already 

present that represent what the robot sensed last time it was in the area (see Section 4.3.2, 

                                                 
22 If you aim a cannon at a target, but shoot a few degrees in the wrong direction, you will miss the target by a 

distance that keeps increasing the further the cannonball goes . If, on the other hand, you aim the cannon exactly on 
target, and move it a few paces left or right before firing- still facing the same direction- then the cannonball will 
miss the target by just the distance you moved no matter how far away the target is. 
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page 93). If the robot follows a straight edge section of a boundary that it has passed before, it 

should find that the markers it is laying are collinear with the ones being replaced. In practice 

this may not happen, either because the robot’s estimate of its position may have drifted due to 

accumulating error, or its direction estimate may have drifted, or both. Of course, it is also 

possible that the position of the edge may have changed. This possibility will be ignored for 

now, and then accounted for later. The logic of doing this was given in the discussion in the 

previous section.  

It is possible to assess the amount by which the robot’s estimates have drifted since the last 

time it passed a particular straight edge segment. This is done by working backwards from an 

examination of the apparent difference between the edge as it is perceived currently with how 

it was perceived in the past, as recorded in the markers the robot laid at that time. 

The effect of a drift in the robot’s position estimate is shown in Figure 4-9. The robot is shown 

following the same edge segment twice. As the robot follows the edge for the first time, it lays 

markers in a straight line at regular intervals along it. When the robot returns to the edge at a 

later stage, any drift in the robot’s position estimate will cause the markers it lays this time 

around not to be collinear with the ones laid originally23. 

First Pass
The robot follows the edge segment, laying
markers at regular intervals along the way-
replacing any markers already present.

Second Pass
The robot follows the same segment. In the
meantime the robot’s estimate of its position
has drifted, so the edge appears to be at a
different position.

Wall

Situation The robot following a straight
edge segment

the robot following the same
edge again at a later date

Marker representation

Markers from first pass

Markers from second pass

Difference present in
apparent edge position

First pass Second pass

 

Figure 4-9: Effect of position estimate drift 

                                                 
23 Unless the drift happened to take place along the direction of the edge itself. This possibility will be discussed 

soon. 
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If the robot finds itself following an edge while replacing markers that suggest the past 

existence of an edge very similar to the one it is following24, but slightly offset, that is a good 

indication that the robot’s position estimate has drifted and the two edges are in fact the same. 

Of course, it is necessary to be cautious in deducing corrections from this since the edge may 

in fact have moved in the environment. This issue is discussed in more detail further on.  

The amount of information the robot can extract about the drift in its position estimate varies. If 

the drift occurs in the same direction as the edge itself extends in, then it will be undetectable, 

since the markers the robot lays will still be collinear with the ones laid previously. If the drift 

was at right angles to the edge, it will be detected in full. In general, the component of the drift 

perpendicular to the edge can be deduced. 

In Figure 4-10, the effect of a drift in the robot’s direction estimate is portrayed. This type of 

drift is more serious, since even a small drift in direction can produce a large drift in position as 

the robot moves. 

First Pass
The robot follows the edge segment, laying
markers at regular intervals along the way-
replacing any markers already present.

Second Pass
The robot follows the same segment. The
robot’s estimate of the direction in which it
is facing has drifted, so the edge appears to
extend in a different direction.

Marker representation

Difference present in direction in
which the edge appears to extend

dθ

 

Figure 4-10: Effect of direction estimate drift 

The drift in the direction estimate can be found in full from the difference in the direction the 

edge appears to extend in currently compared to the direction in which the previous set of 

markers laid alongside the edge extend. 

In general both position and direction drift may be present. Figure 4-11 illustrates this situation. 

Note that the point at which the drifts are being calculated is labelled. This is because direction 

                                                 
24 The robot can tell if the markers it is replacing indicate the presence of an edge by examining the proximity sensor 

data recorded in them. 
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drift causes a drift in position that changes as the robot moves, so the position drift calculated 

will depend on where along the robot’s path it is measured. The direction drift can be found by 

comparing the direction the two sets of markers are aligned in as before. The detectable 

component of the position drift at a particular point along the robot’s path can then be 

calculated by drawing the imaginary line that the robot would have followed if the direction 

drift had been corrected at that point, and then finding the perpendicular distance between that 

line and the one formed by the recorded markers. 

First Pass
The robot follows the edge segment, laying
markers at regular intervals along the way-
replacing any markers already present.

Second Pass
The robot follows the same segment. The
robot’s estimate of the direction in which it
is facing has drifted. Its position estimate
has also drifted.

Marker representation

Difference present in direction in
which the edge appears to extend

dθ
Difference present in
apparent edge position

Point at which drifts
are being calculated

Path with direction drift corrected

 

Figure 4-11: Combined effect of direction and position estimate drift 

The practical issues involved with actually performing the calculations for the drifts in the 

robot’s position and direction estimates will now be examined. 

Calculating drifts involves continuously comparing markers recently laid with the markers they 

replaced. This can be done by maintaining a list of the last n markers laid and the markers they 

replaced. By applying metrics to these markers it can be determined if they indicate that the 

robot is following a straight edge that it has met before. If this is found to be the case, the two 

sets of markers can be compared to calculate drifts in the robot’s position and direction 

estimates as outlined earlier. 

Because of the steady computational burden these continual comparisons make on the robot, 

it is crucial that the robot can make the relevant calculations quickly and efficiently. This was 
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done by carefully choosing metrics that made little use of transcendental functions25, and by 

limiting the number of markers that were compared to a manageable number. It was decided 

to involve only the last three markers laid (and the markers they replaced) in calculations. This 

decision was based on a number of factors:- 

• The more markers used, the longer an edge segment needs to remain straight for it to be 

accepted as a landmark. Choosing a low number of markers implies that even if the edges 

of boundaries are only straight in small sections, these sections can still be recognised. 

• Using a low number of markers also allows edges that have a small curve to be used as 

landmarks- since these are close enough to a straight line for practical purposes over short 

distances. 

• The mathematics involved is particularly simple for the three-marker case, minimising the 

computational burden on the robot26. 

Figure 4-12 shows the information the robot has available to it when it maintains a list of the 

last three markers laid (p1, p2 and p3) and the markers that they replaced (q1, q2 and q3). The 

marker p1 is the one most recently laid. 

Earlier markers

Difference present in direction in
which the edge appears to extend

dθ
Difference present in
apparent edge position

Path with direction

drift corrected

p1 (x1,y1)
p2 (x2,y2)

p3 (x3,y3)

q1 (x1‘,y1‘) q2 (x2‘,y2‘)
q3  (xs‘,y3‘)

p1

p2

p3

q1

q2

q3

Most recently laid marker

Second most recently laid marker

Third most recently laid marker

Replacement markers
Most recently replaced marker

Second most recently replaced marker

Third most recently replaced marker

dθ

 

Figure 4-12: Computing drifts by comparing three markers 

                                                 
25 Functions such as sine, cosine, square root etc. take longer to calculate than multiplication, division, addition, etc. 

The robot is unlikely to have a maths co-processor. 
26 In fact for the physical robot used in this project, three markers was the maximum that could be used without 

unacceptable runtime performance degradation. 
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Before comparing the two sets of markers, it is important to evaluate how confident the robot 

can be in the corrections to the drifts in the robot’s position and direction estimates that it 

deduces from them. Firstly, it is important that each set represents a straight edge. This can be 

tested by measuring how close to being collinear each set of markers are. There are many 

possible metrics that can be used- the one described here was chosen because it avoided the 

use of transcendental functions. 

Consider the angle θ formed between the most recent marker laid, the second most recent 

marker, and the remaining marker. This situation is shown in Figure 4-13. The closer θ is to 

180°, the closer the three markers are to being collinear. 

p1 (x1,y1)

p2 (x2,y2)

p3 (x3,y3)

θ
p2 p3

(x3-x2, y3-y2)

p1 p2
(x2-x1, y2-y1)  

Figure 4-13: Testing the collinearity of a set of markers 

The inner product of the vectors formed between the markers at the extremes and the marker 

in the centre is:- 

p p p p p p p p1 2 2 3 1 2 2 3

→ → → →
=. cosθ  

Rearranging for cos θ gives:- 
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Squaring both sides will remove the square roots on the right- square roots are undesirable 

since they are transcendental functions and relatively expensive to calculate. 
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...(4.1) 

At an angle of 180° the markers are collinear, and cos2 θ  is at its maximum value of unity. The 

further the markers are from being collinear, the further the angle θ will deviate from 180°, and 
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the further cos2 θ falls from unity27. Hence the fraction on the right of the above equation can 

be used as a metric of the “straightness” of the line formed by the markers p1, p2 and p3. The 

same metric can be applied to the markers q1, q2 and q3. 

As well as being collinear, it is important that the two sets of markers form lines that extend in 

approximately the same direction. The further their directions diverge, the less confident the 

robot can be that the differences can be accounted for by drift in the robot’s direction 

estimate, and the more likely it is that the difference is caused by an actual change in the 

environment. The direction of a set of markers is here approximated as the angle formed 

between the markers at the extremities as shown in Figure 4-14. The approximation is 

acceptable because, if it is not reasonably accurate, the collinearity metric will have generated 

a low value so the robot will know not to have confidence in the markers as a landmark. 

p1 (x1,y1)

p2 (x2,y2)

p3 (x3,y3)

φ
 

Figure 4-14: The direction indicated by a set of markers 

Note that calculating this angle unavoidably involves the use of a transcendental trigonometric 

function, inverse tangent:- 

φ =
−
−







−tan 1 3 1

3 1

y y
x x

 
 

...(4.2) 

 

The same calculation can be performed for the markers q1, q2 and q3. Then the closer the 

difference in the angles calculated is to zero, the more confident the robot can be that the lines 

represent the same feature. It would be reasonable to combine this angle confidence metric 

with the collinearity one given in Equation 4.1. However a better alternative is to only calculate 

the angle metric if the collinearity metric is satisfactory, since this reduces the average 

                                                 
27 Of course, cos2 θ also approaches unity as θ approaches 0°- i.e. when the robot turns about-face. This undesired 

possibility could be tested for, but instead a more general idea for eliminating spurious landmarks was used. 
Straight-edge landmark detection was only enabled when the robot was following an edge smoothly, and making no 
sharp turns. The “curvature” virtual sensor to be described later in Section 4.5.2, page 114 was used to check for 
this condition. 
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computational load on the robot. A cut-off confidence of 0.9 for the collinearity metric was 

found to work well. A cut-off confidence of ±10° was similarly placed on the angle metric, so 

that if it was not satisfactory the robot would perform no further computation. These numbers 

were chosen based on an estimate of the rate at which position and direction drift occurred on 

the particular robot used in this project. The use of such “magic numbers” could be avoided by 

simply not using cut-off confidence thresholds, and factoring the metrics into an overall 

confidence in the final calculated corrections to the robot’s drifts. This was not done because it 

required the robot to complete all stages of the calculations, rather than only performing them 

when it would be able to have high confidence in the results. The cut-offs reduced the 

computational burden on the robot significantly with only a small price in missed opportunities 

to fix drifts. 

The actual corrections to the robot’s estimates of its position and direction are now calculated. 

The drift in direction is simply the difference in angles calculated earlier, as shown in Figure 4-

15. 

dθDrift in position,
(∆x, ∆y)

Path with direction

drift corrected

p1

p2
p3

q1
q2

q3

dθr (x0,y0)

Current
position of
robot

r (x0,y0)

Drift in direction,
dθ

Current position of robot -
 

Figure 4-15: Calculating drifts in position and direction estimates  

The observable component of the drift in position is found by considering what minimum 

displacement (∆x, ∆y) is necessary to translate the robot’s current position onto the recorded 

location of the edge it is following. The situation is also shown in Figure 4-15. This 

displacement can be estimated by finding the intersection of the line formed through q1 and q3 

with the perpendicular dropped from r. 

The slope of the line through q1 and q3 is :- 
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Hence the equation of that line is:- 
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The perpendicular to this line through the point (x0, y0) is:- 
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Hence the displacement is :- 
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∆x and ∆y are the appropriate corrections to the robot’s position estimate, if it is assumed the 

boundary has not changed since the robot last saw it. In practice this correction is made with 

one quarter weighting so that the map is changed conservatively, and can be repaired if the 

correction turns out to be misguided. The correction to the robot’s direction estimate was 

trusted at one half weighting because experimental tests found it to be very reliable. However it 

was found that any fractional weighting for both position and direction estimates that was not 

too large produced perfectly acceptable results. This is consistent with the remarks made in 

Section 4.4.1 about the resilient nature of a landmark system. 

As discussed at the start of this section, straight-line landmarks do not allow the full 

component of the position drift to be calculated, only the component perpendicular to the 

surface of the edge. The robot could only detect the position drift fully if two straight-line 

landmarks have been passed that are at a 90° angle to which other. For practical purposes, it 

is reasonable to consider two straight-line landmarks at an angle of 45° or greater to each 

other to be enough to extract a single fairly accurate “position fix” from the environment28. 

                                                 
28 This is the assumption made by the “confusion” virtual sensor to be discussed in Section 4.5.2. 
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4.4.3 Corner landmarks 

Consider the situation where the robot is following an idealised boundary as shown in Figure 

4-16. The boundary is straight initially, then turns, then continues straight again in another 

direction. The robot’s movement will reflect the shape of the boundary. By monitoring its 

motion, the robot can detect corners such as the one in the boundary shown here, and use 

them as landmarks. This section discusses how this can be accomplished. 

Robot moves in constant
direction along edge before
corner, facing angle θ1

Robot moves in
constant direction
along edge after
corner, facing angle θ2

Robot changes
direction rapidly
at corner

 

Figure 4-16: Robot moving around a concave corner 

It is possible to estimate how sharply an edge is turning simply by measuring how quickly the 

direction of the robot is changing as it follows that edge. Therefore there is no difficulty in 

detecting and characterising curves in the boundary. The problem is making use of that 

information. There is no special point along a curve that the robot can distinguish from all 

others and use as a landmark. However, the sharper a curve is, the less distance it can extend. 

A gentle curve can extend a great distance, but a sharp curve must end quickly or the 

boundary will turn back in on itself. If a curve is sharp enough, then the distance it extends will 

appear as a point to the robot. More specifically, if the distance a curve extends is close to the 

granularity at which the robot is mapping its environment (see Section 4.3.2, page 93), then 

that curve can be used to isolate a point in the environment that can be treated as a landmark. 
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For the robot used in this project, a “corner” was considered to be any curve that made the 

robot turn 30° or more in one second of motion. Such a curve appeared as a well-defined 

point. Note that concave corners are useful, convex ones are not. The reason is that the 

distance the robot has to travel to turn a convex corner cannot decrease lower than a fixed 

limit caused by the shape of the robot itself (see Figure 4-17). 

Very sharp convex turn-
but robot cannot turn an arc with a
radius less than the robot itself

In concave corner, robot turns more
sharply than the curve itself

 

Figure 4-17: Concave versus convex turns 

A marker with a special “corner” tag (see Section 4.3.3, page 94) is laid at the location of 

every concave corner the robot meets. Whenever the robot meets a corner, it first checks if 

any of the nearby markers were tagged in this way. If there is such a marker, then it is possible 

that it represents the same corner that the robot is at now- any apparent difference in position 

being caused by the robot’s estimate of its position drifting due to accumulating error29. 

However, pairs of corners often appear in close proximity (such as at the end of a cul-de-sac; 

see Figure 4-18) so it is dangerous to assume the markers represent the same corner without 

making further tests. 

                                                 
29 Or, of course, the corner may have just moved. 
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Corner detected here

(0 ° ,270 °)

(0 ° ,90 °)

0 °

90°

270°

180°

(0 ° ,90 °)

(0 ° ,270 °)

(X° ,Y °)
Direction of robot
before and after
corner. Order is
not important.

Case A Case B

 

Figure 4-18: Distinguishing close corner landmarks 

This difficulty is resolved by storing the direction the robot is moving in before and after the 

corner as an “annotation” in the marker representing the corner (see Section 4.3.3, page 94). 

This ensures that the robot could distinguish between the corners in Figure 4-18, for example. 

In practice, the situation in Case B is the only one in which the robot could potentially confuse 

corners. In Case A the distance between the corners is twice the radius of the robot plus the 

width of the boundary, which would make position drift an unlikely explanation for the large 

difference in corner positions. In Case B there is no such limit on the distance between the 

corners30, so confusion may occur. 

Of course, corners do not always occur with perfectly straight edges before and after them,  so 

the direction of the robot as it enters and leaves the corner will not generally be well defined. 

However the directions do not have to be at all accurate to perform the discrimination 

between nearby corners described above. Case B occurs when two concave turns are met 

one after the other, and in any such case one of the directions will be approximately the same 

(the direction lying along the shared edge segment between the corners), and the others will 

differ by an amount equal to the sum of the angles the corners turned. Each corner must turn a 

minimum of 30° to be classified as a corner in the first place (see earlier discussion in this 

section), so the total difference in the directions the corners do not share must be at least 60°. 

In fact in the case shown in the diagram it is 180°. Hence corners such as those in case A will 

always have one direction that differs by at least 60°. Therefore the directions do not need to 

be known at all accurately, since there is a tolerance of ±60° allowed. In this project a 

conservative tolerance of ±15° was chosen, and the direction of the robot a second before 

and a second after it turned the corner were used as the directions recorded with the corner 

                                                 
30 Although if they come very close they will appear as one single turn to the robot- it will no longer be able to 

distinguish them. 
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landmark. This proved perfectly satisfactory for distinguishing between corner landmarks that 

would otherwise be confused. 

Once a corner has been recognised, it can be used to correct the robot’s position estimate. 

Any difference between the position at which the robot turns the corner and the position of the 

marker la id at the corner by the robot the last time it turned it may be due to a change in the 

environment or to a drift in the robot’s position estimate. It was decided to give the current 

and previous corner position equal weighting in calculating the corrected position of the robot, 

but any conservative ratio produced satisfactory results. 

Note that corner landmarks cannot be used directly to correct the direction estimate. The 

directions of the robot before and after the corner are not known accurately enough for this. 

However, pairs of corners can be used indirectly to correct the direction estimate. Consider 

the situation shown in Figure 4-19. Here the robot has passed two corners. At the first corner 

it met, it found a discrepancy between its current position estimate (b1) and the position at 

which the corner had been detected the last time the robot passed it (a1). It used this 

discrepancy to compute a corrected position, c1, that was simply the average of a1 and b1. At 

the next marker, it repeated the same process. However it can then be observed that when the 

robot passed these corners last, they were in the positions a1 and a2, but this time round they 

have appeared to be in locations c1 and b2
31. This indicates a direction drift of ∆θ as shown, 

which can be applied as a correction (weighted conservatively, as always). 

                                                 
31  b2 is used in the calculation rather than c2 because the position correction applied at the second corner actually 

obscures the direction drift by compensating for some of the position drift it caused as the robot moved from c1 to 
b2. Remember that as the robot moves, any error in its direction estimate is reflected as a growing position drift. To 
compute the error in the direction estimate, all the position drift should be taken into account. 
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Figure 4-19: Sequential corner landmarks 

The discussion of the use of landmarks is now complete. The two types of landmarks 

developed were found in experiments to work well, and they demonstrate that the marker 

representation scheme is in fact workable by showing that the robot can keep its position and 

direction estimates consistent relative to its environment. See Chapter 8 for experimental 

results that illustrate the operation of the landmark system in practice. 

The use of landmarks concludes the examination of how the robot’s map is built and 

maintained. The following sections look at how the map can actually be accessed by 

behaviours that need to use it. 

 

4.5 Interacting with the map 

The chapter so far has concentrated on the issue of building and maintaining a consistent map 

of the robot’s environment. Equally important as building the map is how to go about actually 

making use of it. This section discusses how the cartographic system can provide useful 

services to behaviours that wish to interact with the map. 

The most important constraint placed on the services that the map may provide and still be 

“behaviour-based” is that the services must not require a shared representation between the 

user and the provider of the service (see Section 4.2, page 82). A suitable set of services to 

meet this constraint and still provide all the necessary functionality described in Section 4.1 is 

not obvious, and was evolved in a number of iterations of exploratory research. The following 
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set of services were found satisfactory in providing an interface to the map with little or no 

shared representation:- 

• Position and Direction Service - this gives behaviours access to estimates of the robot’s 

position and the direction it is facing relative to its environment. 

• Virtual Sensors - these provides useful statistics about the state of the robot and its 

environment that are derived from the map but appear to behaviours in a form that is 

exactly analogous to physical sensors. 

• Tagging Service- this allows locations of special interest on the map to be marked so that 

they can be referred to later, without requiring the user of the service to know anything 

about how the map is represented. 

• Goal Seeking - this allows the map to be used to plan an efficient route to a target. Again 

this is supported without requiring the user of the service to know anything about how the 

map is represented. 

These services are now individually examined in detail.  

 

4.5.1 Position and Direction Service 

The most basic function of a map is to keep track of where the robot is and what direction it is 

facing in relative to its environment. This service makes the cartographic system’s own position 

and direction estimates available to behaviours. These estimates are given as a simple 

coordinate and angle. No shared representation is required between this service and its user. 

However there is a shared “understanding” that the estimates quoted are relative to a 

coordinate system that may drift with time, so that the readings should not be retained and 

used over an extended period. In particular, if a behaviour wishes to make note of a special 

location it wishes to return to later, it should not just store the estimated position of that 

location, since the coordinate system of the map may drift with time and render the position 

estimate useless. Instead, the Tagging Service described in Section 4.5.3 should be used. 

As described in Section 4.3 (page 83), the position and direction estimates are generated by 

following the movements of the robot and integrating its motion to give its position. The details 

of this for the particular robot the work in this thesis was implemented on will be discussed in 

Section 7.4.1, page 217. The robot then uses landmarks to cross-check and correct its 
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estimates of the robot’s location and direction (see Section 4.4, page 95). Although using 

landmarks necessarily involves considerable complexity, that complexity is entirely transparent 

to the user of this service. In fact if the use of landmarks was removed and simple motion 

integration alone was used for estimating the robot’s position, a behaviour using this service 

would be entirely unaffected- except of course that its performance would be degraded 

because the information it is working with grows less accurate as time passes. 

 

4.5.2 Virtual Sensors 

Often behaviours do not need detailed qualitative information from the map, just answers to 

simple quantitative questions like “how familiar does the current location of the robot seem?” 

or “how confident is the robot of its position estimate?”. These statistics can be provided in the 

form of “virtual sensors” that appear to behaviours just like physical sensors, but are internally 

generated. The virtual sensors provided are as follows:- 

• Familiarity- this sensor indicates whether the robot is currently in a region that the 

cartographic system recognises, and if so how long has it been since it has last there. This 

gives the robot a sense for how recently it has passed through a particular area, or if the 

area is totally unknown to it. Familiarity is generated very simply from a comparison of the 

current time with the timestamp of the nearest marker to the robot which has not been laid 

recently, if one is present. This sensor results in a simple number, yet cannot be supported 

without the full effort of the cartographic system. 

• Confusion- this sensor measures how uncertain the cartographic system is about the 

accuracy of its best guess at the robot’s position. This uncertainty grows with the length of 

time the robot is moving after it has last managed to get a fix on its position from a 

landmark. This gives the robot a sense of how long it has been in motion without getting 

some fix on its location. Confusion is zeroed when the robot meets a corner landmark, or 

when two edge landmarks are passed with edges that are at an angle of at least 45° to 

each other (see Section 4.4.2, page 99). 

• Curvature- The robot monitors the rate at which it turns and produces a virtual sensor 

proportional to that rate of change. This can be used to detect when the robot is moving 

smoothly, and when it is turning sharply. 



The Cartographic System  Chapter 4 

 115 

• Curiosity- As the robot moves, it watches out for any nearby areas in which it has never 

been. Such areas can be detected simply by the absence of any markers there. When the 

robot notices such an area, it generates a vector pointing in its direction called the 

“curiosity” virtual sensor. 

The estimates generated by the position and direction service could also be seen as a pair of 

virtual sensors, but they have been treated separately because of their special place in the 

cartographic system. 

 

4.5.3 Tagging Service 

It is useful to have a system whereby certain locations can be marked on the map as “special” 

(so, for example, goals could be set for the robot to navigate between). Storing such locations 

separately from the map would require that the map maintain a coordinate system that remains 

the same over all time, so the same real-world location would always have the same 

coordinate. In contrast, storing the locations with the map means that the cartographic system 

only needs to ensure that the overall map remains consistent, without necessarily maintaining an 

absolute coordinate system over time. This is what results from the approach to the use of 

landmarks described in Section 4.4 (page 95), so the tagging service was implemented this 

way32. A behaviour can hand the cartographic system a “tag” to assign to the current position 

of the robot, and from then on that position on the map can be accessed through the tag 

without having to worry about drifting coordinates. A second advantage is that this avoids 

shared representation- the behaviour can specify a region it is interested in without knowing 

anything about how it is represented. 

 

4.5.4 Goal Seeking 

It is also useful to have a service that uses the map as a resource to plan an efficient route to a 

given target location. This is a particularly difficult situation in which to avoid shared 

representation between the service and the user. First there is the problem of how to set the 

                                                 
32 This is why the robot’s position and direction estimates are specified as being “relative to the rest of the 

environment”. The co-ordinate system of the map is allowed to drift over time, with landmarks being used to keep 
the co-ordinate system of the robot’s position and direction estimates in step with that drift. 
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target without requiring the behaviour using the service to have access to the map. This is 

achieved by using the Tagging Service described above. A limitation of this is that targets may 

only be places the robot has passed through at some point in its history- but this is reasonable 

since the map would be of no use for planning routes to areas in which the robot has never 

been33. Another problem is how to communicate the route this service generates back to the 

behaviour that uses it without a shared representation of locations and paths. The solution 

adopted was to implement a virtual “scent” sensor. This sensor was generated in such a way 

that the robot could reach the target simply by moving in directions of increasing “scent”, and 

moving away from directions in which the scent’s intensity decreased. This is a simple reactive 

strategy, with no shared representation with the cartographic system needed. The “scent” 

sensor represents the gradient of the cartographic system’s estimate of some cost function 

from the robot’s current location to the target, but none of the complexity of calculating that 

function is visible to the user. This idea works out to be something quite similar to the 

“Internalised Plans” technique discussed in Section 2.7.3, page 41. The details of how 

planning is achieved within the marker map representation scheme are now examined. 

Markers are stored in a system of neighbourhoods designed to efficiently filter out which 

markers are close to the current position of the robot, since these are the most relevant to it for 

most purposes. However, in planning routes to arbitrary targets, information about markers 

distant from the robot’s current position is needed. Specifically, it is important to be able to 

determine which markers can be reached from each other, and how great a distance the robot 

has to travel to do so. The use of neighbourhoods only allows the robot to determine which 

markers are close to the current position of the robot, and it cannot be used to determine 

which markers are close to some other arbitrary marker. 

To solve this problem, extra “connectivity” data is added as an annotation to markers (see 

Section 4.3.3, page 94). As the robot moves, the neighbourhood system determines which 

markers are close to its current position. When the robot lays a marker and moves away from 

it, that information about adjacent markers can be captured and stored in the marker as 

connectivity data. It is then possible for planning to be done at a later stage, using these “frozen 

                                                 
33 This is true for autonomous robots, which are entirely responsible for generating their own map of the environment 

and hence cannot know anything about places they have never been. It would not apply if the robot had a built-in 
map of some form. 
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images” of the information calculated by the neighbourhood system. Figure 4-20 shows an 

example of a collection of markers with connectivity information overlaid that would be 

suitable for planning routes with. 

Distances between
markers not to scale

Connectivity link

Marker

Close but not connected

A B

 

Figure 4-20: Storing connectivity data with markers 

Figure 4-20 draws attention to the fact that the robot cannot assume that, just because two 

markers are close to each other, it is possible to move from one to the other- they could be on 

opposite sides of a wall, for example, as is the case with markers A and B in the diagram. 

Care must be taken to detect such conditions. Connectivity links should only lead from one 

marker to other nearby markers which the robot can move to without hitting an 

obstruction- otherwise they will be misleading and useless for planning routes with. Hence 

two markers being close to each other is a necessary condition for them to be considered 

connected, but it is not sufficient.  

One sufficient reason for considering two markers to be connected is if they are laid one after 

the other by the robot (see Figure 4-21). Such markers represent successive points along the 

path of the robot, so it is reasonable to assume that they can be reached from each other since 

the robot has actually just done so. 
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Figure 4-21: Conditions on connectivity of markers 

From the connectivity information this gives, the robot can deduce further appropriate 

connections to make. Two markers that are close to each other but were laid at different times 

can be deduced as being connected if markers close to one of them are connected to markers 

close to the other. Figure 4-22 illustrates a common situation where this form of deduction 

becomes useful. The robot is shown following a path that leads it back into an area where it 

has already laid markers. When the robot lays marker A, it is quite close to marker B- but 

they were not laid successively. If the two markers are close enough that the robot can be sure 

there is no undetected boundary between them, then it can assume they are connected. But the 

robot has only short-range sensors, so the markers could be quite close and yet the robot 

cannot determine from its sensors if they are reachable from each other. Assuming this is the 

case here, the robot will not add a connectivity link between A and B. However, when the 

robot reaches C and lays a marker there, it finds that there is a marker already present for that 

area. Since the marker being laid and the marker being replaced represent the same physical 

area, connectivity data from the replaced marker can be transferred over to the new one (with 

some caution, as will be discussed in a moment). At that point there is a path from markers A 

to B through a small number of other markers. This, in combination with the fact that A and B 

are close, gives the robot enough confidence to mark them as connected (again, subject to 

some conditions that will be discussed). 
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Figure 4-22: Determining connectivity indirectly 

Connectivity information is different to other data about the environment stored in markers 

because, by its very nature, it cannot be derived from purely local considerations. In contrast, 

information about whether an area is beside a boundary, for example, can be constructed 

entirely from immediate sensor data. It makes sense for the robot to always discard such data 

when it is replacing markers, and derive it anew for the current state of the environment. The 

robot should always trust its sensors over any other source of information it has (as discussed 

in Section 4.2), so the map should be overwritten with actual sensor data whenever possible. 

