
COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 41

I
AUTOMATIC RECOVERY
FROM SOFTWARE FAILURE

By PAUL ROBERTSON and BRIAN WILLIAMS

n complex concurrent critical systems, such as autonomous
robots, unmanned air vehicles, and space systems, every
component is a potential point of failure. This is true not

only of embedded systems but also of purely software systems such as
distributed and cyber applications. Typical attempts to make such systems
more robust and secure are both brittle and incomplete due to reliance on
manual identification of and solutions to potential failures such as by using
exception mechanisms. That is, the security is easily broken, and there are
many possible failure modes that are not handled. Failures may be rare events
so it is less easy to test for good coverage of fault scenarios. Techniques that
expand to handling component-level failures are very expensive to apply, yet
are still quite brittle and incomplete. This is not because engineers are lazy—
the sheer size and complexity of modern information systems overwhelms the
attempts of engineers, and myriad methodologies, to systematically investi-
gate, identify, and specify a response to all possible failures of a system.

A model-based approach to
self-adaptive software.

42 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

Adding dynamic intelligent fault awareness and
recovery to running systems enables the identification
of unanticipated failures and the construction of
novel workarounds to these failures. Our approach is
pervasive and incremental. It is pervasive in that
it applies to all components of a large, complex
system—not just the “firewall” services. It is incre-
mental in that it coexists with existing faulty, unsafe
systems, and it is possible to incrementally increase
the safety and reliability of large systems. The
approach aims to minimize the cost, in terms of
hand-coded specifications with respect to how to iso-
late and recover from failures.

There are many reasons why software fails, the
most common include:

• Assumptions made by the software turn out not
to be true at some point. For example, if a piece
of software must open a file with a given path
name, it will usually succeed; but if the particular
disk that corresponds to the path name fails, the
file will not be accessible. If the program assumes
that the file is accessible, the program will fail. In
highly constrained situations, it is possible to enu-
merate all such failures and hand code specific
exception handlers—and such is the standard
practice in the industry. In many cases, however,
particularly in embedded applications, the num-
ber of ways the environment can change becomes
so large that the programmer cannot realistically
anticipate every possible failure.

• Software is attacked by a hostile agent. This form
of failure is similar to the first one except that
change in the environment is done explicitly,
with the intent to cause the software to fail.

• Software changes introduce incompatibilities.
Most software evolves during its lifetime. When
incompatibilities are inadvertently introduced,
software that previously did not fail for a given
situation may now fail.

Whatever the reason for the software failure, we
would like the software to be able to recognize that it
has failed and to recover from the failure. There are
three steps to doing this: noticing the software has
failed; diagnosing exactly what software component
has failed; and finding an alternative way of achieving
the intended behavior.

APPROACH

In order for the runtime system to reason about its
own behavior and intended behavior in this way,
certain extra information and algorithms must be
present at runtime. In our system, these extra pieces
include models of the causal relationships between
the software components, models of intended
behavior, and models of correct (nominal) execution
of the software. Additionally, models of known fail-
ure modes can be very helpful but are not required.
Finally, the system must be able to sense, at least par-
tially, its state; to reason about the difference
between the expected state and the observed state;
and to modify the running software (for example, by
choosing alternative runtime methods).

Building software systems in this way comes with a
certain cost. Models of the software components and
their causal relationships, which might otherwise have
existed only in the programmer’s head, must be made
explicit; the reasoning engine must also be linked in
to the running program, and the computational cost

WHATEVER THE REASON FOR THE SOFTWARE FAILURE,
WE WOULD LIKE THE SOFTWARE TO BE ABLE TO RECOGNIZE
THAT IT HAS FAILED AND TO RECOVER FROM THE FAILURE.

of the monitoring, diagnosis, and recovery must be
considered. In some systems, the memory footprint
and processor speed prohibit this approach. However,
memory is increasingly becoming cheap enough for
memory footprint not to be an issue; processor power
is similarly becoming less restrictive. While the mod-
eling effort adds an extra cost, there are benefits to
doing the modeling that offset its cost. Making the
modeling effort explicit can often cause faults to be
found earlier than would otherwise be the case, and
the developers can choose the fidelity of the models.
More detailed models take more time to develop but
allow for greater fault identification, diagnosis, and
recovery. Finally, our approach to recovery assumes
there is more than one way of achieving a task. The
developer, therefore, must provide a variety of ways of
achieving the intended behavior.

