
CHAPTER 1

Introduction

Everything starts somewhere, although many physicists disagree. But people have al-
ways been dimly aware of the problems with the start of things. They wonder aloud
how the snowplough driver gets to work, or how the makers of dictionaries look up the
spellings of words. (Pratchett, 1996)

The goal of this work is to build a perceptual system for a robot that integrates useful “mature”
abilities, such as object localization and recognition, with the deeper developmental machinery
required to forge those competences out of raw physical experiences. The motivation for doing
so is simple. Training on large corpora of real-world data has proven crucial for creating robust
solutions to perceptual problems such as speech recognition and face detection. But the powerful
tools used during training of such systems are typically stripped away at deployment. For problems
that are more or less stable over time, such as face detection in benign conditions, this is acceptable.
But for problems where conditions or requirements can change, then the line between training and
deployment cannot reasonably be drawn. The resources used during training should ideally remain
available as a support structure surrounding and maintaining the current perceptual competences.
There are barriers to doing this. In particular, annotated data is typically needed for training, and
this is difficult to acquire online. But that is the challenge this thesis addresses. It will show that a
robotic platform can build up and maintain a quite sophisticated object localization, segmentation,
and recognition system, starting from very little.

1.1 The place of perception in AI

If the human brain were a car, this message would be overlaid on all our mental reflections: “cau-
tion, perceptual judgements may be subtler then they appear”. Time and time again, the difficulty
of implementing analogues of human perception has been underestimated by AI researchers. For
example, the Summer Vision Project of 1966 at the MIT AI Lab apparently expected to implement
figure/ground separation and object recognition on a limited set of objects such as balls and cylin-
ders in the month of July, and then extend that to cigarette packs, batteries, tools and cups in August
(Papert, 1966). That “blind spot” continues to the current day – for example, the proposal for the
thesis you are reading blithely assumed the existence of perceptual abilities that now consume entire
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chapters. But there has been progress. Results in neuroscience continue to drive home the sophis-
tication of the perceptual machinery in humans and other animals. Computer vision and speech
recognition have become blossoming fields in their own right. Advances in consumer electronics
have led to a growing drive towards advanced human/computer interfaces, which bring machine
perception to the forefront. What does all this mean for AI, and its traditional focus on representa-
tion, search, planning, and plan execution? For devices that need to operate in rich, unconstrained
environments, the emphasis on planning may have been premature:

“I suspect that this field will exist only so long as it is considered acceptable to test
these schemes without a realistic perceptual interface. Workers who have confronted
perception have found that on the one hand it is a much harder problem than action
selection and that on the other hand once it has been squarely faced most of the diffi-
culties of action selection are eliminated because they arise from inadequate perceptual
access in the first place.” (Chapman, 1990)

It is undeniable that planning and search are crucial for applications with complex logistics,
such as shipping and chess. But for robotics in particular, simply projecting from the real world
onto some form where planning and search can be applied seems to be the key research problem:
“This abstraction process is the essence of intelligence and the hard part of the problem being
solved” (Brooks, 1991b). Early approaches to machine perception in AI focused on building and
maintaining detailed, integrated models of the world that were as complete as possible given the
sensor data available. This proved extremely difficult, and over time more practical approaches
were developed. Here are cartoon-caricatures of some of them:

. Stay physical: Stay as close to the raw sensor data as possible. In simple cases, it may
be possible to use the world as its own model and avoid the difficulties involved in creating
and maintaining a representation of a noisily- and partially-observed world (Brooks, 1991b).
Tasks such as obstacle avoidance can be achieved reactively, and Connell (1989) gives a
good example of how a task with temporal structure can be performed by maintaining state
in the world and the robot’s body rather than within its control system. This work clearly
demonstrates that the structure of a task is logically distinct from the structures required to
perform it. Activity that is sensitive to some external structure in the world does not imply a
control system that directly mirrors that structure in its organization.

. Stay focused: Adopt a point of view from which to describe the world that is sufficient for
your task and which simplifies the kind of references that need to be made, hopefully to the
point where they can be easily and accurately maintained. Good examples include deictic
representations like those used in Pengi (Chapman and Agre, 1987), or Toto’s representations
of space (Mataric, 1990).

. Stay open: Use multiple representations, and be flexible about switching between representa-
tions as each run into trouble (Minsky, 1985). This idea overlaps with the notion of encoding
common sense (Lenat, 1995), and using multiple partial theories rather than searching – per-
haps vainly – for single unified representations.