However, when working with connectivity data, information is lost if the old markers are 

simply discarded because connectivity information cannot be reconstructed completely from 

immediate sensor data. If the new marker being laid at C in Figure 4-22 had replaced the 

older marker without copying its connectivity data, the robot would no longer know that the 

area the markers represent is connected to D. Therefore, connectivity data should be 

transferred across to new markers from the markers they replace. 

If the links are simply copied to the new markers, the system works reasonably well for a 

while. However the markers the robot lays are not constrained to be in the exact same 

location as the markers they replace- and in general they will not be. Hence as the robot 

moves back and forth across the same area, and the links are copied between successive 

replacements to the original marker, it is quite possible that the position of the marker holding 
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the links may have drifting quite a distance from the position of the original marker. The links 

will then give a totally inaccurate picture of the reality. 

To step around this problem every marker is given a “Reachable” timestamp. When the robot 

passes close enough to a marker to be confident that there is no boundary between the 

robot’s current position and the marker, this timestamp is set to the current time. This it taken 

to indicate that this marker was reachable by the robot at the given time. The timestamp is 

actively spread to any markers that are linked to it (with some time subtracted to represent 

roughly how long it would take to get to that marker). This is taken to indicate that those 

markers could have been reached at the calculated time if the robot had chosen to do so. 

These timestamps continue to spread from marker to marker. Then, when the robot replaces 

markers, connectivity can be reconstructed by comparing “Reachability” times with other 

markers in the locality (see Figure 4-23). If two markers are close in position and both could 

have been reached within a short time from the robot’s current position (as indicated by them 

having reachability timestamps close to the current time), then those two markers can be 

considered reachable from each other and have their connectivity links updated appropriately. 

This is robust, and not subject to marker drift as simply copying connectivity data would be. 

Immediate
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spread in “near”
and “immediate”
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Least reachable
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Figure 4-23: The use of reachability 
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To limit the computational burden on the robot, reachability is only spread within the 

immediate and near neighbourhood of the robot (see Section 4.3.1, page 88). Any markers 

outside of these neighbourhoods are not reachable from the robot’s current position within a 

short time, so it is  reasonable to eliminate them from consideration anyway. 

There is one special case that needs to be catered for to ensure the correct operation of the 

reachability system. It is possible that reachability could spread to a small extent around a 

narrow wall as shown in Figure 4-24. 

A
B
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around the corner of a
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Figure 4-24: Connectivity spreading around a narrow wall 

This is not an error, since it is true that markers A and B can be reached easily from each 

other, so connecting them would not mislead the robot if it was planning a route- it would not 

make the robot choose a path leading to a dead-end. This is all the robot needs from the map- 

its own basic competences will let it navigate minor obstacles. However, it is simple to 

introduce a heuristic to stop connectivity creeping around a wall, by simply disallowing links to 

be made between close markers that are both on a boundary, with the boundaries facing in 

opposite directions away from each other- i.e. on opposite sides of a narrow wall. 

There is one final practical consideration that is useful for storing connectivity information 

efficiently. It has been shown that if the robot is aware that two markers are linked, it may 

deduce that other markers are reachable from each other by spreading reachability. Hence not 

every link between markers needs be stored, only a sufficient number to allow reachability 
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spreading to deduce the rest. Due to the memory limitations of the robot this work was 

implemented on, the number of links from each marker was limited to four. By applying criteria 

that favoured storing links to markers lying in different directions over links to markers 

clustered in the same direction, four links were found to be more than adequate for correct 

functioning of the reachability system (i.e. by spreading reachability, the robot successfully 

avoided losing connectivity information when it replaced old markers with fresh ones). The first 

diagram in this section, Figure 4-20 on page 117, in fact showed connectivity data constructed 

with a maximum of four links from each marker. 

Given that connectivity links are being maintained, goal seeking is straightforward to achieve 

by any standard search technique. One simple way it can be done is to assign a “hop count” to 

every marker to represent how many other markers the robot would need to pass through 

when going from that marker to the target. Obviously the hop count of the target is zero. Any 

markers linked to the target will take on a hop count of one, and markers linked to them in 

turn will take a hop count of two, etc. In general, a marker M determines its hop count by 

finding which of its links leads to the marker with the lowest hop count. It should assign itself a 

hop count of one greater than that, and tag the link as shown in Figure 4-25. 
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Figure 4-25: Goal Spreading in action 
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Once this process “spreads” out to markers in the vicinity of the robot, it can simply follow all 

the tagged links to the target. This is called “Goal Spreading”. It can be improved by using 

cumulative distances between markers on the route to the goal instead of simple hop counts, 

or a combination of both (as was used for the robot this work was implemented on). The 

computation required for Goal Spreading is extensive and takes time, although the work done 

for each marker is quite simple. The calculations should be performed as a background task 

so that they do not affect the real-time performance of the robot. 

There is one final improvement that can be made to Goal Seeking. If multiple goals were set 

for the robot, everything described so far would still work- Goal Spreading would simply 

spread paths out from each goal, and whichever reached the robot first would be the one it 

would move towards. This is suitable for a situation where a number of goals are equally 

acceptable to the robot. It is simple to extend Goal Seeking so that it can also handle cases 

where some goals are more desirable than others. This is done by associating a “desirability” 

factor with the goals when they are set, and spreading that factor to markers that point along 

routes to that goal. In other words, when a marker scans the markers it is linked to for the one 

with the lowest hop-count/cost to a goal, it should only consider those with the highest 

“desirability” present, and then accept that desirability level for itself. Hence as paths to more 

desirable goals propagate, they can “take over” markers that were leading to less desirable 

goals- even if those goals were closer. 

The results of goal spreading are made available through the “scent” virtual sensor, which 

simply gives a vector corresponding to the direction of the tagged link of the marker nearest 

the robot’s position, if goal spreading has reached that link. The image is of a scent released at 

the goal spreading outwards until the robot picks it up and follows it to its source. This 

involves no shared representation between the service and its user. Another advantage of the 

use of this sensor rather than returning an explicit optimal path is that if the robot wanders off 

course, the path does not have to be recalculated. 

 

4.6 Summary 

In this chapter, a complete cartographic system has been developed that is capable of 

constructing and maintaining a map of the robot’s environment in real-time, and with the use of 
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short-range proximity sensors only. The representation scheme used was based on units called 

“markers”. The map consisted of a collection of these markers- records of the robot’s 

experiences at particular locations- rather than being an explicit model of its environment. 

Strategies for maintaining this collection of markers in a state that reflected the condition of the 

environment were discussed in detail. Then the issue of landmark recognition was addressed, 

showing that the robot could maintain an estimate of its position that remained consistent 

relative to its environment over time. This is the ultimate test of a cartographic system. Finally, 

a set of services were presented that allowed the map to be used without requiring any 

knowledge of how it is represented. 

The following chapter relies heavily on the work presented here. In it, a set of behaviours 

implementing a robot “sentry” are developed. These behaviours use the services provided by 

the cartographic system to perform many of the activities discussed in Section 4.1- checking 

and escaping from behaviour cycles, backing out of dead-ends, planning routes to targets, 

patrolling and exploring the environment, etc. 
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5. Sentry Behaviours 

This chapter develops a set of behaviours for a robot which together allow it to act as a 

“sentry”, exploring and patrolling its environment autonomously. The overall sentry-like 

behaviour of the robot is produced by combining a set of lo wer-level behaviours performing 

simpler tasks, which are in turn combinations of still simpler behaviours. The ability to combine 

behaviours in this way is supported by the Lateral robot architecture, developed in Chapter 3, 

and is the major advantage of this architecture. 

For convenience, the behaviours in this chapter are grouped into three broad categories- 

“motion” behaviours, “informed” behaviours, and “user interfacing” behaviours. The chapter 

begins by giving an outline of the role each of these groups play in the overall behaviour of the 

robot. Each of the groups is then examined in turn. The functionality of each behaviour is 

described both in terms of its individual actions and its influence on other behaviours. 

 

5.1 Overview 

The basic “sentry-like” action of the robot is implemented within a set of five behaviours called 

the “informed behaviours”. These behaviours are called “informed” because cartographic 

information is vital to their successful operation. One of these behaviours, the map 

maintaining behaviour, is responsible for actually generating and updating the robot’s map. 

The others- prowling, patrolling, exploring, and location seeking behaviours-  make use of 

the map to implement various algorithms necessary to perform sentry duty.  

A lower-level set of behaviours called the “motion behaviours” are concerned with direct 

control of the robot’s movement. These are the edge following, turning, nudging, and 

motor control behaviours. They control the movement of the robot in a more immediate and 

“reactive” way than the higher-level behaviours that use them, and have no need of 

cartographic information. 

Finally there is a set of high-level “user interaction behaviours” that allow the robot to be 

controlled by external commands, rather than operating autonomously. Some of these 
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behaviours use cartographic information, some do not34. Behaviours under this classification 

are proxy control, manual control, reporting, and region seeking. These are the highest-

level behaviours, since they control which of the other behaviours are allowed to act. 

The full suite of behaviours that will be described in this chapter is shown in Figure 5-1. The 

diagram illustrates that the decomposition is certainly not strictly layered as would be required 

under Subsumption. 
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Figure 5-1: The complete set of behaviours implemented 

Roughly speaking, the highest level behaviours (to the left) are for user interaction, the lowest 

level (to the right) are motion behaviours, and the informed behaviours lie in between the 

extremes. Each of the groups of behaviours will now be examined in turn, starting with the 

low-level motion behaviours. 

 

                                                 
34 The grouping of behaviours adopted in this chapter is for convenience only, and there is some overlap between the 

categories. 
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5.2 Motion Behaviours 

This set of behaviours dictate the robot’s movement without any reference to the cartographic 

system, taking only the state of the robot’s immediate environment into consideration. The 

place of these “motion behaviours” in relation to other behaviours is shown in Figure 5-2. 
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Figure 5-2: Motion behaviours 

All commands to the robot’s motors are channelled through the motor control behaviour. 

The turning behaviour and the nudging behaviour are both concerned with changing the 

direction of the robot- the turning behaviour makes the robot face in a specified direction, 

while the nudging behaviour allows it to turn very smoothly. Both of these behaviours are quite 

simple. The edge following behaviour, on the other hand, is relatively sophisticated. This 

behaviour is concerned with tracing around the boundary of an obstacle, and since this activity 

is fundamentally important to detecting landmarks (see Section 4.4, page 95), it is carefully 

crafted to operate as smoothly as possible. These behaviours will now be described 

individually. 
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5.2.1 Motor Control Behaviour 

This behaviour is the channel through which all commands to the robot’s motors are sent. It 

interfaces directly with the robot’s kernel to control the motor35. It has a single input, carrying 

a setpoint for the robot’s motors. This setpoint is expressed in two components, “speed” and 

“nudge” (see Section 7.5.2, page 225 for a discussion of why this is useful). “Speed” controls 

the rate of the forward motion of the robot, while “nudge” controls the rate at which the robot 

turns. For each of the behaviours in this chapter, a state machine will be given, but for this 

behaviour, the state machine is entirely trivial (see Figure 5-3). There is no need for any state 

information- the behaviour simply passes its input on to the robot kernel. 

Setpoint

Update

Robot
Motor

Motor Control
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necessary

 

Figure 5-3: State machine for motor control behaviour 

The reason that this behaviour is used rather than sending commands directly to the motors is 

that it prevents different behaviours from sending conflicting commands. By sending the 

commands to the inputs of a behaviour, Lateral’s priority system will be invoked to resolve 

any conflicts that might occur. There are extra benefits as well. The motor control behaviour 

can detect when there is no behaviour controlling its inputs, and bring the robot to a stop. If 

commands were sent directly to the robot, there would be no way to detect when nothing is 

controlling the robot’s speed, and the robot would simply continue to move at whatever rate it 

was last commanded to move at. 

This behaviour also contributes to implementing the “confusion” virtual sensor (see Section 

4.5.2). Whenever the robot is in motion, the behaviour increases the value of this sensor 

                                                 
35 See Section 7.3, page 213. As will be discussed in this section, the robot kernel has “common sense” built in to it to 

prevent the robot from moving in a direction that collides with an obstacle, so there is no need to implement 
obstacle avoidance again within this behaviour. 
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slightly. Hence the longer the robot is in motion, the higher the robot’s “confusion” or 

uncertainty of its position becomes. Confusion is reset to zero by the cartographic system 

when it detects suitable landmarks (Section 4.4, page 95). The rate at which confusion 

increases is chosen to suit the rate at which accumulating error builds up in the robot’s position 

and direction estimates. 

 

5.2.2 Nudging Behaviour 

For the robot on which these behaviours were implemented, motor speed could only be set in 

discrete increments. The result was found to be too jerky for the edge following behaviour (to 

be discussed next), so this simple but useful behaviour was introduced to allow the robot to 

turn more smoothly. It does this by duty cycling the motor speeds between two setpoints for a 

variable “mark-space” time ratio. This allows fine tuning of the rate at which the robot turns, 

which leads to much better behaviour when edge following.  

Mark

Motor
Control

Nudging
Ratio

Space

 

Figure 5-4: State machine for nudging behaviour 

The input to this behaviour is a desired mark-space ratio (see Figure 5-4). The output goes to 

the motor control behaviour. This behaviour passes whatever sponsorship it receives from its 

input on to its output unchanged, since it is essentially just converting a motion command from 

one form to another- therefore the priority of the commands it issues should be the same as the 

priority of the commands it receives. 

 

5.2.3 Edge Following Behaviour 

This behaviour makes the robot move around the boundary of an obstacle, turning as the 

boundary’s edge turns. It is important that this behaviour is very robust, and that the robot 

follows the shape of the edge accurately, because the robot tracks its motion while edge 
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following to indirectly determine the shape of the boundary it is moving beside (see Section 

4.4, page 95). Detecting landmarks therefor depends on a well-behaved edge following 

behaviour. 

The basic strategy for following an edge with proximity sensor information is straightforward. 

For example, if the robot is following an edge on its left hand side it need simply do the 

following:- 

1. Move forward if there is nothing directly ahead. 

1. If the edge is greater than a desired distance away, veer towards the edge somewhat36. 

1. If the edge is less than a desired distance away, veer away from the edge somewhat. 

1. Repeat indefinitely. 

If the edge does not turn too sharply, this simple algorithm works satisfactorily, as illustrated in 

Figure 5-5. This kind of motion is labelled “waddling” for the purposes of this section.  

 
 
  

 
 

 
 
 

 
  

 
  

   

   
 

Figure 5-5: Following a reasonably smooth edge 

If, however, the edge turns sharply at a convex corner, the robot may not veer fast enough to 

react to the change, and could lose sensor contact entirely with the boundary. As will be seen 

further on, the readings from the robot’s proximity sensors dwindle very rapidly as it moves 

away from a boundary, so it is very easy for the robot to lose contact with the edge. It is 

important that it can re-establish contact with the edge gracefully. The simple algorithm above 

may work as it is- but it might lead to the robot losing the edge entirely if it veers too slowly, or 

                                                 
36 The robot in fact has a desired “proximity reading” rather than actual distance which it seeks to maintain. This was 

discussed in Section 4.4 (page 95), and will be clarified further on in the discussion of this behaviour. 
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the robot might spin around backwards if it veers too quickly. A specially adapted strategy 

called “capturing” is implemented for this situation. Here the robot veers rapidly initially in the 

hopes of re-establishing contact immediately, but if that does not succeed it recovers itself and 

executes a graceful sweep in search of the edge. 

If the edge turns sharply at a concave corner, on the other hand, there is no danger of the 

robot losing contact with the edge. This is because the edge actually starts obstructing the 

robot’s path- rather than diverging away from it, as it did at a convex corner (see Figure 5-6). 

Hence the simple algorithm described earlier will work. However it may be quite jerky since 

the robot will be continually trying to move forward at any chance it gets, and being continually 

frustrated until it veers enough for the edge to no longer be obstructing its way forward. 

Another specially adapted strategy, labelled “turning”, is implemented for this situation. This 

simply stops the robot from attempting to move forward, turns until the way forward is clear, 

then reverts to the robot’s original behaviour. The desired action of the robot under capturing 

and turning is shown in Figure 5-6. 

 

   

 
 
  

 
 

 
  

 
 
 

 

   

 

  

 

 

 

Figure 5-6: Moving around sharp corners 

 

An appropriate state machine for edge following is given in Figure 5-7.  
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Figure 5-7: State machine for the edge following behaviour 

The behaviour takes a single input to determine whether the robot should follow boundaries 

with its left or its right side facing them. It has two outputs, one to the motor control behaviour, 

and one to the nudging behaviour. It passes on its sponsorship to the motor control behaviour 

at all times, to keep the robot moving forward or turning as appropriate. When following a 

smooth edge, it passes on full sponsorship to the nudging behaviour to turn the robot more 

finely than is possible directly through the motor control behaviour. 

The states in Figure 5-7 have the significance shown in Table 5-1. 
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Table 5-1 

State Action Sponsorship to.. 

Start The edge following behaviour is initialised None 

Face The robot gracefully turns until it is at right angles to the 

edge before starting to follow it 

Motor Control 

Waddle The robot follows a smooth edge Motor Control 

Nudging 

Turn The robot turns in a sharply concave corner Motor Control 

Capture The robot tries to find an edge after it has lost sensor 

contact with it 

Motor Control 

Compensate The robot abandons trying to find an edge, and turns 

back to the direction it was travelling before it lost it 

Motor Control 

Stroll The robot moves in a straight line, looking for an edge 

to follow 

Motor Control 

The design so far would be applicable to any robot with proximity sensors. However, for very 

smooth edge following, it is necessary to take the exact sensing capabilities of the robot into 

consideration, at a greater level of detail than proves necessary for any other behaviour. 

The proximity sensors of the robot used to implement this work have a non-linear relationship 

with distance, as illustrated in Figure 5-8. Note that the “proximity” readings depend on the 

colour and texture of the object being detected as well as its distance from the robot. 
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Figure 5-8: Distance to object versus proximity sensor reading (from Khepera User Manual [[24]]) 

For smooth, accurate edge following, it is important to operate within the sloping section of the 

graph shown. This is because the characteristic is flat if the robot is either too close or too far 
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from the edge. In those sections, therefore, the robot receives no feedback on how the 

distance to the edge is changing- so the distance from the edge could change by a large 

amount before the robot could detect that and attempt to compensate. Within the sloping 

section, the robot can detect very small changes of the distance to the edge and compensate 

immediately. 

The relationship between the proximity sensor reading and the actual distance to an edge 

varies widely depending on the object being sensed. Black objects are essentially invisible - 

since the robot has to almost collide with them before it can detect them. For lighter shaded 

objects, once the proximity sensor value falls off from its maximum of about 1000, the robot is 

guaranteed to be at least 20mm from the edge. The reading falls off rapidly after that. For edge 

following, a reasonable setpoint for the proximity reading to be maintained at is around 400 to 

500. For most objects the robot can detect, this will keep the robot at a conservative distance 

while still being well inside the sloping section of the characteristic. 425 was the figure chosen 

for the actual implementation, but anything from 400 to 500 did indeed prove perfectly 

satisfactory. 

Another consideration is how quickly proximity readings fall off as the angle between the 

sensor and the object being sensed increases. This relationship is shown in Figure 5-9. After 

45° the sensor reading has approximately halved. After 90°, the reading has fallen to zero. 
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Figure 5-9: Response of a proximity sensor to an object at different angles (from Khepera User Manual [[24]]) 

This information will now be used to determine how quickly the robot should veer as the 

distance to the boundary varies, such that the proximity reading of the sensor facing the edge 

will remain close to a setpoint value dsetpoint of, for example, 425 (the value suggested earlier).  
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The sensors of the robot on which this work was implemented are arranged about its 

circumference as shown in Figure 5-10. When following an edge, three of these sensors are 

particularly useful- the one facing the edge directly, here called the “SideSense”, the one facing 

at a 45° angle to that, called the “DiagonalSense”, and the one facing forward on the same 

side of the robot, called the “ForwardSense”.  
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Figure 5-10: Arrangement of sensors 

If the robot is moving parallel to a straight edge at the desired proximity level of dsetpoint, then 

SideSense will have a value equal to dsetpoint itself, DiagonalSense would have a value of 

approximately half that (since it is at 45° to the boundary- see Figure 5-9), and 

ForwardSense would have a value of approximately zero (since it is at 90° to the boundary). 

If these values change, then the robot is not parallel to the edge at the desired distance. The 

robot’s task is therefore to try to maintain these values by veering towards or away from the 

edge. 

• If SideSense is greater than dsetpoint, then the robot is currently too close to the edge and 

should veer outwards. 

• If DiagonalSense is greater than dsetpoint

2
, the robot is heading too close to the edge and 

should veer outwards. This sensor gives an indication of what the robot’s position will 

shortly be rather than what it is now. This reading is more important than SideSense. For 

example if SideSense shows that the robot is currently slightly too close to the edge, but 

DiagonalSense shows that the robot will soon be too far from it, the robot should start to 

turn inwards in preparation, rather than veering outwards and making the situation worse. 
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• If ForwardSense is significantly above zero, then the robot is heading straight for the edge 

(or some other obstruction) and it should start turning outwards to avoid it. This takes 

precedence over either SideSense and DiagonalSense. 

It is quite possible that the sensors might not be consistent in which direction they suggest the 

robot should veer, and that is why it is necessary to know the relative importance assigned to 

each as described above. The simplest way to implement this hierarchy of importance is to 

generate a weighted sum of the three sensor readings, with the weights for each sensor being 

chosen to reflect its relative significance:- 

 w1SideSense + w2DiagonalSense + w3ForwardSense 

Then, the difference between this and its ideal value of  

 ( )w d w
d

wsetpo
setpo

1 2 32
0int

int ( )+






 +  

gives a measure of how much the robot should veer. A good choice of weights was found to 

be w1=1, w2=2, and w3=4. This reflects the fact that the DiagonalSense reading is more 

significant than the SideSense reading, and the ForwardSense reading is more significant than 

either of them. 

This metric was developed by assuming that the edge the robot was following was perfectly 

straight, and that the robot was facing in the wrong direction and trying to correct that. 

However, if the edge is not straight, any turn in the edge can be compensated for just as if it 

was the robot which had turned instead. Hence the above metric is in fact suitable to drive the 

motor of the robot while it is following a curved edge, although some minor modifications are 

necessary:- 

• The units must be scaled appropriately 

• It is a good idea to apply a non-linear function to the metric, so that the robot veers more 

gently when close to the setpoint and more sharply when far from it. The simple linear 

metric given would lead to a “wobble” around the setpoint if implemented as it stands, due 

to overshoot in the robot’s motors. 

A good metric for the robot used in this project was :- 

metric
SideSense DiagonalSense ForwardSense

=
+ + −





2 4 850
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In the edge following behaviour, this metric is used to control the robot’s direction through the 

nudging behaviour (see Section 5.2.2, page 129). The nudging behaviour allows finer control 

over the rate at which the robot turns than would be possible if the motor was controlled 

directly. 

By simply moving continuously forward and veering according to this metric, the robot will 

follow a boundary smoothly. While the discussion so far has assumed that the boundary is 

continuous, the robot will in fact be able to follow boundaries with small discontinuities. This is 

because, as seen earlier in Figure 5-9, the proximity sensors respond to any objects in the 

general direction they point, not just to objects directly in that direction- so they will simply be 

unable to detect small features of the boundary, and will instead return an average distance to 

the boundary. For edge following, this is useful because it makes the above algorithm more 

robust. 

 

5.2.4 Turning Behaviour 

This behaviour turns the robot to face in a given direction. This is a very simple behaviour- it 

merely compares the direction setpoint it is given with the robot’s estimate of the direction it is 

facing in currently, and turns to decrease the difference between the two. A certain amount of 

sophistication is given to the behaviour so that it turns “gracefully”, at a rate that slows as the 

difference between the actual direction and the direction setpoint decreases, so that the robot 

will not overshoot. 

Set-up Reduce-
difference

Turning
Angle

Sensors

Motor
Control

 

Figure 5-11: State machine for turning behaviour 
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This behaviour has a single input determining the angle the robot should face, and a single 

output going to the motor control behaviour (see Figure 5-11). It passes on any sponsorship it 

receives. 

This is the last of the low-level motion behaviours. The higher-level “informed behaviours” are 

now examined. 

5.3 Informed Behaviours 

This collection of behaviours consists of the behaviours required to allow the robot to act as an 

autonomous sentry. Cartographic information is vital to the successful operation of these 

behaviours. The robot’s map is generated and maintained by the map maintaining behaviour, 

and is used by the other behaviours in this group- prowling, patrolling, exploring, and 

location seeking. These behaviours are shown in relation to all other behaviours in Figure 5-

12.  
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Figure 5-12: Informed behaviours 

The basic “sentry-like” action of the robot is orchestrated by the prowling behaviour, the 

highest level autonomous behaviour of the robot. Prowling combines the actions of the other 
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lower-level behaviours to meet a number of simultaneous goals necessary for good sentry 

behaviour. These behaviours will now be described individually.  

 

5.3.1 Location Seeking Behaviour 

In the behaviours that follow, the robot will often need to move towards a given marker. It is 

convenient to control the robot’s motion using a behaviour which can be fed the co-ordinates 

of such a marker, and which will do everything necessary to get as close as possible to that 

target- navigating around obstacles, backtracking out of dead-ends, etc. Since the robot’s 

estimate of its position may have drifted since the co-ordinates of the target marker were set, it 

can only hope to approach the approximate locality of the marker, but, especially over short 

distances, this is perfectly acceptable. None of the behaviours that use location seeking will 

rely on it being entirely accurate. 

The behaviour starts by moving directly towards its target. If it strikes a boundary, it will start 

following that boundary in whichever direction seems “best”- whichever direction seems to 

require the least deviation from the robot’s current path, at least in that locality (since that is the 

only area it can sense or evaluate from the map). It will continue to follow the boundary until 

conditions become suitable for it to resume its path towards the target. This will occur if the 

boundary turns sufficiently to no longer be an obstruction. With this simple strategy, the robot 

is able to negotiate many obstacles. However, it may lead to cyclic behaviour for obstacles 

with certain shapes, such as the one in Figure 5-13. 

 

Figure 5-13: Obstacle makes robot loop back on its path 
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A loop can occur if the robot meets an obstacle, follows its boundary until it again becomes 

possible to move in the target direction, and then runs into the same obstacle, hence entering a 

cycle. One simple solution to this, using the “familiarity” virtual sensor generated by the 

cartographic system (see Section 4.5.2, page 114), is to make the robot alternate in the 

direction it chooses to move in after it hits a boundary at a familiar location37, as shown in 

Figure 5-14. 

Familiar location- tries
following boundary in
opposite direction  

Figure 5-14: Robot uses familiarity to avoid cyclic behaviour 

This simple improvement is enough to allow the robot to navigate most common boundaries. 

Looping can still occur, however, in situations like the one shown in Figure 5-15, where the 

obstacle resembles a “cave”. 

                                                 
37 That is, any location whose familiarity indicates that it was visited after the robot started seeking its current target. 
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Figure 5-15: Behaviour cycle in “cave” -shaped obstacle 

Here, because the boundary-following strategy turns the robot back on its path twice, it again 

enters a loop. Cases like this can be handled using the familiarity sensor in a more general way 

than described above. The robot should take an opportunity to return to moving in the 

direction of its target only if it is following a boundary in unfamiliar territory. Then, if the robot 

is following a boundary in familiar territory- territory that it has moved through before while 

seeking the current target- it “knows” that it should not return to moving in the direction of its 

target even if it seems desirable to, since this is what it would have done last time it was there. 

Instead it should wait until it reaches unfamiliar territory again, and then turn whenever 

appropriate. This results in an expanding search that can get the robot out of awkward 

situations like the “cave” obstacle, as shown in Figure 5-16. 

Familiarity
expands until
escape is possible

 

Figure 5-16: Robot escapes from cave-shaped obstacle 
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It is easy to see that this approach should never result in looping behaviour. If the robot makes 

a decision to turn at a particular location, and that decision results in it looping back to that 

same location, the next time around that area will be familiar to it so it will not turn there again.  

While the obstacles the robot has been shown navigating are large scale, this behaviour is in 

fact mostly used for moving to places near the robot’s current position. It is given a high level 

of intelligence so that the robot’s behaviours will be robust in the face of changes in the 

environment, without the robot having to exhaustively check for such changes every single time 

it prepares to make a movement. The region seeking behaviour that will be described in 

Section 5.4.1 (page 158) enhances this behaviour for moving over long distances. 

A suitable state machine for implementing this behaviour is shown in Figure 5-17.  
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Figure 5-17: State machine for location seeking behaviour 

The behaviour has a single input, specifying the location of its target. It has outputs to the edge 

following, turning, and motor control behaviours. It decides which of these to sponsor 

according to its needs at a given time. If it is following a boundary, it sponsors edge following. 

If it wishes to leave that boundary, it sponsors turning to change the robot’s direction to point 

towards the target. And if it is simply moving forward in an open area, it controls the motor 

directly by sponsoring the motor control behaviour to move forward at the desired speed (see 

Table 5-2). 
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Table 5-2 

State Action Sponsorship to.. 

Start The behaviour is initialised. Provision is made so that if 

location seeking is sponsored repeatedly to move 

between markers close to each other, the movement of 

the robot will be smooth and not jerky.  

