
Automated Design of Adaptive Controllers for Modular Robots
using Reinforcement Learning

Paulina Varshavskaya, Leslie Pack Kaelbling and Daniela Rus
Computer Science and AI Laboratory
Massachusetts Institute of Technology

Cambridge MA, USA
{paulina|lpk|rus}@csail.mit.edu

Abstract

Designing distributed controllers for self-reconfiguring
modular robots has been consistently challenging. We
have developed a reinforcement learning approach which
can be used both to automate controller design and to
adapt robot behavior online. In this paper, we report on
our study of reinforcement learning in the domain of self-
reconfigurable modular robots: the underlying assump-
tions, the applicable algorithms, and the issues of partial
observability, large search spaces and local optima. We
propose and validate experimentally in simulation a num-
ber of techniques designed to address these and other scal-
ability issues that arise in applying machine learning to
distributed systems such as modular robots. We discuss
ways to make learning faster, more robust and amenable
to online application by giving scaffolding to the learn-
ing agents in the form of policy representation, structured
experience and additional information.

With enough structure modular robots can run learning
algorithms to both automate the generation of distributed
controllers, and adapt to the changing environment
and deliver on the self-organization promise with less
interference from human designers, programmers and
operators.

Keywords: Learning and Adaptive Systems, Cellular
and Modular Robots, Animation and Simulation.

1 Introduction

Self-reconfigurable modular robots are made up of dis-
tinct physical modules, which have degrees of freedom
to move with respect to each other and to connect to or
disconnect from each other. Such a robot is controlled
in a distributed fashion by the many processors embed-
ded in its modules (usually one processor per module),
where each processor is responsible for only a few of the
robot’s sensors and actuators. For the robot as a whole to
cohesively perform any task, the modules need to coordi-
nate their efforts without any central controller. In study-
ing self-reconfigurable modular robots (SRMRs) we give
up on easier centralized control in the hope of increased
versatility and robustness. However, design of distributed
controllers can be challenging. Most modular robotic sys-
tems run task-specific, hand-designed algorithms; for ex-
ample, the rule-based systems for the robotic Molecule
(Butler et al. 2004) took hours of designer time to synthe-
size. Some notable exceptions include systems where the
controllers were automatically generated using evolution-
ary techniques in simulation before being applied to the
robotic system itself (Kamimura et al. 2004, Mytilinaios
et al. 2004).

To improve SRMR usability, we use statistical machine
learning techniques to automatically develop distributed
controllers for this type of robots. Specifically, we work
in the reinforcement learning (RL) framework (Sutton &
Barto 1998) where agents observe and act in the envi-
ronment and receive a signal which tells them how well
they are doing. Unlike with evolutionary algorithms, re-

1

inforcement learning optimizes during the lifetime of the
learning agent, that is, the robot, as it attempts to perform
a task. This leads us to believe that the same paradigm
can be used not only to automate controller design for
SRMRs, but also to run distributed adaptive algorithms
directly on the robot, enabling it to change its behavior as
the environment, its goal, or its own composition changes.
Such capability of online adaptation would take us closer
to the goal of more versatile, robust and adaptable robots
through modularity and self-reconfiguration.

In our research we are ultimately pursuing both goals
in applying RL methods to self-reconfigurable modular
robots. This paper is the result of our study in applying a
class of RL methods known as policy search to the prob-
lem of locomotion gaits in SRMRs. The focus here is
on off-line controller design, but with a view to extend
the same RL paradigm to on-line adaptation. We start by
carefully delineating the fundamental assumptions under-
lying learning algorithms, as well as those required in dis-
tributed robotic systems such as SRMRs. We show in sec-
tion 2 what issues we need to address in choosing methods
from the RL arsenal, as a naı̈vely straightforward applica-
tion of the most powerful algorithms reveals a fundamen-
tal conflict of assumptions. In section 3 we present the
policy search algorithm, as well as a number of exten-
sions. These are motivated by a desire for faster learning
and reliably good behaviors. We then present experiments
in section 4 showcasing the capabilities and limitations of
policy search learning for SRMR systems and our exten-
sions, which we discuss in section 5. Prior and related
work can be found in section 6.

2 Conflicting assumptions
The most effective of the techniques collectively known
as reinforcement learning (RL) all make a number of as-
sumptions about the nature of the environment in which
the learning takes place. These assumptions lead to the
possibility of powerful learning techniques and accompa-
nying theorems that provide bounds and guarantees on the
learning process and its results. Unfortunately, these as-
sumptions are usually violated by any application domain
involving a physical robot operating in the real world. We
will demonstrate below that in the case of modular robots,
even their very simplified abstract kinematic models vio-

late assumptions necessary for the powerful techniques to
apply and the theorems to hold. As a result of this con-
flict, some creativity is essential in designing or applying
learning algorithms to the SRMR domain.

2.1 Assumptions of a Markovian world

Before we examine closely the conflict of assumptions, let
us quickly review the concept of reinforcement learning.

2.1.1 Reinforcement learning

Consider the class of problems in which an agent, such
as a robot, has to achieve some task by undertaking a se-
ries of actions in the environment, as shown in figure 1a.
The agent perceives the state of the environment, selects
an action to perform from its repertoire and executes it,
thereby affecting the environment which transitions to a
new state. The agent also receives a scalar signal indicat-
ing its level of performance, called the reward signal. The
problem for the agent is to find a good policy for selecting
actions given the states. The class of such problems can be
described by stochastic processes called Markov decision
processes (see below). The problem of finding an optimal
policy can be solved in a number of ways. For instance,
if a model of the environment is known to the agent, it
can use dynamic programming algorithms to optimize its
policy (Bertsekas 1995). However, in many cases such a
model is either unknown initially or impossibly difficult to
compute for all possible states. Optimization techniques
can be used in those situations.

Reinforcement learning is sometimes used in the liter-
ature to refer to the class of problems that we have just
described. It is more appropriately used to name the set
of statistical learning techniques employed to solve this
class of problems in the cases when a model of the envi-
ronment is not available to the agent. The agent may learn
such a model, and then solve the underlying decision pro-
cess directly. Or it may estimate a value function associ-
ated with every state it has visited (as is the case in figure
1a) from the reward signal it has received. Or it may up-
date the policy directly using the reward signal. We refer
the reader to a textbook (Sutton & Barto 1998) for a good
introduction to the problems addressed by reinforcement
learning and the details of standard solutions.

2

(a) (b)

Figure 1: The reinforcement learning framework. (a) In a fully observable world, the agent can estimate a value
function for each state and use it to select its actions. (b) In a partially observable world, the agent does not know
which state it is in due to sensor limitations; instead of a value function, the agent updates its policy parameters
directly.

It is assumed that the way the world works does not
change over time, so that the agent can actually expect to
optimize its behavior with respect to the world. This is
the assumption of a stationary environment. It is also as-
sumed that the probability of the world entering the state
s′ at the next time step is determined solely by the cur-
rent state s and the action chosen by the agent. This is the
Markovian world assumption, which we formalize below.
Finally, it is assumed that the agent knows all the infor-
mation it needs about the current state of the world and its
own actions in it. This is the full observability assump-
tion.

We now introduce some formal notation which will be-
come useful for the derivation of learning algorithms. The
interaction is formalized as a Markov decision process
(MDP), a 4-tuple 〈S, A, T,R〉, where S is the set of pos-
sible world states, A the set of actions the agent can take,
T : S × A → P (S) the transition function defining the
probability of being in state s′ ∈ S after executing action
a ∈ A while in state s, and R : S × A → R a reward
function. The agent maintains a policy π(s, a) = P (a|s)
which describes a probability distribution over actions
that it will take in any state. The agent does not know
T .

2.1.2 Factored MDPs

When more than one agent are learning to behave in the
same world that all of them affect, this more complex in-
teraction is usually described as a multi-agent MDP. Dif-
ferent formulations of processes involving multiple agents
exist, depending on the assumptions we make about the
information available to the learning agent or agents.

In the simplest case we imagine that learning agents
have access to a kind of oracle that observes the full state
of the MDP, but execute factored actions at = {a1

t ...a
n
t },

if there are n modules. The individual components of
a factored action at need to be coordinated among the
agents, and information about the actions taken by all
modules also must be available to every learning agent.
This formulation satisfies all of the strong assumptions
of a Markovian world, including full observability. How-
ever, as we argue later in section 2.2, to learn and maintain
a policy with respect to each state is in practice unrealis-
tic, as well as prohibitively expensive in both experience
and amount of computation.

2.1.3 Partially observable MDPs

Instead we can assume that each agent only observes a
part of the state that is local to its operation. If the agents
interact through the environment but do not otherwise

3

communicate, then each agent is learning to behave in
a partially observable MDP (POMDP), ignoring the dis-
tributed nature of the interaction, and applying its learn-
ing algorithm independently. Figure 1b shows the inter-
action between an agent and the environment when the
latter is only partially observable through the agent’s sen-
sors. In the partially observable formulation, there is no
oracle, and the modules have access only to factored ob-
servations over the state ot = Z(st) = {o1

t ...o
n
t }, where

Z : S → O is the unknown observation function which
maps MDP states to factored observations and O is the set
of possible observations. In this case, the assumption of
full observability is no longer satisfied. In general, pow-
erful learning techniques such as Q-learning (Watkins &
Dayan 1992) are no longer guaranteed to converge to a
solution, and optimal behavior is much harder to find.

Furthermore, the environment with which each agent
interacts comprises all the other agents who are learning
at the same time and thus changing their behavior. The
world is non-stationary due to many agents learning at
once, and thus cannot even be treated as a POMDP, al-
though in principle agents could build a weak model of
the competence of the rest of agents in the world (Chang
et al. 2004).

