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Abstract

Experimentation is crucial to human
progress at all scales, from society as a whole
to a young infant in its cradle. It allows us
to elicit learning episodes suited to our own
needs and limitations. This paper develops
active strategies for a robot to acquire visual
experience through simple experimental
manipulation. The experiments are oriented
towards determining what parts of the en-
vironment are physically coherent – that is,
which parts will move together, and which
are more or less independent. We argue that
following causal chains of events out from
the robot’s body into the environment allows
for a very natural developmental progression
of visual competence, and relate this idea to
results in neuroscience.

1. Introduction

Much of computer vision is passive in nature, with
the emphasis on watching the world but not partic-
ipating in it. There are advantages to moving be-
yond this to exploit dynamic regularities of the en-
vironment (Ballard, 1991). A robot has the poten-
tial to examine its world using causality, by perform-
ing probing actions and learning from the response.
Tracing chains of causality from motor action to per-
ception (and back again) is important both to under-
stand how the brain deals with sensorimotor coordi-
nation and to implement those same functions in an
artificial system, such as a humanoid robot. And, as
a practical matter, the ability to perform “controlled
experiments”, such as tapping an object lightly, is
crucial to getting to grips with an otherwise com-
plex and uncertain world.

Figure 1 shows three levels of causal complexity we
would like the robot to probe. The simplest causal
chain that the robot experiences is the perception of
its own actions. The temporal aspect is immediate:
visual information is tightly synchronized to motor
commands. We use this strong correlation to identify
parts of the robot body – specifically, the end-point
of the arm.
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D

Figure 1: On the left, the robot establishes a causal con-

nection between commanded motion and its own manip-

ulator (A), and then probes its manipulator’s effect on an

object (B). The object then serves as a literal “point of

contact” (C) to link robot manipulation with human ma-

nipulation (on the right, D), as is required for a mirror-

neuron-like representation.

Once this causal connection is established, we can
go further and use it to actively explore the bound-
aries of objects. In this case, there is one more step
in the causal chain, and the temporal nature of the
response may be delayed since initiating a reaching
movement doesn’t immediately elicit consequences in
the environment.

In this paper, we propose that such causal probing
can be arranged in a developmental sequence leading
to a manipulation-driven representation of objects.
We present results for two important steps along the
way, and describe how we plan to proceed. We argue
that following this causal chain outwards will allow
us to approach the representational power of “mirror
neurons” (Fadiga et al., 2000), where a connection is
made between our own actions and the actions of
another.

2. The elusive object

Sensory information is intrinsically ambiguous, and
very distant from the world of well-defined objects
in which humans believe they live. What criterion
should be applied to distinguish one object from
another? How can perception support such a phe-
nomenon as figure-ground segmentation? Consider
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a cross a binary cross ?

Figure 2: Three examples of crosses, following

(Manzotti and Tagliasco, 2001). The human ability to

segment objects is not general-purpose, and improves

with experience.

the example in Figure 2. It is immediately clear that
the drawing on the left is a cross, perhaps because
we already have a criterion, which allows segmenting
on the basis of the intensity difference. It is slightly
less clear that the zeros and ones on the middle panel
are still a cross. What can we say about the array
on the right? If we are not told, and we do not have
the criterion to perform the figure-ground segmenta-
tion, we might think this is just a random collection
of numbers. But if we are told that the criterion is
“prime numbers vs. non-prime” then a cross can still
be identified.

While we have to be inventive to come up with a
segmentation problem that tests a human, we don’t
have to go far at all to find something that baffles our
robots. Figure 3 shows a robot’s-eye view of a cube
sitting on a table. Simple enough, but many rules
of thumb used in segmentation fail in this particular
case. And even an experienced human observer, di-
agnosing the cube as a separate object based on its
shadow and subtle differences in the surface texture
of the cube and table, could in fact be mistaken –
perhaps some malicious researcher is up to mischief.
The only way to find out for sure is to take action,
and start poking and prodding. As early as 1734,
Berkeley observed that:

...objects can only be known by touch. Vision
is subject to illusions, which arise from the
distance-size problem... (Berkeley, 1972)

In this paper, we provide support for a more nuanced
proposition: that in the presence of manipulation, vi-
sion becomes more powerful, and many of its illusions
fade away.