The added costs of building robust software in this
way are small when compared to the benefits. Among
the benefits, it allows us to build software that:

• Operates autonomously to achieve goals in
complex and changing environments;

• Detects and works around “bugs” resulting from
incompatible software changes;

• Detects and recovers from software attacks; and
• Automatically improves as better software

components and models are added.

A
t the heart of our system is Reactive
Model-based Programming Language
(RMPL), a language for specifying cor-
rect and faulty behavior of the system’s
software components. The novel ideas

in our approach include the use of method deprecation
and method regeneration in tandem with an intelligent
runtime model-based executive that performs auto-
mated fault management from engineering models,
and that utilizes decision-theoretic method dispatch.
Once a system has been enhanced by abstract models
of the nominal and faulty behavior of its compo-
nents, the model-based executive monitors the state
of the individual components according to the mod-
els. If faults in a system render some methods inap-
plicable, method deprecation removes them from
consideration by the decision-theoretic dispatch.
Method regeneration involves repairing or reconfig-
uring the underlying services that are causing some
method to be inapplicable. This regeneration is
achieved by reasoning about the consequences of
actions using the component models, and by exploit-
ing functional redundancies in the specified meth-
ods. In addition, decision-theoretic dispatch
continually monitors method performance and

dynamically selects the applicable method that
accomplishes the intended goals with maximum
safety, timeliness, and accuracy.

Beyond simply modeling existing software and
hardware components, we allow the specification of
high-level methods. A method defines the intended
state evolution of a system in terms of goals and fun-
damental control constructs (iteration, parallelism,
and conditionals). Over time, the more a system’s
behavior is specified in terms of model-based meth-
ods, the more it will be able to take full advantage of
the benefits of model-based programming and the
runtime model-based executive. Implementing func-
tionality in terms of methods enables method prog-
nosis, which involves proactive method deprecation
and regeneration, by looking ahead in time through a
temporal plan for future method invocations.

Our approach has the benefit that every additional
modeling task performed on an existing system makes
the system more robust, resulting in substantial
improvements over time. As many faults and intru-
sions have negative impact on system performance,
our approach also improves the performance of sys-
tems under stress. It provides a well-grounded tech-
nology for incrementally increasing the robustness of
complex, concurrent, critical applications. When
applied pervasively, model-based execution can dra-
matically increase the security and reliability of these
systems, as well as improve overall performance, espe-
cially when the system is under stress.

FAULT-AWARE PROCESSES THROUGH MODEL-BASED

PROGRAMMING

To achieve robustness pervasively, fault-adaptive
processes must be created with minimal program-
ming overhead. Model-based programming elevates
this task to the specification of the intended state
evolutions of each process. A model-based executive
automatically synthesizes fault adaptive processes for
achieving these state evolutions, by reasoning from
models of correct and faulty behavior of supporting
components.

Each model-based program implements a system
that provides some service (such as secure data trans-
mission) used as a component within a larger system.
The model-based program in turn builds upon a set
of services, such as name space servers and data repos-
itories, implemented through a set of concurrently
operating components that consist of software and
hardware.

CCoommppoonneenntt SSeerrvviiccee MMooddeell.. The service model rep-
resents the normal behavior and the known aberrant
behaviors of the program’s component services.
Unknown aberrant behaviors are also supported by

COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 43

the service model through the inclusion of unmod-
eled failure modes. It is used by a deductive controller
to map sensed variables to queried states. The service
model is specified as a concurrent transition system,
composed of probabilistic concurrent constraint
automata. Each component automaton is represented
by a set of component modes, a set of constraints
defining the behavior within each mode, and a set of
probabilistic transitions between modes. Constraints
are used to represent co-temporal interactions
between state variables and intercommunication
between components. Constraints on continuous
variables operate on qualitative abstractions of the
variables, characterized by the variable’s sign (positive,
negative, zero) and deviation from nominal value
(high, nominal, low). Probabilistic transitions are
used to model the stochastic behavior of components,

such as failure and intermittency. Reward is used to
assess the costs and benefits associated with particular
component modes. The component automata oper-
ate concurrently and synchronously.