While there are some real conflicts in the various approaches that have been adopted, they also
have a common thread of pragmatism running through them. Some ask “what is the minimal rep-
resentation possible”, others “what choice of representation will allow me to develop my system
most rapidly?” (Lenat, 1995). They are also all steps away from an all-singing, all-dancing mono-
lithic representation of the external world. Perhaps they can be summarized (no doubt kicking and
screaming) with the motto “robustness from perspective” – if you look at a problem the right way,
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it may be relatively easy. This idea was present from the very beginning of AI, with the emphasis
on finding the right representations for problems, but it seemed to get lost once division of labor set
in and the problems (in some cases) got redefined to match the representations.

There is another approach to robust perception that has developed, and that can perhaps be de-
scribed as “robustness from experience”. Drawing on tools from machine learning, just about any
module operating on sensor input can be improved. At a minimum, its performance can be charac-
terized empirically, to determine when it can be relied upon and when it fails, so that its output can
be appropriately weighed against other sources. The same process can be applied at finer granularity
to any parameters within the module that affect its performance in a traceable way. Taking statistical
learning of this kind seriously leads to architectures that seem to contradict the above approaches, in
that they derive benefit from representations that are as integrated as possible. For example, when
training a speech recognition system, it is useful to be able to combine acoustic, phonological,
language models so that optimization occurs over the largest scope possible (Mou and Zue, 2001).

The success of statistical, corpus-based methods suggests the following additional organizing
principle to the ones already enunciated :-

. Stay connected: Statistical training creates an empirical connection between parameters in
the system and experience in the world that leads to robustness. If we can maintain that
connection as the environment changes, then we can maintain robustness. This will require
integrating the tools typically used during training with the deployed system itself, and engi-
neering opportunities to replace the role that annotation plays.

This thesis argues that robots must be given not just particular perceptual competences, but
the tools to forge those competences out of raw physical experiences. Three important tools for
extending a robot’s perceptual abilities whose importance have been recognized individually are
related and brought together. The first is active perception, where the robot employs motor action
to reliably perceive properties of the world that it otherwise could not. The second is development,
where experience is used to improve perception. The third is interpersonal influences, where the
robot’s percepts are guided by those of an external agent. Examples are given for object segmen-
tation, object recognition, and orientation sensitivity; initial work on action understanding is also
described.

1.2 Why use a robot?

The fact that vision can be aided by action has been noted by many researchers (Aloimonos et al.,
1987; Bajcsy, 1988; Ballard, 1991; Gibson, 1977). Work in this area focuses almost uniformly
on the advantages afforded by moving cameras. For example, Klarquist and Bovik (1998) use a
pair of cameras mounted on a track to achieve precise stereoscopic vision. The track acts as a
variable baseline, with the system physically interpolating between the case where the cameras
are close – and therefore images from them are easy to put into correspondence – and the case
where the cameras are separated by a large baseline – where the images are different enough for
correspondences to be hard to make. Tracking correspondences from the first to the second case
allows accurate depth estimates to be made on a wider baseline than could otherwise be supported.

In this thesis, the work described in Chapter 3 extends the basic idea of action-aided vision
to include simple manipulation, rather than just moving cameras. Just as conventional active vi-
sion provides alternate approaches to classic problems such as stereo vision and object tracking,
the approach developed here addresses the classic problem of object segmentation, giving the vi-
sual system the power to recruit arm movements to probe physical connectivity. This thesis is a
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Figure 1-1: Training data is worth its weight in ice cream in the speech recognition research com-
munity (certificate created by Kate Saenko).

step towards visual monitoring of robot action, and specifically manipulation, for the purposes of
correction. If the robot makes a clumsy grasp due to an object being incorrectly segmented by its
visual system, and ends up just brushing against an object, then this thesis shows how to exploit that
motion to correctly segment the object – which is exactly what the robot needs to get the grasp right
the next time around. If an object is awkwardly shaped and tends to slip away if grasped in a certain
manner, then the affordance recognition approach is what is needed to learn about this and combat
it. The ability to learn from clumsy motion will be an important tool in any real, general-purpose
manipulation system.