Objects and actions

The example of the cross composed of prime num-
bers is a novel (albeit unlikely) type of segmenta-
tion in our experience as adult humans. We might
imagine that in our infancy, we had to initially
form a set of criteria to solve the object identifi-
cation/segmentation problem in more mundane cir-
cumstances. We ask the question of whether we can

Figure 3: A cube on a table. The edges of the table and

cube happen to be aligned (dashed line), the colors of the

cube and table are not well separated, and the cube has

a potentially confusing surface pattern.

discover these criteria during ontogenesis.
Humans and a small number of other primates are

unique in their ability to manipulate their environ-
ment using tools. Our capacities are mirrored in the
brain by the size of the cortex controlling them. Neu-
roscience has shown that our brains possess large cor-
tical areas devoted to the control of manipulation –
not surprising, given that encephalization is believed
to have evolved for the purpose of adaptively con-
trolling action (Maturana and Varela, 1998).

A useful conceptual schema holds that vi-
sual information follows two distinct path-
ways in the brain, namely, the dorsal and
the ventral (Ungerleider and Mishkin, 1982,
Milner and Goodale, 1995). The dorsal path-
way controls action directly and pragmatically;
conversely, the ventral takes care of more conceptual
skills such as object recognition. Of course it is im-
portant to remember, when making this dichotomy,
that the two pathways are not completely segregated
but rather complement each other and interact in
different ways (Jeannerod, 1997).

Objects are thought to maintain a double “iden-
tity” depending on whether they are used in per-
ceptual or in motor tasks. The concept of size,
for example, might be represented multiple times
in different brain areas. Observation of agnosic pa-
tients (Jeannerod, 1997) shows an even more com-
plicated relationship than the simple dorsal/ventral
dichotomy would suggest. Althought some patients
could not grasp generic objects (e.g. cylinders), they
could correctly preshape the hand to grasp known
objects (e.g. a lipstick); interpreted in terms of the
two-pathway system, this implies that the ventral
representation of the object can supply the dorsal
system with size information. What we consciously
perceive as “size” is rather a collection of different
percepts interacting in a complicated way, and un-
der pathological circumstances they can be separated
from each other. One of the “identities” of objects is
thus connected to motor performance.
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That such pathways develop and are not com-
pletely innate is suggested by the results of
(Kovacs, 2000). She has shown that perceptual
grouping is slow to develop and continues to improve
well beyond early childhood (14 years). Long-range
contour integration was tested and this work eluci-
dated how this ability develops to enable extended
spatial grouping. These results further suggest that
the development of action might precede that of cat-
egorization: it is well enstablished that by 4 months
of age infants can process complex motion stimuli,
depth, and color. Roughly at the same age reaching
becomes more consistent. That is, action comes first
supported by the pragmatic use of diverse sensory
modalities; perception conversely is a long develop-
ing process. More studies are needed though to as-
certain how the dorsal pathway (action) influences
the ventral (perception) both in situations like those
already mentioned, and during ontogenesis.

The dorsal stream connects the parietal lobe to
the premotor cortex, which project heavily onto the
primary motor cortex to eventually control move-
ments. For many years the premotor cortex was
considered just another big motor area. New stud-
ies (Jeannerod, 1997) have demonstrated that this
is not the case. In fact, researchers have identi-
fied neurons in the area F5 of the frontal cortex
(Fadiga et al., 2000) that are activated in two situ-
ations: i) when acting onto an object (e.g. grasp-
ing), and ii) when looking at the same object (visual
response). Their firing pattern was quite specific,
building a link between the size of the object and
the applied grasp type (e.g. a small object requires
a precision grip).

These neurons were called canonical. This was
quite an astonishing discovery because area F5 was
believed to be only a motor area. A possible inter-
pretation is that the brain stores a representation of
objects in motor terms, and uses these representa-
tions to generate an appropriate response to objects
(the concept of Gibsonian affordances translated in
neural terms (Gibson, 1977)).