2.2 Assumptions of the kinematic model

(1) (2)

Figure 2: The sliding-cube kinematic model for lattice-
based modular robots: (1) a sliding transition, and (2) a
convex transition.

How does our kinematic model fit into these possible
sets of assumptions? We base our development and exper-
iments on the sliding-cube model for lattice-based self-
reconfigurable robots, previously used in the literature
(Butler et al. 2004, Fitch & Butler 2006, Varshavskaya
et al. 2004). In the sliding-cube model, each module of the
robot is represented as a cube (or a square in two dimen-

sions), which can be connected to other module-cubes at
either of its six (four in 2D) faces. The cube cannot move
on its own; however, it can move, one cell of the lattice at
a time, on a substrate of like modules in the following two
ways, as shown in figure 2: 1) if the neighboring module
M1 that it is attached to has another neighbor M2 in the
direction of motion, the moving cube can slide to a new
position on top of M2, or 2) if there is no such neighbor
M2, the moving cube can make a convex transition to the
same lattice cell in which M2 would have been. Provided
the relevant neighbors are present in the right positions,
these motions can be performed relative to any of the six
faces of the cubic module. The motions in this simpli-
fied kinematic model can actually be executed by physi-
cally implemented robots (Butler et al. 2004) such as the
Molecule (Kotay & Rus 2005) or MTRAN-II (Kamimura
et al. 2004), and therefore controllers developed in simu-
lation for this model are potentially useful for these robots
as well.

The assumptions made by the sliding-cube model are
that the agents are individual modules of the robot. The
modules have limited resources, which affects any poten-
tial application of learning algorithms:

limited actuation: each module can execute one of a
small set of discrete actions; each action takes a unit
amount of time to execute

limited power: actuation requires a significantly greater
amount of power than computation or communica-
tion

limited computation and memory: on-board computa-
tion is usually limited to microcontrollers

clock: the system may be either synchronized to a com-
mon clock, which is a rather unrealistic assumption,
or entirely asynchronous, with every module running
its code in its own time

Clearly, if an individual module knew the global con-
figuration and position of the entire robot, as well as the
action each module is about to take, then it would also
know exactly the state (i.e., position and configuration) of
the robot at the next time step, as we assume a determin-
istic kinematic model. Thus, the world can be Markovian.
However, this global information is not available to indi-
vidual modules due to limitations in computational power

4

and communications bandwidth. They may communicate
with their neighbors at each of their faces to find out the
local configuration of their neighborhood region.

2.3 Possibilities for conflict resolution
We have established that modular robots have intrinsic
partial observability, since the decisions of one module
can only be based on its own state and the observations
it can gather from local sensors. Communications may
be present between neighboring modules but there is gen-
erally no practical possibility for one module to know or
infer the total system state at every timestep, except per-
haps for very small-scale systems.

Therefore, for SRMR applications, we see two pos-
sibilities for resolving the fundamental conflict between
locally observing, acting and learning modules and the
Markov assumption. We can either resign to learning in a
distributed POMDP, or we can attempt to orchestrate a co-
ordination scheme between modules. In the first case, we
lose convergence guarantees for powerful learning tech-
niques such as Q-learning, and must resort to less appeal-
ing algorithms. In the second case, that of coordinated
MDPs, we may be able to employ powerful solutions in
practice (Guestrin et al. 2002, Kok & Vlassis 2006); how-
ever, the theoretical foundations of such application is not
as sound as that of a single-agent MDP. In this paper,
we focus on algorithms developed for partially observable
processes.

2.4 Case study: locomotion by self-
reconfiguration

We now examine the problem of synthesizing locomotion
gaits for modular self-reconfiguring robots. The abstract
kinematic model of a 2D lattice-based robot is shown in
figure 3. The modules are constrained to be connected to
each other in order to move with respect to each other;
they are unable to move on their own. The robot is posi-
tioned on an imaginary 2D grid, which corresponds to the
vertical (x, y) plane, where we show compass directions
for clarity of exposition later; and each module can ob-
serve at each of its 4 faces (positions 1, 3, 5, and 7 on the
grid) whether or not there is another connected module on
that neighboring cell. A module (call it M) can also ask
those neighbors to confirm whether or not there are other

connected modules at the corner positions (2, 4, 6, and 8
on the grid) with respect to M . These eight bits of obser-
vation comprise the local configuration that each module
perceives1. The ground line underlying the lattice is not
perceived by the modules (for example, by module in cell
number 5). It is treated as free space for the purposes of
observation; however the simulator will prevent the mod-
ules from moving through it or from disconnecting the
robot completely from it.

Figure 3: The setup for locomotion by self-
reconfiguration on a lattice in 2D.

Thus, the module M in the figure knows that lattice
cells number 3, 4, and 5 have other modules in them, but
lattice cells 1, 2, and 6-8 are free space. M has a reper-
toire of 9 actions, one for moving into each adjacent lat-
tice cell (face or corner), and one for staying in the current
position. Given any particular local configuration of the
neighborhood, only a subset of those actions can be exe-
cuted, namely those that correspond to the sliding or con-
vex motions about neighbor modules at any of the face
sites. This knowledge may or may not be available to
the modules. If it is not, then the module needs to learn
which actions it will be able to execute by trying and fail-
ing2. The modules are learning a locomotion gait with the
eastward direction of motion receiving positive rewards,
and the westward receiving negative rewards.

Clearly, if the full global configuration of this modu-
lar robot were known to each module, then each of them

1When two neighboring cells at face positions that border the same
corner are empty, M will assume that the corner position is also empty.
For example, in figure 3, M cannot see but assumes that position 8 is
empty. It will not matter either way, since M will not be able to move
into the corner position without at least one relevant face neighbor (1 or
7) present.

2In that case the simulator will make any action that would discon-
nect the robot fail.

5

could learn to select the best action in any of them with
an MDP-based algorithm. If there are only two or three
modules, this may be done as there are only 4 (or 18 re-
spectively) possible global configurations. However, the 8
modules shown in figure 3 can be in a prohibitively large
number of global configurations; and we are hoping to
build modular systems with tens and hundreds of mod-
ules. Therefore it is more practical to resort to learning
in a partially observable world, where each module only
knows about its local neighborhood configuration.

The algorithms we present in the next section were not
developed exclusively for this scenario. They are general
techniques applicable to multi-agent domains. However,
the example problem above may be useful in understand-
ing how they instantiate to the SRMR domain.

3 Independent POMDP learning
The first approach we take in dealing with distributed ac-
tions, local observations and partial observability is to de-
scribe the problem of locomotion by self-reconfiguration
of a modular robot as a multi-agent POMDP. We assume
that each module only conditions its actions on the current
observation; and that only one action is taken at any one
time. To learn in this POMDP we use a policy search al-
gorithm based on gradient ascent in policy space (GAPS),
proposed by Peshkin (2001). This approach assumes a
given parametric form of the policy πθ(o, a) = P (a|o, θ),
where θ is the vector of policy parameters, and the policy
is a differentiable function of the parameters. The learn-
ing proceeds by gradient ascent on the parameters θ to
maximize expected long-term reward.

Section 3.1 describes the derivation of the basic GAPS
algorithm.

3.1 Gradient ascent in policy space
The basic GAPS algorithm does hill-climbing to maxi-
mize the value (that is, long-term expected reward) of
the parameterized policy. The derivation starts with not-
ing that the value of a policy πθ is Vθ = Eθ[R(h)] =∑

hεH R(h)P (h|θ), where θ is the parameter vector
defining the policy and H is the set of all possible ex-
perience histories. If we could calculate the derivative of
Vθ with respect to each parameter, it would be possible
to do exact gradient ascent on the value (Peshkin 2001)

by making updates ∆θk = α ∂
∂θk

Vθ. However, we do not
have a model of the world that would give us P (h|θ) and
so we will use stochastic gradient descent instead. Note
that R(h) is not a function of θ, and the probability of a
particular history can be expressed as the product of two
terms (under the Markov assumption):

P (h|θ) =

= P (s0)

T∏
t=1

P (ot|st)P (at|ot, θ)P (st+1|st, at)

=

[
P (s0)

T∏
t=1

P (ot|st)P (st+1|st, at)

][
T∏

t+1

P (at|ot, θ)

]
= Ξ(h)Ψ(h, θ),

where Ξ(h) is not known to the learning agent and does
not depend on θ, and Ψ(h, θ) is known and differentiable
given the assumption of a differentiable policy represen-
tation. Therefore, ∂

∂θk
Vθ =

∑
hεH R(h)Ξ(h) ∂

∂θk
Ψ(h, θ).

The differentiable part of the update gives:

∂

∂θk
Ψ(h, θ) =

∂

∂θk

T∏
t=1

πθ(at, ot) =

=

T∑
t=1

 ∂

∂θk
πθ(at, ot)

∏
τ 6=t

πθ(aτ , oτ)

=

T∑
t=1

[
∂

∂θk
πθ(at, ot)

πθ(at, ot)

T∏
t=1

πθ(at, ot)

]

= Ψ(h, θ)

T∑
t=1

∂

∂θk
ln πθ(at, ot).

Therefore,

∂
∂θk

Vθ =
∑

hεH R(h)
(
P (h|θ)

∑T
t=1

∂
∂θk

ln πθ(at, ot)
)

.

The stochastic gradient ascent algorithm operates by col-
lecting algorithmic traces at every time step of each learn-
ing episode. Each trace reflects the contribution of a sin-
gle parameter to the estimated gradient. The makeup of
the traces will depend on the policy representation.

