
CHAPTER 2

The campaign for real time: robot bodies and brains

Wobbler had written an actual computer game like this once. It was called “Journey to
Alpha Centauri.” It was a screen with some dots on it. Because, he said, it happened in
real time, which no-one had ever heard of until computers. He’d seen on TV that it took
three thousand years to get to Alpha Centauri. He had written it so that if anyone kept
their computer on for three thousand years, they’d be rewarded by a little dot appearing
in the middle of the screen, and then a message saying, “Welcome to Alpha Centauri.
Now go home.” (Pratchett, 1992a)

This work was implemented on two robots, Cog and Kismet (see Figure 2-1), developed at the
Humanoid Robotics Group at the MIT AI Lab by various students over the past decade. More
accurately, it was implemented on their sprawling “brains” – racks of computers connected to the
bodies by a maze of cables, an extravagant sacrifice offered up to the gods of real-time performance.
This chapter dips into the minimum detail of these systems necessary to understand the rest of the
thesis. The interested reader is referred to the excellent theses of Williamson (1999), Breazeal
(2000), and Scassellati (2001), on whose shoulders the author stands (or is at least trying to peer
over).

2.1 Cog, the strong silent type

Cog is an upper torso humanoid that has previously been given abilities such as visually-guided
pointing (Marjanović et al., 1996), rhythmic operations such as turning a crank or driving a slinky
(Williamson, 1998a), and responding to some simple forms of joint attention (Scassellati, 2000).
For a good overview of the research agenda that Cog embodies, see Brooks et al. (1999).

2.1.1 Low-level arm control

Cog has two arms, each of which has six degrees of freedom organized as shown in Figure 2-2. The
joints are driven by series elastic actuators (Williamson, 1995) – essentially a motor connected to
its load via a spring (think strong and torsional rather than loosely coiled). The arm is not designed
to enact trajectories with high fidelity. For that a very stiff arm is preferable. Rather, it is designed
to perform well when interacting with a poorly characterized environment. The spring acts as a

23



Head
(7 DOFs)

Torso
(3 DOFs)

Left arm
(6 DOFs)

Right arm
(6 DOFs)

Stand
(0 DOFs)

Facial
(15 DOFs)

Neck 
(3 DOFs)

Eyes 
(3 DOFs)

Figure 2-1: The robots Cog (top) and Kismet (bottom). Kismet is an expressive anthropomorphic
head useful for human interaction work; Cog is an upper torso humanoid more adept at object
interaction.

low pass filter for the friction and backlash effects introduced by gears, and protects the gear teeth
from shearing under the impact of shock loads. A drawback to the use of series elastic actuators is
that they limit the control bandwidth in cases where the applied force needs to change rapidly. The
force applied by an electric motor can normally be changed rapidly, since it is directly proportional
to the current supplied. By putting a motor in series with a spring, this ability is lost, since the
motor must now drive a displacement of the spring’s mass before the applied force changes. For the
robot’s head, which under normal operation should never come into contact with the environment,
and which needs to move continuously and rapidly, series elastic actuators were not used. But for
the arms, the tradeoff between control bandwidth and safety is appropriate. Robot arms are usually
employed for the purposes of manipulation, but for this work they instead serve primarily as aides
to the visual system. The target of a reaching operation is not assumed to be well characterized;
in fact the reaching operation serves to better define the characteristics of the target through active
segmentation (see Chapter 3). Hence the arm will habitually be colliding with objects. Sometimes
the collisions will be with rigid, more or less unyielding structures such as a table. Sometimes the
collisions will be with movable objects the robot could potentially manipulate. And sometimes the
collisions will be with people. So it is important that both the physical nature of the arms, and the
manner in which they are controlled, be tolerant of “obstacles”.

The arms are driven by two nested controllers. The first implements force control, driving each

24



elbow (a)

shoulder (a)
shoulder (b)

elbow (b)

wrist (a) wrist (b)

Figure 2-2: Kinematics of the arm, following Williamson (1999). There are a total of six joints,
divided into a pair for each of the shoulder, elbow, and wrist/flipper.

Series Elastic 
Actuator

Arm Dynamics+
–

Figure 2-3: Control of a joint in the arm, following Williamson (1999). An inner loop controls
the series elastic actuator in terms of force, working to achieve a desired deflection of the spring as
measured by a strain gauge. An outer loop controls the deflection setpoint to achieve a desired joint
angle, as measured by a potentiometer.

motor until a desired deflection of the associated spring is achieved, as measured by a strain gauge.
This high-speech control loop is implemented using an 8-axis motor controller from Motion En-
gineering, Inc. A second loop controls the deflection setpoint to achieve a desired joint angle as
measured by a potentiometer. Figure 2-3 shows this second loop, following (Williamson, 1999).
Various extensions and modifications to this basic approach have been made, for example to in-
corporate a feed-forward gravity compensating term, but the details are beyond the scope of this
thesis.

2.1.2 Low-level head control

Figure 2-4 shows the degrees of freedom associated with Cog’s head. In each “eye”, a pair of
cameras with different fields of view provides a step-wise approximation to the smoothly varying
resolution of the human fovea (Scassellati, 1998). The eyes pan independently and tilt together.
The head rolls and tilts through a differential drive. There is a further pan and tilt associated with
the neck. There are a number of redundancies in the degrees of freedom to permit rapid movement
of the eyes followed by a slower compensating motion of the relatively massive head. The head
contains a 3-axis inertial sensor to simplify gaze stabilization.