None 

CaptureEdge The robot evaluates the shape of a nearby boundary to 

determine whether to leave it gracefully if it is not an 

obstacle, or follow it smoothly if it is. 

None 

FollowEdge The robot starts following an edge, setting up timers, 

checking the familiarity of the region to avoid looping 

behaviour etc. 

Edge Following 

MonitorEdge The robot follows an edge, watching out for 

opportunities to leave the boundary and approach the 

target directly that it has not tried before. 

Edge Following 

SteadyTurn The robot turns gracefully to face towards the target. Turning 

Walk The robot moves towards the target directly in a free 

area. 

Motor Control 

 

5.3.2 Patrolling Behaviour 

The patrolling behaviour is concerned with ensuring that the robot repeatedly re-visits every 

area that it has ever passed through before. It is the main sub-activity of the “prowling” 

behaviour to be discussed in Section 5.3.4. Prowling is taken to be the entire co-ordinated 

activity of patrolling familiar territory, exploring new areas, and ensuring that the cartographic 

system gets a chance to find and use landmarks. Hence the patrolling behaviour need not 

concern itself with any of these other issues. 

The difficulties encountered in trying to implement patrolling are as follows:- 

• The robot’s map is always changing, so approaches that assume the environment and the 

robot’s representation of the environment are static will fail. 
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• The patrolling activity may be interrupted at any time- for example, if the robot needs to 

start following a boundary to find a landmark before it loses track of its position. Hence 

approaches that assume they have full and continuous control of the robot will fail. 

In this section, an approach called the “static patrolling strategy” is given that would work well 

for a static map with uninterrupted operation, but is not guaranteed otherwise. Another simpler 

approach called the “dynamic patrolling strategy” is described which is less efficient but which 

will work for a dynamic map and interrupted operation. Then a scheme is presented which 

merges the two approaches. This “combined strategy” normally behaves much like the first 

approach (giving good runtime behaviour most of the time), but there is also an influence from 

the second approach that builds up over time and will “rescue” the robot if the first approach 

fails. 

Static patrolling strategy 

The cartographic system maintains a map of the robot’s environment in the form of a collection 

of markers, with links formed between adjacent markers (see Section 4.5.4, page 115). These 

markers possess a timestamp that indicates when the robot last visited the area they are 

associated with. The robot can make use of these features of the cartographic system to 

repeatedly patrol the environment using an algorithm that is very simple, yet guaranteed to 

patrol every part of the robot’s map reachable from the robot’s starting point. However this 

guarantee only holds if the markers and links between markers do not change while the robot 

is executing the algorithm. Hence this is a “static strategy” for patrolling. A “dynamic strategy” 

will be given in the next section which does not have this limitation, and then the two strategies 

will be merged into a combined strategy that has the advantages of each.  

The static strategy is to use the following extremely simple algorithm for controlling the robot’s 

motion:- 

1. Set the timestamp of the marker associated with the robot’s present location to the current 

time. 
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1. Choose the marker linked to the current one which has the least recent timestamp38. 

Move to that marker, and repeat from step 1. If more than one marker has the same 

timestamp, choose any one of them. 

This will be shown to cause the robot to repeatedly visit every marker in its map which is 

reachable from its starting point, assuming markers and links are static. Figure 5-18 shows 

an example of the algorithm in action for a small number of markers. For this example, all the 

markers are initially given a timestamp of zero. In practice, no two markers will ever have the 

same timestamp since the robot cannot be in two places at the one time, but the algorithm 

does not depend on that. 
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Figure 5-18: Static patrolling strategy in operation 

The diagram shows that the robot does indeed repeatedly visit each marker, without neglecting 

any of them. While the operation of the algorithm may be intuitively quite clear, it is not 

immediately obvious that it will work under all situations, and that there are not some 

pathological cases that could lead it to neglect markers. Therefore the algorithm will now be 

analysed in some detail to show that it is in fact guaranteed to function correctly.  

                                                 
38 If there is no marker linked to the current one, this is a degenerate case where there is nothing for the robot to 

patrol- so it should simply stay at its current position. 



Sentry Behaviours  Chapter 5 

 146 

For this discussion, “patrolling a marker” is formally taken to mean that the robot visits that 

marker repeatedly, with a finite time interval between each visit. “Neglecting a marker” is the 

logical opposite- meaning that the robot after some point fails to visit that marker for an 

unbounded length of time. 

The algorithm will be shown to work by demonstrating first that if the robot patrols any marker 

A, it will also patrol any marker B linked to A. Now that B is known to be patrolled, this 

argument can be repeated, so any marker C linked to B will also be patrolled. Therefore, by 

repeating this argument as many times as required, any marker which can be reached through 

any number of intermediate links from the marker A can also be shown to be patrolled. It will 

then be demonstrated that the robot patrols at le ast one marker, and hence it must patrol every 

marker reachable from that marker. 

Consider any marker A that the robot is known to patrol. Let B1, B2, ... Bn be all the markers 

linked to A, as shown in Figure 5-19. When the robot visits A, the next marker it chooses to 

visit will be whichever of these markers has the least recent timestamp. 

A

B3

B1

Bn

B2

 

Figure 5-19: A group of markers linked to a patrolled marker  

Label the marker that the robot chooses to move to next “Bi”. When the robot moves to Bi, 

the timestamp of that marker will be set to the current time. In the succeeding visits of the 

robot to A, it will not choose to leave through Bi again at least until all the other nodes 

connected to A have been visited- since until then at least one of those nodes will have a less 

recent timestamp than Bi and therefore that node will be selected by the robot in favour of Bi.  

This observation will now be used to show that each of the n markers connected to A will be 

visited at least once in the time interval between n successive passes of the robot through A. 
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This can be seen by considering the consequence of assuming that this is not the case, and that 

there is at least one marker Bk which is not visited in this time interval.  

Consider the scenario where the robot has passed through A n-1 times since Bk was last 

visited, and has just arrived back at A for the nth time. Each of the n-1 times the robot passed 

through A, it must have chosen a different next marker to visit- since each time it left A, the 

timestamp of the next marker would have been set to the current time and hence would 

become more recent than that of Bk, and so could not be chosen again at least until Bk was. 

The robot therefore will have left A through n-1 different markers, and it cannot leave through 

any of these again until Bk is visited, since they will have more recent timestamps than that 

marker has. Hence when the robot leaves A for the nth time it must leave through Bk, because 

it is guaranteed to have a less recent timestamp than any of the others. This shows that it is 

impossible for the robot to every fail to visit a marker linked to A for a time interval greater 

than n passes of the robot through A39. Hence, since there is a finite interval between the 

robot’s visits to A, and n is finite40, every marker connected to A will also be patrolled, 

because the robot is guaranteed to visit them with a finite interval between visits. 

It is now necessary to show that there is at least one marker that the robot patrols. If the 

converse was true, and the robot patrolled no markers, then that would mean that there is no 

marker that the robot visits repeatedly, with a finite time interval between each visit. This 

implies that for each marker, there is some finite time beyond which the robot fails to visit that 

marker for an unbounded length of time. Therefore, by taking the maximum of these times for 

all the markers, there is a finite time after which the robot will never visit any of the markers. 

But this does not make sense- the static strategy will always give the robot a marker to move 

to41. Therefore the initial assumption must be wrong, and there must be at least one marker 

that the robot patrols. Let this be the marker A in the argument given earlier. It can therefore 

be shown that all the markers linked to A are patrolled. By repeating the argument, the 

markers linked to these markers in turn can also be shown to be patrolled, and so forth. 

                                                 
39 Note that this does not imply that the marker will be visited through A in that interval. If the marker were to be 

visited through some other route, the argument given does not apply, and it is quite possible that the marker would 
not be visited through A at all. The argument only applies when a marker is being neglected, and places an upper 
bound on how long it may be neglected for. 

40 This is guaranteed by how the links are formed- in fact, n is typically four (see Section 4.5.4, page 115). 
41 Unless there are no markers at all- in which case, the robot has no territory to patrol. 
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Therefore it can be shown that all the markers which can be reached through any number of 

intermediate links from the marker A will be patrolled. Since A must have been reachable from 

the robot’s initial position, or else the robot could never have reached it to patrol it, this shows 

that the robot will patrol all markers reachable from that initial position. 

The static strategy, while experiment shows it to generally give good runtime behaviour, is not 

safe to use as it stands for patrolling. The robot’s map was assumed static, but in actual 

operation it is dynamic- markers are removed, added, and frequently have the links between 

then modified. This occurs even if the environment itself is static, due to the nature of the 

marker laying system (see Section 4.3.2, page 93). Once the markers and their links can 

change while the robot moves, the guarantees for the static strategy are not so strong. 

Dynamic effects could potentially lead to looping behaviour. The static patrolling algorithm is 

also difficult to apply, because it relies on the map being static at the robot’s position- and this 

is precisely where the map is most in flux, since the robot continually updates the map at its 

current location as it moves. 

Dynamic patrolling strategy 

Another possible strategy is as follows. The cartographic system could allow the robot to 

detect the marker with the least recent timestamp in the entire map. If the robot moves 

according to the rule “always move towards the location of the least recent marker in the 

map”, then it will not neglect any location in the map- since if it did, the marker associated with 

that location would become the least recent in the map and the robot would then devote its 

efforts to reaching that location. 

This simple strategy will work in a dynamic map without any problem, since the least recent 

part of the map will not be in flux until the robot actually gets there, at which point the robot 

just moves on to the next least recent marker. It also works better when interrupted- since it 

has a “global” target rather than a “local” target, changing the position of the robot through 

some other activity has less of an effect. It is guaranteed to work if the interruption does not 

move the robot further away from the target than it already is- if that were to happen, there 

would be some potential for a behavioural cycle where the robot approaches the target, 

triggers some condition that interrupts the robot and moves it further away for whatever 

reason, then the robot happens to be approach the ta rget again along the same vector, and the 
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same condition triggers, etc. When the prowling behaviour is discussed in Section 5.3.4, it will 

be seen that for the most part it alternates between patrolling activity and moving around 

boundaries- and when it interrupts patrolling, it will circle boundaries completely and returns to 

the same point before resuming patrolling again. This effectively prevents the possibility of a 

behavioural loop, since the robot is left at the same distance from the target after the 

interruption. 

The problem with the dynamic patrolling strategy is that it becomes inefficient. In practice, it 

encourages the map to fragment into scattered areas of widely varying ages, with the robot 

“bouncing” back and forth between areas that are close in age but far apart in position. This is 

because there is nothing in the strategy to bias the robot towards preferring targets close to its 

current location. Also, while in the static strategy every motion of the robot is chosen to patrol 

a location, in this strategy only the end-points of the robot’s motion contribute to patrolling- 

the path it takes is not controlled. This is inefficient. 

Combined Strategy 

A much improved strategy can be formed by combining both the static and dynamic 

approaches using the “Goal Seeking” ability of the robot (see Section 4.5.4, page 115). Goal 

Seeking allows multiple targets for the robot to be set with different levels of “desirability”. 

Patrolling can be achieved by setting all the markers to be targets, with their desirability made 

to be higher the less recent their timestamps are. If the robot then simply follows the vector 

indicated by the “scent” virtual sensor, it will automatically patrol the markers in a way that 

combines both the static and dynamic strategy, as will now be explained. 

In Goal Seeking, markers are continuously updated in an effort to find the shortest path from 

them to the most desirable goal. This is done in an iterative way, and takes time. Information 

“spreads” outwards from the goals through the links between markers until it reaches the 

robot. It is possible that information from one goal will reach the robot first, and then later be 

superseded by information from a more distant but more desirable goal. This is why making 

every marker a goal implements patrolling. Information from the nearest markers to the robot’s 

current position reaches it first. The most desirable markers were configured to be those with 

the least recent timestamp, so the “scent” at the robot’s position will lead it to move to these, 

just as the static patrolling strategy would have it do. But if the robot fails to patrol a distant 
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marker, information from it will eventually be spread to the robot. Since that marker will be 

less recent and therefore more desirable than the markers in the robot’s vicinity that it has 

been patrolling, the “scent” will lead it to now go towards that distant marker- just as the 

dynamic patrolling strategy would have it do. So the combined strategy has both the efficiency 

of the static strategy, and the long-term guarantees of the dynamic strategy.  

Implementation of patrolling 

While the discussion of this behaviour has been quite extensive, its implementation is 

comparatively straightforward because it simply sits on top of the cartographic system. It is 

only necessary to configure Goal Seeking to derive markers’ desirability from their 

timestamps, and then the behaviour can follow the “scent” virtual sensor in a reactive way.  

The state machine for this behaviour is very straightforward (see Figure 5-20). The robot 

cycles between waiting for information from a goal to “spread” to it, and moving towards that 

goal. To move towards a goal, the behaviour simply sponsors an output to the location seeking 

behaviour and passes the goal on to it. 

Set-up Wait

Location
Seeking

Patrolling
Select

Sensors
Move

 

Figure 5-20: State machine for patrolling behaviour 

The behaviour does not need any inputs, as it is complete in itself. However, an input is 

provided so that sponsorship can be passed to the behaviour- effectively to “select” the 

priority level at which the behaviour operates. 

 

5.3.3 Exploring Behaviour 

This is a straightforward behaviour which simply moves the robot into an area that it has never 

explored before. Again this is a behaviour that sits on top of the services of the cartographic 
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system. The “curiosity” virtual sensor described in Section 4.5.2 (page 114) can detect 

directions in which the robot has not explored. Such areas are indicated by a lack of any 

markers in a particular direction, and the absence of any boundary blocking the robot from 

moving that way. When such a condition is detected, it is passed on to the rest of the control 

system through the curiosity sensor as a simple vector. The exploration behaviour is given this 

vector to venture along by the prowling behaviour (which is responsible for deciding if the 

robot can afford to engage in exploration at the moment or not). The exploration is considered 

complete if the vector has brought the robot to a new boundary42. This is a particularly simple 

behaviour- it starts moving, and keeps moving until it detects a new boundary, and then stops 

(see Figure 5-21). Again it moves by passing the vector it is given on to the location seeking 

behaviour, and sponsoring that behaviour to move on its behalf. 

Set-up Move

Location
Seeking

Exploring
Vector

Sensors
End

 

Figure 5-21: State machine for exploring behaviour 

 

5.3.4 Prowling Behaviour 

 “Prowling” is a high-level behaviour of the robot designed to implement its overall “sentry-

like” functionality. It orchestrates the action of a set of lower-level behaviours to meet a 

number of requirements necessary for good sentry behaviour. The nature of these 

requirements will now be examined, to motivate the decisions taken in the design of this 

behaviour. Acceptable sentry-like behaviour requires the following of the robot:- 

• The robot must find and explore any areas in which it has never been.  

                                                 
42 It may also be terminated prematurely by the prowling behaviour to prevent the robot losing track of its position, 

but the behaviour itself need make no provision for that. 
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• The robot must repeatedly patrol back and forth through every area it has ever explored in 

a timely fashion. This is the basic action of a sentry, and is also necessary so that the robot 

can detect if any part of its territory has changed. 

• The robot should not spend an extended length of time exploring at the cost of neglecting 

patrolling, nor should it concentrate on patrolling to the exclusion of exploring. Either of 

these would be undesirable in a sentry. 

• The robot must be able to keep track of its position relative to the environment, otherwise it 

will not know where it needs to patrol and where it needs to explore. 

This last requirement is an important one, and will now be examined in detail. 

Constraints on robot behaviour  while prowling 

To act as a sentry, the robot needs to build and maintain a map of its environment. A suitable 

cartographic system for achieving this was described in Chapter 4, and is implemented within 

the map maintaining behaviour (see Section 5.3.5, page 156). This section examines the 

constraints that must be met by the overall behaviour of the robot so that the cartographic 

system may perform correctly.  

No matter what the behaviour of the robot is, if it needs to keep track of its position then there 

are some concessions it must make to allowing time for finding landmarks. When moving in 

open areas away from any boundary, the robot receives no information from its proximity 

sensors. This means that the robot has no external references it can use to help keep track of 

its position. It is forced to rely on simply integrating its motion to get its position. As discussed 

earlier (see Section 4.4, page 95), this unavoidably introduces accumulating error in the 

robot’s estimate of its position relative to its environment. The longer the robot remains in 

motion, the greater the uncertainties in its position become. Therefore, if the robot needs to 

keep track of its position relative to its environment, then it must be designed to behave in a 

manner that leads it to avoid operating in open spaces for extended lengths of time. 

When moving in an area near a boundary, the robot receives information from its proximity 

sensors which may give external cues or landmarks the robot can compare against an internal 

map and use to complement position tracking derived merely from motion integration (again, 

as detailed in Section 4.4, page 95). These landmarks are recognisable boundary features 

such as corners, and to detect them from proximity data, the robot needs to physically follow 
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the boundary so that it traces the outline in its own motion. If the robot does not follow the 

boundary, the information it receives from its sensors is virtually useless without complicated 

processing- both for interpreting data to determine what it says about the environment, and in 

correlating that with the map to deduce position corrections. Therefore the type of information 

the robot can extract from the environment varies both with the area if finds itself in and with 

the robot’s behaviour, as follows:- 

• Absence information- when in an open area, the only information the robot can deduce is 

that nothing is present in its current locality. All such places look the same. so they give no 

help in indicating the robot’s position.  

• Presence information- when in an area close to a boundary, the robot knows that 

something is present close to its locality. This is normally still not enough to indicate the 

robot’s position, since such places generally appear quite similar to other places further 

along the same boundary. 

• Trace information- when in an area close to a boundary, and moving so as to follow that 

boundary, the robot gains information about the shape of the boundary. This can give an 

indication of the robot’s position when compared with previous traces, as described in 

Section 4.4 (page 95). 

The fundamental requirement cartography places on the robot is that it must avoid being in 

motion for an extended length of time without correcting its position estimate from landmarks 

to keep the estimate consistent with its environment. This implies that:- 

• The robot should never be in motion in open areas for too long. The robot can detect no 

landmarks in open areas, so errors in its estimate of its position and direction will 

accumulate without any way to correct them. It is important to find a landmark before the 

error grows to such an extent that the map becomes useless due to the excessive 

uncertainties involved. The amount of time the robot can stay in motion in open areas safely 

depends on how quickly error accumulates in its position and direction estimates- for the 

robot this work was implemented on, anything over about a minute was dangerous. 

• The robot should never move through previously unexplored areas for too long, whether a 

boundary is near or not. The robot may detect landmarks in a place it has never been 

before, but it has nothing to compare them with, so it is again important that the robot turns 

back before accumulating uncertainty endangers the usefulness of its map. The upper limit 
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on the time the robot can move through an unexplored region is the same as the bound on 

the time it can spend in open areas- the problem is the same in both, a lack of any way to 

compensate for errors in the robot’s position and direction estimates. 

• The robot must frequently engage in behaviour that allows the robot to get trace information 

from its environment, so that the cartographic system will be able to detect and use 

landmarks. 

This last requirement in practice means that, however prowling is implemented, a large fraction 

of the robot’s time should be spent following boundaries, since this is the condition under 

which a robot with proximity sensors can detect landmarks (see Section 4.4, page 95). 

 

Suitable algorithm for prowling 

The following basic algorithm for implementing prowling meets the requirements listed above:- 

1. When the robot meets a boundary, it should navigate around the circumference of that 

boundary in its entirety, arriving back at roughly the same point at which it started. 

1. Once this is done, the robot should try to reach parts of its territory which it visited less 

recently than its current location- in other words, start patrolling the environment. If it meets 

any boundaries after departing from the one it is currently on, it should revert to step 1, then 

try again to reach parts of its territory less recently visited. 

This simple strategy will make the robot spend a good deal of its time following boundaries, 

which is desirable for the proper functioning of the cartographic system. With the design for 

patrolling described in Section 5.3.2 (page 143), it also guarantees that the robot will not 

neglect any part of its territory. 

It is a good idea for a robot to completely circle any boundary it meets, when practical. If the 

robot follows only part of the boundary, then the boundary will be split into segments of 

different age43 in the map. The robot, when patrolling those areas, will generally retain this 

segmentation- because when, for example, it moves between a part of a boundary that was 

patrolled a long time ago into a part that was patrolled recently, it will most likely move off to 

some more critical area before coming back to finish the boundary off. If any further 

segmentation occurs for any reason, that will be retained too. So the boundary will become 

                                                 
43 The “age” of an area refers to how long it is since the robot visited that area last. 
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more and more “fragmented”, and the robot will in the long run end up patrolling in sections 

too short for landmarks to be detected. Completely circling the boundary avoids that problem. 

It also avoids potential looping behaviour where the robot “bounces” between two boundaries 

without ever finishing either. As well as this, the robot is well informed about where it should 

move next, since it has the opportunity to measure the familiarity of all the areas surrounding 

the boundary. Another very important reason to completely circle the boundary is that it 

makes it possible to give guarantees about the robot’s overall behaviour (see the “dynamic 

strategy” discussion in Section 5.3.2). 

 

Implementation of prowling 

The strategy outlined above is only a starting point for good sentry behaviour. Numerous 

refinements need to be superimposed on top of the basic strategy to determine when the robot 

should explore areas outside of the robot’s current territory, and how to respond to difficulties 

in patrolling a boundary and changes in the environment. A suitable state machine diagram is 

sketched in Figure 5-22. 

Start Grab
Circle

Circle
sync

Explore
seek

Explore
fly

Leap
Leap
sync

Leap
Return

Edge
Following

Prowling

Patrolling

Exploring

Select

Sensors

 

Figure 5-22: State machine for prowling behaviour 

The diagram shows that the prowling behaviour has a single input through which it may receive 

sponsorship. It has three outputs, feeding to edge following, patrolling, and exploring. Prowling 
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can choose to pass on its sponsorship to these behaviours as it sees fit. Table 5-3 shows the 

meaning of the different states in the behaviour’s state machine, and when the different outputs 

are sponsored. 

Table 5-3 

State Action Sponsorship to.. 

Start The prowling behaviour is initialised None 

Grab The robot finds a boundary from which to start Edge Following 

Circle The robot navigates around a boundary completely Edge Following 

CircleSync If the robot gets confused while circling a boundary, it 

turns back to familiar territory in search of landmarks 

Patrolling 

ExploreSeek Given the opportunity, the robot will follow a boundary 

it has not met before 

Edge Following 

ExploreFly Given the opportunity, the robot will explore an open 

area (away from any boundary) it has not met before 

Exploring 

Leap The robot leaves the current boundary in search of 

“older” areas to patrol 

Patrolling 

LeapSync If the robot gets confused while in an open area, it will 

try to find any boundary at all in a search for landmarks 

Edge Following 

LeapReturn If the robot gets confused while in an open area, and 

cannot find any boundary nearby, it will turn back to 

familiar territory in search of landmarks 

Patrolling 

 

5.3.5 Map Maintaining Behaviour 

This is the actual module within which the bulk of the cartographic system is implemented. It is 

a direct implementation of the marker representation scheme described in Section 4.3, page 

83. In every cycle, this behaviour scans a single marker from each of the four neighbourhoods 

(see Section 4.3.1, page 88), and updates the relevant virtual sensors. The state machine for 

this behaviour is trivial- the behaviour essentially stays in the same state throughout its 
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operation (see Figure 5-23). The complexity of this behaviour lies in what it does within that 

state. Chapter 4 almost in its entirety can be taken as a description of this behaviour. 

Set-up Update

Virtual
Sensors

Map Maintaining
Select

Sensors

 

Figure 5-23: State machine for map maintaining behaviour 

This completes the discussion of the informed behaviours. The higher-level “user interaction” 

behaviours will now be described. 

 

5.4 User Interaction Behaviours 

This collection of behaviours allow the robot to be guided by external commands, whether 

those commands are to enable the robot’s own autonomous sentry-like behaviour, or to 

impose specific goals on the robot, or to control the movement of the robot directly. The place 

of these “user interaction behaviours” in relation to other behaviours is shown in Figure 5-24. 
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Figure 5-24: User interaction behaviours 

These behaviours are for the most part quite simple- most of the hard work has been done by 

lower-level behaviours. 

 

5.4.1 Manual Control Behaviour 

This behaviour allows an external user to control the motion of the robot directly by speeding it 

up, slowing it down, and turning it left and right. The state machine for this behaviour is 

extremely simple- it simply listens for commands and changes speed and angle setpoints as 

appropriate. It has outputs to both the motor control behaviour and the turning behaviour. It 

uses the motor control behaviour to set the forward speed of the robot, and uses the turning 

behaviour to set the direction the robot should be facing. It passes on its full sponsorship to 

both behaviours. 
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Figure 5-25: State machine for manual control behaviour 

It is interesting to note that the turning behaviour used by this behaviour also has its own output 

to the motor control behaviour. Since that output will have the same priority as the one from 

the manual control behaviour itself, commands from both sources will be merged. If the manual 

control behaviour attempted to control the speed the robot turned at through its output to the 

motor control behaviour, this would conflict with its use of the turning behaviour at the same 

level of sponsorship  to also turn the robot. The motor control behaviour would accept the 

two conflicting streams of command, and the rate at which the robot would turn would 

oscillate between the two- effectively averaging them. In situations where there is danger of 

such conflict, behaviours should be sponsored at different levels to establish which takes 

precedence. 

 

5.4.2 Region seeking behaviour 

This behaviour lets the user command the robot to move towards targets set previously (using 

the proxy behaviour, see Section 5.4.4). To do this, it simply passes the co-ordinate of the 

target on to the location seeking behaviour. That behaviour is designed to perform a very 

similar task, but over shorter distances. Because it works with absolute co-ordinates, it is not 

accurate over long distances- since the robot’s position estimate may drift during the journey- 

so the robot will only move towards the general region of the target44. The location seeking 

                                                 
44 This will usually be reasonably accurate since, because since targets are marked on the map with the “tagging 

service” (see Section 4.5.3, page 115), their location will be kept consistent with any drifts in the robots co-ordinate 
system. Hence the error is bounded by the drift the robot has suffered since it was last at the target, rather than the 
drift it has suffered since the target was originally set. 
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behaviour will get the robot to its target quite quickly, unless the robot has to back out of 

dead-ends (see 8.2.3, page 248). The robot can “hedge its bets” by using the Goal Seeking 

service of the cartographic system in the background to search for a route to the target (see 

Section 4.5.4, page 115). This searching process is slow, but if the robot is delayed backing 

out of dead-ends as it tries to get to the target the search will have time to succeed, and the 

robot can then switch to simply following the “scent” virtual sensor to the goal (see Figure 5-

26). It can always revert back to using location seeking if the path found by goal seeking 

proves to be inaccurate due to changes in the environment. 

Inspiration-
background
search succeeds

 

Figure 5-26: Use of background search 

Goal seeking is only suitable for use as a safeguard, not as the robot’s main strategy for finding 

a route to the target. Lower-end robots have insufficient processing power to implement such 

a search in anything approaching real-time, so they would have to “sit and think” before 

moving at all45. Also, since planning based on a map constrains the robot to moving through 

regions it has already explored and mapped, opportunities may be missed that the “physical 

search” approach could have taken advantage of.  

A suitable state machine for this behaviour is shown in Figure 5-27. The behaviour simply 

switches between using physical search and map search as appropriate. It begins using 

physical search, then switches to map search if that succeeds before the robot reaches its 

target. It may need to switch back to physical search if the environment has changed and the 

map is found to be no longer accurate. 

                                                 
45 For the robot this work was implemented on, a feature was added so that the search could be speeded up a 

hundredfold by an external request from the user, with significant degradation of the real-time performance of the 
robot (it grinds to a halt for a few moments). 
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Figure 5-27: State machine for region seeking behaviour 

The behaviour has an output to the location seeking behaviour to perform physical search. It 

actually “hijacks” the patrolling behaviour to perform the background map search, by 

superimposing “infinite desirability” in terms of goal seeking on the target marker. The 

patrolling behaviour will then, in the long run, lead the robot to that target. The region seeking 

behaviour passes on its full sponsorship to both location seeking and patrolling, but places a 

low “priority factor” on the output to the patrolling behaviour (see Section 3.3.2, page 55). 

This means it will compete for control of patrolling at its own level of sponsorship, but having 

received control it will only pass on a low level of sponsorship to patrolling. Hence it gains 

control of patrolling, but ensures it will not compete with physical searching. This is the desired 

configuration because, while the robot wants the patrolling behaviour to be managing goal 

seeking, it does not want it to control the movement of the robot. Once the “scent” of the 

target is detected, then the sponsorship for location seeking will be dropped and given to 

patrolling instead. 

 

5.4.3 Reporting Behaviour 

This behaviour collects statistics about the performance of the robot and sends them out along 

the serial connection to the robot every second, so that the status of the robot can be 

monitored. The statistics include:- 

• Number of scan cycles per second (see Section 3.6.1, page 69). 

• Average time per cycle for the last second. 

• Longest time of a cycle in the last second. 
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• Number of connections active. 

• Current confusion level of the robot. 

• Current familiarity level of the robot. 

• Whether the robot is currently following a boundary. 

Optionally, exhaustive information on the status of the robot’s behaviours and connections can 

be reported. The estimated position of the robot is also reported at frequent intervals, along 

with the position at which various significant events occur at (finding a landmark, laying a 

marker, etc.). This can be used for graphically visualising the activity of the robot (see Sections 

7.8.1 and 7.8.2, page 229). The state machine for this behaviour is trivial (see Figure 5-28). 

Set-up Send-
statistics

Reporting
Select

Sensors

Serial
Comms

 

Figure 5-28: State machine for reporting behaviour 

 

5.4.4 Proxy Behaviour 

This is the highest-level behaviour present in the robot. It responds to external commands, 

supplying sponsorship to other behaviours on behalf of the user. The robot is designed to be 

able to operate autonomously, but this behaviour allows it to also respond to a simple set of 

commands across a serial connection. These were useful for performing experiments with the 

robot. Table 5-4 gives a list of the commands implemented. 
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Table 5-4 

Command Description 

Prowl Sponsors the prowling behaviour, which starts the robot performing its 

basic autonomous “sentry-like” activity. 

