
CHAPTER 7

Rock and roll: exploring and exploiting an object affordance

[The waterfall] was the second highest anywhere on the Disc and had been discovered
in the Year of the Revolving Crab by the noted explorer Guy de Yoyo. Of course, lots of
dwarfs, trolls, native people, trappers, hunters, and the merely badly lost had discov-
ered it on an almost daily basis for thousands of years. But they weren’t explorers and
didn’t count. (Pratchett, 1991b)

In the end what matters in life and robotics is action, and perception should reflect that priority.
Perception can be seen as “basically an implicit preparation to respond” (Sperry, 1952). This chapter
introduces an approach to perception that is explicitly about preparation to respond. The perceptual
system is assigned the task of continually preparing a set of actions that are possible in the robot’s
current situation, and which simply need to be selected and activated to take effect. This approach
has similarities with Gibson’s notion of affordances (Gibson, 1977), which is reviewed.

7.1 What are affordances?

Affordances are possibilities for action. If a creature can perform some action on an object, then
the object is said to afford that action, and that action is an affordance of the object. For example,
a cup affords grasping and drinking. The idea of affordance is actor-specific; a leaf might afford
support to an ant but not an elephant. The existence of an affordance depends only on whether the
creature can perform the appropriate actions, and does not depend on the ability of the creature to
perceive it. Other authors have used the term in different ways. Those concerned with interface
design, such as the Human-Computer Interface community, often use both perception and action as
the defining characteristics of the term – see McGrenere and Ho (2000) for a review. We will take
“perceived affordances” to refer to the actions a creature believes are possible on an object, which
are potentially distinct from the “true affordances” that are physically realizable.

In Gibson’s work, there is an implication that affordances can be perceived “directly” and are
in some sense “picked up” from the environment – as opposed to being inferred. This is not a
particularly helpful notion for robotics, and although there is a significant literature on the notion
of direct perception, it will not be reviewed here (see Hurley (2001) for a discussion). Gibson
did make good points about vision being easier when done dynamically from a moving perspec-
tive, ideas that cropped up later as active/animate vision. Gibson pointed out the power of optic
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flow information, which this thesis has benefited from (and in other collaborative work even more
(Fitzpatrick and Metta, 2002)).

7.2 Why think about affordances?

In robotics, possibilities for action are captured concisely in a robot’s configuration space. A con-
figuration space contains all the parameters (e.g. joint angles) necessary to uniquely specify the
robot’s physical state. Actions correspond to trajectories in the configuration space. So why do we
need another way to think about the space of possible actions?

Configuration space is very useful for planning the details of motor control, such as getting
from one point to another without trying to move through any impossible joint angles. If there
are complicated constraints on action then this tactical level of analysis is unavoidable. However,
at the strategic level, it isn’t as helpful. When the robot is deciding what it should do now, joint
angle trajectories are the wrong level of abstraction. One choice would be to switch into a space
with a representation of goals and possible operators, and do planning, and then later translate
operators back into motor actions using plan execution. This involves a significant architectural
commitment. It is useful to consider if there are alternatives that don’t involve such a dramatic
“phase change” between motor control and perception. Affordances offer such an alternative. If
there is a predominantly bottom-up system assessing what is possible in the robot’s current situation,
then it can prepare the appropriate control parameters for the available actions, and describe the
actions in a very low-bandwidth way relative to this – with all the awkward details suppressed. Is
this different from planning, picking an action, and then assessing what parameters are appropriate
to carry it out? Not in principle, but in practice it could significantly simplify the decisions that need
to be made.

Configuration space ideas do have the benefit of being formalized and clear, unlike affordances.
We could define an “affordance space” as the set of control parameters output by perception so that
initiated actions are channelled appropriately, and then a set of action flags specifying which actions
seem possible. For example, an affordance-based perceptual system for a mobile robot might chose
to signal “turn” as a possible action to its behavior system, while setting up appropriate control
parameters to achieve a good turn or to continue on straight. If all the robot does is navigate then
there is not much benefit to this; but if the robot has a wide vocabulary of actions then this may
be a useful simplification. The danger of using a weaker perception system that makes minimal
judgements itself is that it will add delay, and potentially leave decisions in the hands of a less
well-informed module. Of course, not everything is evident from perception, so integration is still
important.