The gap from object manipulation to hand ges-
ture production/recognition is small. In fact F5
contains another class of neurons called mirror neu-
rons. A mirror neuron responds in two situations:
i) when executing a manipulative gesture, and ii)
when observing somebody else executing the same
action. These neurons provide a link between the
observation of somebody else’s and our own ac-
tions. Beside the recognition of manipulative ac-
tions, they seem to support imitative behaviors. An
intriguing theory proposed by Rizzolatti and Arbib
(Rizzolatti and Arbib, 1998) associates mirror neu-
rons to language.

Another important class of neurons in premo-
tor cortex is found in area F4 (Fogassi et al., 1996).

While F5 is more concerned with the distal muscles
(i.e. the hand), F4 controls more proximal muscles
(i.e. reaching). A subset of neurons in F4 has a so-
matosensory, visual and motor receptive field. The
visual receptive field (RF) extends in 3D from a given
body part, for example, the forearm. The somatosen-
sory RF is usually in register with the visual one.
Finally, motor information is integrated into the rep-
resentation by maintaining the RF anchored to the
correspondent body part (the forearm in this exam-
ple) irrespective of the relative position of the head
and arm.

A working hypothesis

In the light of these results, we see at least two rea-
sons why intelligence needs to be embodied. First, if
robots are to tell us something about the functioning
of our brains, we have to study its development in the
proper setting, that is, with the robot acting in the
environment. As we have seen action is fundamental
to a set of highly cognitive skills including imitation
and language. Perceptual tasks are also be influenced
by action. Second, to build better robots, adaptive
to their environment, there is probably no alternative
but to build them following to some extent biologi-
cal principles. The same constraints encountered by
biological agents during ontogenesis are encountered
by the robot during its simulated development.

Certainly, vision and action are intertwined at a
very basic level. While an experienced adult can in-
terpret visual scenes perfectly well without acting
upon them, linking action and perception seems cru-
cial to the developmental process that leads to that
competence. We can construct a working hypoth-
esis: that action is required to object recognition
in cases where an agent has to develop categoriza-
tion autonomously. Of course in standard supervised
learning action is not required since the trainer does
the job of pre-segmenting the data by hand. In an
ecological context, some other mechanism has to be
provided. Ultimately this mechanism is the body
itself that through action (under some suitable de-
velopmental rule) generates informative percepts.

Neurons in area F4 are thought to provide a body
map useful for generating arm, head, and trunk
movements. Our robot learns autonomously a crude
version of this body map by fusing vision and pro-
prioception. As a step towards establishing the kind
of visuomotor representations seen in F5, we then
develop a mechanism for using reaching actions to
visually probe the connectivity and physical extent
of objects without any prior knowledge of the ap-
pearance of the objects (or indeed of the arm itself).
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Head
(7 DOFs)
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(3 DOFs)

Left arm
(6 DOFs)

Right arm
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Figure 4: Degrees of freedom (DOFs) of the robot Cog.

The arms terminate either in a primitive “flipper” or a

four-fingered hand. The head, torso, and arms together

contain 22 degrees of freedom.

3. The experimental platform

This work is implemented on the robot Cog, an up-
per torso humanoid (Brooks et al., 1999). Cog has
two arms, each of which has six degrees of free-
dom. The joints are driven by series elastic actuators
(Williamson, 1999). The arm is not designed to en-
act trajectories with high fidelity. For that a very
stiff arm is preferable. Rather, it is designed to per-
form well when interacting with a poorly character-
ized environment, where collisions are frequent and
informative events. Cog runs an attentional system
consisting of a set of pre-attentive filters sensitive
to motion, color, and binocular disparity. The dif-
ferent filters generate information on the likelihood
that something interesting is happening in a certain
region of the image. A voting mechanism is used to
”decide” what to attend and track next. The pre-
attentive filters are implemented on a space-variant
imaging system, which mimics the distribution of
photoreceptors in the human retina. The attentional
system uses vision and non-visual sensors (e.g. iner-
tial) to generate a range of oculomotor behaviors.
Examples are saccades, smooth pursuit, vergence,
and the vestibulo-ocular reflex (VOR).