The most obvious representation is a lookup table,
where rows are possible local observations and columns
are actions, with a parameter for each observation-
action pair. The GAPS algorithm was originally derived
(Peshkin 2001) for such a representation, and is repro-
duced here for completeness (Algorithm 1). The traces

6

Algorithm 1 GAPS (observation function o, M modules)
Initialize parameters θ ← small random numbers
for each episode do

Calculate policy π(θ)
Initialize observation counts N ← 0
Initialize observation-action counts C ← 0
for each timestep in episode do

for each module m do
observe om and increment N(om)
choose a from π(om, θ) and increment C(om, a)
execute a

end for
end for
Get global reward R
Update θ according to
θ (o, a) += α R (C(o, a)− π(o, a, θ) N(o))
Update π(θ) using Boltzmann’s law

end for

are obtained by counting occurrences of each observation-
action pair, and taking the difference between that number
and the expected number that comes from the current pol-
icy. The policy itself, i.e., the probability of taking an
action at at time t given the observation ot and current
parameters θ is given by Boltzmann’s law:

πθ(at, ot) = P (at|ot, θ) =
eβθ(ot,at)∑
a∈A eβθ(ot,a)

,

where β is an inverse temperature parameter that controls
the steepness of the curve and therefore the level of explo-
ration.

This gradient ascent algorithm has some important
properties. As with any stochastic hill-climbing method,
it can only be relied upon to reach a local optimum in the
represented space. We can attempt to mitigate this prob-
lem by running GAPS from many initialization points and
choosing the best policy, or by initializing the parameters
in a smarter way. The latter approach is explored in sec-
tion 3.4.

GAPS has another property interesting for our twin pur-
poses of controller generation and run-time adaptation. A
theorem (Peshkin 2001) says that the centralized factored
version of GAPS and the distributed multi-agent version
will make the same updates given the same experience.
That means that, given the same experience and the same
rewards, the two instantiations of the algorithm will find

the same solutions. The practical consequences of this
result are examined in section 4.3.

In the remainder of this section, we describe exten-
sions to the basic algorithm based on the following idea.
We can improve the performance of GAPS and speed up
the learning process by imparting more knowledge to the
modules. This additional information comes in two types:
on the one hand, we can guide the search by creating a
more compact representation (section 3.2) or introducing
constraints on exploration (section 3.3); on the other hand,
we can initialize the search at a smarter starting point (sec-
tion 3.4).

3.2 GAPS learning with feature spaces
We propose to represent the policy compactly as a func-
tion of a number of features defined over the observation-
action space of the learning module. Suppose the designer
can identify some salient parts of the observation that are
important to the task being learned. We can define a vec-
tor of feature functions over the observation-action space
Φ(a, o) = [φ1(a, o)φ2(a, o)...φn(a, o)]T . These feature
functions are domain-dependent and can have a discrete
or continuous response field. Then the policy encoding
for the learning agent (the probability of executing an ac-
tion at) is:

πθ(at, ot) = P (at|ot, θ) =
eβΦ(at,ot)·θ∑
aεA eβΦ(a,ot)·θ

,

where β is again an inverse temperature parameter. This
definition of probability of selecting action at is the coun-
terpart of Boltzmann’s law in feature space. The deriva-
tion of the log-linear GAPS algorithm (LLGAPS) then
proceeds as follows:

∂

∂θk
lnP (at|ot, θ) =

=
∂

∂θk

(
βΦ(at, ot) · θ − ln

(∑
aεA

eβΦ(a,ot)·θ

))

= β φk(at, ot)−
∂

∂θk

∑
a eβΦ(a,ot)·θ∑

a eβΦ(a,ot)·θ

= β

(
φk(at, ot)−

∑
a φk(a, ot)e

βΦ(a,ot)·θ∑
a eβΦ(a,ot)·θ

)

= β

(
φk(at, ot)−

∑
a

φk(a, ot)πθ(a, ot)

)
= λk(t).

7

Algorithm 2 LLGAPS (Observation function o, N fea-
ture functions φ)

Initialize parameters θ ← small random numbers
for each episode do

Initialize traces Λ← 0
for each timestep t in episode do

Observe current situation ot and get features response
for every action Φ(∗, ot)
Sample action at according to policy (Boltzmann’s law)
for k = 1 to N do

Λk ← Λk + β (φk(at, ot)− Σaφk(a, ot)πθ(a, ot))
end for

end for
θ ← θ + α R Λ

end for

The accumulated traces λk are only slightly more compu-
tationally involved than the simple counts of the original
GAPS algorithm. The updates are just as intuitive, how-
ever, as they still assign more credit to those features that
differentiate more between actions normalized by their
likelihood under the current policy.

The algorithm (Algorithm 2) is guaranteed to converge
to a local maximum in policy value space, for a given fea-
ture and policy representation.

3.3 Additional exploration constraints
In an effort to reduce the search space for gradient-based
algorithms, we are looking for ways to give the learning
modules some information that is easy for the designer to
specify yet will be very helpful in narrowing the search.
An obvious choice is to let the modules pre-select actions
that can actually be executed in any one of the local con-
figurations.

Each module will know which subset of actions it can
safely execute given any local observation, and how these
actions will affect its position; yet it will not know what
new local configuration to expect when the associated mo-
tion is executed. Restricting search to legal actions is use-
ful because it (1) effectively reduces the number of pa-
rameters that need to be learned and (2) causes the initial
exploration phases to be more efficient because the robot
will not waste its time trying out impossible actions. The
second effect is probably more important than the first.

The following rules were used to pre-select the subset

Ai
t of actions possible for module i at time t, given the

local configuration as the immediate Moore neighborhood
(see also figure 4):

1. Ai
t = {NOP}3 if three or more neighbors are

present at the face sites

2. Ai
t = {NOP} if two neighbors are present at oppo-

site face sites

3. Ai
t = {NOP} if module i is the only “cornerstone”

between two neighbors at adjacent face sites4

4. Ai
t = {legal actions based on local neighbor config-

uration and the sliding-cube model}

5. Ai
t = Ai

t− any action that would lead into an already
occupied cell

These rules are applied in the above sequence and in-
corporated into the GAPS algorithm by setting the corre-
sponding θ(ot, at) to a large negative value, thereby mak-
ing it extremely unlikely that actions not in Ai

t would be
randomly selected by the policy. Those parameters are
not updated, thereby constraining the search at every time
step.

We predict that the added space structure and con-
straints that were introduced here will result in the modu-
lar robot finding good policies with less experience.

3.4 Smarter starting points

Stochastic gradient ascent can be sensitive to the starting
point in the policy space from which search initiates. In
the case of learning to locomote by self-reconfiguration, it
is also easier for the modules to learn if exploration starts
from a reasonable policy. Here, we discuss two potential
strategies for seeding the algorithms with initial parame-
ters that may lead to better policies.

3NOP stands for ‘no operation’ and means the module’s action is
to stay in its current location and not attempt any motion.

4This is a very conservative rule designed to prevent robot discon-
nections.

8

(a) (b) (c) (d)

Figure 4: Determining if actions are legal for the purpose of constraining exploration: (a) A = {NOP}, (b) A =
{NOP}, (c) A = {NOP} (d) A = {2(NE), 7(W)}.

(a) (b)

Figure 5: (a) A locomotion gait policy (conditional probability distribution over actions given an observation). (b)
First few configurations of 9 modules executing the policy during a test run.

3.4.1 Incremental GAPS learning

It is possible to leverage the modular nature of our prob-
lem in order to improve the convergence rate of the gra-
dient ascent algorithm and reduce the amount of experi-
ence required by seeding the learning in an incremental
way. We notice that the learning problem is easier when
the robot has fewer modules than the size of its neighbor-
hood, since it means that each module will see and have
to learn a policy for a smaller number of observations.

If we start with only two modules, and add more incre-
mentally, we effectively reduce the problem search space.
With only two modules, given the physical coupling be-
tween them, there are only four observations to explore.
Adding one other module means adding another nine pos-
sible observations and so forth. The problem becomes
more manageable. Therefore, we have proposed the In-
cremental GAPS (IGAPS) algorithm.

IGAPS works by initializing the parameters of N mod-
ules’ policy with those resulting from N−1 modules hav-
ing run GAPS. Suppose a number of robotic agents need
to learn a task that can also be done in a similar way with
fewer robots. We start with the smallest possible number
of robots; in our case of self-reconfiguring modular robots
we start with just two modules. The two initial modules
initially run the GAPS algorithm. They may stop either
after a pre-specified number of episodes, or after their pol-
icy parameters have converged to some values θc2. Then
a new module is introduced, and the resulting three agents
learn again, starting from θc2 and using GAPS for a num-
ber of episodes or until convergence. Then a fourth mod-
ule is introduced, and the process is repeated until the re-
quired number of modules has been reached, and all have
run the learning algorithm to convergence of policy pa-
rameters.

9

3.4.2 Partially known policies

In some cases the designer may be able to inform the
learning algorithm by starting the search at a “good” point
in parameter space. Incremental GAPS automatically
finds such good starting points for each consecutive num-
ber of modules. A partially known policy can be repre-
sented easily in parameter space, in the case of represen-
tation by lookup table, by setting the relevant parameters
to considerably higher values. Starting from a partially
known policy may be especially important for problems
where experience is scarce.

4 Experiments

In this section we present results from a number of ex-
periments designed to test how well the basic GAPS al-
gorithm and various extensions perform on the locomo-
tion task using the sliding-cube kinematic model in sim-
ulation. First, we establish empirically the difference be-
tween applying a technique derived for MDPs to a par-
tially observable distributed POMDP by comparing how
GAPS, Q-learning and Sarsa (Sutton 1995), which is an
on-policy temporal difference, MDP-based method, fare
on the task. Then we explore the extensions introduced in
section 3 as they provide structure, constraints and initial-
ization information to GAPS learners. We predicted that
the extensions should speed up learning by requiring less
experience and less exploration.