SSeellff--DDeepprreeccaattiioonn aanndd RReeggeenneerraattiioonn tthhrroouugghh PPrree--
ddiiccttiivvee MMeetthhoodd DDiissppaattcchh.. In model-based program-
ming, the execution of a method fails if one of the
service components it relies upon irreparably fails.
This in turn can cause the failure of any method that
relies upon it, potentially cascading to a catastrophic
and irrecoverable systemwide malfunction. The con-
trol sequencer enhances robustness by continuously
searching for, and deprecating, any requisite method
whose successful execution relies upon a component
that is deemed faulty by mode estimation, and
deemed irreparable by mode reconfiguration.

Without additional action, a deprecated method
causes the deprecation of any method that relies upon
it. Model-based programmers specify redundant
methods for achieving each desired function. When a
requisite method is deprecated, the control sequencer
attempts to regenerate the lost function proactively by
selecting an applicable alternative method, while ver-
ifying overall safety of execution.

More specifically, predictive method selection first
searches until it finds a set of methods that are con-
sistent and schedulable. It then invokes the dis-
patcher, which passes each activity to the deductive
controller as configuration goals, according to a
schedule consistent with the timing constraints. If the
deductive controller indicates failure in the activity’s
execution, or the dispatcher detects that an activity’s
duration bound is violated, the method selection
component is re-invoked. The control sequencer then
updates its knowledge of any new constraints and
selects an alternative set of methods that safely com-
plete the RMPL program.

SSeellff--OOppttiimmiizziinngg MMeetthhooddss tthhrroouugghh SSaaffee,, DDeeccii--
ssiioonn--TThheeoorreettiicc DDiissppaattcchh.. In addition to failure, com-
ponent performance can degrade dramatically,
reducing system performance to unacceptable levels.

To maintain optimal performance,
predictive method dispatch utilizes
decision-theoretic method dis-
patch, which continuously moni-
tors performance and selects the
currently optimal available set of
methods that achieve each requisite
function.

RESULTS

Initial testing of the described sys-
tem has been performed by aug-
menting the MIT Model-Based
Embedded and Robotic Systems
rover testbed. The rover testbed
consists of a fleet of all-terrain
robot vehicles within a simulated

Martian terrain. By way of example, we describe one
mission whose robustness has been enhanced by the
system.

Two rovers must cooperatively search for science
targets in the simulated Martian terrain. This is done
by having the rovers go to the selected vantage points
looking for targets of interest using the rover’s stereo-
scopic cameras. The rovers divide up the space so
they can minimize the time taken in mapping the
available science targets in the area. The paths of the
rovers are planned in advance, given existing terrain
maps. The plan runs without fail. Between them, the
rovers successfully find all of the science targets that
we have placed for them to find. The scenario is
shown in Figure 1.

In the test scenario, two faults are introduced by
placing a large rock that blocks Rover1’s view of one
of the designated areas. When Rover1 reaches its ini-
tial position to look for science targets, its cameras
detect the unexpected rock obscuring its view. This

44 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

Figure 1. Rover
testbed experimental
platform.

COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 45

Figure 2. (left) The temporal planning
network for the two-rover exploration
plan. Failure due to an obscuration
(rock) results in automatic replanning
so that the mission can continue.

Figure 3. (below) Deep Space 1:
Fight experiment (May 1999).

results in an exception that disqualifies the current
software component from looking for targets.
Because the failure is external to the rover software,
the plan itself is invalidated. The exception is resolved
by replanning, which allows both rovers to modify
their plans so that Rover2 observes the obscured site
from a different vantage point. The rovers continue
with the new plan but when Rover2 attempts to scan
the area for science targets, the selected vision algo-
rithm fails due to the deep shadow being cast by the
large rock. Again an exception is generated, but in this
case a redundant method is found—a vision algo-
rithm that works well in low light conditions. With
this algorithm, the rover successfully scans the site for
science targets. Both rovers continue to execute the
revised plan without further failure (see Figure 2).