4. Perceiving direct effects of action

Motion of the arm may generate optic flow directly
through the changing projection of the arm itself, or
indirectly through an object that the arm is in con-
tact with. While the relationship between the optic
flow and the physical motion is likely to be complex,
the correlation in time of the two events should be ex-
ceedingly precise. This time-correlation can be used
as a “signature” to identify parts of the scene that
are being influenced by the robot’s motion, even in
the presence of other distracting motion sources. In
this section, we show how this tight correlation can
be used to localize the arm in the image without any
prior information about visual appearance.
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Figure 5: An example of the correlation between optic

flow and arm movement. The traces show the movement

of the wrist joint (upper plot) and optic flow sampled on

the arm (middle plot) and away from it (lower plot). As

the arm generates a repetitive movement, the oscillation

is clearly visible in the middle plot and absent in the

lower. Before and after the movement the head is free

to saccade, generating the other spikes seen in the optic

flow.

Reaching out

The first step towards manipulation is to reach ob-
jects within the workspace. If we assume targets are
chosen visually, then ideally we need to also locate
the end-effector visually to generate an error signal
for closed-loop control. Some element of open-loop
control is necessary since the end-point may not al-
ways be in the field of view (for example, when it
is in its the resting position), and the overall reach-
ing operation can be made faster with a feed-forward
contribution to the control.

The simplest possible open loop control
would map directly from a fixation point to
the arm motor commands needed to reach that
point (Metta et al., 1999) using a stereotyped
trajectory, perhaps using postural primitives
(Mussa-Ivaldi and Giszter, 1992). If we can
fixate the end-effector, then it is possible to
learn this map by exploring different combi-
nations of direction of gaze vs. arm position
(Marjanović et al., 1996, Metta et al., 1999). So
locating the end-effector visually is key both to
closed-loop control, and to training up a feed-
forward path. We shall demonstrate that this
localization can be performed without knowledge of
the arm’s appearance, and without assuming that
the arm is the only moving object in the scene.

Localizing the arm visually

The robot is not a passive observer of its arm,
but rather the initiator of its movement. This
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Figure 6: Detecting the arm/gripper through motion cor-

relation. The robot’s point of view and the optic flow

generated are shown on the left. On the right are the

results of correlation. Large circles represent the results

of applying a region growing procedure to the optic flow.

Here the flow corresponds to the robot’s arm and the ex-

perimenter’s hand in the background. The small circle

marks the point of maximum correlation, identifying the

regions that correspond to the robot’s own arm.

can be used to distinguish the arm from parts of
the environment that are more weakly affected by
the robot. The arm of a robot was detected in
(Marjanović et al., 1996) by simply waving it and as-
suming it was the only moving object in the scene.
We take a similar approach here, but use a more
stringent test of looking for optic flow that is corre-
lated with the motor commands to the arm. This
allows unrelated movement to be ignored. Even if a
capricious engineer were to replace the robot’s arm
with one of a very different appearance, and then
stand around waving the old arm, this detection
method will not be fooled.

The actual relationship between arm movements
and the optic flow they generate is complex. Since
the robot is in control of the arm, it can choose to
move it in a way that bypasses this complexity. In
particular, if the arm rapidly reverses direction, the
optic flow at that instant will change in sign, giving
a tight, clean temporal correlation. Since our op-
tic flow processing is coarse (a 16 × 16 grid over a
128 × 128 image at 15 Hz), we simply repeat this
reversal a number of times to get a strong correla-
tion signal during training. With each reversal the
probability of correlating with unrelated motion in
the environment goes down.

Figure 5 shows an example of this procedure in

Figure 7: Predicting the location of the arm in the im-

age as the head and arm change position. The rectangle

represents the predicted position of the arm using the

map learned during a twenty-minute training run. The

predicted position just needs to be sufficiently accurate

to initialize a visual search for the exact position of the

end-effector.

operation, comparing the velocity of the arm’s wrist
with the optic flow at two positions in the image
plane. A trace taken from a position away from the
arm shows no correlation, while conversely the flow
at a position on the wrist is strongly different from
zero over the same period of time. Figure 6 shows
examples of detection of the arm and rejection of a
distractor.

Localizing the arm using proprioception

The localization method for the arm described so far
relies on a relatively long “signature” movement that
would slow down reaching. This can be overcome by
training up a function to estimate the location of the
arm in the image plane from proprioceptive informa-
tion (joint angles) during an exploratory phase, and
using that to constrain arm localization during ac-
tual operation. Figure 7 shows the resulting behavior
after about twenty minutes of real-time learning.

