
Con�dence From Self Knowledge

and Domain Knowledge

Paul Robertson (pr@robots.ox.ac.uk)

University of Oxford, Dept. of Engineering Science,

19 Parks Road, Oxford, OX1 3PJ, England, UK

Abstract. The GRAVA architecture supports building self-adaptive ap-

plications. An overview of the GRAVA architecture, its agent language

and its re
ective protocol are presented with illustrations from the aerial

image interpretation domain.

Keywords: Aerial Image Analysis, Re
ection, Code Synthesis, Agent Ar-

chitecture.

1 Introduction

GRAVA is an architecture for building self-adaptive applications. In this paper
we give a overview of the architecture and its protocols. The architecture is
designed around an agent language embedded within a re
ective architectural
framework.

Autonomous agents are expected to operate in a decentralized manner with-
out the intervention of a central control mechanism. This involves distributed
algorithms for selecting which agents to run and when as well as dividing re-
sources among the agents.

One approach to the agent selection problem that has been the focus of con-
siderable attention, is the notion of a market based approach. The idea is that
when an agent wishes to delegate a subtask to another agent capable of perform-
ing the subtask agents that are candidates to perform the subtask compete by
bidding a price. This often works well, producing eÆcient solutions. However,
two problems arise in such systems:

1. Selecting an appropriate basis for cost computations so that the bidding is
fair.

2. Because the bidding is piecewise local, such systems are prone to �nd local
minima and miss the global minima.

3. Agents not designed to work together can behave incoherently resulting in
thrashing behavior. Ultimately multi-agent systems tend to work well only
as a result of excruciatingly careful design. This makes implementing multi-
agent systems a very complex and error prone programming exercise.

Our approach addresses these problems as follows:



1. The basis for cost computation is description length. Description length is
the correct measurement in an interpretation problem because it captures
the notion of likelihood directly: DL = �log2(P ).

2. Monte Carlo sampling allows us to avoid the problem of �nding unwanted
local minima.

3. The problem of incoherent agents is addressed by dividing agents into con-
texts and then using re
ection and self-adaptation to select an appropriate
set of agents that are suited to the current state and which provably leads
to a solution.

1.1 The Role of Re
ection

Vision (and Robotics) systems lack robustness. They don't know what they
are doing, especially when things change appreciably (i.e. in situations where
technologies such as neural nets are ine�ective).

Re
ective architectures|an idea from AI|o�er an approach to building
programs that can reason about their own computational processes and make
changes to them.

The re
ective architecture allows the program to be aware of its own com-
putational state and to make changes to it as necessary in order to achieve its
goal.

However, much of the work on re
ective architectures has been supportive
of human programmer adaptation of languages and architectures rather than
self-adaptation of the program by itself.

Our use of re
ection allows the self-adaptive architecture to reason about its
own structure and to change that structure.

1.2 Interpretation Problems

The problem of self-adaptive software is to respond to changing situations by
re-synthesizing the program that is running. To do this we reify the software
development process.

Layers of Interpretation: An Example A key idea in the formulation of our
re
ective architecture is that problems can often be described in terms of inter-
connected layers of interpretation forming a hierarchy of interpretation problems.
A simple and familiar example of such a layered view is the process of how large
software projects are executed.

Large software projects, especially software projects of defense contrators,
start out with a requirements document. This document says what the program
should do but doesn't say how it should be done. Someone interprets the re-
quirements document as a software system and produces a set of speci�cations
for the components of the software system that satis�es the requirements. The
speci�cations are then interpreted as a program design. The program design lays
out the procedures that make up the program that implements the speci�cation.
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Fig. 1. Example of the relationship between levels of interpretation

Finally a programmer interprets the program design to produce a body of code.
If care is taken to retain back pointers it is possible to trace back from a piece
of code to the part of the design that it interpreted. Parts of design should be
traceable to the parts of the speci�cation they interpret and parts of the speci�-
cation should be traceable to the parts of the requirements document that they
interpret.

Figure 1 shows the relationship between di�erent levels of interpretation in
the software development example.

When requirements change, as they often do in the lifetime of a software
system, it is possible to trace which pieces of the system are a�ected. In this
example, at each level, an input is interpreted to produce an interpretation that
is used as the input at a subsequent level.

Each component of the system \knows" what it is doing to the extent that
it knows what part of the level above it implements (interprets).

2 Objects in the GRAVA Architecture

The architecture is built from a small number of objects: Models; Agents; Inter-
preters; Re
ective Levels; and Descriptions.