4.1 The experimental setup

We conduct experiments on a simulated two-dimensional
modular robot, which is shown in figure 3. As previewed
in section 2.4, each module can observe its immediate
Moore neighborhood (eight immediate neighbor cells) to
see if those cells are occupied by a neighboring module
or empty. Each module can also execute one of nine ac-
tions, which are to move into one of the neighboring cells
or a NOP. The simulator is synchronous, meaning that
each module executes its action in turn, and no module
can go twice before every other module has taken its turn.
This assumption is unrealistic; we hope to relax it in fu-
ture work. The task is to learn to move in one direction
(East) by self-reconfiguration. The reward function mea-

sures the progress the modules make in one episode along
the x axis of the simulator. Figure 5 shows how a policy
(a) can be executed by modules to produce a locomotion
gait (b) and therefore gain reward.

We run the experiments in two broad conditions. First,
the goal of automatically generating controllers can in
principle be achieved in simulation off-line, and then im-
parted to the robot for run-time execution. In that case, we
can require all modules to share one set of policy param-
eters, that is, to pool their local observations and actions
for one learning “super-agent” to make one set of param-
eter updates, which then propagates to all the modules on
the next episode. Second, we run the same learning al-
gorithms on individual modules operating independently,
without sharing their experience.

4.2 Learning by pooling experience

The focus of this section is on the first condition, where a
centralized algorithm is run off-line with factored obser-
vations and actions. All modules execute the same policy
and get the same reward.

In each case, the experiment consisted of 10 runs of
the learning algorithm, starting from a randomized ini-
tial state. The experiments were set up as episodic learn-
ing with each episode terminating after 50 timesteps. The
distance that the robot’s center of mass moved during an
episode was presented to all modules or the centralized
learner as the reward at the end of the episode.

Unless noted otherwise, in all conditions the learning
rate started at α = 0.01, decreased over the first 1, 500
episodes, and remained at its minimal value of 0.001
thereafter. The inverse temperature parameter started at
β = 1, increased over the first 1, 500 episodes, and re-
mained at its maximal value of 3 thereafter. This ensured
more exploration and larger updates in the beginning of
each learning trial. These parameters were selected by
trial and error, as the ones consistently generating the
best results. Whenever results are reported as smoothed,
downsampled average reward curves, the smoothing was
done with a 100-point moving window on the results of
every trial, which were then downsampled for the sake of
clarity, to exclude random variation and variability due to
continued within-trial exploration. The curves are shown
with standard error bars every 1,000 episodes.

10

(a) (b)

Figure 6: Performance of policies learned by 15 modules in the 2D locomotion task running Q-learning, Sarsa and
GAPS: (a) smoothed, downsampled average rewards per learning episode over 10 trials (Q-learning and Sarsa each),
50 trials (GAPS), with standard error; (b) typical single trial learning curves.

4.2.1 MDP-like learning vs. gradient ascent

The first set of experiments is pitting the GAPS algo-
rithm against two powerful algorithms which make the
Markov assumption: Q-learning (Watkins & Dayan 1992)
and Sarsa (Sutton 1995). Sarsa is an on-policy algorithm,
and therefore may do better than Q-learning on our task.
However, our prediction was that both would fail to reli-
ably converge to a policy in the locomotion task, whereas
gradient ascent would succeed in finding a locally optimal
policy5. Figure 6a shows the smoothed average learning
curves, with standard error, for both algorithms. Fifteen
modules were learning to locomote eastward in 10 sepa-
rate trial runs (50 trials for GAPS).

As predicted, gradient ascent receives considerably
more reward than either Q-learning or Sarsa. In test tri-
als this discrepancy manifested itself as finding a good
policy for moving eastward (one such policy is shown in
figure 5) for GAPS, and failing to find a reasonable pol-
icy for Q-learning and Sarsa: modules oscillated, moving
up-and-down or left-and-right and the robot did not make
progress. In figure 6b we see the raw rewards collected at
each episode in one typical trial run of all three learning
algorithms.

5As we will see later, a locally optimal policy is not always a good
locomotion gait.

4.2.2 Learned and hand-designed controllers

The structure of the reward signal used during the learn-
ing phase determines what the learned policies will do to
achieve maximum reward. In the case of eastward lo-
comotion the reward does not depend on the shape of
the modular robot, only on how far east is has gone at
the end of an episode. On the other hand, the hand-
designed policies of Butler et al. (2001) were specifically
developed to maintain the convex, roughly square or cu-
bic overall shape of the robot, and to avoid any holes
within that shape. It turns out that one can go farther
faster if this constraint is relaxed. The shape-maintaining
hand-designed policy, executed by 15 modules for 50 time
steps (as shown in figure 8b), achieves an average reward
per episode of 5.8 (σ = 0.9), whereas its counterpart
learned using GAPS (execution sequence shown in fig-
ure 8a) achieves an average reward of 16.5 (σ = 1.2).
Table 1 graphically represents the rules distilled from the
best policy learned by GAPS. The robot executing this
policy unfolds itself into a two-layer thread, then uses a
thread-gait to move East. While very good at maximiz-
ing this particular reward signal, these policies no longer
have the “nice” properties of the hand-designed policies
of Butler et al. (2001). Figure 8 shows how the learned
and the hand-designed gaits differ. By learning with no
constraints and a very simple objective function (maxi-

11

(a) (b)

Figure 7: 6 modules learning with LLGAPS and 144 features. (a) One of the features used for function approximation
in the LLGAPS experiments: this feature function returns 1 if there are neighbors in all three cells of the upper left
corner and at = 2 (NE). (b) Smoothed, downsampled average rewards over 10 runs, with standard error: comparison
between original GAPS and LLGAPS.

t d → NEdt , d dt , dd dt → SEdt d , d td d , dd dt d → E

dd t
, ddd t

, ddd td
→ S

t current actord neighbor module

Table 1: Rules for eastward locomotion, distilled from the
best policy learned by GAPS.

mize horizontal displacement), we forgo any maintenance
of shape, or indeed any guarantees that the learning algo-
rithm will converge on a policy that is a locomotion gait.
The best we can say is that, given the learning setup, it
will converge on a policy that locally maximizes the sim-
ple reward.

4.2.3 Learning in feature spaces

While these results demonstrate that modules running
GAPS learn a good policy, they also show that it takes
a long time for gradient ascent to find it. We next ex-
amine the extent to which we can reduce the number

of search space dimensions, and therefore, the experi-
ence required by GAPS through employing the feature-
based approach of section 3.2. We compare experiments
performed under two conditions. In the original condi-
tion, the GAPS algorithm was used with a lookup table
representation with a single parameter θ(o, a) for each
possible observation-action pair. For the task of loco-
motion by self-reconfiguration, this constituted a total of
28 × 9 = 2304 parameters to be estimated.

In the log-linear function approximation condition, the
LLGAPS algorithm was run with a set of features deter-
mined by hand as the cross product of salient aspects of
neighborhood observations and all possible actions. The
salient aspects were full corners and straight lines, and
empty corners and straight lines (see for example figure
7a), for a total of 144 features. In all cases, modules were
learning from the space of reactive policies only.

Figure 7b presents the results of comparing the perfor-
mance of LLGAPS with the original GAPS algorithm on
the locomotion task for 6 modules. We see that both algo-
rithms are comparable in both their speed of learning and
the average quality of the resulting policies.

In general, we expect gradient ascent algorithms to be
sensitive to the learning rate and temperature parameters.
Our previously reported results (Varshavskaya et al. 2006)

12

(a)

(b)

Figure 8: Screenshot sequence of 15 modules executing (a) the best policy found by GAPS, and (b) the hand-designed
policy for eastward locomotion. Robots composed of a larger number of modules behave in a similar way, subject to
a potentially longer transition phase from the compact initial configuration to the thread configuration for the learned
policy.

indicated that for 6 modules learning to locomote, LL-
GAPS converged significantly faster than GAPS to the
same good policies. This was due to a poor selec-
tion of parameters for the basic GAPS algorithm. With
the current settings, we see in figure 7b that 6 modules
learn equally well with equal amounts of experience, ei-
ther with the basic GAPS or the feature-based algorithm.
However, increasing the number of modules reveals that
LLGAPS is more prone to finding unacceptable local
minima, as explained in section 4.2.5. We also hypoth-
esized that increasing the size of the observed neighbor-
hood would favor the feature-based LLGAPS over the ba-
sic GAPS. As the size of the observation increases, the
number of possible local configuration grows exponen-
tially, whereas the features can be designed to grow lin-
early. We ran a round of experiments with an increased
neighborhood size of 12 cells obtained as follows: the
acting module observes its immediate face neighbors in
positions 1, 3, 5, and 7, and requests from each of them a
report on the three cells adjacent to their own faces6. Thus
the original Moore neighborhood plus four additional bits

6Again, if no neighbor is present at a face, and so no information is
available about a corner neighbor, it is assumed to be an empty cell.

of observation are available to every module, as shown in
figure 9a. This setup results in 212×9 = 36, 869 parame-
ters to estimate for GAPS. For LLGAPS we incorporated
the extra information thus obtained into an additional 72
features as follows: one partial neighborhood mask per
extra neighbor present, and one per extra neighbor absent,
where each of those 8 partial masks generates 9 features,
one per possible action. We found that increasing the
observation size indeed slows the basic GAPS algorithm
down (figure 9b, where LLGAPS ran with a much lower
learning rate to avoid too-large update steps: α = 0.005
decreasing to α = 1e−5 over the first 1,500 episodes
and remaining at the minimal value thereafter). During
the first few hundred episodes, LLGAPS does better than
GAPS. However, we have also found that LLGAPS does
not perform as well as the basic algorithm after both have
converged, and again is more likely to find locally opti-
mal policies that are not locomotion gaits. We conclude
that feature spaces need to be carefully designed to avoid
these pitfalls, which shifts the human designer’s burden
from developing distributed control algorithms to devel-
oping sets of features. The latter task may not be any less
challenging.