RELATED WORK

Self-adaptive software has been successfully applied
to a variety of tasks, ranging from robust image
interpretation to automated controller synthesis [4].
Our approach builds on a successful history of hard-
ware diagnosis and repair [7]. In May 1999, the
spacecraft Deep Space 1, shown in Figure 3, ran
autonomously for a period of one week [1]. During
that week, faults were introduced that were detected,
diagnosed, and resolved by reconfiguring the
(redundant) hardware of the spacecraft. Subse-
quently, another satellite (Earth Observer 1) has
been flying autonomously, planning and executing
its own missions. Extending these technologies to
software systems involves extending the modeling
language to deal with the idiosyncrasies of software
such as its inherently hierarchical structure [5].

MMooddeell--bbaasseedd PPrrooggrraammmmiinngg ooff HHiiddddeenn SSttaatteess..
RMPL is similar to reactive embedded synchronous
programming languages such as Esterel. In particular,
both languages support conditional execution, con-

currency, preemption, and parameter-less recursion.
The key difference is that in embedded synchronous
languages, programs only read sensed variables and
write to controlled variables. In contrast, RMPL spec-
ifies goals by allowing the programmer to read or
write “hidden” state variables. It is then the responsi-
bility of the language’s model-based execution kernel
to map between hidden states and the underlying
system’s sensors and control variables.

PPrreeddiiccttiivvee aanndd DDeecciissiioonn--tthheeoorreettiicc DDiissppaattcchh..
RMPL supports nondeterministic or decision-theo-
retic choice, plus flexible timing constraints. Robotic
execution languages such as RAPS [2], ESL [3], and
TDL [6] offer a form of decision-theoretic choice
between methods and timing constraints. In RAPS,
for example, each method is assigned a priority. A
method is then dispatched, which satisfies a set of
applicability constraints while maximizing priority.
In contrast, RMPL dispatches on a cost that is asso-
ciated with a dynamically changing performance
measure. In RAPS, timing is specified as fixed
numerical values. In contrast, RMPL specifies timing
in terms of upper and lower bound on valid execu-
tion times. The set of timing constraints of an RMPL
program constitutes a Simple Temporal Network
(STN). RMPL execution is unique in that it predic-
tively selects a set of future methods whose execution
is temporally feasible.

PPrroobbaabbiilliissttiicc CCoonnccuurrrreenntt CCoonnssttrraaiinntt AAuuttoommaattaa..
Probabilistic Concurrent Constraint Automata
(PCCA) extend Hidden Markov Models (HMMs)
by introducing four essential attributes. First, the
HMM is factored into a set of concurrently operat-
ing automata. Second, probabilistic transitions are
treated as conditionally independent. Third, each
state is labeled with a logical constraint that holds
whenever the automaton marks that state. This
allows an efficient encoding of co-temporal

46 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

SELF-ADAPTIVE SOFTWARE HAS BEEN SUCCESSFULLY APPLIED
TO A VARIETY OF TASKS, RANGING FROM ROBUST IMAGE

INTERPRETATION TO AUTOMATED CONTROLLER SYNTHESIS.

processes, which interrelates states and maps states to
observables. Finally, a reward function is associated
with each automaton.

CCoonnssttrraaiinntt--bbaasseedd TTrreelllliiss DDiiaaggrraamm.. Mode estima-
tion encodes Probabilistic Hierarchical Constraint
Automata (PHCA) as a constraint-based trellis dia-
gram, and searches this diagram in order to estimate
the most likely system diagnoses. This encoding is
similar in spirit to a SatPlan/Graphplan encoding in
planning.