All of these terms are commonly used in the literature to mean a wide range of
things. In the GRAVA architecture they have very speci�c meanings. Below, we



describe what these objects are and how they cooperate to solve an interpretation
problem.
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Fig. 2. Objects in the GRAVA Architecture

Figure 2 shows the objects that make up the architecture. A re
ective layer
takes an input description�in and produces an output description�out as its re-
sult. A description consists of a collection of description elements< �1; �2; :::; �n >.
The output description is an interpretation (I 2 Q(�in)) of the input whereQ(x)
is the set of all possible interpretations of x.

�out = I(�in) (1)

The goal of a layer is to �nd the best interpretation Ibest which is de�ned as
the interpretation that minimizes the global description length.

argmin
Ibest

DL(Ibest(�in)) (2)

The interpretation function of the layer consists of an interpretation driver
and a collection of connected agents. The interpretation driver deals with the



formatting peculiarities of the input description (the input description may be an
array of pixels or a symbolic description). The program is made from a collection
of agents wired together. The program de�nes how the input will be interpreted.
The job of the interpreter/program is to �nd the most probable interpretation
of the input description and to produce an output description that represents
that interpretation.

The GRAVA architecture allows for multiple layers to exist in a program and
there are [re
ective] links between the layers.

Below, we describe in greater detail the purpose, protocol, and implemen-
tation of the objects depicted in Figure 2. We maintain a dual thread in the
following. On the one hand, we describe the GRAVA architecture abstractly, on
the other, we also describe the actual implementation that we have developed.

Description A description � consists of a set of description elements �.

� =< �1; �2; :::; �n > (3)

Agents produce descriptions that consist of a number of descriptive elements.
The descriptive elements provide access to the model, parameters, and the de-
scription length of the descriptive element. For example, a description element
for a face might include a deformable face model and a list of parameters that
deform the model face so that it �ts the face in the image. A description element
is a model/parameters pair.

The description length must be computed before the element is attached
to the description because the agent must compete on the basis of description
length to have the descriptive element included. It makes sense therefore to cache
the description length in the descriptive element.

The description class implements the iterator:

(for Description|des fcn)

This applies the function \fcn" to every element of the structural description,
and this enables the architecture to compute the global description length:

DL(�out) =

nX

i=1

DL(�i) (4)

To get a better �x on notation, this is implemented as:

(define (globalDescriptionLength Description|des)

(let ((dl 0))

(loop for de in des

(set! dl (+ dl (descriptionLength de))))))



DescriptionElements Description elements are produced by agents that �t
models to the input.

Description elements may be implemented in any way that is convenient
or natural for the problem domain. However the following protocol must be
implemented for the elements of the description:

(agent <Element>)

Returns the agent that �tted the model to the input.

(model <Element>)

Returns the model object that the element represents.

(parameters <Element>)

Returns the parameter block that parameterizes the model.

(descriptionLength <Element>)

Returns the description length in bits of the description element.

Implementations of description elements must inherit the class DescriptionEle-
ment and implement the methods \agent", \model", \parameters", and \descrip-
tionLength".

For readability we print description elements as a list:

(<model name> . <parameter list>)

Models Fitting a model to the input can involve a direct match but usually
involves a set of parameters.

Consider as input, the string:

``t h r e e b l i n d m i c e''

We can interpret the string as words. In order to do so, the interpreter must
apply word models to the input in order to produce the description. If we have
word models for \three", \blind", and \mice" the interpreter can use those mod-
els to produce the output description:

((three) (blind) (mice))

The models are parameterless in this example. Alternatively we could have
had a model called \word" that is parameterized by the word in question:

((word three) (word blind) (word mice))



In the �rst case there is one model for each word. In the case of \three"
there is an agent that contains code that looks for \t", \h", \r", \e", and \e"
and returns the description element \(three)". In the second case there is one
model for words that is parameterized by the actual word. The agent may have
a database of words and try to match the input to words in its database.

Consider the two examples above. If the probability of �nding a word is 0.9
and the probability of the word being \three" is 0.001 the code length of \(word
three)" is given by:

DL(wordthree) = DL(word) +DL(three) = �log2(p(word)) � log2(p(three))
(5)

= �log2(0:9)� log2(0:001) = 0:1520+ 9:9658 = 10:1178bits (6)

The second approach, in which a separate agent identi�es individual words
would produce a description like \(three)". The model is \three" and there are
no parameters. The likelihood of \three" occurring is 0.001 so the description
length is given by:

DL(three) = �log2(p(three)) = �log2(0:9 � 0:001) = 10:1178bits (7)

That is, the choice of parameterized vs. unparameterized doesn't a�ect the
description length. Description lengths are governed by the probabilities of the
problem domain. This allows description lengths produced by di�erent agents to
be compared as long as they make good estimates of description length.