7.3 Exploring an affordance

The examples of affordances that are most commonly discussed include different kinds of grasping,
twisting, or chewing. All of these require quite sophisticated motor control. As a starting point, it
seemed more sensible to choose actions that have all the properties of an affordance, but have a lower
cost of entry in terms of dexterity. The author identified object rolling as an excellent candidate.
Only certain objects roll well, and to make them roll requires matching the robot’s action to the
object’s pose in an intelligent manner. For example, Figure 7-1 shows four objects that have quite
distinct properties in terms of a “rolling affordance”. The rolling affordance is perfectly within reach
of the robot, given the capabilities already developed. It can poke an object from different directions,
and it can locate familiar objects and recognize their identity. Active segmentation played two roles
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a toy car
it rolls 

forward

a bottle
it rolls along 

its side

a toy cube
it doesn’t roll

a ball
it rolls in

any direction

Figure 7-1: Different objects roll in different ways. A toy car rolls forward, a bottle rolls on its
side, a ball rolls in any direction, and a cube doesn’t roll easily at all.

in this experiment: collecting data for later object recognition and localization, and providing a good
segmentation for tracking the motion of the object after contact. Chronologically, this experiment
was performed before the techniques for tracking, recognition, and localization described elsewhere
in this thesis were fully developed, so simpler methods were used (color histogram back-projection
for localization and recognition, optic flow based tracking over a small number of frames). This
system was developed in collaboration with Giorgio Metta.

We designed two experiments that use poking and the visual segmentation described in Chapter
3 to move an object on the basis of the rolling affordance. In the first experiment the robot poked the
set of objects shown in Figure 7-1 (an orange juice bottle, a toy car, a cube, and a colored ball) using
one of four possible actions (the motor repertoire). Actions are labelled for convenience as back-
slap, side-tap, pull-in, and push-away. These actions correspond to different patterns of poking.
In a side-tap, the robot sweeps its arm in across the field of view. In a back-slap, the robot first
raises its arm and draws it in to its torso, then sweeps outwards. Normally these actions are used
interchangeably and at random during poking, as the segmentation algorithm is agnostic about the
source of object motion (see for example Figure 3-11). The toy car and the bottle tend to roll along
a definite direction with respect to their principal axis. The car rolls along its principal axis, and the
bottle rolls orthogonal to it. The cube doesn’t really roll because of its shape. The ball rolls, but in
any direction. Shape information can be extracted from the segmentation produced by poking, so
these relationships could in principle be learned – and that is the goal of this experiment.

The robot poked the set of objects shown in Figure 7-1 many times (approximately 100 each),
along with other distractors. The segmented views were clustered based on their color histogram.
For each poking episode, shape statistics were gathered at the point of impact, and the overall
translational motion of the object was tracked for a dozen frames after impact. Over all poking
events (470 in all) the gross translation caused by poking was computed as a function of the type of
poking applied (back-slip, side-tap, pull-in, push-away), as shown in Figure 7-2. This is necessary
since the effect that the poking fixed action pattern has is not known to the robot’s perceptual system;
this procedure recovers the effect (and also reveals that the motor control on Cog’s arm is very
erratic). Using this procedure, the robot automatically learns that poking from the left causes the
object to slide/roll to the right, as a general rule. A similar consideration applies to the other actions.
Next, object-specific models are built up relating the effect of object orientation on the translation
that occurs during poking. Figure 7-3 shows the estimated probability of observing each of the
objects rolling along a particular direction with respect to its principal axis. Here the peculiar
properties of the car and bottle reveal themselves as a “preferred direction” of rolling. The ball
and cube do not have such a preference. At the end of the learning procedure the robot has built a
representation of each object in terms of:
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Figure 7-2: Histogram of the direction of movement of object for each possible poking action. For
each of the four plots the abscissa is the direction of motion of the object where the 0◦ direction is
parallel to the x axis, and −90◦ to the y axis. The ordinate is the empirical probability distribution
of the direction of motion of the objects.

. Pictorial information in the form of color histograms, following (Swain and Ballard, 1991).

. Shape information in the form of a measure of the average size of the object, an index of
the elongation of the object with respect to its principal axis, and a set of Hu moments (Hu,
1962).

. Detailed histograms of the displacement of the object with respect to its initial orientation
given that a particular motor primitive was used.

. The summary histograms shown in Figure 7-3 which capture the overall response of each
object to poking.