Patrol Sponsors the patrolling behaviour alone, making the robot continually 

move through every part of its territory. If this is used for an extended 

length of time instead of prowling, the robot will lose track of its position 

because the behaviour makes no provision for seeking landmarks. 

Edge Sponsors the edge following behaviour, to make the robot follow the 

edge of any nearby obstacle. 

SetMark Takes note of the current location of the robot using the Tagging Service 

(see Section 4.5.3, page 115). 

SeekMark Sponsors the region seeking behaviour to move the robot towards a 

location tagged at an earlier stage. 

Explore Chooses whether the “curiosity” virtual sensor should be enabled or not. 

If disabled, the robot will never move out of its current territory to 

explore its environment. 

Renew Controls whether the marker laying system is enabled (see Section 4.3.2, 

page 93). 

SendMap Requests the robot to transmit its internal map on the serial connection 

for external inspection. 

Think Increases the rate of “goal spreading” a hundredfold for a short interval. 

This has the consequence of degrading the robot’s real-time performance 

for that interval. 

Conquer Requests that the robot take over the world46. 

Manual Sponsors the manual control behaviour so that the robot will follow 

external motion requests. 

Halt Puts the robot into an idle behaviour. 

                                                 
46 Not fully implemented as yet. 
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Basic commands such as pausing, resetting, and restarting the control system are implemented 

in the robot’s kernel (see Section 7.3, page 213) rather than in this behaviour so the user is 

guaranteed to always be able to stop, pause, or restart the control system, even if it hangs or 

crashes. 

The state machine for the proxy behaviour is shown in Figure 5-29. It has several outputs, 

some of which it sponsors continuously- map maintaining and reporting- and the rest of which 

it chooses to sponsor according to commands it receives. It has a single input called “root”. A 

connection is attached to this input at an arbitrary fixed priority, and it is from this single source 

that priority is distributed to all the behaviours in the control system. 
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Figure 5-29: State machine for the proxy behaviour 

 

5.5 Summary 

This chapter described the design of a set of behaviours for the robot which together combine 

to make it act as a sentry, allowing it to explore and patrol its environment autonomously. The 

behaviours influence each other by controlling how they choose to pass on the sponsorship 

they receive. This sponsorship flows from the highest-level behaviour down to the lowest, with 
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each behaviour along the way free to pass on its share of sponsorship any way it chooses. 

Each behaviour makes a local decision, and from that the overall hierarchy of control at any 

instant is determined. Nowhere in this chapter was any mention made of any absolute level of 

priority- all that is needed is that each behaviour decides which of its outputs to sponsor, and 

at what fraction of its own level of sponsorship. 

There is an interesting point about the Lateral architecture that the behaviours developed here 

bring into focus. Consider the edge following behaviour. In constructing this behaviour, a large 

amount of detailed consideration of the robot’s sensing ability was required. But as soon as it 

was constructed, other behaviours could use it for their own purposes without needing to 

know how it worked. The location seeking behaviour was one of the behaviours that used it. 

This behaviour in turn had its own different set of concerns about the topology of obstacles, 

but once constructed it could also be used by other behaviours without them having to share 

its concerns. Location seeking was used by patrolling, patrolling by prowling, and prowling by 

proxy- none of them needing to be concerned with how the behaviours they used did what 

they did. This shows that the Lateral architecture supports a modular design, and suggests that 

it should be a scaleable architecture, since the complexity of lower-level behaviours does not 

cause complexity to accumulate in behaviours that use them as it tends to do in Subsumption 

(see Section 2.4.9, page 26). 
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6. Zac Script 

This chapter presents an extension to the C++ programming language called Zac Script which 

simplifies the process of implementing control systems designed using Lateral’s behaviour and 

connection constructs. The first section in this chapter clarifies the nature, purpose and utility of 

Zac Script. An outline is then given of the process whereby Zac Script can be converted to 

executable code using a tool called the Zac Translator. This is followed by a section 

describing the details of how Zac Script is used to specify behaviours and connections. The 

complete syntax of the language extension is then presented formally, element by element. An 

extended example is presented to demonstrate how a full a hierarchy of behaviours can be 

implemented using Zac Script. Finally, the limitations of Zac Script in its current form are 

examined. 

 

6.1 Overview 

In Chapter 3, issues related to implementing the Lateral architecture using the C++ 

programming language were discussed (see Section 3.6, page 68). Structures for a “light-

weight” version of Lateral suitable for running on lower-end robots were presented. This was 

called the “Zac” implementation of Lateral47. It was noted that, while C++ is an excellent 

choice of implementation language for portability reasons, the constructs of Lateral are 

different enough from those native to C++ to make coding them in C++ a somewhat difficult 

and tedious process. Hence a special language extension to C++ for Lateral constructs seems 

justified. The following sections examine the arguments in favour of such a language extension 

in detail, explaining:- 

• Why robot architectures may require new language structures. 

• Why it was decided to implement Lateral structures by mapping them on to C++. 

• Why it was decided to add new syntax to C++ and to automate this mapping, rather than 

choosing to directly code Lateral constructs in C++ itself. 

                                                 
47 “Zac” is derived from the first name of Isaac Asimov, a science fiction writer known to many as the “Father of 

Robotics”. 
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6.1.1 Languages for robot architectures 

Robot architectures are a collection of constraints and guiding principles for organising a 

control system, as was described in Chapter 2. “Constraints” and “principles” are high-level 

concepts, and are of more help in the design of control systems than in their implementation. 

However, when an architecture has well-defined structural elements associated with it, such as 

the wires and augmented finite state machines of Subsumption, then it can guide 

implementation as well as design. One way of providing this guidance is to encapsulate the 

structures of the architecture in a “language” supporting the architecture’s constructs, and then 

implement all or part of the robot’s control system in that language. Examples of languages 

developed for robot architectures include the Behaviour Language [[21]] for Brook’s 

Subsumption and ALFA (A Language For Action) [[18]] for Gat’s ATLANTIS. The reason 

why it is useful to provide explicit support for the constructs of an architecture rather than just 

converting them to elements of some existing language is simply that this conversion can be 

difficult or tedious to perform. The structures and modularity of a robot architecture can be 

quite different from those supported by pre-existing languages. This was the case for Brook’s 

Subsumption, and it is also the case for Lateral. In particular, the idea of using “connections” 

as explicit representations of the communication channels between modules (see Section 

3.3.1, page 48) does not have a direct analogue in the popular programming languages. It can 

of course be emulated in them all, but this is exactly the extra layer of difficulty and tedium that 

introducing extra language constructs avoids. 

 

6.1.2 Mapping Lateral structures to C++ 

It was desirable that, whatever the method used to implement Lateral, it should be applicable 

to as wide a range of target platforms as possible. There are few hardware standards yet in the 

field of robotics, so tying Lateral to one particular configuration would limit its use48. A good 

way to achieve this platform independence is simply to map the structures of Lateral on to a 

language that is widely supported, and then compile the result for the appropriate platform. 

                                                 
48 As mentioned in Chapter 3, this was also important for pragmatic reasons- since when the work for this thesis was 

begun, the robot it was to be implemented on was not known. 
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C++ is an excellent choice for the target language. Compilers for C++ are available for most 

platforms- for example, GNU CC is a free C/C++ compiler and cross-compiler which can be 

configured to work with a wide variety of processors (see Appendix A3). An extra bonus of 

mapping Lateral structures in this way is that it is then possible to “borrow” all the constructs 

native to the target language, such as expression evaluation, and avoid “re-implementing the 

wheel”. The reasons for choosing C++ over C was that the object-oriented nature of C++ is a 

closer match for Lateral, and hence Lateral constructs can be mapped on to it with less effort. 

 

6.1.3 Supporting Zac Script through C++ extensions 

It was decided to create a collection of extensions to the C++ language called “Zac Script” 

that support Lateral constructs directly, and can be mapped on to C++ automatically by a 

translator tool. A natural question, given the arguments advanced in the previous section in 

favour of C++ as a target for mapping Lateral on to, is whether the advantages such an 

approach can bring are sufficient to make it worth using instead of coding directly in C++ 

itself. If the benefits are not significant enough, then there will be more effort in constructing 

support for the language extensions than those extensions actually save. The full list of 

advantages of using Zac Script instead of C++ alone is as follows:- 

• Converting state machines and connections to their C++ implementations by hand is 

tedious because, although it is quite straightforward to do, it results in a significant amount 

of repetitive, inelegant, clumsy code. It is useful to automate this. 

• Simple but tedious “housekeeping” functions are also needed to generate interfaces to 

behaviours so that they can be correctly managed at run-time by the robot’s control system 

(see Section 6.3.3, page 179). It is helpful to automate this as well. 

• Once Lateral structures have been mapped on to C++, they become difficult to edit or 

maintain, because of the extra level of detail involved. For example, changing a state 

machine implemented in C++ may require re-ordering of identifiers and dealing with 

forward references. Hiding such details makes maintaining and modifying code simpler. 

• Separating Lateral structures from how they are implemented in C++ means that the 

implementation of constructs can be changed quite radically without requiring source code 
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to be re-written49. If changes are made to how Lateral constructs are implemented, only the 

translator used to convert source code to C++ need be modified to reflect the new 

mapping. 

The last two points were considered particularly important. By allowing explicit syntax for 

Lateral constructs, the detail of how they were mapped on to C++ was hidden- with a benefit 

of increased clarity and ease of maintenance of source code, and the pragmatic advantage that 

the mapping could afterwards be changed without having to rewrite all source code. All these 

considerations led to the decision to introduce explicit language extensions into C++ to 

support Lateral constructs. These extensions were called “Zac Script”. Header files and 

libraries, the conventional ways to extend the C++ language, were not sufficient to encode the 

significantly different structures of Lateral, so a tool called the Zac Translator was developed 

that essentially acted as a pre-processor, taking source code written in Zac Script and 

translating all the extended syntax into pure C++. The translation could then be compiled, 

linked with suitable libraries, downloaded to the robot, and executed. This process is outlined 

in the following section. 

6.2 Outline of translation process 

In Figure 6-1, the process whereby a set of behaviours and connections eventually becomes 

executable code is outlined.  
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Figure 6-1: The path from Lateral structures to executable code 

                                                 
49 This was particularly important for pragmatic reasons, since the “sentry” application described in the previous 

chapter was developed side by side with the Lateral architecture implementation, and could not wait for it to be 
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The steps in the process are as follows:- 

1. Initially, the control system is designed in terms of behaviours and the connections between 

them. 

1. This design is then expressed in Zac Script, which has special syntax for representing 

behaviours and connections. 

1. Next, the Zac Script source code is converted into pure C++, mapping any of the Lateral 

constructs on to C++ structures. This translation is performed by the Zac Translator. 

1. The resultant C++ code is compiled appropriately for whatever target platform it is aimed 

at, either for a physical robot or a simulated one on a PC. 

1. The compiled code is linked with a module containing the runtime support necessary for the 

Zac implementation of the Lateral architecture (see Section 3.6, page 68). Modules 

specific to either the simulator or the physical robot are also linked in, and the resultant 

executable code will exhibit the behaviours specified in the original design. 

An introduction to the actual language extensions to C++ present in Zac Script is now given. 

As the extensions are introduced, their equivalents in C++ will be presented. 

 

6.3 Writing Zac Script 

Zac Script is an extension of C++. As such, a file containing nothing but C++ statements is an 

acceptable Zac Script source file. 

The most important new construct that is available for source code written in Zac Script is the 

“BEHAVIOUR” construct, which is intended to be used to implement actual robot 

behaviours. The behaviour construct appears in the following form:- 

BEHAVIOUR <Name> 

{ 

        <Input Connections> 

        <Output Connections> 

        <Variables local to behaviour> 

        <Functions local to behaviour> 

        <State machine implementing functionality of behaviour> 

}; 

                                                                                                                                               

mature. 
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Every behaviour can have a set of input connections, a set of output connections, and a state 

machine that implements the actual functionality of the behaviour. These elements are 

described in the sections that follow. It is also useful for behaviours to be able to allocate local 

storage, and define local “helper” functions. To avoid having to invent new syntax to deal with 

this, behaviours are defined as extensions of the C++ “class” construct. Any code allowed 

within a class in C++ is therefore also allowed inside a behaviour and will have the same 

semantics. For example, the meaning of the following code segment is essentially unchanged if 

“BEHAVIOUR” is replaced by “class”:- 

BEHAVIOUR MakeTea 

{ 

 // member variables 

 int numCups, numBags; 

 

 // member functions 

 void PlugInKettle(); 

 int AreBagsAvailable() { return numBags > 0; } 

}; 

There is one subtle difference however. A class in C++ is used as a “pattern” from which to 

create several objects of the same form. Behaviours in a robot, on the other hand, are 

generally unique- there is no need for more than one instance of them. Hence when the Zac 

Translator is converting a behaviour to C++, it will by default cause an intermediary class to 

be constructed with the member variables and functions described in the above code, and then 

create a single instance of that class called by the behaviour name, “MakeTea” in this case. 

The intermediary class will be derived from a shared base class for all behaviours that 

implements the functionality of Lateral. This base class, ZACProcess, was introduced in 

Section 3.6.4 (page 76). The Zac Script code fragment above would be converted to C++ 

code of this form:- 

class ZACProcess_MakeTea : public ZACProcess 

{ 

        // member variables 

        int numCups, numBags; 

 

        // member functions 
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        void PlugInKettle(); 

        int AreBagsAvailable() { return numBags > 0; } 

}; 

ZACProcess_MakeTea MakeTea; // create a single behaviour object 

     // called “MakeTea” 

The services that behaviours inherit from ZACProcess will be described in examples to come, 

and are listed exhaustively in Appendix C3. 

Within the Behaviour construct, it is possible to specify a state machine implementing the 

functionality of the behaviour, and to set up connections to other behaviours. These elements 

are now described. 

 

6.3.1 Specification of state machines 

In the Zac implementation of Lateral, behaviours are designed as augmented finite state 

machines. The “augmented” part of “augmented finite state machines” simply means that the 

state machines are permitted to have memory. This memory can be created in Zac Script by 

simply placing variables within the behaviour. A special syntax for streamlining the process of 

coding the actual state machines themselves is available in the behaviour construct. Consider 

the following example:- 

#include <iostream.h> 

BEHAVIOUR Greeting 

{ 

 // member variables and functions could go here 

 

 // state machine starts here 

 @SayHi 

  cout << “Hello World” << endl; 

}; 

If this code is translated, compiled, linked with the appropriate runtime support (see Section 

6.2, page 169), and executed, it will print “Hello World” to standard output. The behaviour 

has a state machine with a single state called “SayHi” that prints the given greeting. States are 

distinguished from normal C++ code by the “@” symbol preceding them. The symbol is 
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followed by a label identifying the state, and then arbitrary code to perform whatever that state 

actually needs to do. A less trivial state machine is shown in the following code fragment:- 

 

BEHAVIOUR MakeTea 

{ 

 // member variables 

 ... 

 // member functions 

 ... 

 

 @PlugIn 

  if ( numCups >= numPeople && AreBagsAvailable() ) 

  { 

   FillKettle(); 

   SwitchOnKettle(); 

   PutTeabagsInCups(); 

   NEXT WaitBoil; 

  } else NEXT DrinkMilk; 

 @WaitBoil 

  if ( Boiled() )  NEXT Prepare; 

  else    NEXT WaitBoil; 

 @Prepare 

  PourWater(); 

  AddMilkAndSugar(); 

  // finished 

 @DrinkMilk 

  cout << “Wouldn’t you much prefer some milk?” << endl; 

  // finished 

}; 

All the variables and functions referred to in the code are assumed to be local variables and 

helper functions of the behaviour. Note that any code valid within a normal C++ function can 

be used within a state. There is an extra element allowed, the “NEXT” statement, which 

specifies the identifier of the next state the robot will enter. Every  state is assigned a unique 

name so that it can be referenced in this way. By default, if no NEXT statement is executed 

within a state, the state machine will be halted. 
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When the above state machine is executed, the “PlugIn” state will run first. From there the 

behaviour may transition to “WaitBoil” or “DrinkMilk”. The “WaitBoil” state loops until 

Boiled() is true, then moves on to “Prepare”. Both the “Prepare” and “DrinkMilk” states 

contain no transitions in the form of NEXT statements, so the state machine will be halted after 

either of them are executed. 

The next section shows how the syntax in the above code fragment is converted to C++ by 

the Zac Translator. 

 

6.3.2 Implementation of state machines 

A state machine within a behaviour is converted to C++ by building a function to implement it 

as a “switch” statement. The base class from which all behaviours are derived contains a 

virtual function called “ZAC_Run” which is expected to be overridden to perform the 

functionality of the behaviour. The function is passed the current state of the behaviour, and 

returns the next state to which it should transition. Its prototype is as follows:- 

 virtual int ZAC_Run ( int ZAC_state ); 

The Zac Translator generates this function from the state machine, and takes care of informing 

the Lateral runtime support module of the existence of each behaviour, so that their state 

machines will be automatically executed (see Section 6.3.3). The code generated by the Zac 

Translator for this function is a switch statement, with each “case” corresponding to a single 

state in the state machine. Unique identifiers are generated from all the state names to use as 

case labels before the compiler meets the switch statement. This means that forward 

references between states will not cause difficulty. To illustrate these ideas, the code generated 

by the Zac Translator from the state machine example in the previous section will now be 

examined50. Firstly, code is written to set up unique identifiers for use as case labels in the 

switch statement implementing the state machine. 

                                                 
50 This code is taken directly from the output of the Zac Translator, with explanatory comments added. 
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enum 

{ 

 ZAC_LINE(MakeTea,PlugIn), // ZACLine_MakeTea_PlugIn 

 ZAC_LINE(MakeTea,WaitBoil), // ZACLine_MakeTea_WaitBoil 

 ZAC_LINE(MakeTea,Prepare), // ZACLine_MakeTea_Prepare 

 ZAC_LINE(MakeTea,DrinkMilk), // ZACLine_MakeTea_DrinkMilk 

 ZAC_LINE(MakeTea,ZAC_STATE_COUNT) 

}; 

ZAC_LINE is a trivial macro to create unique identifiers based on its arguments. It is used to 

make the code in the switch statement easier to read. ZAC_LINE(x,y) simply corresponds to 

the identifier ZACLine_x_y. An extra identifier of the form:- 

 ZACLine(BehaviourName,ZAC_STATE_COUNT)  

is automatically added at the end of every identifier list that the Zac Translator creates to give 

the number of states in that behaviour. Once the identifiers have been set up, the function 

implementing the state machine can be generated. It is passed the state to run as an argument, 

and should return the desired next state of the behaviour. It consists of a “switch” based on the 

state to run, with each case being of the form:- 

 case ZAC_LINE(BehaviourName,StateName): 

  // Code from state is copied to here 

  break; 

The code from the state is copied into the case statement almost verbatim. The only special 

provision that has to be made is for the “NEXT” statement. This should set the state that the 

function will return as the desired next state of the behaviour. This is done by setting up a local 

variable (“ZAC_next”) and translating 

 NEXT StateName; 

into 

 ZAC_next = ZACLine(BehaviourName, StateName); 

 

The entire function will be as follows:- 

int ZACProcess_MakeTea::ZAC_Run ( int ZAC_state ) 

{ 

 // Local variable to store the next desired state. The  

 // default value ZAC_LINE_DEFAULT stops the state machine. 
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 int ZAC_next = ZAC_LINE_DEFAULT; 

 

 // switch to the correct state to run 

 switch ( ZAC_state ) 

 { 

 // Code corresponding to the “PlugIn” state 

 case ZAC_LINE(MakeTea,PlugIn): 

  // C++ code from state gets copied directly 

  if ( numCups >= numPeople && AreBagsAvailable() ) 

  { 

   FillKettle(); 

   SwitchOnKettle(); 

   PutTeabagInCup(); 

   // “NEXT WaitBoil” is translated into the following 

   ZAC_next = ZAC_LINE(MakeTea,WaitBoil); 

  } else ZAC_next = ZAC_LINE(MakeTea,DrinkMilk); 

  break; 

 // Code corresponding to the “WaitBoil” state 

 case ZAC_LINE(MakeTea,WaitBoil): 

  if ( Boiled() ) ZAC_next = ZAC_LINE(MakeTea,Prepare); 

  else   ZAC_next = ZAC_LINE(MakeTea,WaitBoil); 

  break; 

 // Code corresponding to the “Prepare” state 

 case ZAC_LINE(MakeTea,Prepare): 

  PourWater(); 

  AddMilkAndSugar(); 

  // finished 

  break; 

 // Code corresponding to the “DrinkMilk” state 

 case ZAC_LINE(MakeTea,DrinkMilk): 

  cout << “Wouldn’t you much prefer some milk?” << endl; 

  // finished 

  break; 

 // Code corresponding to the any invalid state 

 default: 

  // Special return code to indicate an invalid state. 

  ZAC_next = ZAC_LINE_NOTSET; 
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  break; 

 }  //  End of switch on ZAC_state 

 // return next state the behaviour should execute 

 return ZAC_next; 

} // End of ZACProcess_MakeTea::ZACRun 

 

As can be imagined, it is easier to write and modify state machines in the syntax that Zac 

Script allows than it would be to use switch statements directly. Also, now that state identifiers 

are handled automatically, it is possible to introduce convenient short-cuts into how a state 

machine can be specified:- 

• To transition from one state to the state immediately after it in the list of states, it is useful 

to be able to issue a “NEXT;” command without specifying the state’s identifier 

explicitly. The fewer times a state is referred to by name, the less code that has to be 

changed if that state is renamed. Hence the following code is allowed:- 

 @FirstAction 

  DoSomething(); 

  NEXT; // equivalent to writing “NEXT SecondAction;” 

 @SecondAction 

  DoSomethingElse(); 

When used this way, NEXT is translated as  

 ZAC_next = ZAC_state + 1; 

i.e. it simply moves on sequentially to the next state. If this is used in the last state of the 

state machine, it will be halted. 

• States often need to loop continuously, waiting for some specific condition to occur. 

With the Zac Translator, The “@” symbol can be used within a state to refer to the 

identifier of that state. For example, a loop could be implemented as follows:- 

 @LoopingState 

  DoSomethingThatNeedsRepeating(); 

  NEXT @; // equivalent to writing “NEXT LoopingState;” 

Writing loops this way means that if the name of the state is changed later, no code in its 

body is affected. 

• Frequently a state machine will have a number of trivial intermediate states that are not 
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worth naming. However the switch statement in C++ will require the states to have 

unique names. To get around this, if the “@” state marker is repeated where the name 

of the state should be, the Zac Translator will automatically substitute a unique identifier 

for that state. The following code will then be legal:- 

  

 @@ // No name given to this state 

  DoSomethingTrivial(); 

  NEXT; 

 @@ // No name given to this state either, but it is 

  // distinguished from the previous state for C++ 

  DoSomethingEquallyTrivial(); 

  NEXT ImportantState; 

• Often the logic of a state can be expressed most clearly by specifying a default next 

state that the robot will transition to if no other NEXT statement is executed. It would 

be attractive to be able to write code like the following:- 

 @@ 

  DEFAULT NEXT DefaultAction; 

  // DefaultAction will be transitioned to unless one 

  // of the following conditions succeeds 

  if ( condition1 ) NEXT Response1; 

  if ( condition2 ) NEXT Response2; 

  ... 

However, by referring back to how NEXT is implemented, it can be seen that if two 

NEXT statements are executed, the last one to execute will be the one that actually 

chooses the next state. Hence the DEFAULT keyword in the above code could simply 

be omitted, and the code would work as it stands. The DEFAULT keyword does 

make the logic of the state clearer, so the Zac Translator will accept it and simply treat it 

as a piece of documentation. 

  

Portions of the state machine example given earlier could have been written using these short-

cuts, in the following way:- 

 ... 

 @WaitBoil 

  DEFAULT NEXT @; 
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    // This sets the default next state to be 

    // the “WaitBoil” state itself 

  if ( Boiled() )  

  NEXT; // This will transition to the next state 

   // in the list of states- the anonymous one 

   // directly following 

 

 @@   // Anonymous state 

  PourWater(); 

  AddMilkAndSugar(); 

  // finished 

 ... 

As a final detail for completeness, the Zac Translator recognises one special state, the 

“CONTROL” state. If such a state is included in the state machine, it will be called once every 

scan cycle (see Section 3.6.1, page 69) through the ZAC_Run function in addition to the 

particular state the behaviour is in at that time. This is useful to allow the behaviour to react to 

changes in priorities at the rate they occur. 

 

6.3.3 Discussion of initialisation 

Thus far it has not been specified how the state machines written in behaviours actually ever 

come to be executed. The Lateral runtime system must be notified of the existence of each 

behaviour in some way, so that it may drive their state machines. The Zac Translator handles 

all the details of performing this notification, so that the programmer who generates the 

behaviours need never even consider the issue, and can treat behaviours as units of execution 

in their own right. The Zac Translator generates a single “initialisation function” in each source 

file to inform the Lateral runtime system of the behaviours contained in that source, and to 

initialise those behaviours. This function is called automatically on program start-up without the 

programmer needing to know of its existence. The operations that the initialisation functions 

perform in effect construct the “Lateral Object Hooks” interface to be discussed in Section 

7.7 (page 228). 
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6.3.4 Specification of connections  

A behaviour in Lateral has a set of input and output connections that it can use for interacting 

with other behaviours (see Section 3.3.1.3, page 50). In Zac Script, a special syntax is 

introduced to make it easier to set up these connections. The form of the syntax is as follows:- 

BEHAVIOUR Example 

{ 

 INPUT ( ConnectionType, ConnectionName, Source ); 

 OUTPUT ( ConnectionType, ConnectionName, Target ); 

 ... 

}; 

Input and output connections are special objects belonging to the behaviour they appear 

within. As for all variables in C++, they have a type and a name. The type refers to the nature 

of the data the connection can carry. The name allows the connection to be accessed within 

the behaviour’s state machine and helper functions, just like any member variable. Beyond the 

attributes of normal member variables, however, connections also have information about what 

they are attached to. Input connections may read from a specified source (another 

connection), and output connections may write to a specified target (also another connection). 

As an example, consider the following two behaviours, “ShowLevel” and “SetLevel”.  

BEHAVIOUR ShowLevel { 

 // input connection called “in_level”, carrying integer data, 

 // and left unattached 

 INPUT ( int, in_level, NULL ); 

 @display 

  if ( in_level.Delta() ) // check if input has changed 

  { 

   // display value stored in input 

   cout << in_level.Value(); 

  } 

  NEXT @;   // repeat state forever 

}; 

 

BEHAVIOUR SetLevel { 

 // output connection called “out_level”, carrying integer data, 

 // and attached to the input of ShowLevel 

 OUTPUT ( int, out_level, ShowLevel.in_level ); 
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 @start 

  out_level.Set ( 0 ); // Initialise the output to zero 

  NEXT; 

 @set 

  // Increase the output by one, and loop forever 

  out_level.Set ( out_level.Value() + 1 ); 

  NEXT @; 

}; 

 

ShowLevel has a single input connection called “in_level”, and SetLevel has a single output 

connection called “out_level”. This output connection of SetLevel is attached to the input 

connection of ShowLevel51. The state machine in SetLevel repeatedly increments its output, 

while ShowLevel displays its input whenever it changes. Because the output of SetLevel is 

attached to the input of ShowLevel, this results in ShowLevel displaying the incrementing 

values of SetLevel’s output. This could also be achieved by attaching ShowLevel’s input to 

SetLevel’s output, but this is done less commonly because it requires the behaviour being 

controlled to “know” about the behaviour controlling it (see Section 3.3.1.3, page 50). 

Notice that the connections are accessed within their respective behaviours by name, just as 

normal variables are. When the output of SetLevel is being attached to the input of 

ShowLevel, it identifies the input as “ShowLevel.in_level”. In general an input or output 

connection of a behaviour can be referred to in this way, as:- 

 “<BehaviourName>.<ConnectionName>“ 

All connections have a set of operations that can be performed on them. The full set of 

operation is listed in Appendix C3. The ones used here are given in Table 6-1. 

Table 6-1 

                                                 
51 Hence out_level becomes a secondary source for in_level (see Section 3.3.1.4, page 52). If further outputs were 

attached to in_level, it would apply Lateral’s priority rules to determine which to read from (see Section 3.3.1.5). 
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Operation Action 

Set This places the data from its argument in the connection (the assignment 

operator can be used for this as well). 

Value This returns the data in the connection (the type cast operator for the 

appropriate data type can also be used for this). 

Delta This returns true if the data in the connection have changed since the last time 

the function was called. 

It is possible for connections to exist that are not owned by a behaviour. These are called 

intermediate connections, and are specified as follows: 

 CONNECT ( ConnectionType, ConnectionName, Source, Target ); 

Intermediate connections are specified outside of any behaviours, at file scope. Again, they 

have a type and a name, and both a source and target connection can be specified. They are 

referred to by their name, without any qualification, just like a global variable in C++. 

 

6.3.5 Implementation of connections  

All connections are implemented as objects derived from the ZACMeshLink base class (see 

Section 3.6.4, page 76). This class gives support for all the operations that the Lateral runtime 

module needs to manipulate connections. It also defines the operations that can be applied to 

connections when they are accessed within behaviours. A full list of these operations is given in 

Appendix C3. 