5. Perceiving indirect effects of action

We have assumed that the target of a reaching opera-
tion is chosen visually. As discussed in the introduc-
tion, visual segmentation is not easy, so we should
not expect a target selected in this way to be a cor-
rectly segmented. For the example scene in Figure 3
(a cube sitting on a table), the small inner square
on the cube’s surface pattern might be selected as a
target. The robot can certainly reach towards this
target, but grasping it would prove difficult without
a correct estimate of the object’s physical extent. In
this section, we develop a procedure for refining the
segmentation using the same idea of correlated mo-
tion used earlier to detect the arm.

When the arm enters into contact with an object,
one of several outcomes are possible. If the object
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Begin Find end-effector Sweep Contact! Withdraw

Figure 8: The upper sequence shows an arm extending

into a workspace, tapping an object, and retracting. This

is an exploratory mechanism for finding the boundaries of

objects, and essentially requires the arm to collide with

objects under normal operation, rather than as an oc-

casional accident. The lower sequence shows the shape

identified from the tap using simple image differencing

and flipper tracking.

is large, heavy, or otherwise unyielding, motion of
the arm may simply be resisted without any visi-
ble effect. Such objects can simply be ignored, since
the robot will not be able to manipulate them. But
if the object is smaller, it is likely to move a little
in response to the nudge of the arm. This move-
ment will be temporally correlated with the time of
impact, and will be connected spatially to the end-
effector – constraints that are not available in passive
scenarios (Birchfield, 1999). If the object is reason-
ably rigid, and the movement has some component in
parallel to the image plane, the result is likely to be
a flow field whose extent coincides with the physical
boundaries of the object.

Figure 8 shows how a “poking” movement can be
used to refine a target. During a poke operation,
the arm begins by extending outwards from the rest-
ing position. The end-effector (or “flipper”) is lo-
calized as the arm sweeps rapidly outwards, using
the heuristic that it lies at the highest point of the
region of optic flow swept out by the arm in the im-
age (the head orientation and reaching trajectory are
controlled so that this is true). The arm is driven
outward into the neighborhood of the target which
we wish to define, stopping if an unexpected obstruc-
tion is reached. If no obstruction is met, the flipper
makes a gentle sweep of the area around the target.
This minimizes the opportunity for the motion of the
arm itself to cause confusion; the motion of the flip-
per is bounded around the endpoint whose location
we know from tracking during the extension phase,
and can be subtracted easily. Flow not connected
to the end-effector can be ignored as a distractor.
Figure 9 shows more detailed results, including ex-
amples of the actual segmented region assigned to
the object. In the absence of strong texture there
may be little motion signature in the interior of the
object, so we recruit a maximum-flow algorithm due

Figure 9: Cog batting a cube around. The top two rows

show the flipper poking the object repeatedly from the

side, turning it slightly. The third row shows Cog batting

an object away. The images in the first column are frames

prior to a collision. The second column shows the actual

impact. The third column shows the motion signal at

the point of contact. The bright regions in the images

in the final column show the segmentations produced for

the object.

to (Boykov and Kolmogorov, 2001) to fill in such re-
gions efficiently.

The poking operation gives clear results for a rigid
object that is free to move. What happens for non-
rigid objects and objects that are attached to other
objects? Here the results of poking are likely to be
more complicated to interpret – but in a sense this is
a good sign, since it is in just such cases that the idea
of an object becomes less well-defined. Poking has
the potential to offer an operational theory of “ob-
jecthood” that is more tractable than a vision-only
approach might give, and which cleaves better to the
true nature of physical assemblages. The idea of a
physical object is rarely completely coherent, since
it depends on where you draw its boundary and that
may well be task-dependent. Poking allows us to
determine the boundary around a mass that moves
together when disturbed, which is exactly what we
need to know for manipulation. As an operational
definition of object, this has the attractive property
of breaking down into ambiguity in the right circum-
stances – such as for large interconnected messes,
floppy formless ones, liquids, and so on.

