from first contact to close encounters:

a developmentally deep perceptual system for a humanoid robot

Paul Fitzpatrick

thesis committee Rodney Brooks, Trevor Darrell, Deb Roy

experimentation helps perception _

Rachel: We have got to find out if [ugly naked guy]'s alive.

Monica: How are we going to do that? There's no way.

Joey: Well there is one way. His window's open – I say, we poke him. (brandishes the Giant Poking Device)

robots can experiment _

Robot: We have got to find out where this object's boundary is.
Camera: How are we going to do that? There's no way.
Robot: Well there is one way. Looks reachable – I say, let's poke it. *(brandishes the Giant Poking Limb)*

the root of all vision_

object segmentation

edge catalog

object detection (recognition, localization, contact-free segmentation)

poking

affordance exploitation (rolling)

manipulator detection (robot, human)

theoretical goal: a virtuous circle_

familiar activities

use constraint of familiar activity to discover unfamiliar entity used within it reveal the structure of unfamiliar activities by tracking familiar entities into and through them

familiar entities (objects, actors, properties, ...)

practical goal: adaptive robots.

Motivated by fallibility

- Complex action and perception will fail
- Need simpler fall-back methods that resolve ambiguity, learn from errors

Motivated by transience

- Task for robot may change from day to day
- Ambient conditions change
- Best to build in adaptivity from very beginning

Motivated by infants

- Perceptual development outpaces motor
- Able to explore despite sloppy control

giant poking device: Cog

giant poking device: Cog_

talk overview_

Learning from an activity

- Poking: to learn to recognize objects, manipulators, etc.
- Chatting: to learn the names of objects

Learning a new activity

- Searching for an object
- Then back to learning from the activity...

poking, chatting

objects, words, names, ...

poking, chatting, search

objects, words, names, ...

poking, chatting, search

objects, words, names, ...

talk overview_

Learning from an activity

- Poking: to learn to recognize objects, manipulators, etc.
- Chatting: to learn the names of objects

Learning a new activity

- Searching for an object
- Then back to learning from the activity...

talk overview_

Learning from an activity

- Poking: to learn to recognize objects, manipulators, etc.
- Chatting: to learn the names of objects

Learning a new activity

- Searching for an object
- Then back to learning from the activity...

object segmentation

edge catalog

object detection (recognition, localization, contact-free segmentation)

poking

affordance exploitation (rolling)

manipulator detection (robot, human)

poking

object segmentation

"Active Segmentation"

segmenting objects through action

"Active Segmentation"

segmenting objects by coming into contact with them

a simple scene?_

Cube has misleading surface pattern

Color of cube and — table are poorly _____ separated

Maybe some cruel grad-student faked the cube with paper, or glued it to the table

active segmentation_

active segmentation_

where to poke?_

Visual attention system

- Robot selects a region to fixate based on salience (bright colors, motion, etc.)
- Region won't generally correspond to extent of object
- Poking activation
 - Region is stationary
 - Region reachable (right distance, not too high up)
 - Distance measured through binocular disparity

visual attention system.

(Collaboration with Brian Scassellati, Giorgio Metta, Cynthia Breazeal)

movement

tracking_

poking activation _

evidence for segmentation_

Areas where motion is observed upon contact

classify as 'foreground'

Areas where motion is observed immediately before contact

classify as 'background'

Textured areas where no motion was observed

classify as 'background'

Textureless areas where no motion was observed

no information

minimum cut

"allegiance" = cost of assigning two nodes to different layers (foreground versus background)

minimum cut

"allegiance" = cost of assigning two nodes to different layers (foreground versus background)

grouping (on synthetic data)_

Radio gul 🗾 🖓 agu

point of contact_

Motion spreads continuously (arm or its shadow) Motion spreads suddenly, faster than the arm itself \rightarrow contact

point of contact

segmentation examples

Side tap

Back slap

Impact event

Motion caused

(red = novel, Purple/blue = discounted) Segmentation (green/yellow)

segmentation examples_

segmentation examples

boundary fidelity_

signal to noise

poking

object segmentation

edge catalog

"Appearance Catalog"

exhaustively characterizing the appearance of a low-level feature

sampling oriented regions _

sample samples

most frequent samples.

selected samples

some tests

Red = horizontal Green = vertical

_ natural images _

poking

object segmentation

edge catalog

object detection (recognition, localization, contact-free segmentation)

"Open Object Recognition"

detecting and recognizing familiar objects, enrolling unfamiliar objects

object recognition_

Geometry-based

- Objects and images modeled as set of point/surface/volume elements
- Example real-time method: store geometric relationships in hash table

Appearance-based

- Objects and images modeled as set of features closer to raw image
- Example real-time method: use histograms of simple features (e.g. color)

Advantages: more selective; fast Disadvantages: edges can be occluded; 2D method Property: no need for offline training

details of features_

Distinguishing elements:

- Angle between regions (edges)
- Position of regions relative to their projected intersection point (normalized for scale, orientation)
- Color at three sample points along line between region centroids

Output of feature match:

Predicts approximate center and scale of object if match exists

Weighting for combining features:

- Summed at each possible position of center; consistency check for scale
- Weighted by frequency of occurrence of feature in object examples, and edge length

look for this...