Because of the similarity of connections to normal variables in C++, it would be relatively easy 

to use them directly without any special syntax. The only difficulty is how to set the source and 

target of the connections. In C++ classes, member variables can only be initialised in the 

class’s constructor. Therefore input and output connections would have to be declared first as 

member variables, and then have their source and targets set separately in a constructor. It 

was found to be easier to understand the relationships between behaviours if the declarations 

and attachment information for their connections were side by side at the start of a behaviour, 

rather than being dispersed. For this reason, the special syntax described in the previous 

section was used. Connection declarations and attachments were kept together, with the Zac 

Translator automating the “donkey work” of splitting them up for the C++ compiler. 
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6.3.6 Running the translator 

The Zac Translator is the tool developed for converting Zac Script source code to pure C++ 

code.  It was constructed using FLEX52 and a recursive-descent parser. The translator works 

by building several files from a single source file, corresponding to the declarations, definitions 

and initialisations necessary to implement the Lateral constructs in C++. These files are then 

concatenated into a single C++ translation of the source. The intermediate files appear only 

because by writing the translator this way it can be made single-pass. For example, when 

translating a state machine, a list of identifiers for all the states must appear in the C++ 

translation before any code for the actual states, otherwise forward references will not be 

allowed by the compiler. But the translator does not have a list of all the states until it has 

finished parsing the behaviour, so it will not be able to insert this list until it is too late. To get 

around this, the translator places the declarations for the states of all the behaviours in one file, 

and the actual code for the states in another, and then after scanning the entire source code it 

will simply append the file containing the code to the end of the file containing declarations. A 

similar argument holds for the generation of a file containing initialisation code. The 

declarations, definitions, and initialisations combine to form a single C++ source file. The 

translator also generates a file giving declarations for any intermediate connections in the 

source, and this forms a header file. This header file allows intermediate connections to be 

attached to by behaviours outside of the file in which they were created. 

                                                 
52 “Fast LEXical analyser”- this general utility for performing lexical analysis of files is ideal for building scanners for 

parsers. FLEX or the earlier LEX are available under most distributions of UNIX. 



Zac Script  Chapter 6 

 184 

.zac
Zac Script Source

.icc
Initialisations

.lst
Connections

.h
Declarations

Zac
Translator

.cc
C++ Source

.lst
C++ Header

.cc
Definitions

 

Figure 6-2: C++ translation of Zac Script source 

Figure 6-2 outlines the stages involved in translating Zac Script source to C++. The contents 

of the various files are detailed in Table 6-2. 

Table 6-2 

Stage  File Contents  Description 
Source .zac Zac Script 

source 
Source file written in C++ with syntax 
extensions supporting Lateral constructs. 

Intermediate .h Declarations Declarations generated for states, behaviours, 
connections, etc. 

 .cc Definitions Body of state machines, behaviours, definitions 
of connections, etc. 

 .icc Initialisations Initialisation functions for behaviours, automatic 
implementation of the Lateral object hook 
interface. 

 .lst Intermediate 
Connections 

A list of declarations for the intermediate 
connections specified in the source file. 

Target .cc C++ source The translated version of the source file, now in 
pure C++. 

 .lst C++ header A copy of the list of declarations for the 
intermediate connections specified in the source 
file. Suitable for use as/inclusion in a header file. 

 

6.4 Syntax of Zac Script 

The chapter so far has given an overview of the important components of Zac Script and how 

they are implemented. In this section a complete systematic description of the syntax of Zac 
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Script is given. The syntax is first presented in EBNF notation53, and then each major element 

of the grammar is described in turn. 

It might seem that, since Zac Script extends on C++, a parser for Zac Script would also need 

to parse C++. However the full grammar of C++ is very complex, and parsing it is difficult, so 

no attempt was made to do so- it would certainly have been more trouble than the language 

extensions were worth. Instead the grammar and keywords of Zac Script were carefully 

chosen so that the translator could “skim” over C++ source code, pick out the constructs it is 

responsible for, and parse the bare minimum necessary to convert them to C++. For example, 

the character “@”, used as the state identifier, is not used at all in C++, so its presence 

unambiguously indicates the start of a state machine. 

The full grammar of Zac Script is given in Table 6-3. Compilers generally divide their source 

code into units such as identifiers, numbers, white-space, etc. The Zac Translator does the 

same when it is parsing the constructs it is responsible for, but otherwise it treats whole  

sections of C++ code as “white-space” which it just passes on unmodified in the translation. 

Such a block of C++ is called a “<c-unit>“ in the table below, and it is bounded by any 

keyword from Zac Script, or alternatively any element within C++ that indicates the end of a 

construct, such as a closing parenthesis or closing brace that was not opened within the unit. A 

“<c-term>“ is the same as a <c-unit>, except it is used when parsing elements of an argument 

list, so it is also bounded by a comma. The translator is free-format; however provision is 

made to allow formatting from the source to be copied (with modifications when appropriate) 

to the translation, so that the translation will be human-readable. 

Table 6-3 

                                                 
53 Extended Backus Naur/Normal Form, a tool for describing context-free grammars. 
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Syntax of Zac Script in EBNF notation 
 <Program>  :== { <Lateral-unit> | <c-unit> } 
 <Lateral-unit> :== <Behaviour> | <Connection> | <Object> 
 <Behaviour>  :== “BEHAVIOUR” <Identifier> “{“ <Behaviour-body> “}” 
 <Behaviour-body>  :== { <Behaviour-unit> } [ <State-machine> ] 
 <Behaviour-unit>  :== <c-unit> | <Behaviour-connection> 
 <Behaviour-connection>  :== (Input>|<Output>|<Input-status>|<Output-status>) “;” 
 <Input>  :== “INPUT” “(“ <c-term> “,” <c-term> “,” <c-term> “)” 
 <Output >  :== “OUTPUT” “(“ <c-term> “,” <c-term> “,” <c-term> “)” 
 <Input-status>  :== “INPUT_STATUS” “(“ <c-term> “,” <c-term> “,” 

<c-term> “)” 
 <Output-status>  :== “OUTPUT_STATUS” “(“ <c-term> “,” <c-term> “,” 

<c-term> “)” 
 <State-machine>  :== <State> { <State> }  
 <State>  :== “@” <Identifier> { <c-unit> | <Next> } 
 <Next>  :== [ “DEFAULT” ] “NEXT” [ <Identifier> ] “;” 
 <Object>  :== “OBJECT” “(“ [ <c-term> { “,” <c-term> } “)” “;” 
 <Connection>  :== ( “CONNECT” | “CONNECT_STATUS” ) “(“ ... “)”... 

The major elements of the grammar are now examined in turn.  

 

6.4.1 Program syntax 

Program

C-Unit

Lateral-unit

 

Figure 6-3: Syntax of a Zac Script program  

Zac Script source code consists of blocks of pure C++ code (“c-units”) and blocks of code 

written in an extended syntax representing Lateral elements such as connections and 

behaviours (see Figure 6-3). C++ elements are not parsed, simply copied verbatim to the 

translation. Only units of code representing Lateral elements are parsed. 
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6.4.2 Syntax of Lateral elements 

Lateral-unit

Connection

Object

Behaviour

Identifier { }Behaviour-
Body

BEHAVIOUR

( )C-Unit

CONNECT_
STATUS

CONNECT

OBJECT ( )C-Unit

 

Figure 6-4: Syntax of Lateral elements in Zac Script 

The three main types of Lateral elements are shown in Figure 6-4. These are :- 

• Behaviours- These represent structures for implementing behaviours of the robot. They 

start with the keyword BEHAVIOUR, followed by the body of the behaviour delimited 

with braces. This construct was discussed in Section 6.2. 

 Connections - These represent intermediate connections that do not belong to any 

behaviour. Input and output connections appear inside the body of behaviours and are 

parsed differently. Intermediate connections are specified with the keyword CONNECT, 

followed by arguments inside parentheses indicating their type, name, and target or source 

as discussed in Section 6.3.3. There is a variant on normal connections called 

“CONNECT_STATUS” which does not carry priority information and so does not have 

the overhead associated with doing so. This construct was introduced for the sake of 

efficiency only, and will not be described in detail as it is simply a restricted version of 

normal connections. The structure of the arguments to CONNECT is not parsed, because 

the translation can be arranged so that the C++ compiler itself will check the arguments in 

the translated version of the construct. Whenever possible, checking argument counts and 
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types is left to the C++ compiler to keep the translator simple, and because the compiler 

will be able to generate more informative error messages54. 

• Objects- This special construct is not part of Lateral, and was introduced for purely 

pragmatic reasons. A statement like:- 

 OBJECT ( int, status, 1 ); 

 is directly equivalent to simply writing 

 int status = 1; 

 except that in the first case the Lateral runtime system takes over responsibility for 

performing the initialisation. This has the practical advantage that the control system can be 

reset to its original state by the runtime system, without having to stop and restart the whole 

program. For the robot the work in this thesis was implemented on, restarting a program 

could only be done by downloading the program to the robot again- a slow operation, 

hence the usefulness of the OBJECT statement. 

 This construct is specified with the keyword OBJECT, followed by a type, variable name, 

and initial value for that variable inside parentheses. As for connections, the structure of the 

arguments is not checked or enforced by the Zac Translator, since that can be done by the 

C++ compiler working with the translated version.  

 

                                                 
54 Errors generated by the compiler while compiling the C++ translation are referred back to the appropriate line in the 

original source. This is possible because the Zac Translator automatically inserts #line directives as it is translating. 
These directives give the compiler the information it needs to generate error messages that are relevant to the Zac 
Script source rather than the C++ translation. 
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6.4.3 Syntax of behaviour body 

Behaviour-body

Behaviour-unit State-machine

C-Unit

Behaviour-
connection

State

 

Figure 6-5: Syntax of the body of a behaviour 

The body of a behaviour is similar to that of a C++ class (see Section 6.2). Any construct 

allowed in a C++ class is also allowed in a Behaviour- member variables, member functions, 

member classes etc. (see Figure 6-5). There are also further special elements allowed within 

the body of a behaviour- input and output connection to other behaviours, and a list of states 

specifying the behaviour’s state machine, as described in Section 6.3.1. 
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6.4.4 Syntax of input and output connections 

Behaviour-Connection

Input

Output

Input-status

Output-status

( )C-Term , C-Term , C-TermINPUT

( )C-Term , C-Term , C-TermOUTPUT

( )C-Term , C-Term , C-TermINPUT_
STATUS

( C-Term , C-TermOUTPUT_
STATUS )C-Term,

 

Figure 6-6: Syntax of input and output connections 

Every behaviour can have a set of input and output connections that it uses to communicate 

with other behaviours. These connections were discussed in 6.3.3. Although in Figure 6-6 the 

arguments the connections take are shown for reference, these are not in fact parsed at this 

stage- rather they are passed on to the C++ compiler to be checked. As for intermediate 

connections, there are alternative INPUT_STATUS and OUTPUT_STATUS connections 

that do not carry priority information. These construct were introduced for the sake of 

efficiency only, and will not be described in detail as they are simply very restricted versions of 

normal connections. As their name suggests, they generally carry status information that does 

not need an associated priority. 
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6.4.5 Syntax of states 

State
Next

@

C-Unit

Identifier

Identifier NEXT DEFAULT

@

@

;

CONTROL

 

Figure 6-7: Syntax of a single state in a state machine 

The behaviour’s state machine can be detected by the appearance of the “state keyword”, 

which is the “@” symbol (see Figure 6-7). This keyword is followed with a state identifier- or 

the “@” can be repeated for an anonymous state, or the “CONTROL” keyword is used for 

the special control state (see Section 6.3.1). Any C++ code that can appear within a function 

can be placed within a state. A statement starting with “NEXT” or “DEFAULT” is parsed to 

give a command indicating a state transition. 

This concludes the formal specification of Zac Script. An extended example of its use will now 

be given. 

 

6.5 Extended Example- the Robot Wheelbarrow 

In the remainder of this chapter an extended example of the use of Zac Script is presented, 

clarifying how it is applied in practice for specifying a robot’s control system in terms of 

behaviours and connections. The target behaviour for the robot in this example is to act as a 

“robot wheelbarrow”. The robot is taken to have four proximity sensors- one to the front, one 

at the rear, and one to either side. To start the wheelbarrow moving, the operator simply 

approaches its rear sensor. As soon as this occurs, the robot will move in the direction it is 

facing until it detects an obstacle with its front sensor, at which point it stops. The robot can be 

turned left and right while it is moving by approaching the sensor on the opposite side to the 
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desired direction- as if it was being physically pushed. To stop the robot, the operator can 

simply stand in front of it. Once the robot stops, it will not start again until the operator 

approaches its rear sensor again. 

This overall behaviour will be implemented by combining two simpler behaviours, one which 

simply moves forward, and one which turns. The two behaviours will be developed 

individually as a “MoveForward” and “Turn” behaviour, and then a higher level behaviour 

called “Push” will be constructed that uses them both to give the required overall behaviour of 

the robot. Finally, a further behaviour called “ImprovedPush” will be built to demonstrate the 

use of Lateral’s sponsorship system. 

For the purposes of this example, the following services will be assumed available:- 

• A low level “Motor” behaviour is assumed present, with two input connections- “speed” to 

control the rate at which the robot moves forward, and “nudge” to control the rate at which 

it turns55. The units of these inputs are arbitrary. For this example, 0 is taken as stationary, 

and 10 as the robot’s highest speed. The robot turns right for positive nudge values, and 

left for negative ones, with the magnitude of the nudge value indicating the rate at which the 

turn is made. Again, 10 is taken as the maximum magnitude. 

• Access to the robot’s sensor data is assumed available through simple functions, as 

described in Table 6-4. It is not necessary for sensor data to be transmitted along 

connections, since there should never be any need to subsume or override it. 

                                                 
55 For the robot on which this work was implemented, these inputs were combined in a single structure. The two 

components are kept separate here for simplicity. 
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Table 6-4  

Sensor Description 

leftSense( ) This returns a high value when there is an object 

close to the robot on the left. The units are arbitrary. 

In this example, 50 or greater is taken as high. 

rightSense( ) This returns a high value when there is an object 

close to the robot on the right. 

forwardSense( ) This returns a high value when there is an object in 

front of the robot. 

reverseSense( ) This is high when there is an object to the rear of the 

robot. 

closestSense( ) This is high if there is an object near the robot in any 

direction. It is derived by taking the maximum of all 

the other sensors. 

Each of the behaviours will be implemented in turn, and then their interaction will be analysed 

in terms of priorities. The state machines of the behaviours were made as simple as possible so 

as not to distract attention from the main focus of the example, and could in many cases be 

made more efficient and robust. 

6.5.1 The “MoveForward” Behaviour 

This behaviour is responsible for starting the robot moving forward if the operator approaches 

it from behind, and stopping it if it meets an obstacle or if the operator approaches it from the 

front56 (see Figure 6-8). A simple state machine to achieve this behaviour is described in Table 

6-5. 

Table 6-5 

State Action 
Wait The robot remains stationary, waiting for the operator to approach it. 
Move The robot moves forward, watching out for anything in front of it. 

                                                 
56 It is important that the robot does not need to behave differently when it meets an obstacle compared to when it 

meets the operator, since the robot cannot distinguish between different objects obstructing its sensors. 
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The behaviour has a single output that drives the speed input of the Motor behaviour. For the 

sake of this example, it is also given an input called “power” that chooses what fraction of its 

highest speed the robot should advance at when it is in motion. 

MoveForward Behaviour

Wait MoveSensors

power speed

 

Figure 6-8: The MoveForward Behaviour 

The code for such a behaviour in Zac Script would be as follows:- 

BEHAVIOUR Push 

{ 

 INPUT ( float, power, NULL );  // “power” input 

 OUTPUT ( int, speed, Motor.speed ); // “speed” output 

 

 @Wait    // “Wait” state 

  speed.Set ( 0 ); // No forward movement in this state 

  DEFAULT NEXT @; // State loops by default 

  // Robot starts moving if there is nothing in front of  

  // it, and it detects something on its rear sensor 

  if ( reverseSense() >= 50 && forwardSense() < 50 )  

   NEXT MoveForward;  // Robot starts moving 

 

 @Move    // “Move” state 

  // Robot moves at desired fraction of maximum speed 

  speed.Set ( 10 * power.Value() );  

  DEFAULT NEXT @; // State loops by default 

  // Robot stops moving if it detects something in 

  // front of it 

  if ( forwardSense() >= 50 )  

   NEXT Wait; // Robot reverts to staying still 

}; 
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The “power” input and the “speed” output are specified in the syntax discussed in Section 

6.3.3. The “power” input carries floating point data (a fraction), and is left unattached. The 

“speed” output carries an integer speed value, and is attached to the corresponding “speed” 

input of the Motor behaviour assumed to be present. 

The state machine is specified as described in Section 6.3.1. There are two states, “Wait” and 

“Move”. The Wait state sets the robot’s speed to zero through the behaviour’s output to the 

Motor behaviour. It then loops until there is a significant proximity reading at the rear of the 

robot, and no significant proximity reading to its front, at which point the state machine 

transitions to “Move”.  “Move” sets the speed of the robot to the desired fraction of its 

maximum value, and keeps the robot advancing until an obstacle is detected in front of the 

robot. 

 

6.5.2 The “Turn” Behaviour 

The “Turn” behaviour is even simpler than “MoveForward”, because it is purely reactive- that 

is, it requires no state information. It simply checks the robot’s sensors, and turns depending 

on whether it detects something to the left or the right (see Figure 6-9). It has an output 

connection to the “nudge” input of the Motor behaviour to control the rate at which the robot 

turns. For the sake of this example, it takes a “power” input connection to determine whether 

it is attracted or repelled by objects. The input is positive if it is attracted to turn towards 

objects it detects, and negative if it is repelled. The magnitude of the input indicates at what 

fraction of the maximum rate the robot should turn.  

purely reactive

power

Sensors

nudge
Turn Behaviour

Only a single state needed-

 

Figure 6-9: The Turn Behaviour 

Reactive behaviours are implemented as a single looping state as follows:- 
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BEHAVIOUR Turn 

{ 

 INPUT ( int, power, NULL );  // “power” input 

 OUTPUT ( int, nudge, Motor.nudge ); // “nudge” output 

 int direction;    // a local variable 

 

 @@ // Anonymous state- no point naming it, with 

  // only one state being present 

 

  // Robot should turn if it senses something 

  // to the left or the right 

  if ( leftSense() >= 50 || rightSense() >= 50 ) 

  { 

   // Choose correct direction to turn 

   if ( leftSense() > rightSense() ) 

         direction = -1; // Counterclockwise turn 

   else 

    direction = +1; // Clockwise turn 

   // Actually turn the robot 

   nudge.Set ( 10*direction*power ); 

  } 

  else nudge.Set ( 0 ); 

  NEXT @;  // Keep looping on same state 

}; 

The robot repeatedly checks its left and right sensors, and if they are above a certain 

threshold, it turns either towards or away from the direction of the closest object. 

 

6.5.3 The “Push” Behaviour 

This behaviour combines the two behaviours developed above, MoveForward and Turn, into 

a single behaviour that implements the desired functionality of the wheelbarrow robot as 

described earlier (see Section 6.5). For the sake of this example, it also adds some extra 

functionality rather than just being a simple combination of MoveForward and Turn. If the 

robot has been moving for over a certain threshold time without anything being sensed to its 
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rear, the Push behaviour will stop the robot moving. This is to prevent the robot from “running 

away” too far from its operator. 

A simple state machine to exhibit this behaviour is described in Table 6-6. 

Table 6-6 

State Action Sponsorship to.. 
StayStill The robot is held completely stationary because the 

operator has not approached the robot recently. 
None 

Operate  The operator has approached recently, so turning and 
moving forward is allowed. 

MoveForward, 
Turn 

The behaviour has two outputs, one to each of the two behaviours it uses (see Figure 6-10). 

The output to the MoveForward behaviour chooses the speed at which the robot moves, and 

the output to the Turn behaviour sets the rate at which it can change direction57. These 

connections also act as channels along which the Push behaviour can sponsor MoveForward 

and Turn to operate on its behalf. The cut-off time for when the robot should stop moving is 

set by an input to the behaviour. 

Push Behaviour

StayStill OperateSensors

cutoff forward

turn

 

Figure 6-10: The Push Behaviour 

The code to implement this behaviour would be along the lines of the following:- 

BEHAVIOUR Push 

{ 

 // Input specifying how long the robot may move on its own 

 INPUT ( int, cutoffTime, NULL ); 

 // Output to “power” input of MoveForward behaviour 

 OUTPUT ( int, forward, MoveForward.power ); 

                                                 
57 It also ensures that the robot turns away from the direction the operator approaches from by making the output to 

the Turn behaviour negative. 
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 // Output to “power” input of Turn behaviour 

 OUTPUT ( int, turn, Turn.power ); 

 @StayStill 

  // “forward” chooses what fraction of max speed the robot  

  // will move at when going forward- here 100% 

  forward.Set ( 1 ); 

  // “turn” chooses what fraction of max speed the robot 

  // will turn at when going left or right- here 50% 

  // Sign indicates that robot turns away from operator 

  turn.Set ( -0.5 ); 

  // No priority carried on the “forward” output 

  forward.SetRelPriority ( 0 ); 

  // No priority carried on the “turn” output 

  turn.SetRelPriority ( 0 ); 

  DEFAULT NEXT @; // State loops by default 

  // If operator approaches from behind, turning and 

  // moving forward are enabled in the Operate state 

  if ( reverseSense() >= 50 ) NEXT Operate; 

 @Operate 

  // Full priority of behaviour now carried by “forward” 

  forward.SetRelPriority ( 1 ); 

  // Full priority of behaviour also carried by “turn” 

  turn.SetRelPriority ( 1 ); 

  DEFAULT NEXT @; // State loops by default 

  // Robot must stop after specified cut-off time 

  if ( StateTimeSec() >= cutoffTime ) 

   NEXT StayStill; 

  // Every time the robot is “pushed” by the operator, it  

  // can start timing again from zero 

  if ( reverseSense() >= 50 || leftSense() >= 50  

    || rightSense() >= 50 ) 

   ResetStateTimer(); 

}; 

Some new functions are used here. The “SetRelPriority( )” function sets the fraction of a 

behaviour’s priority an output connection may carry on to whatever it is attached to. 

“StateTimeSec( )” returns the time in seconds for which a given state has been executing 



Zac Script  Chapter 6 

 199 

continuously. “ResetStateTimer( )” sets the timer that tracks this interval back to zero. These 

are inherited from the base class of all behaviours (see Appendix C3 for a full list). 

This behaviour has two states, one in which it allows the behaviours it uses to function without 

any interference, and one where it effectively “turns them off”. In the “Operate” state, the 

behaviour’s two outputs are set to carry the full priority of the behaviour itself. Hence if the 

Push behaviour is at a high priority, the MoveForward and Turn behaviours will also have the 

same high priority. However, in the “StayStill” state, the outputs of the behaviour are made to 

carry none of the priority of the “Push” behaviour. Hence MoveForward and Turn will have 

no source of priority at all. When the priority of a behaviour falls to zero, then outputs from 

that behaviour are ignored- so the robot will not move forward or turn. 

 

6.5.4 The “ImprovedPush” Behaviour 

As a simple example of the use of Lateral’s sponsorship system, an additional behaviour that 

extends on the “Push” behaviour is given here. The Push behaviour stops the robot’s motion 

entirely- it does not allow the robot to turn when it is not moving forward. It might be desirable 

to change this. If the robot were allowed to turn while stationary, then the operator could 

simply approach the robot along the direction he/she wishes the robot to move, and the robot 

would turn appropriately and then move forward. For example, if the operator approaches 

from the left, the robot will start turning right- and continue to do that until the operator is in 

front of its rear sensor rather than the left sensor, at which point the MoveForward behaviour 

will start the robot advancing. An analogous argument applies if the operator approaches from 

the right. Of course, if the operator approaches from the front, the idea breaks down- but it is 

sufficient for this example. This behaviour can be implemented very simply. A suitable state 

machine for it is shown in Figure 6-11, and will be explained in a moment. 
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ImprovedPush Behaviour

Start RunSensors

pushTime

 turnPower

cutoff

 

Figure 6-11: The ImprovedPush Behaviour 

The behaviour takes the same “cutoffTime” time input as the “Push” behaviour, and simply 

passes it along on an output to “Push”. It also has an output to the “Turn” behaviour. Code to 

implement this behaviour would be along the lines of the following:- 

BEHAVIOUR ImprovedPush 

{ 

 INPUT ( int, cutoffTime, NULL ); 

 OUTPUT ( int, pushTime, Push.cutoffTime ); 

 OUTPUT ( int, turnPower, Turn.power ); 

 

 @Start 

  // Cutoff time passed on to “Push” 

  pushTime.Set ( cutoffTime ); 

  // Turning speed output set to 75% repulsive 

  turnPower.Set ( -0.75 ); 

  // Full priority of behaviour carried to “Push” 

  pushTime.SetRelPriority ( 1 ); 

  // Half priority of behaviour carried to “Turn” 

  turnPower.SetRelPriority ( 0.5 ); 

  NEXT;   // Goes to “Run” state 

 @Run 

  DEFAULT NEXT @; // Loops indefinitely 

}; 

The behaviour is quite simple. It passes on its full priority to Push, and half its priority to Turn. 

While Push is sponsoring MoveForward and Turn at full priority, this behaviour’s connection 
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to Turn will be ignored58. But when Push stops sponsoring those behaviours, the connection to 

Turn from ImprovedPush will provide that behaviour with an alternate source of priority, so it 

will remain in action. 

All the connections between the Wheelbarrow behaviours are shown in Figure 6-12. Note 

that, as the above discussion suggests, Push and ImprovedPush compete for control of Turn 

through its “power” input. 

Motor
Control

Move
Forward

Turn

Push

Improved
Push

power

cutoffTime

speed

nudge

power  

Figure 6-12: Behaviours for the “Wheelbarrow” example 

Figures 6-13 and 6-14 illustrate the operation of ImprovedPush in terms of priority planes. 

The connection from ImprovedPush to Push carries the ImprovedPush behaviour’s full 

priority. When Push is in its “Operate” state, it passes that priority on to both MoveForward 

and Turn. When this happens, ImprovedPush fails to control Turn because it assigns it less 

sponsorship. ImprovedPush could of course choose to lower its sponsorship to Push and 

increase its sponsorship to Turn if it was important that it gain control of Turn- but in this case, 

it does not need to. 

Turn

Improved Push Turn

Forward

Motor
Full 
priority

Half
priority

Zero
priority

 

Figure 6-13: Priorities while Push behaviour is sponsoring Turn and MoveForward 

                                                 
58 The robot will turn at the rate specified by the input from Push (-0.5) rather than the rate specified by 



Zac Script  Chapter 6 

 202 

When Push is in its “StayStill” state, it stops sponsoring MoveForward and Turn. In the 

absence of ImprovedPush, these behaviours would now fall to zero priority and no longer 

have any effect on the robot. The MoveForward behaviour will in fact do so. However, the 

connection from ImprovedPush to Turn now becomes an alternative source of priority for 

Turn, so it remains active when the robot is at a stop, as desired. Turn is now being controlled 

by ImprovedPush rather than Push59. 

 

Forward

Turn

Turn

Improved Push
Full 
priority

Half
priority

Zero
priority

Motor

Motor

 

Figure 6-14: Priorities when Push behaviour has stopped sponsoring Turn and MoveForward 

This concludes the extended example of the use of Zac Script for specifying behaviours and 

connections. The set of behaviours described in Chapter 5 were implemented using Zac Script 

in a manner completely analogous to these much simpler “wheelbarrow” behaviours. 

 

6.6 Limitations 

Zac Script proved a useful tool when the work described in this thesis was being implemented, 

particularly because it allowed the mapping between the Lateral constructs and their C++ 

equivalents to be altered without having to modify control system source code that had been 

already written. This pragmatic advantage was the main reason it was developed. Its use as a 

general-purpose tool for encoding Lateral constructs was considered important, but of 

                                                                                                                                               

ImprovedPush (-0.75). 
59 The robot will turn at the rate specified by the input from ImprovedPush (-0.75) rather than the rate specified by 

Push (-0.5). 
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secondary consideration, since the Lateral architecture is very much exploratory in nature and 

doubtless its constructs themselves would evolve and change considerably in any future 

work60. Hence it was unreasonable to develop Zac Script to a level where the effort put into 

its development exceeded the time it saved in easing the maintenance of source code. 

Therefore a number of limitations of Zac Script in its current form were considered acceptable 

for the sake of ease of implementation. The most important is that, since Zac Script is not a 

complete language in itself, some knowledge of how it is being translated to C++ is needed 

before it can be completely understood. The semantics of Zac Script are also inelegant in 

places because of difficulties translating to C++. For example, input and output connections 

are translated to public member variables by the translator so that they can be attached to 

from other behaviours- but this also means they could be accessed in other undesirable ways 

from these behaviours. Neither of these difficulties detract from the use to which Zac Script 

was put- maintaining source code- but would detract from its use as a general-purpose tool 

for encoding Lateral constructs.  

 

6.7 Summary 

This chapter introduced “Zac Script”, a set of extensions to the C++ programming language 

that make it easier to express Lateral constructs in a program. With Zac Script, control code 

can be written in a form that includes special syntax for behaviours and connections, and then 

be translated automatically to C++ for compilation. The full motivation for introducing these 

extensions was given, with the most compelling reasons being that they make it easier to alter 

the source code at a later stage, and they allow the mapping between Lateral constructs and 

their C++ translations to be changed without having to modify pre-existing control system 

source code. The most important extensions provided are for behaviours and connections, and 

these were described in some detail- both in terms of their use and how they were translated 

to C++. Then the complete syntax of Zac Script was examined formally. An extended 

example of the use of Zac Script was given, to demonstrate how behaviours such as the ones 

described in Chapter 5 can actually be implemented. Finally, the limitations of Zac Script were 

                                                 
60 Also, practically speaking, it is currently rare for a robot architecture to be used in more than a handful of projects.  