After the training stage, if one of the known objects is presented to Cog, the object is recognized,
localized and its orientation estimated (from its principal axis). Recognition and localization are
based on the same color histogram procedure used during training (Swain and Ballard, 1991). Cog
then uses its understanding of the affordance of the object (Figure 7-3) and of the geometry of poking
to make the object roll. The whole localization procedure has an error between 10◦ and 25◦ which
which is perfectly acceptable given the coarseness of the motor control We performed a simple
qualitative test of the overall performance of the robot. Out of 100 trials the robot made 15 mistakes.
A trial was classified as “mistaken” if the robot failed to poke the object it was presented with in
the direction that would make it roll. The judgements of the appropriate direction, and whether
the robot succeeded in actually achieving it, were made by external observation of the behavior of
the robot. Twelve of the mistakes were due to imprecise control – for example the manipulator
sometimes moved excessively quickly and shoved the object outside the field of view. The three
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Bottle, “pointiness”=0.13 Car, “pointiness”=0.07

Ball, “pointiness”=0.02Cube, “pointiness”=0.03

Rolls at right 
angles to
principal axis

Rolls 
along 
principal axis

Figure 7-3: Probability of observing a roll along a particular direction for the set of four objects used
in Cog’s experiments. Abscissae represent the difference between the principal axis of the object
and the observed direction of movement. Ordinates are the estimated probability. The principal axis
is computed using the second Hu moment of the object’s silhouette (Hu, 1962). The “pointiness”
or anisotropy of the silhouette is also measured from a higher order moment; this is low when the
object has no well-defined principal axis, as is the case for the cube and the ball. The car and bottle
have clear directions in which they tend to roll. In contrast, the cube slides, and the ball rolls, in
any direction. These histograms represent the accumulation of many trials, and average over the
complicated dynamics of the objects and the robot’s arm to capture an overall trend that is simple
enough for the robot to actually exploit.

remaining errors were genuine mistakes due to misinterpretation of the object position/orientation.
Another potential mistake that could occur is if the robot misidentifies an object – and, for example,
believes it sees a bottle when it in fact sees a car. Then the robot will poke the object the wrong way
even if it correctly determines the object’s position and orientation.

7.4 Mimicry application

With the knowledge about objects collected in the previous experiment we can then set up a second
experiment where the robot observes a human performing an action on the same set of objects,
and then mimics it. In fact, the same visual processing used for analyzing a robot-generated action
can be used in this situation also, to detect contact and segment the object from the human arm,
as described in Chapter 6. The robot identifies the action observed with respect to its own motor
vocabulary. This is done by comparing the displacement of the object with the four possible actions,
as characterized in Figure 7-2, and choosing the action whose effects are closer to the observed
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Object is segmented and trackedWatch for contact

Figure 7-4: Frames around the moment of contact are shown. The object, after segmentation, is
tracked for 12 frames using a combination of template matching and optic flow. The big circles
represent the tracked position of the bottle in successive frames. The arrow displayed on the frame
of contact (3rd from the left) projects from the position at the time of contact and at the 12th frame
respectively. In the first sequence, the bottle is presented to the robot at an orientation that makes a
side-tap appropriate for rolling, and that is what the robot does. In the second sequence, the car is
presented at a different angle. The appropriate action to exploit the affordance and make the bottle
roll is now a back-slap.

displacement. This procedure is orders of magnitude simpler than trying to completely characterize
the action in terms of the observed kinematics of the movement.

The robot can then mimic the observed behavior of the human if it sees the same object again.
The angle between the preferred direction of motion of the object (as characterized in Figure 7-3)
and the observed displacement is measured. During mimicry the object is localized as in the pre-
vious experiment and the robot picks the motor action which is most likely to produce the same
observed angle relative to the object. If, for example, the car was poked at right angle with respect
to its principal axis Cog would mimic the action by poking the car at right angle, despite the fact
that the car’s preferred behavior is to move along its principal axis. Examples of observation of
poking and generation of mimicry actions are shown in Figures 7-5.

7.5 Conclusions

Describing a problem the right way is an important step to solving it. Affordances provide a means
to implement bottom-up influence on the terms in which the current situation is described. For ex-
ample, in the work described here, if the perceptual system detects that the robot is looking at an
object that can roll, then the motor options automatically change. Poking will now automatically
push the object in the right direction to make the object roll. The option to strike the object awk-
wardly is now available – which the robot is pretty good at anyway, but now it can do it deliberately,
to mimic human action for example. Control in terms of side-taps and back-slaps is still possible of
course, but that level of detail is no longer necessary.
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Demonstration by 
human

Mimicry in similar 
situation

Mimicry when 
object is rotated 

Invoking the object’s natural 
rolling affordance

Going against the object’s 
natural rolling affordance

Figure 7-5: A mimicry example using the toy car. The first row shows human demonstration
of poking operations, which the robot then mimics. The sequences on the left show the robot
mimicking a human exploiting the car’s rolling affordance. The sequences on the right show what
happens when the human hits the car in a contrary fashion, going against its preferred direction of
motion. The robot mimics this “unnatural” action, suppressing its usual behavior of trying to evoke
rolling. Mimicry is shown to be independent of the orientation at which the car is presented.

Figure 7-6: You don’t have to have high dexterity to explore some properties of objects.
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