CONCLUSION

We have extended a system capable of diagnosing
and reconfiguring redundant hardware systems so
that instrumented software systems can likewise be
made robust. Software systems lack many of the
attributes of hardware systems to which the
described methods have traditionally been applied;
they tend to be more hierarchical and have more
complex and numerous component interactions.
Software components and their interconnections
represent a significantly higher modeling burden.

Our approach differs from other similar techniques
in the following ways:

• Models specify program behavior in terms of
abstract states, which simultaneously makes the
models easier to read and think about and some-
what robust to changes in low-level software
implementation decisions.

• Modeling covers a wide spectrum of software con-
siderations from a high-level storyboarding of the
software to temporal considerations, if any, to the
causal relationships between components.

• Robustness and recovery derives from a collection
of complex and highly tuned reasoning algo-
rithms that estimate state, choose contingencies,
and plan state trajectories. The programmer is
largely shielded from this complexity because the
mechanism is hidden behind the intuitive unified
modeling language.

A
n interesting feature of our approach
is the ability to add robustness incre-
mentally. More modeling leads to
greater runtime robustness because it
allows the system to detect, diagnose,

and repair more fault situations. This means the effort
devoted to modeling can be managed in much the
same way that is done for test suite development in
conventional software development projects.

Modeling errors can result in a number of undesir-
able outcomes such as failure to detect fault condi-
tions and subsequent failure to recover from the fault,

incorrect diagnosis of the fault, and attributing faults
to components that are operating correctly. In this
sense an incorrect model is no different from any
other bug in the software. It is somewhat easier to deal
with, however, because the models are written at a
more abstract level than the program itself, making
them easier to read. There is a problem with making
changes to the software definition and neglecting to
update the models of the software. In time we expect
tools to evolve to address this kind of problem.

The nature of the models developed for a software
system vary depending upon the nature of the soft-
ware itself. Some programs, especially those involved
in embedded and robotic applications, have critical
timing considerations that must be modeled as such
whereas other programs have no timing of synchro-
nization considerations.

Developing model-based reconfigurable software
systems is a relatively new endeavor, but results of our
early experiments are encouraging. Much work
remains to extend the current experimental system to
cover the full range of software practice.

References
1. Bernard, D., Dorais, G., Gamble, E., et al. Spacecraft autonomy flight

experience: The DS1 remote agent experiment. In Proceedings of the
AIAA Space Technology Conference and Exposition (Albuquerque, NM,
Sept. 1999).

2. Firby, R. The RAP Language Manual. Working Note AAP-6, University
of Chicago, 1995.

3. Gat, E. ESL: A language for supporting robust plan execution in embed-
ded autonomous agents. In Proceedings of the AAAI Fall Symposium on
Plan Execution (Cambridge, MA, Nov. 1996).

4. Laddaga, R., Robertson, P., and Shrobe, H.E. Introduction to self-adap-
tive software: Applications. In Proceedings of the 2nd International Work-
shop on Self-Adaptive Software (IWSAS 2001), (Balatonfüred, Hungary,
May 2001), LNCS 2614, Springer.

5. Mikaelian, T., Williams, B.C., and Sachenbacher, M. Diagnosing com-
plex systems with software-extended behavior using constraint optimiza-
tion. In Proceedings of the 16th International Workshop on Principles of
Diagnosis (DX-05), (Monterey, CA, June 2005).

6. Simmons, R. Structured control for autonomous robots. IEEE Transac-
tions on Robotics and Automation 10, 1 (1994), 34–43.

7. Williams, B. and Nayak, P. A reactive planner for a model-based execu-
tion. In Proceedings of the 15th International Joint Conference on Artificial
Intelligence (IJCAI-97), (Nagoya, Japan, August 1997).

Paul Robertson (paulr@csail.mit.edu) is a research scientist at
the Massachusetts Institute of Technology’s Computer Science and
Artificial Intelligence Laboratory, Cambridge, MA.
Brian Williams (williams@mit.edu) is Boeing Associate Professor
of Aeronautics and Astronautics at the Massachusetts Institute of
Technology, Cambridge, MA.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/0300 $5.00

c

COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 47