For a more realistic example, consider the case of a principle component
analysis (PCA) model of a face [1]. A PCA face model is produced as follows.
First a number n of key points on a face are identi�ed as are their occurrences
on all of the images. The shape of the face  i is de�ned by a vector containing
the n points. A mean shape is produced by �nding the average position of each
point from a set of example face shapes.

� =
1

n

nX

i=1

 i (8)

The di�erence of each face from the mean face � is given by:

Æ i =  i � � (9)

The covariance matrix S then is given by:

S =

nX

i=1

Æ iÆ 
T
i (10)

The eigenvectors pk and the corresponding eigenvalues �k of the covariance
matrix S are calculated. The eigenvectors are sorted in descending order of their
eigenvalues. If there are N images, the number of eigenvectors to explain the



totality of nN points is N, typically large. However, much of the variation is due
to noise, so that p << N eigenvectors suÆces to account for (say) 95% of the
variance. The most signi�cant of the eigenvector-eigenvalue pairs are selected as
the principal components.

The resulting face model consists of a mean face shape � and a set of eigen-
vectors and weights such that any face shape  p can be approximated by:

 p = � +Pb; (11)

where P is the vector of eigenvectors and b is the vector of weights. The weights
are a measure of how much the model must be distorted in order to match the
face  p.

The above formulation of a face shape model describes a parameterized
model. The weights are the parameters and the mean shape and vector of eigen-
vectors is the model. Algorithms exist for �tting such shape models to data.
These algorithms �rst identify a key component and then, using the mean shape
model, search for the other features (often edges) near the place where the mean
suggests it should be. When the feature is found, its actual location is used
to de�ne a distance from the mean. This is repeated for feature points in the
model. A set of weights is calculated which represents the parameterization of
the model.

Agents The primary purpose of an agent is to �t a model to its input and
produce a description element that captures the model and any parameterization
of the model.

We implemented the atomic computational elements in GRAVA as agents.
The system manipulates agents and builds programs from them but does not go
beneath the level of the agent itself. The agent allows conventional image pro-
cessing primitives to be included in the GRAVA application simply by providing
the GRAVA agent protocol. We might have used methods if we were building
a language rather than an architecture. GRAVA agents are not autonomous
agents. They depend upon other agents to reason about them and to connect
them together to make programs.

An agent is a computational unit that has the following properties:

1. It contains code which is the implementation of an algorithm that �ts its
model to the input in order to produce its output description.

2. It contains one or more models [explicitly or implicitly] that it attempts to
�t to the input.

3. It contains support for a variety of services required of agents such as the
ability to estimate description lengths for the descriptions that it produces.

An agent is implemented in GRAVA as the class \Agent". New agents are
de�ned by subclassing \Agent". Runtime agents are instances of the appropriate
Agent class. Generally Agents are instantiated with one or more models.

The protocol for agents includes the method \�t" that invokes the agent's
model �tting algorithm to attempt to �t one or more of its models to the current
data.



(fit anAgent data)

The \�t" method returns a (possibly null) list of description elements that the
agent has managed to �t to the data. The interpreter may apply many agents
to the same data. The list of possible model �ts from all applicable agents is
concatenated to produce the candidate list from which a Monte Carlo selection
is performed.

Interpreters An interpreter is a program that applies agents in order to pro-
duce a structural description output from a structural description input.

A scene interpretation programmay include agents for face recognition|such
as the PCA face shape agent described above|and may include other agents that
recognize other things that would be found in an image such as trees, buildings,
and roads. The interpreter could be hand-assembled or it could be generated.

Monte Carlo Agent Selection A recurring issue in multi-agent systems is
the basis for cooperation among the agents. Some systems assume benevolent
agents where an agent will always help if it can. Some systems implement sel�sh
agents that only help if there is something in it for them. In some cases the
sel�sh cooperation is quanti�ed with a pseudo market system.

Our approach to agent cooperation involves having agents compete to assert
their interpretation. If one agent produces a description that allows another agent
to further reduce the description length so that the global description length is
minimized, the agents appear to have cooperated. Locally, the agents compete
to reduce the description length of the image description. The algorithm used
to resolve agent con
icts guarantees convergence towards a global MDL thus
ensuring that agent cooperation \emerges" from agent competition. The MDL
approach guarantees convergence towards the most probable interpretation but
it does not guarantee that the most probable interpretation will be found.