Zac Script  Chapter 6 

 204 

discussed, concluding that it was useful for simplifying the maintenance of source code, but not 

suitable in its current form as a general-purpose tool for encoding Lateral constructs. 
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7. Implementation 

The work presented in this thesis was implemented in both “embodied” and simulated form, 

using a miniature “Khepera” robot [[28]] and its simulator. This chapter examines how the 

robot’s control system was structured, and how the Lateral architecture and the sentry 

application were interfaced to the robot. 

The chapter starts with an overview of the strategy taken in designing the robot’s control 

system. A discussion is given of the differing functionality of the physical and simulated robot, 

and how those differences can be reconciled. The control system is then examined 

systematically in terms of the interfaces between the modules within it. These interfaces are 

arranged to minimise the dependencies between modules. Finally, supervision tools that 

interact with and monitor the control system, but are not part of it, are presented. 

 

7.1 Overview 

For the purposes of implementation, the robot’s control system was divided into three 

separate sections:- 

• The robot kernel- This is concerned with interfacing to the robot. 

• The Lateral runtime module- This provides support for the Lateral robot architecture. 

• The “user” control system- This section of the control system implements the specific 

behaviours of the robot for a particular application (such as the sentry behaviours described 

in Chapter 5). 

This partitioning of the control system was useful to do because it made the implementation re-

usable. If the work were to be implemented on a different robot at a later date, only the kernel 

would need to be modified- assuming the new robot could provide at least the same 

functionality as the current one. Similarly, if the behaviours of the robot were changed, only the 

“user control system” section would require modification. 

This chapter will discuss how the various sections of the control system interact with each 

other. The Lateral architecture and the sentry application have already been described in 

chapters 3 and 5 respectively, so only the robot kernel need be examined in detail here. 

Because both a physical and simulated version of the robot were used, it was useful to 
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structure the kernel carefully so that the minimum amount of code had to be rewritten for the 

two versions of the robot. An abstraction called the “Common Robot” was developed to 

embody the functionality both versions of the robot have in common, and to abstract away 

from their differences. Two versions of a module implementing the common robot abstraction 

were developed, one for each version of the robot. Both versions provided the same 

interfaces to the rest of the system, and hence any dependence on which form of the Khepera 

robot was in use was isolated to this module.  

The services implemented by the common robot were kept as simple as possible, while still 

allowing complete control of the robot. This minimised the amount of code that had to be 

written specially for each version of the robot. To provide more sophisticated control of the 

robot, a “Logical Robot” module was introduced. This enhanced the services of the common 

robot module by, for example, implementing obstacle avoidance “reflexes”. Only one version 

of this module was needed, since it was implemented entirely from the services provided by 

the common robot module. The common robot and the logical robot modules together form 

the robot’s kernel through which the rest of the control system interacts with the robot.  

This choice of modules leads to the system decomposition shown in Figure 7-1. This 

decomposition is elaborated on later in this chapter, in Section 7.3 (page 213). In particular, 

the exact nature of the interfaces between the modules will be examined. 

“User”
Control
System

(behaviours
and

connections)
Logical Robot

Module

Common Robot
Module

Robot Kernel

Lateral Runtime
Module

 

Figure 7-1: Outline system decomposition 

The nature of the physical and simulated robots, and the purpose of the common and logical 

robot modules are clarified in the sections that follow. 
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7.2 Interfacing with the robot 

The following sections describe the nature of the physical and simulated versions of the 

Khepera robot in terms of their functionality and how they differ. The ideas behind the 

“Common Robot” and “Logical Robot” modules are then presented and motivated. 

7.2.1 The physical robot 

The work in this thesis was implemented on a Khepera robot [[28]]. Khepera is a miniature 

wheeled robot weighing about 70g, with a diameter of 55mm and a height of just 30mm. The 

robot’s physical appearance is shown in Figure 7-2. 

 

Figure 7-2: A Khepera robot (diagram from Khepera documentation) 

Khepera is designed specifically as a vehicle for academic research. Its specifications are given 

in Appendix A1. Relevant details are included here. 

Motors 

Khepera sits on two wheels, each of which is moved by an independent motor. The motors 

have a resolution of 600 pulses per revolution of the wheel, corresponding to 12 pulses per 

millimetre advancement of the robot. Incremental encoders on each motor axis give feedback 

on the wheels’ positions (24 pulses per revolution). The motors are driven by a PID controller 

implemented as software on the main processor of the robot. The controller can be used to 

either maintain a target speed or reach a target distance61. 

Sensors 

Khepera can sense the presence of nearby objects and the light level in various directions 

around its body. Eight sensor units are distributed around the circumference of the robot as 

shown in Figure 7-3. 
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Figure 7-3: Sensors present on Khepera 

These sensor units embed an infra-red light emitter and receiver pair. This combination allows 

both the ambient light hitting a sensor and the light reflected from obstacles to be measured. 

Some of the detailed properties of these sensors were examined in Section 5.2.3 (page 129) 

for the purposes of edge following62. 

General specifications 

• Power- The robot has an onboard battery that allows 30-40 minutes of autonomous 

action. It can also be powered via the serial connection.  

• Communications - The robot may communicate with a base PC via an RS232 serial line. 

This is not necessary for operation of the robot, but it is useful for monitoring its status and 

modifying its behaviour for experimental purposes. 

• Computing power- Khepera uses the Motorola 68331 processor. It has 128kB of RAM, 

and 256kB of ROM, implementing a rudimentary BIOS with a simple multi-tasking 

operating system. 

• Programming- Khepera was programmed using GNU CC, a freely available C/C++ 

compiler (see Appendix A3) configured as a cross-compiler. To download programs to 

Khepera, they were linked with special support libraries, and the object code was 

converted into a suitable format for transmission using a utility supplied with the robot. 

                                                                                                                                               
61 This distance is expressed in terms of revolutions of the individual motors, not the position of the robot. See 

Section 7.5.2 (page 225). 
62 Because the edge following algorithm depends so heavily on the exact nature of the sensors, it would need to be 

updated if the robot were modified- unlike most of the other behaviours of the robot. 
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7.2.2 The simulated robot 

It was considered very important that the work presented in this thesis should be implemented 

in embodied form (see Section 2.4.7, page 22), and this is what was done. However, to 

speed development time, a simulator for the robot was also used. If a control algorithm fails to 

work correctly on a simulator it will almost certainly fail on the physical robot, given that the 

real environment is much more challenging than the simulated one. Hence simulation is a 

convenient test of an algorithm’s feasibility, and this was the use made of Khepera’s simulator. 

If an algorithm failed on the simulator, there was no point going to the trouble of downloading 

it to the robot. However, success on a simulator is no guarantee of success on the physical 

robot, so frequent validations were carried out as a “reality check” on the results with the 

simulator, to ensure the work did not start to rely on the idealisations present in the simulated 

environment. 

A freeware simulator for Khepera is available from the university where Khepera and an 

associated range of robots were initially developed [[28]]. Its visual appearance is shown in 

Figure 7-4. 

 

Figure 7-4: The simulator for Khepera 
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The simulator display is split into a number of panels:- 

• One panel shows a plan view of the simulated Khepera robot in a virtual environment 

which it can sense and move through in a similar way to a real environment. This 

environment can be controlled to set up different test cases for the robot. 

• A second panel shows the readings of Khepera’s simulated sensors, and the activity of its 

motors. 

• An auxiliary panel is used for displaying arbitrary user-defined data. 

For added realism, random noise is introduced to the sensors. 

• Proximity readings are modified by ±10% of their amplitude. 

• Ambient light readings are modified by ±5% of their amplitude. 

The next section compares the simulated robot with the physical one, and develops a 

“common denominator” abstraction for interfacing to either. 

 

7.2.3 The common robot 

The physical and simulated Khepera robot diverge in a number of respects. The purpose of 

the common robot abstraction is to hide these differences from the rest of the control system. 

The major differences between the two versions of the robot are as follows:- 

• The physical robot has no intrinsic sense of its position, whereas the simulated robot, by its 

nature, has a completely accurate knowledge of its position. 

• The robots have totally different “operating system” support- the simulated robot is on a 

PC, whereas the physical robot has a much slower processor and very limited memory 

capacity. 

• The real and simulated sensors and motors have different characteristics. The simulated 

versions do a reasonable job of capturing the “essence” of their physical counterparts, but 

not their detailed responses. 

The only difference that is difficult to deal with is the physical robot’s lack of any knowledge of 

its position. In general this is one of the great obstacles in moving from a simulated robot to a 

real one- the robot can no longer do more than guess at its position and the precise nature of 

its surroundings, rather than knowing them with complete accuracy. However, although an 
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absolutely accurate sense of position is not possible for an autonomous robot63, it is possible 

to construct a reasonable position estimate by integrating the robot’s motion. Note however 

that, as discussed in Section 4.4 (page 95), unavoidable errors in readings from the motors 

mean that integrating the robot’s motion to get its position is an approximation, and one that 

degrades with time. The common robot abstraction supplies a position estimate which for the 

physical robot is implemented through integration, and for the simulated robot is achieved by 

supplying either the absolute robot position, or an intentionally degraded position 

measurement. 

In the case of the Khepera robot, the left and right motors can be driven independently at 

different speeds. The correlation between the feedback the motors give on their activity and 

the resultant overall movement of the robot is by no means a direct one. The relationship is 

derived later, in Section 7.4.1 (page 217).  

 

7.2.4 The logical robot 

The common robot module implements the minimum functionality possible while still allowing 

full control of the robot. To provide more sophisticated control of the robot, and to make it a 

better vehicle for research, a “Logical Robot” module is built on top of the common robot that 

enhances its services in the following ways:- 

• The robot is given some “common sense” so it will not break itself if the higher-level control 

system fails and generates spurious motor commands. This is achieved by providing a 

separate “logical” motor interface implementing basic obstacle avoidance. 

• Virtual or “logical” sensors are implemented that combine information from the robot’s 

physical sensors to provide indicators as to which directions the robot is free to move in. 

This is useful in the implementation of many behaviours. These logical sensors are entirely 

concerned with proximity, since this is the primary sense of the robot, and the one needed 

for all motion algorithms. 

These enhancements will now be described in greater detail. 

                                                 
63 Unless the robot is “helped” by supplying a reference “beacon signal”, or giving it access to the Global Positioning 

System- both of which detract from the ability of the robot to act in a totally autonomous manner. 
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The logical motors 

Enough intelligence is embedded in the logical robot module so that the robot will not attempt 

to drive into an obstacle. Only “passive” avoidance is implemented- the robot will not actively 

move away from an obstacle, but will refrain from moving dangerously close to it. Active 

avoidance would render the robot useless, because since it has no long range sensors, its only 

useful information about the environment is extracted when it is in the close proximity of 

objects. To facilitate passive avoidance, motor commands are given in two components, one 

of which is unalterable (to control the overall path the robot is following) and one of which is 

opportunistic (indicating “nudges” to make the robot deviate from its current path). Normally 

the two components are simply added. However, when the robot has a close encounter with 

an obstacle, the unalterable component of motion is blocked, but the opportunistic component 

may still be carried out. The details of this system are described in Section 7.5.2 (page 225). It 

is a simple idea, but very important given that the robot spends most of its time in the proximity 

of obstacles, and close encounters are quite common.  

The logical proximity sensors 

The suite of logical or derived sensors shown in Table 7-1 proved to be more useful for 

control purposes than the raw sensors present on the Khepera robot. 

Table 7-1 

Logical Sensor Semantics 

leftSense This is a sensor guaranteed to be low if the robot can move left without 

immediately bumping into something, and high otherwise. 

rightSense This is a sensor guaranteed to be low if the robot can move right without 

immediately bumping into something, and high otherwise. 

forwardSense This is a sensor guaranteed to be low if the robot can move forward without 

immediately bumping into something, and high otherwise. 

reverseSense This is a sensor guaranteed to be low if the robot can move backwards 

without immediately bumping into something, and high otherwise. 

closestSense This gives the closest obstacle to the robot under normal operation. 

Section 7.5.1 (page 223) will describe how these sensors may be generated for Khepera. 
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This concludes the discussion of how the control system interacts with the robot’s sensors and 

motors through the robot kernel. The entire decomposition of the control system will now be 

examined systematically. The implementation of the common and logical robot modules will be 

presented in detail in Sections 7.4 and 7.5 (pages 215 on). 

 

7.3 System decomposition 

Now that the general strategy for interfacing with the physical and simulated robot has been 

presented, it is useful to examine where those interfaces fit in with the overall control system of 

the robot before discussing their detailed implementation. The outline decomposition given at 

the start of this chapter showed the modules into which the robot’s control system is divided. 

Figure 7-5 shows how the modules interact with each other. 

“User”
Control
System

(behaviours
and

connections)
Logical Robot

Module

Common Robot
Module

Robot Kernel

Lateral Runtime
Module

Service Interface
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Interfaces to
Simulated Robot

Interfaces to
Physical Robot

 

Figure 7-5: System decomposition 

The system decomposition has the following features:- 

• The interfaces between the user control system and the robot kernel modules are one-way. 

The user control system can use services provided by the kernel, but not vice versa. This 

makes the kernel reusable for different applications. 

• The common robot, since it embodies the physical/simulated robot, is the actual executing 

agent in the system. Both the Lateral runtime module and the logical robot module need to 

execute, so one-way interfaces to these modules are present to allow the common robot to 

“drive” them. 
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• The Lateral runtime module and the logical robot module are allowed access to services of 

the physical/simulated robot that are not made directly available to the user control system. 

This is to shield the user control system from the details of the robot’s “operating system”. 

• The interface between the lateral runtime and the user control system is necessarily more 

intricate than the other interfaces present. This is because there is no strict dividing line 

between an architecture and the control system built from it. The Zac Translator described 

in Chapter 6 manages the structural dependencies between these two modules. 

• In addition to the interfaces shown, an extra interface is needed to allow external monitoring 

and supervisory tools to interact with the robot. These tools are GUI-based and 

implemented on a PC. They communicate with the robot through a serial connection, since 

this is the only way to interact with the physical robot. 

All these considerations lead to the more detailed system decomposition shown in Figure 7-6. 
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Figure 7-6: Detailed system decomposition 

The diagram is arranged to emphasise that- from the point of view of the user control module - 

the different ways in which the robot may be controlled appear as a single interface. This 
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interface is in fact split among the Lateral runtime module, the common robot module, and the 

logical robot module, but this division is not visible to the user control module. 

The different interfaces serve the following functions:- 

• The “Common Robot Interaction Interface” and the “Logical Robot Interaction Interface” 

provide the means for the user control system to monitor or control the robot’s status 

through the robot kernel. 

• The “Execution Hooks” and “Update Hooks” interfaces allow the common robot module 

to drive the Lateral runtime module and the logical robot module. The common robot is not 

concerned with what tasks these modules perform, it just invokes them to give them the 

opportunity to execute and update their status. Hence these are very simple interfaces. 

• The “System Services” interface provide “operating system”-type control of the robot that 

is not made accessible to the user control system. 

• The “Lateral Interaction Interface” embodies all the services that the Lateral runtime 

module gives the user control system, and the “Lateral Object Hooks” interface gives the 

Lateral runtime module the means to drive the user control system. These hooks are 

generated by the Zac Translator (see Chapter 6). 

Each of the modules will now be considered in turn, from the point of view of the interfaces 

they supply and the interfaces they use. 

 

7.4 The common robot module 

This implements the common robot abstraction described in section 7.2.3 (page 210). It hides 

the differences between the physical Khepera robot and its simulator, allowing the rest of the 

control system to be portable across both. Two versions of this module were written, one for 

the physical robot and one for its simulator, and the rest of the modules described in this 

chapter are identical for both robots. 

The physical and simulated robots are made indistinguishable at two levels:- 

• Internal interfacing - By ensuring that both versions of the common robot module 

implement identical interfaces, no dependencies on the version of the robot in use are 

propagated to the rest of the control system. 
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• External interfacing - Both versions of the module were written to accept a serial stream 

of input and generate a serial stream of output. This is important for communication with the 

external visualisation and supervision tools (see sections 7.8.1, page 229 and 7.8.2, page 

230 for a description of these tools). In the physical robot, the stream is channelled across 

a serial port. In the simulated robot, the stream is channelled through a pipe between the 

simulator and the processes monitoring it. The two channels are accessed in an identical 

manner by the rest of the control system.  

In accordance with the system decomposition given in section 7.3 (page 213), the common 

robot module supplies the following interfaces:- 

• System Services- this gives access to “operating-system” level capabilities of the robot 

needed by the Lateral runtime module and by the logical robot module. This includes 

control of task-switching, timing services, and access to the robot’s sensors and motors. 

• Common Robot Interaction Interface - this gives access to all the capabilities of the 

robot that are complete in themselves, and not managed by other modules. This includes 

odometry support and serial communications. 

The module makes use of the following interfaces:- 

• Execution Hooks - this allows the robot to drive the Lateral runtime module, which in turn 

drives the user control system. Note that the common robot module need have no 

knowledge of the actual control system “application” that is implemented in the user control 

system. This makes it portable across applications. 

• Update Hooks - this allows the robot to drive the logical robot module, which maintains 

logical motors and sensors. The common robot module need have no knowledge of the 

particular motor and sensor models that are being maintained, so these could be modified 

without affecting this module. 

The different implementations of this module for the physical and simulated robots are now 

presented. These are the only remaining sections in this chapter specific to either robot- the 

remainder apply to both.  
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7.4.1 Physical robot version of the common robot module 

The control system of the physical Khepera robot interacts with the robot’s hardware through 

a built-in BIOS implemented in the robot’s ROM. The common robot module uses the 

services of the BIOS as follows:- 

• Some of the BIOS services are suitable for use by the rest of the control system almost as 

they stand, and correspond closely to similar functionality in the simulated robot. A “service 

shell” was constructed that provided a means to access such aspects of the BIOS. 

• A set of concurrently executing tasks64 were implemented that interfaced with the BIOS to 

manage odometry, monitoring the robot’s serial connection, interfacing to the motors and 

sensors, and executing the rest of the control system, as follows:- 

⇒ Sensor thread- this periodically updates the robot’s sensor readings and checks for 

collisions or impending collisions, and passes control to the logical robot module so 

that it can update the logical sensors (see Section 7.5.1, page 223). 

⇒ Motor thread- this periodically passes control to the Logical Robot module so that it 

can control the motor setpoints dynamically according to the setting of the logical 

motors and the state of the environment (see Section 7.5.2, page 225). 

⇒ Odometry thread- this periodically updates the robot’s best guess at its position, and 

the direction it is facing in, from knowledge of the motion of the robot since its last 

update. 

⇒ Communications thread- this checks for commands coming across the serial line 

and notifies the rest of the system when a command has been received. 

⇒ Control thread- this periodically passes control to the Lateral component of the 

control system so that the “user” control system will be executed. 

No direct access to the BIOS by the rest of the control system was allowed, as shown in 

Figure 7-7, since this would prevent the control system from running on the simulated robot, 

which does not have the same BIOS65. 

                                                 
64 The Khepera robot is reasonably sophisticated, allowing a total of 14 concurrent user processes to run. This would 

not be enough for the sentry application, so the “pseudo-concurrency” provided by Zac Script was used. This 
capability did however make the robot kernel easier to write.  

65 The implemented set of tasks deviates slightly from that documented here for reasons of efficiency, but there are no 
significant differences. 
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Figure 7-7: Implementation of the common robot module on the physical robot 

The physical Khepera robot has no built-in sense of position- no odometry data is available. 

Such a sense is necessary for cartography (see Chapter 4). The odometry thread attempts to 

track the robot’s position and direction by integrating the motion of the robot. This is an 

approximate estimate only, and it is not possible to generate an absolutely accurate sense of 

position from it. The rest of this section discusses how this tracking of the robot’s motion is 

achieved. 

The robot can move in three ways:- 

• In a straight line, in the forward or reverse direction. This occurs when the robot drives the 

left and right motors at the same speed in the same sense (forward or reverse). 

• Turning in-place (i.e. the robot turns while keeping its centre at the same point). This occurs 

when the robot drives the left and right motors at the same speed in opposite senses. 

• Differential turning, where the robot drives the motors at different speeds. 

Ideally, an example of the path the robot would trace out should look something along the lines 

of Figure 7-8. 



Implementation  Chapter 7 

 219 

In-Place turn

Position of
Right Wheel

Position of
Left Wheel

Robot Position

 

Figure 7-8: Example path of robot 

However, the actual path of the robot will be somewhat different, because the robot cannot 

change between speeds instantaneously, but will have a period of acceleration. This results in 

quite a complex path, particularly when the motors are being driven at different speeds. There 

may also be slippage in the wheels. Because of these considerations, odometry is maintained 

based on feedback from the motor rather than on the setpoints to which the motors are 

commanded. The general strategy is to measure the distance the wheels have moved at 

frequent enough intervals for the speed of each motor between each sample to be 

approximately constant over the sampled range (for the Khepera robot, measuring the wheel 

positions every time either wheel moved by about one tenth of the robot’s diameter was found 

to be adequate). Under these circumstances, the wheels will trace two arcs of a circle in the 

period between measurements, as shown in Figure 7-9. 
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∆θ change in angle after turn
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Figure 7-9: The robot’s motion between motor measurements  
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From the diagram, the length of the arc that the right wheel moves through is:- 

d r2 = ∆θ  

Similarly, the length of the arc that the left wheel moves through is:- 

d r D r D d D1 2= − = − = −( )∆θ ∆θ ∆θ ∆θ  

Since these lengths are known- they are given by the feedback from the motors- the angle the 

robot turns can be calculated as:- 

∆θ =
−( )d d
D

2 1  

To find the change in position of the robot after the turn, the robot’s position before the turn 

can be rewritten as:- 

( )p pcos , sinθ θ  

Where p is the distance from the centre of the turn to the centre of the robot:- 

p
d D

= +1

2∆θ
 

The robot is at angle θ initially, and then is rotated an extra ∆θ degrees. Therefore the robot’s 

position is mapped to:- 

( ) ( ) ( )( )p p p pcos , sin cos , sinθ θ θ θ θ θ⇒ + +∆ ∆  

So the changes in position are:- 

( )[ ]∆ ∆θx p= + −cos cosθ θ  

( )[ ]∆ ∆θy p= + −sin sinθ θ  

And the overall distance the robot travels is:- 

( )
∆ ∆θs p

d d
= =

+1 2

2
 

At this point all the information needed to update the robot’s odometry is known. Note that 

two sets of cosine and sine values are needed for each update, but one set can be stored for 

the next update so that only one cosine and sine calculation need be done during each update. 

Provision has to be made to prevent the possibility of a divide-by-zero occurring. This would 

happen if ∆θ is zero. Such a situation occurs when the robot is moving in a straight line, so it’s 

a degenerate case and is straightforward to deal with.  

For the Khepera robot, the motor positions were checked 10 times per second, and if either 

motor position changed by a distance equivalent to about one tenth of the robot’s diameter, 



Implementation  Chapter 7 

 221 

the odometry information was updated using the method described above. This arrangement 

was found experimentally to work well. 

 

7.4.2 Simulated robot version of the common robot module  

This version of the common robot module is more straightforward to build than the version for 

the physical robot because:- 

• Odometry is not a problem in this case, since the simulated robot “knows” exactly where it 

is within the simulated environment- otherwise the values for the simulated sensors could 

not be calculated. In fact, to make the simulation more realistic, the robot’s position sense 

may be deliberately degraded. 

• The simulator operates on a PC, which has a faster and more powerful processor than the 

physical robot. Hence there is no need for careful speed optimisations and the use of 

concurrent tasks to satisfy real-time constraints- one thread of control is more than 

adequate. 

Although the services provided by the simulated robot are similar in nature to those provided 

by the real robot, the programming interface is quite different. The relevant interfaces to the 

simulator are given in Appendix A5. Khepera’s simulator comes complete except for a single 

module, called the simulator “User” module, which needs to be provided by the user of the 

simulator to specify the actual behaviour of the robot (see Figure 7-10). Mapping the simulator 

onto the common robot interfaces was done by building a suitable simulator “User” module 

implementing those interfaces. Serial I/O was directed to a pipe for connection to the 

Visualisation and Supervision tools. 
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Figure 7-10: Implementation of the common robot module on the simulated robot 

The simulator was left almost entirely unchanged except for one useful addition: it was 

extended so that if the mouse was clicked within the simulator, the robot would sense a 

circular obstacle centred at the position of the mouse. This meant that the robot’s response to 

moving obstacles could be tested. The simulator as it stood only permitted static obstacles. 

 

7.5 The logical robot module 

The ideas behind the logical robot module were introduced in section 7.2.4 (page 211). This 

module enriches the interaction interface supplied by the Common Robot module by providing 

support for logical motor and sensor models that simplify controlling the robot, and make it 

more robust. The implementation is split into two components, as follows:- 

• An “Action” partition updates the motor and sensor models at frequent intervals. 

• An “Interaction” partition allows the status of the motor and sensor models to be queried 

and manipulated. 

The partition decouples the part of the system monitoring the motor and sensors from the part 

of the system manipulating them, removing unnecessary timing dependencies between the two 

that would otherwise be present. The organisation of the logical robot module is shown in 

Figure 7-11. 
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Figure 7-11: Implementation of the logical robot module 

The action and interaction partitions operate on the sensor and motor model maintained by the 

logical robot module. The following sections describe how these models are generated. 

7.5.1 Sensor model 

The implementation of the logical proximity sensors was introduced in section 7.2.4 (page 

211). Figure 7-12 shows the correspondence between actual and logical sensors for the 

Khepera robot. 
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Figure 7-12: Logical proximity sensors 
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• forwardSense- as discussed in section 7.2.4 (page 211), the semantics of this sensor 

should be such that it is low if the robot can move forward, and high if an obstacle is 

detected that blocks forward motion. Referring to Figure 7-12, this judgement can be 

made by combining the two direct-forward sensors and the two diagonal sensors. 

• leftSense- this should be low if the robot is free to move left. Again referring to Figure 7-

12, this judgement can be made by combining the direct-left and the diagonal-left sensors. 

• rightSense- this should be low if the robot is free to move right, and can be generated by 

combining the direct-right and the diagonal-right sensors. 

• reverseSense- this should be low if the robot is free to move in reverse, and can be 

generated by combining the two direct-reverse sensors. This is not entirely guaranteed to 

be correct, because the robot has no diagonal sensors in the reverse orientation. Hence it is 

safer to turn 180° to reverse, as this ensures the robot has maximum sensing ability in the 

direction of motion. 

• closestSense- this should be low if the robot is free to move forward, left, or right. It 

should be high if there is anything to block the robot’s motion in any of these directions. 

This sensor can be generated by combining the other logical sensors. 

The logical sensors derived are as accurate as is possible for the actual sensors available on 

Khepera. One restriction on their use is that they assume the robot is driven “head-first”. In 

other words, for the logical sensors to have the semantics described here, the robot should 

generally move in the direction of its sensor-rich “head” (the hemisphere with 6 sensors rather 

than the one with two). If the robot is driven in reverse, then the semantics are no longer valid- 

since the robot does not have enough sensors in that orientation to make the necessary 

judgements. The exact implementation of the logical sensors is given in Table 7-2. 

Table 7-2 

Logical Sensor Implementation 

leftSense The maximum of the left and left-diagonal sensors. 

rightSense The maximum of the right and right-diagonal sensors. 

forwardSense The maximum of the two forward sensors, or the left- or right-diagonal 

sensors if either indicate a very close encounter. 

reverseSense The maximum of the two backwards-facing sensors. 
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Logical Sensor Implementation 

closestSense The maximum of the left, right and forward logical sensors. The reverse 

logical sensor is omitted for normal “head-first” operation.  

 

7.5.2 Motion model 

The robot’s logical motion model simplifies controlling the motors, and provides some 

intelligence for dealing with “close encounter” situations. This intelligence is important because, 

as discussed in Section 7.2.4 (page 211), the robot has to operate close to obstacles for its 

proximity sensors to be of use in characterising its environment, and so it is often in situations 

where it is close to a collision. When constructing a motion model for the robot, a choice has 

to be made between two broad types of model that are possible:-  

• Displacement oriented- where motor commands are expressed in terms of the distance 

the robot should travel.  

• Speed oriented- where motor commands are expressed in terms of the speed at which 

the robot should move.  

Both alternatives are supported by the Khepera robot’s motor control facilities based around 

a classic PID controller implementation. The model used in this project was speed-oriented, 

because such a model is more naturally reactive. Controlling the distance the robot should 

travel intrinsically involves decisions about the future, while controlling its speed generally only 

requires consideration of what is happening now- at least in simple behaviours. 

To facilitate the handling of close encounters, the speed of the robot was split into two 

components- an unalterable “major” speed, and an opportunistic “nudge” speed. The major 

speed specifies the basic motion the robot is making- forward, reverse, turning clockwise or 

anti-clockwise- and at what rate it is performing that motion. The nudge component is 

superimposed on this speed for a given duration to divert the robot from this basic motion. At 

regular intervals the two speed components are combined to generate the appropriate 

setpoints for the motor speeds. The speeds are capped so the robot does not move 

excessively fast. Figure 7-13 shows an example of the result of combining the two speed 

components. 
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Figure 7-13: Composite paths 

If the robot is close to an obstacle, the major motion is blocked by the logical robot module if 

such motion is likely to lead to a collision. The situations where this could occur are as 

follows:- 

• When the motion is in the reverse direction66, and there is something immediately behind 

the robot. 

• When the motion is in the forward direction67. All such motion is blocked, unless the 

space directly in front of the robot is free of obstacles, and:- 

⇒ When the motion is directly forward, it is allowed if no obstacle is detected by the 

diagonal sensors either. 

⇒ When the motion tends to the right, it is allowed if no obstacle is detected directly to 

the right or diagonally to the right, and there is no extremely close obstacle diagonally 

to the left. 