13

(a) (b)

Figure 9: (a) During experiments with an extended observation, modules had access to 12 bits of observation as
shown here. (b) Smoothed, downsampled average rewards, with standard error, obtained by 6 modules over 10 trials:
comparison between basic GAPS and LLGAPS.

4.2.4 Pre-screening for legal motions

We then tested the effect of introducing specific con-
straints into the learning problem. We constrain the search
by giving the robot partial a priori knowledge of the effect
of its actions. The module will be able to tell whether any
given action will generate a legal motion onto a new lat-
tice cell, or not. However, the module still will not know
which state (full configuration of the robot) this motion
will result in. Nor will it be able to tell what it will observe
locally at the next timestep. The amount of knowledge
given is really minimal. Nevertheless, with these con-
straints the robot no longer needs to learn not to try and
move into lattice cells that are already occupied, or those
that are not immediately attached to its neighbors. There-
fore we predicted that less experience would be required
for our learning algorithms. In fact, figure 10 shows that
there is a marked improvement, especially as the number
of modules grows.

4.2.5 Scalability and local optima

Stochastic gradient ascent algorithms are guaranteed to
converge to a local maximum in policy space. However,
those maxima may represent globally suboptimal policies.
Figure 11 shows execution snapshots of two locally op-

(a) (b)

Figure 11: Two local optima resulting in modules stuck in
a bad configuration from which they will not move.

timal policies, where the robot is effectively stuck in a
configuration from which it will not be able to move. In-
stead of consistently sending modules up and down the
bulk of the robot in a thread-like gait that we have found
to be globally optimal given our simple reward function,
the robot develops arm-like protrusions in the direction of
larger rewards. Unfortunately, for any module in that con-
figuration, the only locally good actions, if any, will drive
them further along the protrusion, and no module will at-
tempt to go down and back as the rewards in that case will
immediately be negative.

Local optima are always present in policy space, and
empirically it seems that GAPS, with or without pre-
screening for legal motions, is more likely to converge to
one of them with increasing number of modules compris-
ing the robot. The feature-based LLGAPS is even more
prone to fall for local optima, as shown in table 2. This ef-

14

(a) (b)

Figure 10: Smoothed, downsampled average rewards, with standard error, over 10 trial runs of modules running the
basic GAPS algorithm versus GAPS with pre-screening for actions resulting in legal moves: (a) 15 modules, and (b)
20 modules.

15 modules 20 modules
GAPS 0.1±0.1 5±1.7

LLGAPS 6.6±1.3 9.7±0.2
GAPS with pre-screened legal actions
no extra comms 0.3±0.3 4.2±1.5

1-hop 0.3±0.2 2.5±1.3
multi-hop 0.3±0.2 0.2±0.1

Table 2: In each of 10 learning trials, the learning was
stopped after 10,000 episodes and the resulting policy was
tested 10 times. The table shows the mean number of
times, with standard error, during these 10 test runs, that
modules became stuck in some configuration due to a lo-
cally optimal policy.

fect is the result of compressing the policy representation
into fewer parameters. When an action is executed that
leads to worse performance, the features that contributed
to the selection of this action will all get updated. That is,
the update step results a simultaneous change in different
places in the observation-action space, which can more
easily create a new policy with even worse performance.
Thus, the parameters before the update would be locally
optimal.

Having encountered this problem in scaling up the
modular system, we introduce new information to the pol-
icy search algorithms to reduce the chance of convergence
to a local maximum.

4.2.6 Extra communicated observations

In our locomotion task, locally optimal but globally sub-
optimal policies do not allow modules to wait for their
neighbors to form a solid supporting base underneath
them. Instead, they push ahead forming long protrusions.
We could reduce the likelihood of such formations by in-
troducing new constraints, artificially requiring modules
to stop moving and wait in certain configurations. For
that purpose, we expand the local observation space of
each module by one bit, which is communicated by the
module’s South/downstairs neighbor, if any. The bit is set
if the South neighbor is not supported by the ground or

15

(a) (b)

Figure 12: Smoothed, downsampled average rewards, with standard error, comparing the basic GAPS algorithm
to GAPS with pre-screening for legal actions and an extra bit of communicated observation through a 1-hop or a
multi-hop protocol: (a) for 15 modules (50 basic GAPS trials, 30 GAPS with pre-screening trials, 20 trials each
communications), (b) for 20 modules (20 trials each basic GAPS and pre-screening, 10 trials each communications).

another module underneath. If a module’s bit is set it is
not allowed to move at this timestep. We thus create more
time in which other modules may move into the empty
space underneath to fill in the base. Note that although we
have increased the number of possible observations by a
factor of 2 by introducing the extra bit, we are at the same
time restricting the set of legal actions in half of those
configurations to {NOP}. Therefore, we do not expect
GAPS to require any more experience to learn policies in
this case than before.

We investigate two communication algorithms for the
setting of the extra bit. If the currently acting module
is M1 and it has a South neighbor M2, then either 1)
M1 asks M2 if it is supported; if not, M2 sends the
set-bit message and M1’s bit is set (this is the one-hop
scheme), or 2) M1 generates a support request that prop-
agates South until either the ground is reached, or one of
the modules replies with the set-bit message and all
of their bits are set (this is the multi-hop scheme). Ex-
perimentally (see table 2) we find that it is not enough to
ask just one neighbor. While the addition of a single re-
quest halved the number of stuck configurations in a hun-
dred test trials for 20 modules, the chain-of-support multi-
hop scheme generated almost no such configurations. On
the other hand, the addition of communicated information

and waiting constraints does not seem to affect the amount
of experience necessary for learning. Figure 12a shows
the learning curves for both sets of experiments with 15
modules practically undistinguishable.

However, the average obtained rewards should be lower
for algorithms that consistently produce more suboptimal
policies. This distinction is more visible when the mod-
ular system is scaled up. When 20 modules run the four
proposed versions of gradient ascent, there is a clear dis-
tinction in average obtained reward, with the highest value
achieved by policies resulting from multi-hop commu-
nications (see figure 12b). The discrepancy reflects the
greatly reduced number of trial runs in which modules get
stuck, while the best found policies remain the same in all
conditions.

4.2.7 Learning from better starting points

Figure 13 shows how incremental GAPS performs on the
locomotion task. Its effect is most powerful when there
are only a few modules learning to behave at the same
time; when the number of modules increases beyond the
size of the local observation space, the effect becomes
negligible. Statistical analysis fails to reveal any signif-
icant difference between the mean rewards obtained by
basic GAPS vs. IGAPS for 6, 15, or 20 modules. Nev-

16

(a)

(b)

Figure 13: Smoothed, downsampled average rewards,
with standard error, over 10 trials: comparison between
basic GAPS and the incremental extension (a) for 6 mod-
ules and (b) for 15 modules.

ertheless, we see in table 3 that only 2.1 out of 10 test
runs on average produce arm-like protrusions when the
algorithm was seeded in the incremental way, against 5
out of 10 for basic GAPS. The lack of statistical signifi-
cance on the mean rewards may be due to the short time
scale of the experiments: in 50 timesteps, 20 modules may
achieve very similar rewards whether they follow a loco-
motion gait or build an arm in the direction of larger re-
wards. A drawback of the incremental learning approach
is that it will only work to our advantage on tasks where
the optimal policy does not change as the number of mod-
ules increases. Otherwise, IGAPS may well lead us more
quickly to a globally suboptimal local maximum.

We have taken the incremental idea a little further in

15 modules 20 modules
GAPS 0.1±0.1 5±1.7
IGAPS 0.3±0.3 2.1±1.3

Table 3: Mean number, with standard error, of dysfunc-
tional configurations, out of 10 test trials for 10 learned
policies, after 15 and 20 modules learning with basic vs.
incremental GAPS.

a series of experiments where robot size was increased
in larger increments. Starting with 4 modules in a 2 × 2
configuration, we have added enough modules at a time
to increase the square length by one, eventually reaching
a 10 × 10 initial configuration. The results can be seen
in figure 14 and table 4. The number of locally optimal
non-gait configurations was considerable for 100 mod-
ules, even in the IGAPS condition, but it was halved with
respect to the baseline GAPS.

GAPS IGAPS
4x4 modules 5.4±1.3 1.3±0.9
5x5 modules 10±0.0 1.7±1.2

10x10 modules 10±0.0 4.3±1.6

Table 4: Mean number, with standard error, of locally op-
timal configurations which do not correspond to accept-
able locomotion gaits out of 10 test trial for 10 learned
policies: basic GAPS algorithm vs. incremental GAPS
with increments by square side length. All learning trials
had episodes of length T=50, but test trials had episodes
of length T=250, in order to give the larger robots time to
unfold.

Figure 15 shows the results of another experiment in
better starting points. Usually the starting parameters for
all our algorithms are initialized to either small random
numbers or all zeros. However, sometimes we have a
good idea of what certain parts of our distributed con-
troller should look like. It may therefore make sense to
seed the learning algorithm with a good starting point by
imparting to it our incomplete knowledge. We have made
a preliminary investigation of this idea by partially spec-
ifying two good policy “rules” before learning started in
GAPS. Essentially we initialized the policy parameters to

17

(a) (b)

Figure 14: Incremental learning by square side length: smoothed, downsampled average rewards for (a) 25 and (b)
100 modules learning eastward locomotion with basic vs. incremental GAPS. Rewards obtained in 50 timesteps by
basic GAPS are greater than those of incremental GAPS for 100 modules; this highlights the effect of shorter episode
lengths on learning, as policies learned by incremental GAPS are much more likely to be locomotion gaits (see text
and table 4).

a very strong preference for the ‘up’ (North) action when
the module sees neighbors only on its right (East), and a
correspondingly strong preference for the ‘down’ (South)
action when the module sees neighbors only on its left
(West).