When all applicable agents have been applied to the input data the resulting
lists of candidate description elements is concatenated to produce the candidate
list.

The monteCarloSelect method chooses one description element at random
from the candidate list. The random selection is weighted by the probability of
the description element.

Pelem = 2�DL(elem) (12)

So, for example, if among the candidates, one has a description length of
1 bit and one has a description length of two bits, the probabilities of those
description lengths is 0.5 and 0.25 respectively. The monteCarloSelect method
would select the one bit description twice as often as the two bit description.

The monteCarloSelect algorithm is given below:

(define (probability DescriptionElement|de)

(expt 2.0 (- (descriptionLength de))))



(define (monteCarloSelect choices)

(callWithCurrentContinuation

(lambda (return)

(let* ((sum (apply + (map probability choices)))

(rsel (frandom sum)))

(dolist (choice choices)

(set! rsel (- rsel (probability choice)))

(if (<= rsel 0.0) (return choice)))))))

3 Re
ective Interpreter for Self-Adaptation

A re
ective layer is an object that contains one or more \interpreter". Re
ective
layers are stacked up such that each layer is the meta-level computation of the
layer beneath it. In particular each layer is generated by the layer above it.

A system can have an arbitrary number of levels. The example described in
the introduction (Figure 1) has four levels. Most systems will have a small num-
ber of levels. Experience to date suggests that three levels is usually suÆcient.

Each layer can re
ect up to the layer above it in order to self-adapt.

(defineClass ReflectiveLayer

((description) ;; the (input) description for this layer

(interpreter) ;; the interpreter for the description of this layer

(knowledge) ;; a representation of world knowledge at this level

(higherlayer) ;; the meta-level above this

(lowerlayer)));; the subordinate layer

A re
ective layer is an object that contains the following objects.

1. description: the description that is to be interpreted. In the software devel-
opment example the requirements level would contain a description of the
requirement that is to be interpreted by the layer.

2. interpreter: a system consisting of one or more cascaded interpreters that
can interpret the description.

3. knowledge: a problem dependent representation of what is known about
the world as it pertains to the interpretation of the subordinate layer. The
knowledge gets updated as the subordinate layer attempts to interpret its
description. The knowledge is used in the synthesis of the interpreter for the
subordinate layer.

4. higherlayer: the superior layer. The layer that produced the interpreter for
this layer.

5. lowerlayer: the subordinate layer.

The semantics for a layer are determined by the interpret, elaborate, adapt
and execute methods which we describe in turn below.



Fig. 3. Meta-Knowledge and Compilation

Figure 3 shows the relationship between re
ective layers of the GRAVA ar-
chitecture.

Re
ective Layer \n" contains a description that is to be interpreted as the
description for layer \n+1". A program has been synthesized (either by the layer
\n-1" or by hand if it is the top layer. The program is the interpreter for the
description. That interpreter is run. The result of running the interpreter is the
most probable interpretation of the description|which forms the new descrip-
tion of the layer \n+1". Layer \n" also contains a compiler. Actually all layers
contain a compiler. Unless the layer de�nition is overridden by specialization the
compiler in each layer is identical and provides the implementation as a theorem
prover that compiles an interpreter from a description. The compiler runs at the
meta level in layer \n" and uses the knowledge of the world at layer \n+1" which
resides in level \n". It compiles the description from level \n+1" taking in to



account what is known at the time about level \n+1" in the knowledge part of
layer \n". The compilation of the description is new interpreter at layer \n+1".

Below we describe the meta-interpreter for layers in GRAVA.
The interpret method is the primary driver of computation in the re
ec-

tive architecture. The re
ective levels are determined by the program designer.
In order for the self-adaptive program to \understand" its own computational
structure, each layer describes the layer beneath it. In self-adapting, the archi-
tecture essentially searches a tree of meta-levels. This is best understood by
working through the details of the architecture.

The top level layer is manually constructed by the program designer. It must
be because there is no higher level to defer to. That level de�nes its goal in
the form of a description that must be interpreted. The collection of agents that
interpret that description are provided by the human programmer. The program
that those agents constitute is charged with the responsibility of producing the
re
ective layer immediately below. The lower level, once constructed, is then
interpreted in order to bring about the desired behavior.

At some point the layers bottom out in a lowest level below which there is
no further elaboration of layers. The lowest level layer has a description but
no interpreter. The description at the lowest level is the result of the top level
application of \interpret".