Certain elements of this thesis could be abstracted from the robotic implementation and used in
a passive system, such as the object recognition module described in Chapter 5. A protocol could
be developed to allow a human teacher to present an object to the system and have it enrolled for
object recognition without requiring physical action on the robot’s part. For example the work of
Nayar et al. (1996) detects when the scene before a camera changes, triggering segmentation and
object enrollment. However, it relies on a very constrained environment – a dark background with
no clutter, and no extraneous environmental motion. Another approach that uses human-generated
motion for segmentation – waving, pointing, etc. – is described in Arsenio et al. (2003). The SAIL
robot (Weng et al., 2000a) can be presented with an object by placing the object in its gripper, which
it then rotates 360◦ in depth, recording views as it goes. But all these protocols that do not admit
of autonomous exploration necessarily limit the types of applications to which a robot can be ap-
plied. This thesis serves as a proof of concept that this limitation is not essential. Other researchers
working on autonomous development are motivated by appeals to biology and software complexity
(Weng et al., 2000b). The main argument added here is that autonomy is simply unavoidable if we
wish to achieve maximum robustness. In the absence of perfect visual algorithms, it is crucial to
be able to adapt to local conditions. This is particularly clear in the case of object recognition. If
a robot moves from one locale to another, it will meet objects that it has never seen before. If it
can autonomously adapt to these, then it will have a greater range of applicability. For example,
imaging a robot asked to “clear out the junk in this basement.” The degree of resourcefulness re-
quired to deal with awkwardly shaped and situated objects make this a very challenging task, and
experimental manipulation would be a very helpful technology for it.
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Figure 1-2: Cartoon motivation for active segmentation. Human vision is excellent at figure/ground
separation (top left), but machine vision is not (center). Coherent motion is a powerful cue (right)
and the robot can invoke it by simply reaching out and poking around.

1.3 Replacing annotation

Suppose there is some property P of the environment whose value the robot cannot usually deter-
mine. Further suppose that in some very special situations, the robot can reliably determine the
property. Then there is the potential for the robot to collect training data from such special situa-
tions, and learn other more robust ways to determine the property P . This process will be referred
to as “developmental perception” in this thesis.

Active and interpersonal perception are identified as good sources of these “special situations”
that allow the robot to temporarily reach beyond its current perceptual abilities, giving the oppor-
tunity for development to occur. Active perception refers to the use of motor action to simplify
perception (Ballard, 1991), and has proven its worth many times in the history of robotics. It allows
the robot to experience percepts that it (initially) could not without the motor action. Interpersonal
perception refers to mechanisms whereby the robot’s perceptual abilities can be influenced by those
around it, such as a human helper. For example, it may be necessary to correct category boundaries
or communicate the structure of a complex activity.

By placing all of perception within a developmental framework, perceptual competence be-
comes the result of experience evoked by a set of behaviors and predispositions. If the machinery
of development is sufficient to reliably lead to the perceptual competence in the first place, then it is
likely to be able to regenerate it in somewhat changed circumstances, thus avoiding brittleness.

1.4 Active perception

The idea of using action to aid perception is the basis of the field of “active perception” in robotics
and computer vision Ballard (1991); Sandini et al. (1993). The most well-known instance of active
perception is active vision. The term “active vision” has become essentially synonymous with
moving cameras, but it need not be. There is much to be gained by taking advantage of the fact that
robots are actors in their environment, not simply passive observers. They have the opportunity to
examine the world using causality, by performing probing actions and learning from the response.
In conjunction with a developmental framework, this could allow the robot’s experience to expand
outward from its sensors into its environment, from its own arm to the objects it encounters, and
from those objects both back to the robot itself and outwards to other actors that encounter those
same objects.

Active vision work on the humanoid robot Cog is oriented towards opening up the potentially
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Figure 1-3: The benefits of active segmentation using poking. The robot can accumulate training
data on the shape and appearance of objects. It can also locate the arm as it strikes objects, and
record its appearance. At a lower level, the robot can sample edge fragments along the segmented
boundaries and annotate them with their orientation, facilitating an empirical approach to orientation
detection. Finally, tracking the motion of the object after poking is straightforward since there is a
segmentation to initialize the tracker – hence the robot can record the motion that poking causes in
different objects.

rich area of manipulation-aided vision, which is still largely unexplored. Object segmentation is an
important first step. Chapter 3 develops the idea of active segmentation, where a robot is given a
“poking” behavior that prompts it to select locations in its environment, and sweep through them
with its arm. If an object is within the area swept, then the motion generated by the impact of the
arm can be used to segment that object from its background, and obtaining a reasonable estimate of
its boundary (see Figure 1-3). The image processing involved relies only on the ability to fixate the
robot’s gaze in the direction of its arm. This coordination can be achieved either as a hard-wired
primitive or through learning. Within this context, it is possible to collect good views of the objects
the robot pokes, and the robot’s own arm. Giving the robot this behavior has several benefits.
(i) The motion generated by the impact of the arm with an object greatly simplifies segmenting
that object from its background, and obtaining a reasonable estimate of its boundary. This will
prove to be key to automatically acquiring training data of sufficient quality to support the forms
of learning described in the remainder of this thesis. (ii) The poking activity also leads to object-
specific consequences, since different objects respond to poking in different ways. For example,
a toy car will tend to roll forward, while a bottle will roll along its side. (iii) The basic operation
involved, striking objects, can be performed by either the robot or its human companion, creating a
controlled point of comparison between robot and human action.