Statistical analysis reveals that mean rewards obtained
by GAPS with or without partial policy knowledge dif-
fer significantly for 20 modules, but not for 15. Again,
we observe an effect when the number of modules grows.
Note that for 15 modules, the average reward is (not sta-
tistically significantly) lower for those modules initialized
with a partially known policy. By biasing their behavior
upfront towards vertical motion of the modules, we have
guided the search away from the best-performing thread-
like gait, which relies more heavily on horizontal motion.
The effect will not necessarily generalize to any designer-
determined starting point. In fact, we expect there to be
a correlation between how many “rules” are pre-specified
before learning and how fast a good policy is found.

We expect extra constraints and information to be even
more useful when experience is scarce, as is the case when
modules learn independently in a distributed fashion with-
out tieing their policy parameters to each other.

4.3 Learning from individual experience

In all of the experiments reported in section 4.2 the pa-
rameters of the modules’ policies were tied; the mod-
ules were learning together as one, sharing their experi-
ence and their behavior. However, one of our stated goals
for applying reinforcement learning to self-reconfigurable
modular robots is to allow modules to adapt their con-
trollers at run-time, which necessitates a fully distributed
approach to learning, and individual learning agents in-
side every module. An important aspect of GAPS-style
algorithms is that they can be run in such an individual
fashion by agents in a multi-agent POMDP and they will
make the same gradient ascent updates provided that they
receive the same rewards and experience. Tieing policy
parameters together essentially increased the amount of
experience for the collective learning agent. Where a sin-
gle module makes T observations and executes T actions
during an episode, the collective learning agent receives
nT observations and nT actions during the same period
of time, where n is the number of modules in the robot.
If we run n independent learners using the same GAPS
algorithm on individual modules, we can therefore expect
that it will take proportionately more time for individual
modules to find good policies on their own. In addition,

18

(a) (b)

Figure 15: Smoothed, downsampled average rewards, with standard error, over 10 trials: effect of introducing a
partially known policy for (a) 15 modules and (b) 20 modules.

we would like to limit each module i’s knowledge of the
reward function to its own displacement Ri = ∆xi in T
timesteps (in the case of centralized learning, each mod-
ule would receive a reward that is the mean of individual
displacements: R = 1

N

∑N
i=1 Ri). This limits communi-

cation requirements among modules, but presents an ad-
ditional difficulty. In the experiments that follow, each
module is now optimizing its own displacement along the
horizontal line, using its own experience only, and the
equivalence theorem no longer holds.

We describe the results of experiments on modules
learning individual policies without sharing observation,
reward or parameter information. In all cases, the learning
rate started at α = 0.01, decreased uniformly over 7,000
episodes until 0.001 and remained at 0.001 thereafter. The
inverse temperature started at β = 1, increased uniformly
over 7,000 episodes until 3 and remained at 3 thereafter.
We report smoothed (100-point moving window), down-
sampled average rewards for the sake of clarity.

We see in figure 16 that the basic unconstrained version
of the algorithm is struggling in the distributed setting.
Despite a random permutation of module positions in the
start state before each learning episode, there is much less
experience available to individual agents. Therefore we
observe that legal-actions constraints and extra communi-
cated observations help dramatically. Surprisingly, with-
out any of these extensions, GAPS is also greatly helped

Figure 17: Smoothed downsampled averaged reward,
with standard error, over 10 trials of 15 modules running
algorithms seeded with a partial policy, with and without
pre-screening for legal actions and extra communicated
observations.

by initializing the optimization with a partially specified
policy. The same two “rules” were used in these experi-
ments as in section 4.2.7. Figure 17 compares the average
rewards during the course of learning in three conditions
of GAPS, where all three were initialized with the same
partial policy: 1) basic GAPS with no extra constraints,
2) GAPS with pre-screening for legal actions only, and 3)
GAPS with legal actions and an extra observation bit com-

19

(a) (b)

Figure 16: Smoothed, downsampled average rewards, with standard error, over 10 trials with 15 modules learning
to locomote using only their own experience: (a) original distributed GAPS vs. GAPS with pre-screening for legal
motions and 1-hop communications with neighbors below, and (b) original distributed GAPS vs. GAPS with pre-
screening for legal motions and a partially specified policy as starting point.

municated by the one-hop and the multi-hop protocols.
After a while, the curves in 1) and 3) are almost indis-
tinguishable, whereas 2) is consistently lower. However,
this very comparable performance can be due to the fact
that there is not enough time in each episode (50 steps) to
disambiguate between an acceptable locomotion gait and
locally optimal protrusion-making policies.

Figure 18: Average rewards achieved by 15 modules af-
ter 100,000 episodes of distributed GAPS learning seeded
with partially known policy, with various degrees of con-
straints and information, with standard deviation bars.

To test that hypothesis, in all 10 trials we stopped learn-

ing at 100,000 episodes and tested each resulting policy
during 10 runs with longer episodes (150 timesteps). Fig-
ure 18 shows that multi-hop communications are still nec-
essary to reduce the chances of getting stuck in a bad lo-
cal optimum. In addition, in the third column of table
5, which reports the incidence rates of unacceptable local
optima in sets of experiments with 15 and 20 modules, we
see that increasing the learning episode length to 100 time
steps helps disambiguate between the performance of the
algoirthm in different conditions. However, increasing the
episode length during learning will never alone eliminate
arm-like configurations, since they occur due to a short se-
quence of suboptimal local decisions, which can be made
at any point during the episode, including early on.

5 Discussion
The experimental results of section 4 are evidence that re-
inforcement learning can be used fruitfully in the domain
of self-reconfigurable modular robots. Most of our results
concern the improvement in SRMR usability through au-
tomated development of distributed controllers for such
robots; and to that effect we have demonstrated that, pro-
vided with a good policy representation and enough con-
straints on the search space, gradient ascent algorithms

20

15 modules 20 modules
T=50 T=50 T=100

Distributed GAPS 10±0.0 10±0.0
DGAPS with pre-screened legal actions

1-hop comms 1.3±0.2 10±0.0 9.6±0.4
multi-hop comms 0.9±0.3 9.6±0.4 3.7±1.1

DGAPS with partially known policy
no restrictions/info 1.2±0.4 10±0.0 9.9±0.1

legal actions 3.8±0.6 8.8±0.6 9.5±0.4
+ 1-hop 0.8±0.2 9.9±0.1 7.6±0.7

+ multi-hop 0.3±0.3 4.7±1.0 1.3±0.3

Table 5: In each of the 10 learning trials, the learning was
stopped after 100,000 episodes and the resulting policy
was tested 10 times. The table shows the mean number
of times, with standard error, during these 10 test runs for
each policy, that modules became stuck in some configu-
ration due to a locally optimal policy.

converge to good policies given enough time and expe-
rience. We have also shown a number of ways to struc-
ture and constrain the learning space such that less time
and experience is required and local optima become less
likely. Imparting domain knowledge or partial policy
knowledge requires more involvement from the human
designer, and our desire to reduce the search space in this
way is driven by the idea of finding a good balance be-
tween human designer skills and the automatic optimiza-
tion. If the right balance is achieved, the humans can seed
the learning algorithms with the kind of insight that is
easy for us; and the robot can then learn to improve on
its own.

We have explored two ways of imparting knowledge to
the learning system. On the one hand, we constrain explo-
ration by effectively disallowing those actions that would
result in a failure of motion (sections 3.3 and 4.2.4) or any
action other than NOP in special cases (section 4.2.6).
On the other hand, we initialize the algorithm at a better
starting point by an incremental addition of modules (sec-
tions 3.4.1 and 4.2.7) or by a partially pre-specified policy
(section 4.2.7). We have also explored compact represen-
tations through feature spaces as a means of describing
fewer policies and thereby reducing the search problem
(sections 3.2 and 4.2.3). These experiments suggest that

a good representation is very important for learning lo-
comotion gaits in SRMRs. Local optima abound in the
policy space when observations consists of the 8 bits of
the immediate Moore neighborhood. We saw GAPS and
LLGAPS both likely to converge to globally suboptimal
policies based on this representation. Restricting explo-
ration to legal motions only did not prevent this problem.
It seems that more information than what is available lo-
cally is needed for learning good locomotion gaits.

Therefore, as a means to mitigate the prevalence of lo-
cal optima, we have introduced a very limited communi-
cation protocol between neighboring modules. This in-
creased the observation space and potentially the number
of parameters to estimate. However, more search con-
straints in the form of restricting any motion if lack of
support is communicated to the module, allowed modules
to avoid the pitfalls of local optima substantially more of-
ten.

We have also found that local optima were more prob-
lematic the more modules were acting and learning at
once. The basic formulation of GAPS with no extra re-
strictions only moved into a configuration from which the
modules would not move once in 100 test trials when
there were 15 modules learning. When there were 20
modules learning, the number increased to almost half
of all test trials. It is important to use resources and
build supporting infrastructure into the learning algorithm
in a way commensurate with the scale of the problem;
more scaffolding is needed for harder problems involving
a larger number of modules.