6. Developing mirror neurons?

Poking moves us one step outwards on a causal chain
away from the robot and into the world, and gives
a simple experimental procedure for segmenting ob-
jects. There are many possible elaborations of this
method (some are mentioned in the conclusions), all
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within A’s brain…

object

goal

B doing object

A doing

Figure 10: Mirror neurons and causality: from the ob-

server’s point of view (A), understanding B’s action

means mapping it onto the observer’s own motor reper-

toire. If the causal chain leading to the goal is already

in place (lower branch of the graph) then the acquisition

of a mirror neuron for this particular action/object is a

matter of building and linking the upper part of the chain

to the lower one. There are various opportunities to rein-

force this link either at the object level, at the goal level

or both.

of which lead to a vision system that is tuned to
acquiring data about an object by seeing it manipu-
lated by the robot. An interesting question then is
whether the system could extract useful information
from seeing an object manipulated by someone else.
In the case of poking, the robot needs to be able to
estimate the moment of contact and to track the arm
sufficiently well to distinguish it from the object be-
ing poked. We are interested in how the robot might
learn to do this. One approach is to chain outwards
from an object the robot has poked. If someone else
moves the object, we can reverse the logic used in
poking – where the motion of the manipulator iden-
tified the object – and identify a foreign manipulator
through its effect on the object. Poking is an ideal
testbed for future work on this, since it is much sim-
pler than full-blown object manipulation and would
only require a very simple model of the foreign ma-
nipulator to work.

There is considerable precedent in the biologi-
cal literature for a strong connection between view-
ing object manipulation performed by either one-
self or another (Wohlscläger and Bekkering, 2002).
Also the role of object in the understanding
of action performed by others has been investi-
gated (Woodward, 1998). In a series of experiments
Woodward and colleagues elucidated the contribu-
tion that seeing an object makes for 5, 6, and 9
month old infants. They provided evidence that the
object and the goal-directness of the action represent
an important component in the understanding of the

intentions of others.
At the neural level, we already mentioned the pres-

ence of neurons in F5 that have a very specific re-
sponse when an object is either fixated or manipu-
lated (canonical neurons). Grossly simplifying, we
might think of canonical neurons as an association
table of grasp/manipulation (action) types with ob-
ject (vision) types.

F5 also contains mirror neurons. These neurons,
as we described before, respond when either watching
somebody else performing a manipulative action or
when actually manipulating an object. They can be
thought of as a second-level association map which
links together the observation of a manipulative ac-
tion performed by somebody else with the neural rep-
resentation of one’s own action.

The question of whether a mirror-like representa-
tion can be autonomously developed by the robot
(or a human for that matter) can then be answered.
The association map can be constructed by identify-
ing when the goal and the object are the same irre-
spective of who is the actor. Actions that lead to the
same consequences are thus part of the same equiv-
alence class. This is exactly what mirror neurons
represent.

Figure 10 shows this causal chain in action. There
are a series of interesting behaviors that can be re-
alized based on mirror neurons. Mimicry is an ob-
vious application, since it requires just this type of
mapping between other and self in terms of motor
actions. Another important application is the pre-
diction of future behavior from current actions, or
even inverting the causal relation to find the action
that most likely will get to the desired consequence.

7. Discussion and Conclusions

In this paper, we showed how causality can be probed
at different levels by the robot. Initially the environ-
ment was the body of the robot itself, then later
a carefully circumscribed interaction with the out-
side world. This is reminiscent of Piaget’s distinc-
tion between primary and secondary circular reac-
tions (Ginsburg and Opper, 1978). Objects are cen-
tral to interacting with the ouside world. We raised
the issue of how an agent can autonomously acquire
a working definition of objects.

The number of papers written on techniques for
visual segmentation is vast. Methods for char-
acterizing the shape of an object through tac-
tile information are also being developed, such
as shape from probing (Paulos, 1999) or push-
ing (Moll and Erdmann, 2001). But while it has
long been known that motor strategies can aid vi-
sion (Ballard, 1991), work on active vision has fo-
cused almost exclusively on moving cameras. There
is much to be gained by bringing a manipulator into
the equation, as we have shown in this paper.
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realtà: una teoria della coscienza per costruttori
di menti e cervelli. il Mulino.
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