Figure/ground separation is a long-standing problem in computer vision, due to the fundamental
ambiguities involved in interpreting the 2D projection of a 3D world. No matter how good a passive
system is at segmentation, there will be times when only an active approach will work, since visual
appearance can be arbitrarily deceptive. Of course, there will be plenty of limitations on active
segmentation as well. Segmentation through poking will not work on objects the robot cannot
move, either because they are too small or too large. This is a constraint, but it means we are well
matched to the space of manipulable objects, which is an important class for robotics.
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Figure 1-4: The top row shows sample views of a toy car that the robot sees during poking. Many
such views are collected and segmented. The views are aligned to give an average prototype for the
car (and the robot arm and human hand that acts upon it). To give a sense of the quality of the data,
the bottom row shows the segmented views that are the best match with these prototypes. The car,
the robot arm, and the hand belong to fundamentally different categories. The robot arm and human
hand cause movement (are actors), the car suffers movement (is an object), and the arm is under the
robot’s control (is part of the self).

1.5 Developmental perception

Active segmentation provides a special situation in which the robot can observe the boundary of
an object. Outside of this situation, locating the object boundary is basically guesswork. This is
precisely the kind of situation that a developmental framework could exploit. The simplest use
of this information is to empirically characterize the appearance of boundaries and oriented visual
features in general. Once an object boundary is known, the appearance of the edge between the
object and the background can be sampled along it, and labelled with the orientation of the boundary
in their neighborhood. This is the subject of Chapter 4. At a higher-level, the segmented views
provided by poking objects can be collected and clustered as shown in Figure 1-4. Such views are
just what is needed to train an object detection and recognition system, which will allow the robot
to locate objects in other, non-poking contexts. Developing object localization and recognition is
the topic of Chapter 5.

Poking moves us one step outwards on a causal chain away from the robot and into the world,
and gives a simple experimental procedure for segmenting objects. One way to extend this chain
out further is to try to extract useful information from seeing a familiar object manipulated by
someone else. This offers another opportunity for development – in this case, learning about other
manipulators. Locating manipulators is covered in Chapter 6.

Another opportunity that poking provides is to learn how objects move when struck – both in
general, for all objects, and for specific objects such as cars or bottles that tend to roll in particular
directions. Given this information, the robot can strike an object in the direction it tends to move
most, hence getting the strongest response and essentially evoking the “rolling affordance” offered
by these objects. This is the subject of Chapter 7.
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1.6 Interpersonal perception

Perception is not a completely objective process; there are choices to be made. For example, whether
two objects are judged to be the same depends on which of their many features are considered
essential and which are considered incidental. For a robot to be useful, it should draw the same
distinctions a human would for a given task. To achieve this, there must be mechanisms that allow
the robot’s perceptual judgements to be channeled and moulded by a caregiver. This is also useful
in situations where the robot’s own abilities are simply not up to the challenge, and need a helping
hand. This thesis identifies three channels that are particularly accessible sources of shared state:
space, speech, and task structure. Robot and human both inhabit the same space. Both can observe
the state of their workspace, and both can manipulate it, although not to equal extents. Chapter 8
covers a set of techniques for observing and maintaining spatial state. Another useful channel for
communicating state is speech, covered in Chapter 9. Finally, the temporal structure of states and
state transitions is the topic of Chapter 10.

1.7 Roadmap

Chapter 2 Overview of robot platforms and computational architecture
Chapter 3 Active segmentation of objects using poking
Chapter 4 Learning the appearance of oriented features
Chapter 5 Learning the appearance of objects
Chapter 6 Learning the appearance of manipulators
Chapter 7 Exploring an object affordance
Chapter 8 Spatially organized knowledge
Chapter 9 Recognizing and responding to words
Chapter 10 Interpersonal perception and task structure
Chapter 11 Discussion and conclusions
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