In the simplest of situations the top level application of \interpret" to the
top layer results in the recursive descent of \interpret" through the re
ective
layers �nally yielding a result in the form of an interpretation. Along the way
however unexpected situations may arise that cause the program to need to
adapt. Adaptation is handled by taking the following steps:

1. Re
ect up to the next higher layer (parent level) with an object that describes
the reason for re
ecting up. It is necessary to re
ect up because the higher
level is the level that \understands" what the program was doing. Each level
\understands" what the level directly beneath it is doing.

2. The world model (knowledge) that is maintained by the parent level is up-
dated to account for what has been learned about the state of the world
from running the lower level this far.

3. Armed with updated knowledge about the state of the world the lower level
is re-synthesized. The lower level is then re-invoked.

We now explain the default interpret method.

1:(define (interpret ReflectiveLayer|layer)

2: (withSlots (interpreter description lowerlayer) layer

3: (if (null? interpreter)

4: description ;; Return the description

5: (begin

6: (elaborate layer);; Create/populate subordinate layer.

7: (reflectProtect (interpret lowerlayer)

8: (lambda (layer gripe) (adapt layer gripe)))))))



9:(define (reflectionHandler ReflectiveLayer|layer gripe)

10: (adapt layer gripe))

Line 3 checks to see if the layer contains an interpreter. If it does not the
result of evaluation is simply the description which is returned in line 4. This
occurs when the lowest level has been reached.

If there is an interpreter, the elaborate method is invoked (line 6). \elaborate"
(described below) constructs the next lower re
ective layer.

\re
ectProtect" in line 7 is a macro that hides some of the mechanism in-
volved with handling re
ection operations.

(re
ectProtect form handler) evaluates form and returns the result of that
evaluation. If during the evaluation of form a re
ection operation occurs the
handler is applied to the layer and the gripe object provided by the call to
re
ectUp. If the handler is not speci�ed in the re
ectProtect macro the generic
procedure re
ectionHandler is used. The invocation of the re
ection handler is
not within the scope of the re
ectProtect so if it calls (re
ectUp ...) the re
ection
operation is be caught at the next higher level. If re
ectUp is called and there
is no extant re
ectProtect the debugger is entered. So if the top layer invokes
re
ectUp the program lands in the debugger.

When the re
ection handler has been evaluated the re
ectProtect re-evaluates
the form thereby making a loop. Line 8 is included here to aid in description. It
is omitted in the real code allowing the re
ectionHandler method to be invoked.
The handler takes care of updating the world model based on the information
in gripe and then adapts the lower layer. The handler therefore attempts to self-
adapt to accommodate the new knowledge about the state of the world until
success is achieved. If the attempt to adapt is �nally unable to produce a viable
lower level interpreter it invokes re
ectUp and causes the meta level interpreta-
tion level to attend to the situation.

1:(define (elaborate ReflectiveLayer|layer)

2: (withSlots (lowerlayer) layer

3: (let ((interpretation (execute layer)) ;; ll description

4: (llint (compile layer interpretation)))

5: (set! lowerlayer ((newLayerConstructor layer)

6: higherlayer: layer

7: description: interpretation

8: interpreter: llint)))))

The purpose of the elaborate method is to build the initial version of the
subordinate layer. It does this in three steps:

1. Evaluate the interpreter of the layer in order to \interpret" the layer's de-
scription. The interpretation of layern is the description of layern+1.
Line 3 invokes the interpreter for layer with (execute layer). This simply
runs the MDL agent interpreter function de�ned for this layer. The result of
executing the interpreter is an interpretation in the form of a description.



2. Compile the layer. This involves the collection of appropriate agents to in-
terpret the description of the lower layer.
Line 4 compiles the new layer's interpreter. Layer n contains knowledge of
the agents that can be used to interpret the description of layer n+ 1. The
description generated in line 3 is compiled into an interpreter program using
knowledge of agents that can interpret that description.

3. A new layer object is instantiated with the interpretation resulting from (1)
as the description and the interpreter resulting from compile in step (2) as the
interpreter. The new layer is wired in to the structure with the bi-directional
pointers (lowerlayer and higherlayer).
In line 5, (newLayerConstructor layer) returns the constructor procedure for
the subordinate layer.

The adapt method updates the world state knowledge and then recompiles
the interpreter for the lower layer.

1:(define (adapt ReflectiveLayer|layer gripe)

2: (withSlots (updateKnowledge) gripe

3: (updateKnowledge layer)) ;; update the belief state.