Restricting the search space and seeding the algorithms
with good starting points is even more important when
modules learn in a completely distributed fashion from
their experience and their local rewards alone (section
4.3). We have shown that in the distributed case introduc-
ing constraints, communicated information, and partially
known policies all contribute to successful learning of a
locomotion gait, where the basic distributed GAPS algo-
rithm has not found a good policy in 100,000 episodes.
This is not very surprising, considering the amount of ex-
ploration each individual module needs to do in the unre-
stricted basic GAPS case. However, given enough con-
straints and enough experience, we have shown that it
is possible to use the same RL algorithms on individual
modules. It is clear that more work is necessary before
GAPS is ported to physical robots: for instance, we can-

21

not afford to run a physical system for 100,000 episodes
of 50 actions per module each. At present, we have de-
veloped an additional automation layer for the design of
distributed controllers. The policy is learned offline by
GAPS; it can then be transferred to the robots. In the
future we would like to see the robots, seeded with a
good policy learned offline, to run a much faster dis-
tributed adaptation algorithm to make practical run-time
on-the-robot adjustments to changing environments and
goals. We are currently exploring new directions within
the same concept of restricting the search in an intelligent
way without requiring too much involved analysis on the
part of the human designer. It is worth mentioning any-
way that the computations required by the GAPS algo-
rithm are simple enough to run on a microcontroller with
limited computing power and memory.

Another concern, when it comes to potential portabil-
ity of our results and the learning approach to physical
robots, is that in this paper, we have employed a very
simple model of the robot and its environment: an ab-
stract kinematic model in 2D. In the future, we hope to
extend our experiments to more realistic simulators that
take into account the third dimension and the robot’s ac-
tuation capabilities. We are also investigating the ex-
tent to which our results might apply to non-synchronized
systmes. All of the results reported here have assumed
a turn-taking execution of actions within each timestep
of the episode. If this assumption is relaxed, we ex-
pect the controllers to break down. However, prelimi-
nary results in a scenario where modules executed their
actions in an entirely random order over the length of
the episode (one module can go several times before an-
other one gets a chance) show that the best learned gaits
may be somewhat resilient in this respect: for 15 mod-
ules having learned locomotion gaits with basic central-
ized GAPS, testing with turn-taking execution produced
an average of 0.1±0.1 unacceptable non-gait configura-
tions out of 10 trials, while testing with random-order ex-
ecution produced only a slight increase to an average of
1.9±0.3 out of 10 such configurations. Otherwise, the
gaits look similar to those obtained with turn-taking exe-
cution, only making slower progress, and thus receiving
less reward on average, due to the random ordering of ac-
tions. At the same time, when learned policies are likely
to be stuck in unacceptable local minima, this tendency
will increase with the introduction of random ordering:

for 20 modules, where testing in the original, turn-taking
condition produced an average of 5±1.7 non-gait config-
urations out of 10 trials, testing with random ordering re-
sulted in an average of 9.3±0.1 out of 10. Extending our
approach further to fully asynchronous execution is an-
other promising direction for future research.

A more extensive empirical analysis of the space of
possible representations and search restrictions is needed
for a definitive strategy in making policy search work fast
and reliably in SRMRs. In particular, we would like to be
able to describe the properties of good feature spaces for
our domain, and ways to construct them. We also have
not tested enough different smarter starting points to be
able to say what kind of rule it is good to pre-specify.

As we explore collaboration between the human de-
signer and the automated learning agent, our experiments
have brought forward some issues that such interactions
could raise. As we have observed, the partial informa-
tion coming from the human designer can potentially lead
the search away from the global optimum. The mislead-
ing can take the form of a bad feature representation,
or an overconstrained search, or a partial policy that fa-
vors suboptimal actions. Another issue is that of provid-
ing a reward signal to the learning agents. Experiments
have shown that a simple performance measure such as
displacement during a time period cannot always disam-
biguate between good locomotion gaits and simply shift-
ing the center of mass into an arm-like protrusion. We are
currently working to address these issues.

In addition, we would like to extend our work using the
idea of coordination between modules that goes beyond
single-bit exchanges, inspired by recent work in the RL
community, such as coordination graphs (Guestrin et al.
2002, Kok & Vlassis 2006).

6 Related Work

We are building on a substantial body of research in both
reinforcement learning and distributed robotic systems.
Both these fields are well established and we cannot pos-
sibly do them justice in these pages, so we describe here
only the most relevant prior and related work. Specifically
we focus our discussion on relevant research in the field
of self-reconfigurable modular robots.

22

6.1 Automated controller design

In the modular robotics community, the need to em-
ploy optimization techniques to fine-tune distributed con-
trollers has been felt and addressed before. The Central
Pattern Generator (CPG) based controller of MTRAN-
II was created with parameters tuned by off-line genetic
algorithms (Kamimura et al. 2004). Evolved sequences
of actions have been used for machine self-replication
(Mytilinaios et al. 2004, Zykov et al. 2005). Kubica & Ri-
effel (2002) reported a partially automated system where
the human designer collaborates with a genetic algorithm
to create code for the Telecube module. The idea of au-
tomating the transition from a global plan to local rules
that govern the behavior of individual agents in a dis-
tributed system has also been explored from the point
of view of compilation in programmable self-assembly
(Nagpal 2002).

Reinforcement learning can be employed as just an-
other optimization technique off-line to automatically
generate distributed controllers. However, one advantage
of applying RL techniques to modular robots is that the
same, or very similar, algorithms can also be run on-line,
eventually on the robot, to update and adapt its behav-
ior to a changing environment. Our goal is to develop
an approach that will allow such flexibility of application.
Some of the ideas reported in this paper were previously
formulated in less detail (Varshavskaya et al. 2004, Var-
shavskaya et al. 2006). All the experimental results are
new and have not been previously reported.

6.2 Automated path planning

In the field of SRMRs, the problem of adapting to a
changing environment and goal during the execution of a
task has not received as much attention, with one notable
recent exception. Fitch & Butler (2006) use an ingenious
distributed path planning algorithm to automatically gen-
erate kinematic motion trajectories for the sliding-cube
robots to all move into a goal region. Their algorithm,
which is based on a clever distributed representation of
cost/value and standard dynamic programming, works
in a changing environment with obstacles and a moving
goal, so long as at least one module is always in the goal
region. The plan is decided on and executed in a com-
pletely distributed fashion and in parallel, making it an

efficient candidate for very large systems.
We view our approaches as complementary. The plan-

ning algorithm requires extensive thinking time in be-
tween each executed step of the reconfiguration. By con-
trast, in our approach, once the policy is learned it takes
no extra run-time planning to execute it. On the other
hand, Fitch and Butler’s algorithm works in an entirely
asynchronous manner; and they have demonstrated path-
planning on very large numbers of modules.

6.3 Distributed reinforcement learning
While the reinforcement learning paradigm has not
been applied previously to self-reconfigurable modular
robotics, there is a vast research field of distributed
and multi-agent reinforcement learning (Stone & Veloso
2000, Shoham et al. 2003). Applications have included
network routing and traffic coordination among others. In
robotics, multi-agent reinforcement learning has been ap-
plied to teams of robots with Q-learning as the algorithm
of choice (e.g., Mataric 1997, Fernandez & Parker 2001).
It was then also discovered that a lot of engineering is
needed to use Q-learning in teams of robots, so that there
are only a few possible states and a few behaviors to
choose from. Q-learning has also been attempted on a
non-reconfiguring modular robot (Yu et al. 2002) with
similar issues and mixed success.

More recently there has been much theoretical and al-
gorithmic work in multi-agent reinforcement learning, no-
tably in cooperative reinforcement learning through dis-
tributed value functions (Schneider et al. 1999), coordina-
tion graphs (Guestrin et al. 2002, Kok & Vlassis 2006),
and individual reward estimation from a common signal
using Kalman filters (Chang et al. 2004). The Robocup
competition (Kitano et al. 1997) has also driven research
in collaborative multi-agent reinforcement learning.

Hierarchies of machines (Andre & Russell 2000) have
been used in multi-agent RL as a strategy for constraining
policies to make Q-learning work faster.

6.4 Reinforcement learning by policy
search

In partially observable environments, policy search has
been extensively used (Peshkin 2001, Ng & Jordan 2000,
Baxter & Bartlett 2001, Bagnell et al. 2004) whenever

23

models of the environment are not available to the learn-
ing agent. In robotics, successful applications include hu-
manoid robot motion (Schaal et al. 2003), autonomous
helicopter flight (Ng et al. 2004), navigation (Grudic
et al. 2003), and bipedal walking (Tedrake et al. 2005),
as well as simulated mobile manipulation (Martin 2004).
In some of those cases, a model identification step is re-
quired prior to reinforcement learning, for example from
human control of the plant (Ng et al. 2004), or human
motion capture (Schaal et al. 2003). In other cases,
the system is brilliantly engineered to reduce the search
task to estimating as few as a single parameter (Tedrake
et al. 2005).

Function approximation, such as neural networks or
coarse coding, has also been widely used to improve per-
formance of reinforcement learning algorithms, for exam-
ple in policy gradient algorithms (Sutton et al. 2000) or
approximate policy iteration (Lagoudakis & Parr 2003).

7 Conclusion

In this paper we have presented the framework of rein-
forcement learning as it can be applied in the domain of
self-reconfigurable modular robots. We have discerned
two purposes for statistical learning in our field: that of
automating the writing of distributed controllers for the
robots, and that of allowing the robots to adapt their con-
trollers at run-time, if changes in the environment, task
or robot’s composition warrant such adaptation. We have
examined the assumptions under which powerful learning
techniques are guaranteed to work in the context of mod-
ular robots, and found at least one way of approaching
the formal difficulties presented by our distributed domain
through stochastic gradient ascent in policy space. We
then developed a number of extensions to the basic GAPS
algorithm aimed at constraining the problem and thus re-
ducing the amount of learning experience required by the
algorithms. We have finally presented, and discussed, em-
pirical evidence for our claims, based on experiments in a
simulated kinematic lattice-based robot.