The motors of the head are connected to optical encoders and driven by an 8-axis motor con-
troller from Motion Engineering, Inc. The motor controller is configured to permit both position

25



right
eye
pan

left
eye
pan

neck 
tilt

neck 
pan

top 
differentialbottom

differential

eye tilt

Figure 2-4: The motors of Cog’s head, following Scassellati (2001). The degrees of freedom are
loosely organized as pertaining to either the eyes, head, or neck. Pan and tilt (but not roll) of the
eyes can be achieved at high speed without moving the mass of the head.

Figure 2-5: Kismet, the cute one.

and velocity control. Much has been written about both the low-level and strategic control of such
a head – see, for example Scassellati (2001) – so the details will be omitted here.

2.2 Kismet, the cute one

Parts of this work were developed on and reported for Kismet. Kismet is an “infant-like” robot
whose form and behavior is designed to elicit nurturing responses from humans (Breazeal et al.,
2001). It is essentially an active vision head augmented with expressive facial features so that it can
both send and receive human-like social cues. Kismet has a large set of expressive features - eyelids,
eyebrows, ears, jaw, lips, neck and eye orientation. The schematic in Figure 2-1 shows the degrees
of freedom relevant to visual perception (omitting the eyelids!). The eyes can turn independently
along the horizontal (pan), but turn together along the vertical (tilt). The neck can turn the whole
head horizontally and vertically, and can also crane forward. Two cameras with narrow fields of
view rotate with the eyes. Two central cameras with wide fields of view rotate with the neck. These
cameras are unaffected by the orientation of the eyes.

The reason for this mixture of cameras is that typical visual tasks require both high acuity and a
wide field of view. High acuity is needed for recognition tasks and for controlling precise visually
guided motor movements. A wide field of view is needed for search tasks, for tracking multiple

26



Process/
Thread

Port

Portlet

Link

Figure 2-6: Communications model. Every process or thread can own any number of ports. Every
port can be directed to send data to any number of other ports. Since different processes will access
this data at different rates, it is useful to consider each port as owning several “portlets” that manage
each individual link to another port. Given the most conservative quality of service settings, data
will persist in the communications system as long as is necessary to send it on the slowest link.

objects, compensating for involuntary ego-motion, etc. A common trade-off found in biological
systems is to sample part of the visual field at a high enough resolution to support the first set of
tasks, and to sample the rest of the field at an adequate level to support the second set. This is
seen in animals with foveate vision, such as humans, where the density of photoreceptors is highest
at the center and falls off dramatically towards the periphery. This can be implemented by using
specially designed imaging hardware, space-variant image sampling (Schwartz et al., 1995), or by
using multiple cameras with different fields of view, as we have done.

2.3 The cluster

Cog is controlled by a network of 32 computers, with mostly 800 MHz processors. Kismet is
controlled by a similar but smaller network and four Motorola 68332 processors. The network
was designed with the demands of real-time vision in mind; clearly if it was acceptable to run
more slowly (say, one update a second instead of thirty) then a single machine could be used. The
primary engineering challenge is efficient interprocess communication across the computer nodes.
We chose to meet this challenge by using QNX, a real-time operating system with a very clean,
transparent message-passing system. On top of this was build an abstraction to support streaming
communications and modular, subsumption-like design.

2.4 Cluster communication

Any process or thread can create a set of Ports. Ports are capable of communicating with each other,
and shield the complexity of that communication from their owner. As far as a client process or
thread is concerned, a Port is a fairly simple object. The client assigns a name to the Port, which

27



gets registered in a global namespace. The client can hand the Port a piece of data to transmit, or
read data the Port has received either by polling, blocking, or callback. There are some subtleties
in the type of service required. The client can specify the kind of service required – a sender
can specify whether transmission be guaranteed, or whether new data override data not yet sent; a
receiver can independently specify whether, of the data the sender attempts to pass on, reception
should be guaranteed or whether new data received by a Port should override data not yet read by
its owner, and under what conditions the sending Port should be made to wait for the receiver.

Objects passed to the communications system obey a Pool interface. They can be cloned and
recycled. The Port will clone objects as necessary, with an associated Pool growing to whatever size
is required. This will depend on the rates at which all the links attached to the Port (via Portlets)
read data at. By default, the owner of the Port is insulated from needing to know about that. For
simple objects, cloning can be achieved with simple copies. The complex objects, such as images, a
reference counting approach is worth using. Overall, this approach avoids unnecessary copies, and
minimizes the allocation/deallocation of objects in the communications system. It is compatible
with the existence of “special” memory areas managed by other entities, such as a framegrabber.

Ports and Portlets either use native QNX messaging for transport, or sockets if running on or
communicating with a non-QNX system. The name server used is QNX’s native nameloc service,
or a simple socket-based wide nameloc service for communicating with a non-QNX system. By
default, these issues are transparent to client code. The system can operate transparently alongside
other methods of communication, since it doesn’t require any special resources such as control of
the main process.

28