4: (withSlots (lowerlayer) layer

5: (withSlots (interpreter) lowerlayer

6: (set! interpreter (compile layer)))))

The representation of world state is problem dependent and is not governed
by the re
ective architecture. In each layer the world state at the corresponding
meta level is maintained in the variable \knowledge". When an interpreter causes
adaptation with a re
ectUp operation an update procedure is loaded into the
\gripe" object. Line 3 invokes the update procedure on the layer to cause the
world state representation to be updated.

Line 6 recompiles the interpreter for the lower layer. Because the world state
has changed the a�ected interpreter should be compiled di�erently than when
the interpreter was �rst elaborated.

1:(define (execute ReflectiveLayer|layer)

2: (withSlots (description interpreter knowledge) layer

3: (run interpreter description knowledge)))

4 Program Synthesis

The purpose of the \compile" method described in Section 3 is to produce a
collection of interpreters connected together that performs the function of inter-
preting the description that belongs to the layer. In this section, we explore the
idea of compilation-as-proof, and then use the idea in our self-adaptive architec-
ture.

An interpreter (as described above) is a coherent computational unit. It in-
cludes code for sequencing agent's over the input description and making Monte



Carlo samples of the agents results. An interpreter therefore contains a collection
of agents that the interpreter controls. In this section we develop the protocol
for interpreters that permits them to be automatically selected, sequenced, and
populated with agents by the compiler.

4.1 Compilation as Proof

The typical compiler can be thought of as the composition of several proof
problems for example parsing, optimizing and producing machine code. The
purpose of this discussion is to draw upon our intuitions of the compilation
process and not to carefully model the behavior of a compiler so although such
an exercise could be of interest in its own right, we restrict our discussion here
to a single level of the compiler.

If we think of the task of the compiler as proving that the program can be
computed by the target machine we can see that the resulting machine code is
the axioms of the proof|the leaves of the proof tree.

The knowledge in the compiler can therefore be divided simply into two kinds

1. Knowledge of rules of inference and a procedure for applying them in order
to arrive at a proof.

2. Knowledge of the relationship between the source code and the target code
in the form of rules.

In this view, the compiler produces a tree-structured proof. The leaves of the
proof are blocks of machine code. The machine codes are read o� the fringe of
the proof tree to produce the target machine language representation.

Consider the problem of interpreting a piece of source code as an assembly
language program. Models of how to represent a source program fragment in as-
sembly language can be applied in order to interpret the source code as assembly
language.

Using the GRAVA agent/interpreter architecture the interpreter would se-
quence parts of the language over a collection of agents that can deal with the
parts of the language. The interpreter part therefore is a code walker and the
agents of the interpreter are the collection of agents that deal with each syntactic
construct in the language.

Consider the problem of interpreting the expression C=A+B.
Compiling that expression involves proving that the expression is a part of

the language. The proof looks like this:

1. C=A+B is an assignment (rule: assign-1) where the location is C and the
expression is A+B.

2. C is a location (rule: location-1).
3. A+B is an addition (rule: addition-1) where A is a sub-expression and B is

a sub-expression.
4. A is a de-reference (rule: dereference-1).
5. B is a de-reference (rule: dereference-1).



Fig. 4. Agent and Model for Assignment

The simplest way of implementing this example is to treat it as a one step
problem of interpreting the source expression as a sequence of machine instruc-
tions. However, in order to use this example to illustrate the components of the
re
ective architecture we develop this example here as a two step process. For
readability and to avoid getting bogged down in unnecessary details we illus-
trate the essential components using pseudo code. Figure 4 shows the relevant
portions of the assignment agent and its associated model.

The assignment agent is connected to two agents A1 and A2 from which is
asks about the location of the left hand side (LHS) and the value of the expres-
sion. It tells its result to agent A3. It �ts the model \store-1" which supports an
\emit" method that assembles instructions to an instruction stream. Figures 5
and 6 show implementation templates for addition and de-reference respectively
which are required for this example.

The proof tree is shown in Figure 7.

The resulting description that results from running the agents is shown below.

((location-of C) ; from assign-1

((location-of C)) ; from location-1

((register tmp1) ; from addition-1

(deref-1 tmp1 (location-of A)) ; emits (LOAD tmp1 (location-of A))

(deref-1 tmp2 (location-of B)) ; emits (LOAD tmp2 (location-of B))

(add-1 tmp1 tmp2)) ; emits (ADD tmp1 tmp2)

(store-1 tmp1 (location-of C)))); emits (STORE tmp1 (location-of C))



Fig. 5. Agent and Model for Addition

Running through the description in sequence applying the \emit" method on
each entry results in the following instructions being assembled:

(LOAD tmp1 (location-of A))

(LOAD tmp2 (location-of B))

(ADD tmp1 tmp2)

(STORE tmp1 (location-of C))

In the example given above we included only a single agent for each operation
(assign-1 location-1 addition-1 dereference-1). We could provide arbitrarily many
agents for each operation in which case we would have to choose which one to
select on the basis of the description length of the description elements.