...in this

just using geometry

geometry + appearance

other examples _

other examples_

just for fun_

real object in real images

_yellow on yellow _

multiple objects

response for each object

implicated edges found and grouped

camera image

attention_

working with one example_

Method gives best-guess location

Location evaluated to determine if object is really there

Thresholds determined by variation in match strengths seen over all examples

Hard to set sensibly with only one example

Solution: be tolerant, and allow for online correction

open object recognition_

sees ball, "thinks" it is cube

pokes, segments ball

correctly differentiates ball and cube

open object recognition_

poking

object segmentation

edge catalog

object detection (recognition, localization, contact-free segmentation)

manipulator detection (robot, human)

finding manipulators_

Analogous to finding objects

Object

- Definition: physically coherent structure
- How to find one: poke around and see what moves together

Actor

- Definition: something that acts on objects
- How to find one: see what pokes objects

similar human and robot actions

modeling manipulators_

manipulator recognition

object segmentation

edge catalog

object detection (recognition, localization, contact-free segmentation)

poking

affordance exploitation (rolling)

manipulator detection (robot, human)

"Affordance Recognition"

switching from object-centric perception to recognizing action opportunities

(collaboration with Giorgio Metta)

what is an affordance?

A leaf affords rest/walking to an ant ...

... but not to an elephant

exploring affordances_

objects roll in different ways _

a bottle it rolls along its side

a toy car it rolls forward

a toy cube it doesn't roll easily

a ball it rolls in any direction

preferred direction of motion_

affordance exploitation_

Caveat: this work uses an early version of object detection (not the one presented today)

mimicry test -

Invoking the object's natural rolling affordance

Going against the object's natural rolling affordance

Demonstration by human

Mimicry in similar situation

Mimicry when object is rotated

mimicry test_

object segmentation

edge catalog

object detection (recognition, localization, contact-free segmentation)

poking

affordance exploitation (rolling)

manipulator detection (robot, human)

talk overview_

Learning from an activity

- Poking: to learn to recognize objects, manipulators, etc.
- Chatting: to learn the names of objects

Learning a new activity

- Searching for an object
- Then back to learning from the activity...

open speech recognition_

Vocabulary can be extended at any time Assumes active vocabulary is small Isolated words only

keeping track of objects.

EgoMap

short term memory of objects and their locations so "out of sight" is not "out of mind"

keeping track of objects_

speech and space: chatting

talk overview_

Learning from an activity

- Poking: to learn to recognize objects, manipulators, etc.
- Chatting: to learn the names of objects

Learning a new activity

- Searching for an object
- Then back to learning from the activity...

Tomasello's experiments

Designed experiments to challenge constraint-based theory of language acquisition in infants

Wants to show infants learn words through real understanding of activity ('flow of interaction'), not hacks

Great test cases! Get beyond direct association

(But where does knowledge of activity come from?)

"let's go find the toma!".

Infant plays with set of objects

Then adult says "let's go find the toma!" (nonce word) Acts out a search, going to several objects first before finally finding the 'toma'

Later, infant tested to see which object it thinks is the 'toma'

Several variants (e.g. 'toma' placed in inaccessible location with the infant watching – adult is upset when trying to get it)

"let's go find the toma!"_

goal

Have robot learn about search activity from examples of looking for known objects

Then apply that to a "find the toma"-like scenario

virtuous circle_

poking, chatting

discover car, ball, and cube through poking; discover their names through chatting

car, ball, cube, and their names

virtuous circle_

poking, chatting, search

follow named objects into search activity, and observe the structure of search

car, ball, cube, and their names

virtuous circle_

poking, chatting, searching

discover object through poking, learn its name ('toma') indirectly during search

car, ball, cube, toma, and their names

learning about search_

what the robot learns _

'Find' is followed by mention of an absent object

'Yes' is said when a previously absent object is in view

how it learns this_

Look for reliable event/state combinations, sequences

Events are:

- hearing a word
- seeing an object

States are:

- recent events
- situation evaluations (object corresponding to word not present, mismatch between word and object, etc.)

finding the toma_

Much much less sophisticated than infants!

Cues the robot is sensitive to are very impoverished

Slightly different from Tomasello's experiment

Saved state between stages – wasn't one complete continuous run

conclusions: why do this?_

Uses all the 'alternative essences of intelligence'

- Development
- Social interaction
- Embodiment
- Integration

Points the way to really flexible robots

- today the robot should sort widgets from wombats (neither of which it has seen before)
- who knows what it will have to do tomorrow

conclusions: contributions _

active segmentationthrough contactappearance catalogfor oriented featuresopen object recognitionfor correction, enrollmentaffordance recognitionfor rollingopen speech recognitionfor isolated wordsvirtuous circle oflearning about anddevelopmentthrough activity

conclusions: the future _

Dexterous manipulation

Object perception (visual, tactile, acoustic)

- During dextrous manipulation
- During failed manipulation

Integration with useful platform

- Socially enabled
- Mobile

thanks!_

Sandini et al, 1993

face detection_

stable problem.

Build once, use many times

Can use and then remove scaffolding

unstable problem

Frequent changes

Better if scaffolding remains part of the structure

object recognition_