⇒ When the motion tends to the left, it is allowed if no obstacle is detected directly to 

the left or diagonally to the left, and there is no extremely close obstacle diagonally to 

the right. 

                                                 
66 A reversing motion is characterised by either both motors being in reverse, or one reversing faster than the other 

drives forward. Otherwise the motion is a forward motion. 
67 This is any motion other than a reversing motion or an in-place turn. 
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If the major motion is blocked, only the nudge component of the motion (if any) should be 

allowed, otherwise a collision is likely. Since the nudge component merely turns the robot, and 

the robot can turn in-place, it will never be blocked. The length of time the major motion is 

blocked is used to generate a logical “frustration” sensor so that high-level behaviours can deal 

with this condition if necessary. 

 

7.6 The Lateral runtime module 

This module provides support for behaviours and connections in the user control system. This 

is where the Lateral architecture developed in Chapter 3 fits in to the actual implementation on 

the Khepera robot. Behaviours and connections are implemented as described in section 3.6.3 

and the “pull cycle ” for updating them is as described in section 3.6.2 (page 71). Figure 7-14 

shows the organisation of this module. 

Lateral
Object
Hooks

System
Services

Execution
Hooks

Lateral
Interaction
Interface

Update Control

Behaviours

Connections

Pull Cycle

 

Figure 7-14: The Lateral runtime module 

The Lateral runtime module gains access to the specific connections and behaviours running on 

the robot through the Lateral Object Hooks interface generated by the Zac Translator. Those 

behaviours in turn can use the services of the Lateral runtime module through the Lateral 

Interaction Interface. All the interfaces are described in full in Appendix C3. 
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7.7 The user control unit 

This consists of actual instances of connections and behaviours, implementing a specific 

application such as the sentry-like behaviour described in Chapter 5. The organisation of this 

module is shown in Figure 7-15. 

 

Lateral
Interaction
Interface

Common
Robot
Interaction
Interface

Lateral
Object
Hooks

Behaviours

Logical
Robot
Interaction
Interface

Control Component

FollowEdge

MonitorEdge

SteadyTurn

Start

CaptureEdge

Walk

Compensate

Stroll

Waddle
Face

Start

Capture

Turn

Start Grab

Circle

Circle
sync

Explore
seek

Explore
fly

Leap
Leap
sync

Leap
Return

UserUser UserUser UserUser

 

Figure 7-15: User control system module 

Each individual behaviour and component can use the services of the Lateral architecture 

through the Lateral Interaction Interface, and each one of them also supplies an element of the 

Lateral Object Hooks interface that lets the Lateral runtime module drive it. This interface is 

simply two global registries with which behaviours and connections must be enrolled so that 

the Lateral runtime knows of their existence. The Common and Logical Robot Interaction 

Interfaces are available for controlling the robot through the kernel.  

 

7.8 External tools 

Some useful tools external to the robot’s control code were implemented: a supervision tool 

for making it easier for the user to control the robot and monitor its status, and a visualisation 

tool for displaying the robot’s path graphically, showing the points at which significant events 

happen, and the robot’s internal map of its environment. These tools are now described. 
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7.8.1 Supervision tool 

This is a tool constructed for allowing the user to control the robot (whether real or simulated) 

from the PC, and to monitor its status while it is in operation. The appearance of the tool is 

shown in Figure 7-16. 
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Figure 7-16: Robot supervision tool 

The tool has the following visual components:- 

• Status display- this shows diagnostic performance statistics reported by the robot every 

second, and the last action the robot reported taking.  

• Activity log- this records all acknowledgements from the robot, and optionally the 

performance statistics it generates. 

• Simple behaviour controls - these allow the user to take direct control of the primitive 

behaviours of the robot, by initiating edge-following or by setting its speed and direction of 

motion. 

• Compound behaviour controls- these give control of higher level behaviours, such as 

prowling and patrolling. They also allow control of the robot’s mapping abilities. 

• Target setting controls- these allow the user to direct the robot to take note of its current 

position, and to command it to return to that position at a later stage. 

The tool is implemented in Tcl/Tk and Perl. It is designed to expect the robot’s output on its 

standard input, and to send its commands to the robot on its standard output. Hence it can be 
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connected by pipes to either the real or the simulated robot. The following two section outline 

what the tool expects to see on its input stream, and what it will generate on its output stream. 

Expected input 

The tool pays attention only to lines that start with “/ME” or “/TICK”, which are the tags the 

robot uses for acknowledgements and performance statistics respectively. 

• “/ME”- a line starting with /ME describes some action the robot took in response to user 

request. The panel shows this on the status display, and logs it to the activity log.  

• “/TICK”- every second the robot generates performance statistics (load, cycle time- 

longest and average- cycles per second, etc.) and reports them preceded with a /TICK. 

The panel shows these on the status display, and optionally logs them to the activity log. 

See the “Reporting behaviour”, section 5.4.3 (page 161). 

Output generated 

Each button on the panel generates output consistent with that expected by the “Proxy 

behaviour” described in Section 5.4.4 (page 162). The details of the simple codes involved 

are given in Appendix B4. 

 

7.8.2 Visualisation tool 

This tool visualises spatial information about the robot’s actions. The robot outputs the 

following information about its current status and activity:- 

• Its estimate of its position. The position is tagged to indicate whether an obstacle or edge is 

sensed near it. 

• The position of new markers being placed. These are the unit used by Khepera to build its 

dynamic map of its surroundings (see Chapter 4). 

• The position of markers that have been moved or removed. 

• Any position at which the robot detects a landmark. 

• Any target which the robot is currently trying to approach.  

This data is visualised by filtering it, logging it, and piping it to “gnuplot”, a graphing utility. An 

example of the result of this process is shown in Figure 7-17. The display is updated in 

real-time using a Perl script. 
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Figure 7-17: The visualisation tool 

The robot can be requested to send the current state of its internal map of its surroundings to 

the PC. The visualisation tool can display this instead of the default trace of the robot’s path 

and the points at which significant events occur, as shown in Figures 7-18 and 7-19. 

 

Figure 7-18: Robot’s path and significant events 

 

Figure 7-19: Internal map 

The visualisation tool is extremely useful for understanding how the robot is interpreting its 

environment. 
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7.9 Summary 

This chapter provided details of how the work presented in this thesis was implemented on the 

Khepera robot, in both its physical and simulated form. The decomposition of the robot’s 

control system maximised the portability of the control system across changes of the robot or 

in its application. This chapter clarified the context within which the Lateral architecture and the 

sentry application were implemented. 
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8. Experimental Results 

This chapter examines how well the robot’s behaviours work, and how robust its cartographic 

system actually is. Results from the simulated robot and the physical robot are both presented 

and compared. Comparisons are also made with results in the literature. 

8.1 Simulated Robot 

Results derived from the use of the simulated robot are given first, because :- 

• The environment the robot is in is a simulated one, and is therefore known and can be 

superimposed on traces of the robot’s motion- aiding comprehension of the results. 

• The robot’s overall behaviour is more idealised than with the physical robot, so the results 

are easier to understand. For example, the simulated robot does not need to use landmarks 

to maintain its sense of position. 

 

8.1.1 Boundary Following 

In this test case, the robot demonstrates its ability to smoothly follow the edges of curved, 
stepped, and erratic boundaries. 
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Figure 8-1: Edge following 

Figure 8-1 shows the performance of the robot’s edge following behaviour under different 

conditions. 

• The robot is not initially close to a boundary (it starts at A in the diagram), so it performs a 
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spiralling search for one. 

• It finds an edge at B and starts following it. The edge is straight, so the path the robot 

follows quickly settles into a straight line too. 

• At C the robot meets a concave corner, turns, and continues to follow the edge as before. 

• Around D the robot navigates around a 180° convex corner. There is a little bump in the 

robot’s path at D caused by the robot finding that itself losing sensor contact with the 

boundary due to the sharp turn and starting an edge recovery procedure. 

• Around E the robot follows a series of edges at different angles, its own path changing 

gracefully to match. 

• At F the robot meets a very erratic boundary, and follows it smoothly. This is partly a 

consequence of how the sensors work, and partly due to the averaging processes within 

the edge following algorithm. 

Before and after G the robot follows a convex and concave curving edge just as easily as a 

straight edge.  

An even more erratic boundary is shown in Figure 8-2, and as can be seen the robot has no 

difficulty with it. 

 

Figure 8-2: Following an ill-defined edge 
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8.1.2 Target seeking 

8.1.2.1 Direct approach and boundary following 

In this test case, the robot negotiates a one-sided concave obstacle without the use of map 

search. 
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Figure 8-3: Negotiating an obstacle 

Figure 8-3 shows the performance of the robot’s edge target seeking behaviour with map 

search disabled. 

• The robot starts at A and is trying to reach E. Initially there is no obstacle in the way so it 

moves directly towards E. 

• At B it meets an obstacle and can no longer directly approach its target. The robot 

therefore seeks to get around the obstacle by following its boundary. It can follow it either 

left or right; the decision is essentially random (when the robot hits a boundary roughly at 

right angles to it), and in this case the robot turns to its right and follows the boundary in 

that direction. 

• At around C the robot would turn back if no progress was being made towards its goal. 

Since it finds that the boundary turns here and allows it to approach its goal, it stays going 

in the same direction for a while longer. 

• When the robot reaches D it finds it is again free to move directly towards the target, and 

so stops following the obstacle boundary and heads towards E. 

There are no further problems; the robot reaches its target without incident. 
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8.1.2.2 Boundary search 

In this test case, the robot negotiates the same obstacle as in Section 8.1.2.1, but using a 

different technique. 
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Figure 8-4: Negotiating an obstacle after different guess 

The robot here works in the same test environment as the last one, under the same conditions, 

but with a different guess when it meets an obstacle (see Figure 8-4). 

• The robot starts at A, moves directly towards its target, and meets an obstacle at B as 

before, but instead of following the obstacle’s boundary to its right, it turns towards its left. 

There is no local way of knowing which is the better way to turn, so it might turn either way 

(and does in fact do so in successive runs). 

• At C, the robot has not yet had success in getting closer to its target, so it turns back to try 

the other direction along the boundary. 

As before, it meets with success at D, and can approach its target once again when it reaches 

E. 
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8.1.2.3 Extended boundary search 

In this test case, the robot uses physical search and its familiarity virtual sensor to reach a 

target at the opposite side of a bowl-shaped obstacle. 
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Figure 8-5: Use of familiarity in seeking target 

Figure 8-5 shows the performance of the robot when seeking a target leads to it becoming 

trapped, using physical search only, with map search turned off. It behaves as follows:- 

• The robot moves from A towards the target at G until it hits an obstacle at B. 

• It turns to follow the boundary to the left (it chooses the direction it has to turn least to start 

edge following). No opening is found, and at C the robot turns back to try going the 

opposite direction.  

• The robot has no more success to the right either, and turns back again at D. 

• Since the area up to C is now familiar, the robot will proceed a further distance on from C. 

At E it gives up again and turns back. 

• Similarly, the robot continues on past D, but gives up at F and turns back. 

Finally, the robot proceeds past C and E, all this area being now familiar, and rounds the lip of 

the cave and escapes. From there, reaching the target at G is straightforward. 
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8.1.2.4 Map search 

In this test case, the robot demonstrates the use of a background map search while seeking a 

target at the opposite side of a bowl-shaped obstacle. 
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Figure 8-6: Use of map search in seeking target 

 

Figure 8-6 shows the performance of the robot using both physical search and map search to 

escape from a hollow obstacle. It behaves as follows:- 

• The robot starts a background map search for the target. This has no immediate effect on 

its behaviour. 

• The robot moves from A towards the target at F until it hits an obstacle at B. 

• It turns to follow the boundary to the right. No opening is found, and at C the robot turns 

back to try going the opposite direction.  

• The robot has no more success to the right either, and turns back again at D. 

At E, the background map search reaches the robot’s current position, and the robot switches 

from physical search to following the path to the target found. Note that the path will be 

through areas the robot has already travelled through, so it will not take shortcuts. However 

the path will be the shortest path possible through familiar territory, so if the robot has had the 

chance to make a good exploration, the path it chooses will also be good. 
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8.1.3 Prowling 

In this test case, the robot demonstrates the prowling behaviour within a maze with four 
disjoint boundaries. 
 

 

Figure 8-7: Early stages of prowling 

The robot starts off by finding any obstacle, then following its boundary to the full extent (or 
until the robot’s confusion level becomes too high). In Figure 8-7 the robot has found its first 
obstacle and is following its boundary. 
 

 

Figure 8-8: Exploration component of prowling 

When the robot finds it has explored a boundary completely, it will find a vector in a direction 
it has not yet explored, and follow that vector. In Figure 8-8, the robot is shown after it has 
performed its first such exploration. The vector has in this case lead to another obstacle. 
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Figure 8-9: Exploring multiple boundaries  

The robot can detect if the obstacle is a new one, and if so it will explore its boundary as 
before. In Figure 8-9 the robot is following the new boundary. 
 

 

Figure 8-10: Further exploration 

In Figure 8-10, the robot has completed exploration of the boundary. The robot then picks a 
new vector to explore. The vector in this case leads to an obstacle it has already explored (this 
is quite acceptable, the vector exploration is targeted at exploring unfamiliar spaces rather than 
necessarily finding new boundaries). 
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Figure 8-11: Exploration combined with patrolling 

The robot follows the obstacle’s boundary for a while until it spots a likely vector to explore, 
and repeats this cycle until a new obstacle is found, or the robot decides some part of the 
territory it has explored needs re-exploration (“patrolling”) because it hasn’t checked it for a 
while. As shown in Figure 8-11, the robot explores the area in the lower left, patrols the first 
obstacle again, then finds another obstacle to explore. 
 

 

Figure 8-12: Continuation of prowling cycle 

This cycle of vector exploration, boundary exploration, and patrolling continues. In Figure 8-
12, the robot is shown as it discovers the last obstacle in the test environment. 
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Figure 8-13: Eventual result of prowling 

At this point the robot has explored all the boundaries in the test environment. From here on, 
the robot will patrol what it has already explored, checking to see if the environment changes, 
as shown in Figure 8-13. 
 

8.2 Physical Robot 

8.2.1 Boundary following 

In this test case, the physical robot exhibits boundary following in a maze. 

 

 
Figure 8-14: Shape of standard maze 

Many of the experiments on the physical robot were carried out in a standard maze, as shown 
in Figure 8-14. When the visualisation tool (from which all these snapshots are taken) is run 
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with the simulator, it automatically merges a sketch showing the shape of the robot’s 
environment on to the graph of the robot’s position. This is not possible for the physical robot, 
since by definition it has no global knowledge of its environment, and its coordinate system is 
only guaranteed locally (so global graphs may not be consistent). So for reference purposes, 
the approximate shape of the maze is given here, with the path that the simulated robot follows 
when edge following its virtual analogue. 
 

 
Figure 8-15: Path followed by physical robot while edge following 

Figure 8-15 shows the shape the robot traces out while edge following the standard maze. 
Note that it smoothly navigates around both convex and concave turns, and follows edges 
accurately. The robot’s odometry is quite accurate during edge following because its motions 
are smooth. 
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Figure 8-16: Physical robot maintaining consistent map 

In Figure 8-16, the robot has fully circumnavigated the maze. At concave corners, such as A, 
B, C, and D, the robot can compensate for accumulating error in its odometry by comparing 
its best-guess position now with what it was last time it passed a similar corner in a similar 
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position. Compensation also occurs along straight edges, such as between B and C. As a 
result, the robot’s path is kept consistent. 
 

8.2.2 Use of landmarks 

8.2.2.1 Corner landmarks 

In this test case, the robot follows the boundary of the standard maze, and uses corners as 
landmarks at which to calibrate its position.  
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Figure 8-17: Use of corners 

Figure 8-17 shows a magnified view of the operation of the robot at a corner. 

• The robot starts at position A, and follows the boundary beside it. 

• A corner is detected at position B. 

• The robot continues to edge-follow, and eventually comes back to the same area. 

When it meets the corner this time round, its best guess at its position is C. It seems to have 

changed location. The robot cannot tell if this is due to a change in the environment, or to 

accumulating errors in its odometry (as it is in this case). Therefore it averages the apparent 

position of the corner and its previous position to get a new best guess, D. 
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8.2.2.2 Edge landmarks 

In this test case, the robot follows the boundary of the standard maze, and uses edges as 
landmarks at which to calibrate its position.  
 

ABCD

 

Figure 8-18: Use of edges 

In the area shown in Figure 8-18, the robot is following a boundary that it has met before, but 

which appears to be at a different position because of accumulated error in its odometry.  

• The robot had previously placed markers along the edge at A, B, C, etc. 

• As it follows the boundary a second time, it places new markers overriding the out of date 

markers, as shown. 

When it has laid markers at A, B, and C, the robot detects that these markers are in a straight 

line beside an older set of markers that were also in a straight line in a direction close to the 

current one, and somewhat displaced. This information is used in an averaging process where 

the best-guess angle and position of the robot is adjusted, as shown. 

Experimentally, the physical robot’s sense of position tends to be most accurate if the robot 

makes smooth motions as occur in edge following. Under these conditions, position correction 

using corners and edges can maintain a consistent sense of position within the robot. Hence in 

the prowling behaviour it was, pragmatically, important that the robot spent a good deal of its 

time edge following, since this is the only time the robot can extract useful information from its 

environment for any purpose, not just position correction. 
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8.2.2.3 Ablation study 

In this test case, the utility of the use of landmarks is demonstrated by removing them. The 

robot follows the boundary of the standard maze with landmark detection disabled. 
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Figure 8-19: Position drift 

In Figure 8-19 a trace of the robot’s best-guess of its position over time is shown while 

edge-following a closed boundary. Note that when it reaches its starting point around A, error 

has accumulated in its position sense and it is starting to deviate significantly from the robot’s 

true position.  

 

 
Figure 8-20: Aliasing of topological features 
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The error in the robot’s estimate of its position continues to accumulate as it moves. In Figure 

8-20, the robot is circling the boundary for the third time. Topological features have started to 

overlap, and the robot’s map is useless- worse than useless, misleading.  

 

 
Figure 8-21: Recovery when landmarks reintroduced 

The robot was left to continue circling for a while, and then the use of landmarks was turned 

back on. The trace in Figure 8-21 shows that the robot eventually started to develop a 

consistent map of the boundary it was tracing. This is seen where a cluster of lines make a 

seemingly thicker line, showing that the robot started to trace the boundary in a consistent 

manner. 
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8.2.3 Target seeking 

8.2.3.1 Map search 

In this test case, the physical robot escapes from a cave-shaped obstacle using a background 
map search. 
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Figure 8-22: Target seeking in the physical robot with map search enabled 

Figure 8-22 shows the performance of the robot using both physical search and map search to 

escape from an obstacle. The robot started at A, then was directed to B by user control. Then 

it was asked to find A. (Note that the approximate shape of the maze has been superimposed 

by hand on the trace). 

• The robot moved from B towards the target until it hit an obstacle at C. 

• It turned to follow the boundary to its left for a bit, with no immediate success, so it turned 

back to check the other direction.  

• The robot had no immediate success to its right either, so it turned back again at E. 

At F, the background map search succeeded and the robot found a possible path to the target 

in its map. At F it switched from physical search to using the results of the map search, by 

retracing the path it had been taken from A to B. Note that the robot can still take local short 

cuts such as at G while following a path, and if a better path is returned by the ongoing 

background map search, it will switch to that. 
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8.2.3.2 Physical search 

In this test case, the physical robot escapes from a cave-shaped obstacle using physical search 
alone. 
 

A

B
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Figure 8-23: Target seeking in physical robot using physical search only 

Figure 8-23 shows the performance of the robot using physical search only to escape from an 

obstacle. As before, the robot started at A, then was directed to B by user control, and then 

was asked to find A. 

• The robot moved from B towards the target as before, until it hit an obstacle at C. 

• The robot searched out towards D, then turned back to check the other direction.  

• The robot had no immediate success towards E either, so it turned back towards D. 

• This continued with the robot extending its search further out towards D and E until it 

escaped the obstacle at F. 

• Since the target could not yet be directly approached, the robot continued to follow the 

boundary until it turned and the robot could go straight towards the target. 
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8.2.4 Prowling 

In this test case, the robot explores the standard maze using the prowling behaviour. 
 

B

D
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Figure 8-24: Early stages of prowling 

Figure 8-24 shows the robot prowling in the standard maze. It started by finding an obstacle 

(at A) and attempting to trace its boundary. In this case, the boundary is very long, and at B 

the robot turns back because its sense of confusion has risen above a threshold. This prevents 

it from wandering too far and losing track of itself. At C, the robot finds and recognises corner 

landmarks, regains confidence, and its confusion reduces. At the first likely looking point, D, it 

sets out to explore again. 
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Figure 8-25: Further exploration 

In Figure 8-25 the robot continues with its exploration, which because of the shape of the 

maze tends to lead to somewhere it has already been. Its territory is extended more by edge 

following, as shown, than by vector exploration.  

 

BA

 
Figure 8-26: Combination of exploration and patrolling 

 
At the stage shown in Figure 8-26 the robot has explored most of the maze. In area A, the 

robot was experiencing increasing errors in its position, which were rectified at B. The map, 

overall, retains its consistency despite errors occurring in any part of it. So long as errors are 

not too violent, feedback from the rest of the map will correct any damaged section of it. 



Experimental Results  Chapter 8 

 252 

8.3 Comparative results 

Making meaningful comparisons between autonomous robots is a thorny issue. A first step in 

performing comparisons in any branch of science is generally to try to eliminate environmental 

influences that could interfere with the subject under scrutiny. The problem in robotics is that a 

robot designed to be autonomous is nothing without its environment- the whole significance of 

what such a robot does is bound up in how it is affected by environmental influences, and how 

it responds to them [[11]]. Trying to test an autonomous robot in isolation for this reason 

makes little sense, and simulated approaches are also weak, as explained in Section 2.4.7, 

page 22. The most satisfactory solution is the use of standard environments with equally 

standard “bench-mark” tasks for the robot to perform. No such standard bench-marks 

currently exist for autonomous robots that can be implemented by a research group to examine 

their own robot or to replicate the results of another group. The closest to them are robot 

“Olympics” where robots compete either directly against each other (by trying to physically 

disassemble each other, for example), or indirectly by performing a given task in a given 

environment. This last is a form of bench-mark, except it cannot be performed at will in a 

laboratory to- for example - validate someone else’s claims for their robot. A bench-mark that 

could be applied in this fashion is difficult to imagine anyway, given the huge variation that will 

exist between any two robots in terms of physical attributes, sophistication of processor(s), 

etc. It is hard to find compare like with like when there seem to be no two “likes” to be found. 

While these issues do make it difficult to compare in detail the particular robot application built 

in this project with that of other projects, the problem is not so severe. This is because the 

project is less concerned with getting a robot to do something that has never been done before 

than it is with showing that behaviour that would normally be expected to require vision or 

sonar sensors can in fact be achieved with much less. So it is sufficient to compare the 

operation of the robot in this project with the operation of other robots in the literature with 

more sophisticated sensing equipment, and show that it can successfully complete qualitatively 

similar tasks. In this way, abstract arguments of about the relative merits of robots with 

different sets of features can be avoided. 
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The rest of this chapter compares robots with long-range sensors performing various tasks 

with the Khepera robot performing similar tasks. The tasks are not chosen very systematically, 

since they are limited to what is reported in the literature for the different robots. 

 

8.3.1 Comparison with the ACBARR system 

This robot architecture was described in Section 2.5.3 (page 31). The results presented for it 

are from a simulator- the system was to be implemented on GEORGE, a robot with several 

ultrasonic sensors around its body for long-distance obstacle detection. The schemas used in 

the architecture requires a good estimate of the position of all obstacles to be found from 

sensor data and/or pre-entered data, so it was chosen as a good contrast to the robot in this 

thesis. 

8.3.1.1 Case 1- Canyon 

First we compare the robots trying to reach a target, but with a “canyon” in the way. Note that 

only an approximation to the original test-case can be replicated, but it is sufficient for 

comparing the qualitative nature of the robot’s behaviour. 

 

Figure 8-27: GEORGE in a closed canyon 



Experimental Results  Chapter 8 

 254 

 

Figure 8-28: Khepera in a closed canyon 

Figures 8-27 and 8-28 show that both the robots perform in a similar way. The diagram 

appears to show that Khepera escapes the canyon along a much smoother path, but 

conclusions such as this cannot be backed up without access to more data than is publicly 

available about GEORGE. 

8.3.1.2 Case 2- Opened Canyon 

In Figure 8-29 a gap is placed in the canyon, and the robots find their way through the centre. 

 

Figure 8-29: GEORGE at an opened canyon 
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Figure 8-30: Khepera at an open canyon 

The trace in Figure 8-30 shows that neither Khepera nor GEORGE have any trouble getting 

through gaps like this. 

8.3.1.3 Case 3- Simple Wall 

In Figures 8-31 and 8-32, the robots navigate their way around a blocking wall.  

 

Figure 8-31: GEORGE at a wall 
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Figure 8-32: Khepera at a wall 

The traces show again that Khepera behaves just as well as the robot with ultrasonic sensors. 

Note that the robots chose different paths around the wall. In different runs of Khepera for 

different start and goal positions, it would go in different directions around the wall. If the wall 

seemed to be taking it away from its target for too long, Khepera would turn back and try the 

other way for a while. Theoretically, a robot with long-range sensors could make a better 

guess than Khepera could at which way to move along the wall to get to its target quickest, 

because it can simply look and see which appears shorter. In practice, Khepera’s strategies 

work very well even without the ability to do this, as described earlier in this chapter. 

 

8.3.2 Comparison with Scarecrow 

This next robot has 16 ultrasonic range sensors. It is shown in Figure 8-33 moving towards a 

goal through a fairly cluttered environment. Notice how the Khepera robot in Figure 8-34 

works equally well, even though it has no access to long range sensors. 
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Figure 8-33: Scarecrow moving through a room 

 

 

Figure 8-34: Khepera moving through a room 
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8.3.3 Comparison with Robbie 

The robot with which Khepera is compared in this section, “Robbie”, has stereo vision 

cameras. The robot moves through a cluttered environment made of discrete small obstacles 

rather than walls. The robot is more complex physically than Khepera is- it is a four wheeled 

vehicle rather than a robot with a uniform circular cross section like Khepera. 

 

8.3.3.1 Case 1 

The robots are shown here moving towards a goal in Figures 8-35 and 8-36. Khepera acquits 

itself quite well- working with scattered small objects as easily as it would with walls. 

HOME-BASE

GREENSOURCE

BLUESOURCE

REDSOURCE

 
Figure 8-35: Robbie moving towards a target 
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Figure 8-36: Khepera moving towards a target 

 

8.3.3.2 Case 2 

In this case, the robots are shown recovering from taking a mistaken navigation decision. At 

the source, the robot can move in two directions, both of which seem to lead to the target, but 

one of which is actually blocked from the target. Figure 8-37 shows the action of Robbie. 

HOME-BASE

GREENSOURCE

BLUES OURCE

REDSOURCE

 
Figure 8-37: Robbie recovering from a mistake 

Two runs of Khepera are shown. For this particular test case, Khepera does not make the 

mistake that Robbie makes (Figure 8-38). By changing the starting point, Khepera can be 

made to take the wrong initial choice, and this is shown in Figure 8-39. 
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Figure 8-38: Khepera making the right choice 

 

 

Figure 8-39: Khepera making the wrong choice, and recovering 

Khepera does succeed in back-tracking out of the trap. It takes more work than for the robot 

with vision, because it has to do more searching. Note that it follows the bottom horizontal 



Experimental Results  Chapter 8 

 261 

wall for a while, in case there might be a gap further on. It gives up when it sees the wall turn 

back upwards. 

As is shown in this trace, Khepera’s physical search behaviour when trapped can lead to quite 

an amount of movement back and forth through the same area as the robot extends its search 

boundaries in the two directions along the boundary of the obstacle (or in this case, group of 

obstacles) blocking it. This was a trade-off for the considerable advantage the scheme has of 

avoiding the possibility of looping, where an unforeseen boundary shape leads to the robot 

entering a search loop from which it cannot escape. 

8.4 Summary 

This chapter presented results from various test cases applied to the physical and simulated 

Khepera robot. They served to demonstrate that the cartographic system developed in 

Chapter 4 was practical, and that the behaviours developed in Chapter 5 functioned as 

anticipated. The robot was shown to compare favourably with other robots possessing better 

sensing capability. 
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9. Conclusions 

This chapter discusses how well the work presented in this thesis met its aims, and how it 

could be built upon and extended in the future. 

9.1 Discussion 

The discussion of the work is split between the “sentry application” developed and the Lateral 

robot architecture. 

9.1.1 Sentry Application 

The sentry-like behaviour developed for the robot in this thesis demonstrated that it is possible 

to navigate intelligently with proximity sensors only, provided that the following constraints are 

adhered to:- 

• The robot must be able to keep track of its position to a good degree of accuracy. It can 

do this by summing its motion or other means. The position estimate need only be accurate 

on a local scale- it is acceptable for accumulating error to occur. 

• The robot must avoid being in motion for an extended length of time in an area it is 

“unfamiliar” with- an area that it has never been in before. In such a circumstance, it has no 

information with which to compensate for accumulating error. 

• The robot must ensure that it frequently passes by recognisable features of its environment 

that it can use as landmarks to keep its position estimate consistent across time. 