A compiler is an interpretation program that interprets a high level language
source program and produces a description that draws upon knowledge built in to
the compiler about the target machine. Nowhere in the high level source code are
the details of the target machine represented. Indeed the code may be compiled
with di�erent compilers for di�erent target machines. The compiler embodies
various kinds of knowledge essential to producing a good representation of the
source:

1. Knowledge of the high level language.
2. Knowledge of certain time and space considerations of certain patterns used

in the source program and transformations into more eÆcient forms.
3. Knowledge of the target machine its instructions, registers, and eÆciency

considerations.



Fig. 6. Agent and Model for Dereference

Fig. 7. Example Proof Tree for Compilation Example

The compiler may consist of several layers of interpretation problem in which
the language is successively translated through intermediate languages until the
target level is reached.

The purpose of the above example was to motivate the idea that compilation
can usefully be viewed as a theorem proving activity. By adding \produces" and
\consumes" to the protocol for agents and interpreters we can treat them as rules
of inference and use a theorem prover to connect them up onto programs|just
as we did above.

In compiling a program into machine code, we generally deal with certainty.
The language that is being compiled is not ambiguous and the machine code
can be relied upon to perform as expected. Computers are designed to operate
reliably and high level languages are designed to be unambiguous.

The real world does not o�er such certainty and programs that must interact
with the real world inherit that uncertainty. The source speci�cation may be
ambiguous and the rules are not guaranteed to succeed. Instead we have a way of



characterizing the likelihood of succeeding. Conventional compilers are a special
case of a more general problem.

5 Uncertain Information and MDL

Because the real world doesn't o�er us the kind of guarantees that we have
managed to build for ourselves in the form of closed world computers programs
are brittle when they attempt to operate in an unconstrained environment such
as the real world.

The theorem prover developed below is \relaxed" in that the theorems it
produces are guaranteed to be programs that produce the desired e�ect but only
if the program terminates. The program may not terminate because (re
ectUp
. . . ) may be invoked prior to completion. Since there may be many agents and
interpreters that can be connected up to be a valid program that satis�es the
representation from which it was compiled there are many di�erent proofs. We
wish to �nd the compilation/proof that has the highest likelihood of completing
without invoking re
ectUp.

DL(interpreter) = �log2(1� P (invokesReflectUp)) (13)

For each interpreter the description length is determined by Equation 13.
An individual agent can't invoke re
ectUp because an individual agent may be
unsuitable for a particular application and its failure is not cause to adapt the
program. Instead another agent should do better. The interpreter then selects
the agent that did best. It is the interpreter object that is in a position to invoke
re
ectUp.

We provide three ways for re
ectUp to be invoked and cause self-adaptation
of the program to occur:

1. An interpreter pre-test fails.
2. An interpreter post-test fails.
3. No agents are successful in interpreting part of the input that is being inter-

preted.

We add pre-test and post-test to the protocol for interpreters along with
produces and consumes.

5.1 Protocol for Interpreters

An interpreter is a special kind of computational agent that contains agents
which it sequences. To support those activities the interpreters support a proto-
col for meta-information shown in Figure 8.

1. (pretest anInterpreter anInput)

Returns true if the input is suitable for the interpreter and false otherwise.



Fig. 8. Protocol for Interpreter Meta-Information

2. (posttest anInterpreter anOutput)

Returns true if the output is acceptable and false otherwise.

3. (descriptionLength anInterpreter anInput)

Returns the description length of the interpreter. The description length is
�log2(P (success)) where P (success) is the probability that the interpreter
will successfully interpret the scene.

5.2 Protocol for Agents

In order for agents to be selected and connected together by the theorem prover
compiler they must advertise their semantics. The purpose of the compiler is
to select appropriate agents and connect them together to form a program.
To support those activities the agents support a protocol for meta-information
shown in Figure 9.

1. (consumes anAgent)

Returns a list of types that the interpreter expects as input.

2. (produces anAgent)

Returns a list of types that the interpreter produces as output.

3. (descriptionLength anAgent)

Returns the description length of the agent. The description length is
�log2(P (correct)) where P (correct) is the probability that the agent will
diagnose the feature in the same way as the speci�cation.