Acknowledgements

The authors gratefully acknowledge the support of The
Boeing Company.

References

Andre, D. & Russell, S. (2000), Programmable reinforce-
ment learning agents, in T. K. Leen, T. G. Dietterich
& V. Tresp, eds, ‘Advances in Neural Information
Processing Systems’, MIT Press, Cambridge, MA.

Bagnell, J. A., Kakade, S., Ng, A. Y. & Schneider, J.
(2004), Policy search by dynamic programming, in
S. Thrun, L. K. Saul & B. Scholkopf, eds, ‘Advances
in Neural Information Processing Systems’, Vol. 16,
MIT Press, Cambridge, MA.

Baxter, J. & Bartlett, P. L. (2001), ‘Infinite-horizon
gradient-based policy search’, Journal of Artificial
Intelligence Research 15, 319–350.

Bertsekas, D. P. (1995), Dynamic programming and opti-
mal control, Athena Scientific, Belmont MA.

Butler, Z., Kotay, K., Rus, D. & Tomita, K. (2001),
Cellular automata for decentralized control of self-
reconfigurable robots, in ‘International Conference
on Intelligent Robots and Systems’, Wailea, Hawaii.

Butler, Z., Kotay, K., Rus, D. & Tomita, K. (2004),
‘Generic distributed control for locomotion with
self-reconfiguring robots’, International Journal of
Robotics Research 23(9), 919–938.

Chang, Y.-H., Ho, T. & Kaelbling, L. P. (2004), All learn-
ing is local: Multi-agent learning in global reward
games, in S. Thrun, L. K. Saul & B. Scholkopf, eds,
‘Advances in Neural Information Processing Sys-
tems’, Vol. 16, MIT Press, Cambridge, MA.

Fernandez, F. & Parker, L. E. (2001), ‘Learning in
large cooperative multi-robot domains’, Interna-
tional Journal of Robotics and Automation: Special
issue on Computational Intelligence Techniques in
Cooperative Robots 16(4), 217–226.

24

Fitch, R. & Butler, Z. (2006), A million-module march,
in ‘Digital Proceedings of the RSS Workshop on
Self-Reconfigurable Modular Robotics’, Philadel-
phia, PA.

Grudic, G., Kumar, V. & Ungar, L. H. (2003), Using pol-
icy gradient reinforcement learning on autonomous
robot controllers, in ‘International Conference on
Intelligent Robots and Systems’, Las Vegas NV.

Guestrin, C., Koller, D. & Parr, R. (2002), Multiagent
planning with factored MDPs, in T. G. Dietterich,
S. Becker & Z. Ghahramani, eds, ‘Advances in Neu-
ral Information Processing Systems’, Vol. 14, MIT
Press, Cambridge, MA.

Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S.,
Tomita, K. & Kokaji, S. (2004), Distributed adaptive
locomotion by a modular robotic system, M-TRAN
II – From local adaptation to global coordinated mo-
tion using cpg controllers, in ‘International Confer-
ence on Intelligent Robots and Systems’, Sendai,
Japan.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I. & Osawa,
E. (1997), RoboCup: The robot world cup initiative,
in W. L. Johnson & B. Hayes-Roth, eds, ‘Proceed-
ings of the First International Conference on Au-
tonomous Agents (Agents’97)’, ACM Press, New
York, pp. 340–347.

Kok, J. R. & Vlassis, N. (2006), ‘Collaborative multia-
gent reinforcement learning by payoff propagation’,
Journal of Machine Learning Research 7, 1789–
1828.

Kotay, K. & Rus, D. (2005), Efficient locomotion for
a self-reconfiguring robot, in ‘International Con-
fernece on Robotics and Automation’, Barcelona,
Spain.

Kubica, J. & Rieffel, E. (2002), Collaborating with a
genetic programming system to generate modular
robotic code, in W. et al., ed., ‘GECCO 2002: Pro-
ceedings of the Genetic and Evolutionary Compu-
tation Conference’, Morgan Kaufmann Publishers,
New York, pp. 804–811.

Lagoudakis, M. G. & Parr, R. (2003), ‘Least-squares
policy iteration’, Journal of Machine Learning Re-
search 4, 1107–1149.

Martin, M. (2004), The essential dynamics algorithm:
Fast policy search in continuous worlds, Vision And
Modeling Technical Report 582, MIT Media Labo-
ratory, Cambridge, MA.

Mataric, M. J. (1997), ‘Reinforcement learning in the
multi-robot domain’, Autonomous Robots 4(1), 73–
83.

Mytilinaios, E., Marcus, D., Desnoyer, M. & Lipson, H.
(2004), Designed and evolved blueprints for physi-
cal self-replicating machines, in ‘Ninth International
Conference on Artificial Life (ALIFE IX)’, Boston
MA.

Nagpal, R. (2002), Programmable self-assembly using
biologically-inspired multiagent control, in ‘Pro-
ceedings of the 1st International Joint Conference
on Autonomous Agents and Multi-Agent Systems
(AAMAS)’, Bologna, Italy.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J.,
Tse, B., Berger, E. & Liang, E. (2004), Autonomous
inverted helicopter flight via reinforcement learn-
ing, in ‘International Symposium on Experimental
Robotics (ISER)’, Singapore.

Ng, A. Y. & Jordan, M. (2000), PEGASUS: A policy
search method for large mdps and pomdps, in ‘In-
ternational Conference on Uncertainty in AI (UAI)’,
Stanford, CA.

Peshkin, L. (2001), Reinforcement Learning by Policy
Search, PhD thesis, Brown University, Department
of Computer Science.

Schaal, S., Peters, J., Nakanishi, J. & Ijspeert, A. (2003),
Learning movement primitives, in ‘International
Symposium on Robotics Research (ISRR)’, Siena,
Italy.

Schneider, J., Wong, W.-K., Moore, A. & Riedmiller, M.
(1999), Distributed value functions, in ‘Proceedings
of the International Conference on Machine Lean-
ring’, Bled, Slovenia.

25

Shoham, Y., Powers, R. & Grenager, T. (2003), Multi-
agent reinforcement learning: a critical survey,
Technical report, Stanford University, Palo Alto,
CA.

Stone, P. & Veloso, M. M. (2000), ‘Multiagent systems:
A survey from a machine learning perspective’, Au-
tonomous Robots 8(3), 345–383.

Sutton, R. S. (1995), Generatlization in reinforcement
learning: Successful examples using sparse coarse
coding, in D. S. Touretzky, M. C. Mozer & M. E.
Hasselmo, eds, ‘Advances in Neural Information
Processing Systems’, MIT Press, Cambridge, MA,
pp. 1038–1044.

Sutton, R. S. & Barto, A. G. (1998), Reinforcement
Learning, a Bradford Book, the MIT Press, Cam-
bridge MA.

Sutton, R. S., McAllester, D., Singh, S. & Mansour, Y.
(2000), Policy gradient methods for reinforcement
learning with function approximation, in T. K. Leen,
T. G. Dietterich & V. Tresp, eds, ‘Advances in Neu-
ral Information Processing Systems 12’, MIT Press,
Cambridge, MA.

Tedrake, R., Zhang, T. W. & Seung, H. S. (2005), Learn-
ing to walk in 20 minutes, in ‘Proceedings of the
14th Yale Workshop on Adaptive and Learning Sys-
tems’, New Haven, CT.

Varshavskaya, P., Kaelbling, L. P. & Rus, D. (2004),
Distributed learning for modular robots, in ‘Inter-
national Conference on Intelligent Robots and Sys-
tems’, Sendai, Japan.

Varshavskaya, P., Kaelbling, L. P. & Rus, D. (2006), On
scalability issues in reinforcement learning for self-
reconfiguring modular robots, in ‘Digital Proceed-
ings of RSS Workshop on Self-Reconfigurable Mod-
ular Robotics’, Philadelphia, PA.

Watkins, C. J. C. H. & Dayan, P. (1992), ‘Q-learning’,
Machine Learning 8(3-4), 279–292.

Yu, W., Takuya, I., Iijima, D., Yokoi, H. & Kakazu,
Y. (2002), Using interaction-based learning to con-
struct an adaptive and fault-tolerant multi-link float-
ing robot, in H. Asama, T. Arai, T. Fukuda &

T. Hasegawa, eds, ‘Proceedings of the Intl. Work-
shop on Distributed Autonomous Robotic Systems
(DARS)’, Vol. 5, Springer, pp. 455–464.

Zykov, V., Mytilinaios, E., Adams, B. & Lipson,
H. (2005), ‘Self-reproducing machines’, Nature
435(7038), 163–164.

26

	Introduction
	Conflicting assumptions
	Assumptions of a Markovian world
	Reinforcement learning
	Factored MDPs
	Partially observable MDPs

	Assumptions of the kinematic model
	Possibilities for conflict resolution
	Case study: locomotion by self-reconfiguration

	Independent POMDP learning
	Gradient ascent in policy space
	GAPS learning with feature spaces
	Additional exploration constraints
	Smarter starting points
	Incremental GAPS learning
	Partially known policies

	Experiments
	The experimental setup
	Learning by pooling experience
	MDP-like learning vs. gradient ascent
	Learned and hand-designed controllers
	Learning in feature spaces
	Pre-screening for legal motions
	Scalability and local optima
	Extra communicated observations
	 Learning from better starting points

	Learning from individual experience

	Discussion
	Related Work
	Automated controller design
	Automated path planning
	Distributed reinforcement learning
	Reinforcement learning by policy search

	Conclusion