If these constraints are met, then it has been demonstrated that the robot can create and 

maintain a useful internal map of its environment. A prowling behaviour has been shown to be 

practical for a robot with only proximity sensors. The robot can behave as a sentry, exploring 

its environment, patrolling it exhaustively, and reacting to any changes in it. Although the 

application is called “sentry duty”, the exact same behaviour would be useful for any robot that 

has to exhaustively and repeatedly traverse a floor-space, such as sweeping, cleaning or 

polishing robots, or security robots in a gallery, etc. It is also a very useful basic behaviour for 
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use as a periodic “learning” phase for a robot engaged in any task involving navigation68 so it 

can become familiar with its environment in an autonomous manner, and then use the 

knowledge it gains autonomously to accomplish specific, externally imposed tasks. For 

example, in this project the robot could be ordered to seek a special location, and it would 

navigate towards that location using a combination of information from searching its map and 

performing intelligent “physical search” strategies that allow it get around obstacles, back out 

of dead-ends, etc. 

Chapter 8 showed that the performance of the robot compares favourably with the 

performance of other robots using more sophisticated sensing equipment. This demonstrated 

that the cartographic system implemented was in fact successful in extracting relevant 

information from the environment and presenting it to the control system in a timely fashion, 

and could maintain a consistent map of the environment over time. 

The memory requirements of the cartographic system used grow with the ratio between the 

area of the region the robot is required to patrol and the area a single marker in the map is 

taken to represent (see Section 4.3.2, page 93). In this project, the physical robot had limited 

memory available for mapping (approximately 50kB), enough for a region approximately 400 

times its own area (about 20×20 times its dimensions), with markers representing an area of 

about one third of the robot’s body. Features of smaller granularity were found to be 

negligible. On a larger robot with less constrained memory, mapping a floor of a building 

would be perfectly feasible, since both storage and processing requirements scale well. The 

storage requirements increase proportionately to the area and the processing requirements 

increase only with the logarithm of the area because of the neighbourhood system (see Section 

4.3.1, page 88). 

 

9.1.2 Lateral Robot Architecture 

The motivation for creating the Lateral architecture was to make behaviour combination 

simpler than is possible in other behaviour-based architectures. The success of the architecture 

can be judged from the nature of the system decomposition used in Chapter 5, for example. 

                                                 
68 Technically “steerage”. Sometimes navigation is taken to mean moving through an environment without any a priori 

knowledge of that environment, and steerage indicates movement through an environment about which the robot 
has a certain amount of information. 
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Instead of being forced to place all behaviours in a rigid layered hierarchy, a richer and more 

flexible hierarchy is possible. Subsumption forces behaviours into a single inheritance tree, 

where a single behaviour is taken and modified to give another more specialised behaviour 

[[7]]. Lateral, on the other hand, lets a behaviour make use of other behaviours as tools, 

without necessarily being a specialisation of any of them unless that is appropriate. The 

difference is somewhat analogous to IS-A versus HAS-A relationships in software 

engineering. While a behaviour may be an “enhancement” of one that is already present (IS-A 

relationship), it may also be a combination of a group of other behaviours (similar to a HAS-A 

relationship). Lateral will allow either possibility, while Subsumption supports the first 

possibility exclusively. The reason Lateral is more flexible is largely because it has a dynamic 

priority system rather than a static one. This means that the effective behaviour hierarchy 

(determined by the relative priorities of the behaviours) can change at runtime, whereas in 

Subsumption it is fixed. At any particular instant, a decomposition made using behaviour 

combination could be collapsed into one that uses behaviour enhancement only, since that is 

sufficient to represent the relative priorities at that instant. However, when priorities change, 

the equivalent decomposition using enhancement changes also. Hence Lateral in effect allows 

the effective decomposition to change as the priorities of behaviours change. 

The practical usefulness of this became apparent during design. For example, although the 

main set of behaviours implemented in this project were concerned with patrolling, prowling, 

and exploring, when it came to implementing a “Region seeking” behaviour, it could be 

superimposed on the decomposition already present, reusing behaviours without disturbing the 

existing decomposition (see Section 5.4.2, page 159). In general it turned out to be very easy 

to “superimpose” two overlapping behaviour hierarchies, with the architecture handling any 

conflicts between them transparently.  

Another new feature that proved beneficial in Lateral was its use of local priorities in contrast 

to the global priorities implicit in Subsumption. In Lateral it is not necessary to assign global 

priority levels to behaviours to resolve conflicts between them. Instead each behaviour assigns 

priorities to its outputs that are chosen relative to its inputs, and the Lateral system uses these 

to deduce the effective relative priority of behaviours at runtime. This means that while building 

a behaviour, the programmer can concentrate on the local view alone, and the architecture 
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automates the process of using these local decisions to determine the global activity of the 

system. 

Lateral is a superset of Subsumption, so it does not lose any of the features that made that 

architecture so successful. As described above, at any instant a behaviour decomposition 

made in Lateral has an equivalent decomposition in Subsumption. There is another more direct 

link. If connections are at the same level of priority, then arbitration between them is achieved 

using rules analogous to those in Subsumption- there are equivalents to the “suppressing”, 

“inhibiting”, and “defaulting” connections of Subsumption. So if the dynamic priority of all 

behaviours were set to a single fixed value, all arbitration would be done following the same 

rules as Subsumption would use. 

 

9.2 Future work 

This section describes how the work presented in this thesis could be built upon and extended 

in the future. There are a number of areas in this project that could be expanded on:- 

• The Lateral runtime support could be re-implemented in a distributed processing 

environment. All the work done in this thesis was geared towards being executable in a 

simple processing environment without multi-tasking. This fits the theme of working with 

cheaper, lower-end robots and seeing what can be done with them. However it would also 

be useful to implement support for the Lateral architecture with real multi-tasking and 

multiple processors, which is the nature of the control system on more sophisticated robots. 

• There are some “magic numbers” chosen for various important parameters of the robot 

(see Sections 4.4.2 and 5.2.3 in particular, on pages 99 and 129 respectively). It would be 

useful if the robot could derive these itself to suit its environment, rather than having them 

pre-set by the programmer. In particular, the granularity of mapping was manually chosen. 

Future work could allow this parameter to be chosen by the robot itself. In fact there is no 

need for the granularity to be constant- it could easily be increased in the locality of intricate 

obstacles and reduces in areas of large empty spaces. 

• The robot’s behaviours could be improved on almost indefinitely by implementing alternate 

strategies that the robot can use if the ones it has do not succeed, and adding better 
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facilities for cognisant failure (see Section 2.5.6, page 34) so that the robot can recognise 

when it is in trouble and should switch strategy.  

• The use of landmarks could be extended somewhat. Currently two types of landmarks are 

recognised- corners and approximately straight boundary sections. There is no theoretical 

problem with recognising more complex boundaries- but there is the practical problem of 

trying to do this in real-time, avoiding computationally expensive algorithms. It would be 

interesting to see how much more could be done in this area without simply requiring the 

robot to have a faster processor. 
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Appendix A 

A1. Khepera specifications 

Processor Motorola 68331 

RAM 128Kb 

ROM 256Kb 

Motion DC motors with incremental encoder 

Sensors 8 infra-red proximity and light sensors 

Power Rechargeable Ni-Cd batteries or external 

Autonomy 30 minutes 

Size Diameter 55mm, height 30mm 

Weight About 70g 

 

A2. Implementation platform 

The Lateral architecture support developed had to work on:- 

o a PC running Linux (for the Khepera simulator) 

o the Khepera robot with its own mini-operating system 

o DOS (for an early use of the system with another robot built within the college) 

It was important for this project that it be grounded in a physical robot. At the start of the 

project the robot available for experimentation was Z80-based with a serial link to a 

controlling PC running DOS. It was hoped that funding would become available for purchase 

of a robot capable of autonomous operation, but the nature of this hypothetical robot was not 

known. It was therefore important that the Lateral support be developed to work in systems 

that met minimal requirements. 
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A3. GNU CC Cross-Compiler 

To compile C++ code for Khepera, the GNU CC Cross Compiler was used, running under 

Linux on an x86. To use GNU CC as a cross-compiler, two components are required: the 

compiler itself, and some associated utilities. The compiler and utilities are publicly available 

software. Installation is straightforward, and consists of building the compiler for a nominal 

target of “sun2”, which is the appropriate target for Khepera. The cross-compiler cannot be 

built completely without some additional library and header files tailored specifically to 

Khepera and its BIOS. These are supplied by the manufacturers of Khepera.  

 

A4. Relevant Khepera BIOS Services 

A list of the BIOS services relevant to this project are given in the table below. Their nature is 

summarised here. 

o The serial line is represented as standard input and output to Khepera’s control system. 

No special function calls are needed to interface with the serial connection. 

o The robot has a time service, accurate to milliseconds. 

o The robot implements a simple multitasking system which can execute at most 15 user 

processes concurrently using a fixed time quantum task switching scheme. Tasks can be 

put to sleep for a fixed number of milliseconds and then re-awoken as normal. Task 

switching can be blocked if required to allow operations that must be guaranteed atomic 

to be performed safely. 

o As described earlier, control of the robot’s motors is allowed in terms of speed setpoints 

(from -10 to +10, fast reverse and fast forward respectively) or distance to rotate. Full 

control of the parameters of the robot’s PID controllers is made available, but is not used 

in this project. 

o Feedback from the motors is in terms of the distance each motor has rotated. 

o Two LEDs on the robot body can be controlled during normal operation of the robot. At 

other times they indicate the progress of a download or error status. 
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o Proximity and ambient light measurements can be taken from the eight sensors distributed 

around the circumference of the robot’s body. A proximity level of 0 means nothing is 

perceived near the sensor, while values of around 1000 mean that there is some object 

close to the sensor. Light readings vary from about 500 in the dark to about 50 directly in 

front of a light source. 

 

tim_get_ticcount Returns the number to milliseconds since the last reset 

tim_new_task Adds a new function to be executed within Khepera's pre-

emptive multitasking system 

tim_suspend_task Put a task to sleep for a specified period 

tim_lock Temporarily prevents time sharing. Used when entering a 

critical region. 

tim_unlock Permits time sharing after a tim_lock() 

mot_new_speed_1m Sets a new speed for one of the motors 

mot_get_position Gets the absolute position of one motor 

mot_new_position_1m Sets the absolute  position of one motor 

sens_get_reflected_value Gets the reflected value of one infra-red sensor (proximity) 

sens_get_ambient_value  Gets the ambient value of one sensor (ambient light) 

var_on_led Turns on an LED 

var_off_led Turns off an LED 

var_change_led Toggles the state of an LED 

standard I/O The serial link acts as standard input/output 

bios_reset Perform a software reset of the robot 

 

A5. Khepera Simulator Programmatic Interface 

Motor interface 

struct Motor 

{ 

  double    X,Y,Alpha; 

  short int Value; 
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}; 

 

Sensor interface 

struct IRSensor 

{ 

  double    X,Y,Alpha; 

  short int DistanceValue; 

  short int LightValue; 

}; 

 

General interface  

struct Robot 

{ 

  u_char            State; 

  char              Name[16]; 

  double            X,Y,Alpha; 

  double            Diameter; 

  struct Motor      Motor[2]; 

  struct IRSensor   IRSensor[8]; 

}; 

 

/* X and Y (millimetres), Alpha (radians) */ 

 

A6. Communications with Khepera 

Khepera can be operated in a number of communication modes, configured by a set of 

jumpers. Here is a summary :- 

o Some modes configure Khepera to listen for commands and requests over the serial link at 

various baud rates. 

o The robot can alternatively be configured to expect a program download in a defined 

format across the serial link (again at different baud rates). 

o Some auxiliary modes, not specifically concerned with communication, are provided to :- 

⇒ Run a hardwired demonstration (based on a Braitenberg vehicle style algorithm) 

⇒ Execute some self tests and report their outcome across the serial line  

⇒ Execute an application stored in an EPROM. 
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For this project, Khepera was kept in a command accepting mode rather than a downloading 

mode, listening for commands at 38400 Baud. This is convenient because in this mode it is 

possible to issue a command ordering the robot to transition to a download mode without 

having to change jumpers, while still being able to make it revert to accepting commands by 

performing a software or hardware reset. 

 

Mode  Purpose 

0 Demonstration mode- Khepera executes a Braitenberg vehicle algorithm 

1 Khepera listens for commands on the serial link, expecting 9600 Baud 

2 As 1, but Khepera expects 19200 Baud 

3 As 1, but Khepera expects 38400 Baud 

4 User application mode- starts an application stored in an EPROM if present 

5 Khepera expects a program to be downloaded to it over the serial link at 9600 

Baud (in “S format”) 

6 As 5, but Khepera expects 38400 Baud 

7 Test mode. Performs a number of tests, and reports their results on the serial 

link at 9600 Baud 
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Appendix B 

B1. Edge following behaviour 

State  Next State  Condition 

Start Capture No edge close 

(start edge-following gracefully) Face Edge close 

Face Face Robot not oriented correctly 

(orient robot with edge) Waddle Robot oriented to edge 

Waddle Waddle Edge straight or turning smoothly 

(follow a smooth edge) Turn Edge turned sharply concave 

 Capture Edge turned sharply convex 

Turn Turn Way forward is not clear 

(turn a concave corner) Waddle Way forward is clear 

Capture Capture Still seeking edge 

(recover edge if lost) Waddle Edge detected 

 Compensate Edge lost 

Compensate Compensate Still compensating 

(undo capture gesture) Waddle Edge detected 

 Stroll Compensation complete 

Stroll Stroll No edge found 

(move forward to nearest edge) Waddle Edge found 
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B2. Location seeking behaviour 

State  Next State Condition 

Start CaptureEdge Seek used edge-following recently 

(start seeking gracefully) Walk History does not suggest 

edge-following as appropriate  

CaptureEdge FollowEdge Edge suitable for following 

(evaluate edge as obstacle) Walk Edge not an obstruction 

Walk Walk No obstruction, roughly on target 

(move towards target) FollowEdge Obstruction 

 SteadyTurn Facing away from target 

FollowEdge(start edge-follow) MonitorEdge (Transition always occurs) 

SteadyTurn SteadyTurn Facing away from target 

 Walk Approximately facing the target 

MonitorEdge MonitorEdge Edge worth following 

 Walk Edge following inappropriate 

 SteadyTurn Turn required to resume walking 
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B3. Prowling behaviour 

State  Next State Condition 

Start (start prowling gracefully) Grab (Transition always occurs) 

Grab (start circling gracefully) Grab No edge close 

 Circle Edge close 

Circle (patrol a boundary) Circle Complete circle not yet made 

 CircleSync In unfamiliar territory, and confused 

 ExploreSeek In familiar, well explored territory 

 Leap Complete circle made of boundary 

CircleSync CircleSync Still confused 

(recover from confusion) Circle No longer confused 

ExploreSeek ExploreSeek In familiar area, or not confused 

(explore a boundary)  CircleSync In unfamiliar territory, and confused 

 ExploreFly Exploration opportunity spotted 

 Leap Complete circle made of boundary 

ExploreFly ExploreFly Nothing near, and not confused 

(explore away from a boundary)  Leap Confused 

 Circle Boundary found 

Leap Leap Not yet at another boundary 

(move to another boundary) Circle At another boundary 

 LeapSync Confused 

LeapSync LeapSync Still confused 

(recover from confusion) Leap No longer confused 

 LeapReturn Away from familiar territory 

LeapReturn LeapReturn  Still confused and in unfamiliar area 

(recover from loss of familiarity) Leap Confusion not excessive 

 LeapSync Territory more familiar 
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B4. Proxy behaviour 

Command Code Description 

Prowl t Puts robot in prowling behaviour, a composite behaviour 

built from all the other autonomous behaviours of the 

robot. See Prowl Algorithm. 

Patrol x Makes the robot patrol the area it has explored or 

passed through- it will repeatedly move through every 

reachable part of that area again and again. See Patrol 

Algorithm. 

Edge g Makes the robot follow the edge of any nearby obstacle 

(or it there is none, it’ll apply a search gesture to find 

one). 

SetMark = Sets the current location of the robot as a landmark for 

returning to later. 

SeekMark ? Seeks a landmark set earlier 

Explore e Turns on exploration mode 

Renew n Turns on dynamic environment mapping 

SendMap d Transmit the internal best-guess map to the PC 

Think @ Makes the robot plan heavily for an interval (which 

makes its normal behaviour sluggish). 

Conquer ! Requests that robot take over the world (service not yet 

implemented) 

Manual m Orders the robot to follow user motion requests 

Halt [space] Puts the robot into an idle behaviour 
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B5. Detailed Map Maintenance 

This appendix presents an exhaustive description of how the robot can implement the 

“neighbourhood” system described in Section 4.3.1 (page 88), and how it can keep its 

markers up to date so that as a group they reflect its best knowledge of the environment. 

Every cycle, one marker from each of the neighbourhoods is updated. Updating a marker 

requires the robot to do the following:- 

• Sort the marker into the correct neighbourhood- Since the robot will have moved since the 

last time the marker was updated, it will have become closer or further away. Therefore the 

neighbourhood it is kept in may no longer be appropriate. This is checked, and the marker 

placed in another neighbourhood if necessary. 

• Update the marker’s goal seeking fields. This advances any search activity the robot might 

be working on in the background. 

• If the marker is “immediate” or “near”, update the marker’s connectivity data in 

accordance with the ideas outlined in Section 4.5.4 (page 115). The marker’s reach time 

should be spread into any markers that have been noted as reachable from it. If the marker 

is “near” it should be compared with the currently most “immediate” marker for 

reachability, and if they seem reachable from each other, update their links to reflect that 

relationship. This allows connectivity information to be reconstructed through normal 

running of the sorting process. Note that the reconstruction is completed as the robot 

moves away from a marker, not while it is at it. 

• If the marker is the oldest one seen so far, take note of it. 

• If the marker is in the immediate neighbourhood, and is on an edge, update the marker’s 

pass count, since the marker is close enough to consider the robot as passing through it. 

• If the marker is outside the local and immediate neighbourhoods, and has been tagged to 

be killed, or its pass count exceeds the maximum limit, destroy the marker since it is 

potentially inaccurate. 

The robot needs to keep track of certain markers in the “immediate” or “near” 

neighbourhoods:- 

• If the marker is tagged as a corner, then take note of it. The robot is always aware of the 

nearest recorded corner so that if its motion indicates that it is currently at a corner, it can 
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compare against the recorded corner. If it can be confident the current and recorded 

corner represent the same real-world object, then it can use that to make corrections to its 

position estimate. 

• Calculate the marker’s desirability as a target for local motion of the robot, in terms of how 

much the robot would need to turn to move towards it, and when the robot last passed it. If 

it is the best seen so far, note that. 

• Check how close to the search goal the marker is. If it is the best seen so far, note that. 
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Appendix C 

This appendix documents the services supplied by the interfaces of the units of the 

decomposition described in Chapter 7. Since the Lateral Runtime Unit embodies behaviours 

and connections, the services listed for it are those available for Behaviour and Connection 

constructs in Zac Script. 

C1. Common Robot Unit 

C1.1. Interaction Interface 

The common robot interaction interface can supply the following information:- 

o Odometry data 

⇒ Best guess at current position 

⇒ Best guess at direction robot is facing 

⇒ Best guess at total distance robot has travelled 

o Serial communications 

⇒ Flag indicating if a command has been received across the serial line 

⇒ The last command received, if any 

o Collision flag, set if proximity readings indicate a possible impending or actual collision 

The interface can be used to do the following:- 

o Control the state of the robot’s LEDs 

o Control the serial interface 

⇒ Issue a response across the link (this can also be done by writing to standard output) 

⇒ Mark a command that was received across the link as read 

⇒ Choose whether the kernel should wait for commands to be acknowledged as read 

before accepting other commands. By default commands are stored for one scan 

cycle so the control system has the opportunity to view them, and then discarded. 

o Factor an offset into the robot’s best guess at its position or direction, to allow input from a 

more informed component of the control system 
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Notice that sensor data (other than a gross collision detection flag) and motor control 

functionality is absent. Interaction interfaces to these are provided at a higher level in the 

Logical Robot Unit. 

xTrack Best guess at current position, x coordinate 

yTrack Best guess at current position, y coordinate 

angleTrack Best guess at direction robot is facing (degrees) 

angleRaw Best guess at direction robot is facing (radians) 

displacementTrack Best guess at distance robot has travelled 

IsCollision Checks for any proximity reading indicating a possible collision 

SetDisplay Sets the state of one of the robot’s LEDs 

GetInput Reads the last command issued to the robot across the serial link, if 

any 

IsInput Checks if a command has been issued to the robot across the serial 

link 

AcceptInput Marks the last command read as processed 

MaintainInput Chooses whether commands should be discarded automatically, or if 

an acknowledgement should be waited for 

SendOutput Sends a response across the serial link  

AdjustPosition Modifies the best guess at the robot’s current coordinates and 

orientation 

 

C1.2. System Hooks  

This interface provides the following information:- 

o The time since the kernel was last reset in milliseconds 

o Readings from the ambient light and proximity sensors 

It provides the following control functionality:- 

o Fixing setpoints for the motor speeds 

o Disabling and re-enabling task switching, to allow operations that must be executed 

atomically to be performed. 
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ServerLock Disables task switching so an operation can be guaranteed atomic 

ServerUnlock Re-enables task switching after an atomic operation 

ServerGetTick Gets the time in milliseconds 

ServerSetMotor Fixes the setpoints for the motor speeds 

ServerGetProx  Reads from the proximity sensors 

ServerGetLight Reads from the light sensors 

 

C2. Logical Robot Unit 

C2.1. Interaction Interface 

This interface provides the following information:- 

o The logical sensors- left, right, forward, reverse, and closest logical proximity sensors 

o The unprocessed sensor readings can also be read directly- left reverse, direct left, left 

diagonal, left forward, right forward, right diagonal, right direct and right reverse. 

o A frustration sensor from the logical motor driver warns when the robot is unable to make 

any progress at all in the direction its motors have been commanded to drive. 

It provides the following control functionality:- 

o The basic speeds for the logical motors can be set. 

o The modifying speeds for the logical motors can also be set. The two sets of speeds are 

used as described earlier by the logical motor driver to generate actual speeds that will 

diverge from the logical speeds in the presence of obstacles. 
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leftSense This is a sensor guaranteed to be low if the robot can move left 

without immediately bumping into something, and high otherwise. 

rightSense This is a sensor guaranteed to be low if the robot can move right 

without immediately bumping into something, and high otherwise. 

forwardSense This is a sensor guaranteed to be low if the robot can move forward 

without immediately bumping into something, and high otherwise. 

reverseSense This is a sensor guaranteed to be low if the robot could move 

backwards without immediately bumping into something, and high 

otherwise. 

closestSense This combines the left, right and forward sensors to give the closest 

obstacle to the robot under normal operation (turning for reverse). 

GetSense Reads from a specific proximity sensor 

IsFrustrated Checks if the robot is unable to proceed in the direction its motors 

have been commanded to drive 

SetMotor Sets the basic motor speeds to request (actual speeds may be different 

if there is an obstacle) 

SetNudge Sets the modifying motor speeds to request, for superimposing a turn 

on top of the basic motor speeds 

 

C2.2. Update Hooks 

This interface provides the following control functionality:- 

o A manager for the logical motors that combines the requested basic motor speeds and 

modifying (“nudge”) speeds, and adjusts the physical motor setpoints to reflect this as 

closely as possible, intelligently dealing with obstacle conditions 

o A manager for the logical sensors that combines the appropriate physical sensor readings 

to maintain the semantics of the logical sensors (left, right, forward, reverse, closest) 

UpdateMotors Combines the requested basic motor speeds and nudge speeds, and 

adjusts the motor setpoints to reflect this as closely as possible, 

intelligently dealing with obstacle conditions 
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UpdateSensors Maintains the values of the logical sensors (leftSense, rightSense, 

forwardSense, reverseSense, closestSense) 

 

C3. Lateral Runtime Unit 

C3.1. Interaction Interface, Static Components 

The interaction interface to Lateral is divided into three components for convenience- static, 

behaviour, and connection components. 

Static components of the Lateral runtime are accessible from anywhere within the control 

system. Services include:- 

o A trigger activated on initialisation of the lateral system. 

o A pair of triggers that indicate when the system should enter shutdown phase and when it 

should stop completely. 

o A timer triggered every second for driving slow periodic events. 

AutoStart Trigger to start behaviours on initialisation of the lateral system 

SystemActive Flag indicating whether system should continue 

SystemRetain Flag indicating whether system can be halted.  Used in combination 

with SystemActive to allow a shutdown phase. 

TickerSecond The number of seconds the system has been active.  Signal can be 

used to trigger a behaviour every second. 

 

C3.2. Interaction Interface, Behaviour Components 

Within behaviours, the following status information is available:- 

o Whether it is active, enabled, sleeping.  

o The current priority level of the behaviour, and whether that priority has been fixed or is 

being selected dynamically by the Lateral system. 

o Current state of the behaviour’s state machine 

o Timing information in milliseconds, seconds, minutes, or other units for :- 

⇒ The time since the system was initialised (also available globally) 

⇒ The time since the current behaviour started 
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⇒ The time since the current state was entered from a different state. 

⇒ The accumulated time the current behaviour has been disabled over its lifetime. 

⇒ The time since the current behaviour was last disabled. 

o The name of the behaviour (useful for diagnostics) 

Control functionality within behaviours:- 

o Priority level can be set, or marked to be controlled by Lateral’s default priority selection 

algorithm 

o The behaviour’s state machine can be manipulated by 

⇒ Making it transition to an arbitrary state.  

⇒ Resetting it to its starting state. 

⇒ Zeroing the timer for the current state. 

IsActive Checks if behaviour is active or inactive 

IsEnabled Checks if behaviour is enabled or disabled 

IsRunning Checks if behaviour is running (active and enabled) 

GetRelPriority Returns the priority of the behaviour 

SetRelPriority Sets the priority of the behaviour 

UnSetPriority Leaves the priority free to be chosen by Lateral 

GetName Returns the name of the behaviour 

GetLine Returns the current state of the behaviour 

GoStart Makes the behaviour transition to its first state 

ResetStateTimer Starts the timer for the current state from zero 

GetSleeping Checks if the behaviour has been put to sleep because no other 

behaviour is using it 

IsSolid Checks if the behaviour is been run at a user-selected priority (rather 

than allowing Lateral to choose its priority dynamically) 



Appendices  Appendix C 

 285 

TT Time in milliseconds. 

TT(system) is the time since the system was initialised (also available 

globally) 

TT(process) is the time since the current behaviour started. 

TT(state) is the time since the current state was entered from a different 

state. 

TT(delay) is the total time the current behaviour has been disabled. 

TT(quantum) is the total time the current behaviour has been enabled. 

TS Time in seconds. As for TT. For measuring the time in seconds, 

alternate functions such as StateTimeSec, SystemTimeSec, etc. are also 

available. 

TM Time in minutes.  As for TT. 

TF Time in user-defined units (fractions).  As for TT. 

NEXT Transition to a new state 

 

C3.3. Interaction Interface, Connection Components  

Information:- 

o Information on source 

⇒ A flag indicating whether the connection has an active source 

⇒ A flag indicating whether the connection is a direct output from a behaviour 

⇒ The last source from which the connection received a message 

o Information on target 

⇒ A flag indicating whether the connection has control of a target to pass on messages 

to. 

⇒ A flag indicating whether the current contents of the connection have been passed on. 

o Status information 

⇒ Priority level of the connection (for competing with other connections). 

⇒ Priority factor of the connection (determining the fraction of its priority the source 

behaviour of the connection chain is willing to supply a target behaviour). 

⇒ A flag indicating whether the connection is active or inactive. 
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o Content information 

⇒ The content of the connection.  

⇒ A flag indicating if the contents of the connection have been altered. 

The following operations are allowed on Connection objects:- 

o Set the priority of the connection.  

o Set the priority factor of the connection. 

o Activate or deactivate the connection. 

o Set the content of the connection.  

IsOutput Checks if the connection is a direct output of a behaviour  

SetActive Controls whether the connection is active or inactive 

GetActive Checks whether the connection is active or inactive 

SetRelPriority Sets the priority level of the connection for competing with others 

GetRelPriority Gets the priority level of the connection when competing 

SetOutPriority Sets the priority fraction the connection supplies to a behaviour it supplies 

if it gains control of that behaviour 

GetOutPriority Gets the priority fraction the connection supplies to a behaviour 

IsFulfilled Checks if the contents of a connection have been passed on 

IsInPower Checks if the contents of a connection are being passed on 

GetLastSource Gets the last source the connection read from 

IsControlled Checks if the connection has a source to read from 

Set Sets the contents of a connection 

Get/Value Gets the contents of a connection 

Delta Checks if the contents of a connection have been changed 
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C3.4. Execution Hooks  

This interface provides no information services, just control functionality:- 

o Execute one cycle of the lateral system. 

o Hand over control entirely to the lateral system to run autonomously.  

o Initialise and deinitialise the lateral system. 

ZAC_Execute Runs one cycle of the lateral system. 

ZAC_Drive Hands over control to the lateral system to run autonomously.  

ZAC_Initialise Initialises the lateral system- calls all start up functions in the 

behaviours. 

ZAC_Deinitialise Shuts down the lateral system.  The system can be re-initialised if 

desired. 

 

C4. User Control Unit 

C4.1. Lateral Object Hooks  

Each behaviour can implement one or all of the following:- 

o A global start-up hook, called on initialisation of the Lateral system. 

o A local start-up hook, called when a behaviour becomes active. 

o A hook called whenever a behaviour is put to sleep. 

o A hook implementing a state machine for the behaviour. 

Generating this interface is simplified by use of the Zac Translator (Chapter 6). Note that only 

a few hooks other than the state machine hook are required, since most conditions except the 

ones enumerated can be caught in the state machine’s control section.  

STARTUP Code executed for global initialisation of the behaviour 

LOCAL_STARTUP Code executed for initialisation of the behaviour whenever it 

becomes active 

SLEEP Code executed whenever the behaviour is made to sleep 
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ZAC_Run State machine is translated into a function of this name (performed 

automatically) 
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