Fig. 9. Protocol for Agent Meta-Information

6 Conclusion

The GRAVA architecture is based on two ideas:

1. That for interpretation problems global MDL is the goal;
2. That global MDL can be approximated by Monte-Carlo sampling.

MDL provides a common currency or \gold standard" for use in market model
agent systems. Because the architecture is specialized to solving interpretation
problems there are problems for which it is not appropriate. Nevertheless a great
many interesting problems can be cast in the form of interpretation problems.

Because the foundations upon which the architecture is built are well under-
stood the behavior and performance of the architecture can yield to some level
of analysis|such as convergence analysis. The architecture has some interesting
characteristics:

1. Cooperation between agents at di�erent semantic levels is an emergent prop-
erty of the architecture.

2. Robustness within the limits of the programs domain is realized by virtue of
measuring how local choices a�ect global description length.

3. There is an implicit information fusion model.

The third point is worthy of greater discussion. Most attempts at reasoning
about uncertainty [4, 3, 2] attempt to bring together contributions so as to make
a local decision. When local evidence is suÆcient these methods work well but
when the sources of evidence become less straightforward the approaches get
bogged down. Numerous problems occur|most notably that required probabil-
ities are often not available and that in order for the approaches to be tractable
it is necessary to assume conditional independence. In any complex system the
practical issues are immense.

The implicit information fusion model in the GRAVA architecture depends
upon the e�ect that local decision has upon the global interpretation. A less



probable interpretation of a feature will be selected if it gives rise to a shorter
global description.

Conventioal architectures such as Schemas, Blackboards, Rule Systems, and
Subsumption all attempt to �nd a single path towards a solution and manual
hard wiring of control information is one of the major problems with those
approaches. In GRAVA we have chosen a method that avoids those problems at
the cost of having to pursue multiple paths. When multiple agents are available
we choose one based on a Monte-Carlo sample.

It can be objected that our approach is computationally expensive compared
to conventional approaches. There are a number of important observations on
this issue:

1. Conventional architectures search for the �rst solution that can be found.
They hoped that by making local decisions a reasonably good solution will
result. They do not attempt to �nd the best solution. For interpretation
problems it is often important to �nd the best solution (or one very close to
it).

2. Processing is cheap. It is reasonable to have multiple parallel computations
occurring at once. It is reasonable to have multiple processors, perhaps as
many as one per agent or one per model. These are problems that scale
well. You really can have one processor per model and derive bene�t from
the parallelism. There are of course within the single processor view numer-
ous opportunities to build optimization methods. For example for certain
problems we can do better than using Monte-Carlo sampling.

There are a few comments that should be made regarding the use of Monte-
Carlo sampling to estimate the global MDL description. Most uses of Monte-
Carlo sampling attempt to estimate a PDF by counting frequencies of occur-
rences. For complex situations a great many samples would be required before
anything like an accurate estimate of the PDF would result. In our use we are able
to measure the global description length by adding up the description lengths
of the components. Since we only want the most probable solution and not the
whole PDF we can get by with far less iterations than would be required to
estimate the PDF with any accuracy. As successive samples are taken we always
know which is the best solution so far and can terminate the search at any point.
This allows us to trade o� interpretation accuracy against computational cost.

In some agent architectures an agent is a wholly autonomous entity that
determines its own applicability and negotiates to participate in the ongoing
computation. The agents described in this architecture are woven together into
a program. The choice of which agents may participate and where has already
been made when the program was constructed (at run time). Agents in GRAVA
are computational units that support the protocol for agents. The way that the
agents are woven together into a program is similar to the way that methods
are woven together in CLOS. The MDL approach to agent selection described
here should be equally e�ective in other agent architectures as long as they are
solving interpretation problems.



The architecture described in this paper has the novel attribute that it knows
what it knows and it knows how to apply what it knows. As with Smith's [5]
re
ective architecture each re
ective layer implements the layer beneath it. In
Smith's architecture each level of interpreter implemented the level of interpreter
beneath it. In the GRAVA architecture each layer implements not only the in-
terpreter but also the program beneath it. The inclusion of a compiler in the
re
ection loop allows the meta-interpreter to respond to the changing state of
the environment by recompiling lower layers as appropriate. Each layer contains
the knowledge of:

1. What the layer beneath is trying to do.
2. What the current belief state is as to the state of the world as it pertains to

the operation of the layer beneath it.

When the belief state changes at some level the code for lower levels is auto-
matically updated. If new agents are added they are automatically used where
appropriate.
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