
S E L F - A D A P T I V E S O F T W A R E

Adaptive Image Analysis for
Aerial Surveillance
Paul Robertson and J. Michael Brady, Robotics Research Group, Oxford University

IN MILITARY INTELLIGENCE APPLI-
cations, robustness and predictability are cru-
cial because the fate of a battle and those who
are fighting it is at stake. Computer-vision
systems must have robust, predictable per-
formance before they will be fully embraced
in military applications and other safety-
critical applications such as medical imag-
ing and intelligent transportation systems.

We try to deal with these requirements by
keeping systems simple. Experience has
shown that the systems that work best are
those whose complexity has been minimized
and that have been manually tweaked until
they perform reasonably well as long as noth-
ing changes too much.

Unfortunately, things do change. Some-
times, what changes is the environment, such
as the lighting, altitude, or weather. Other
times, it is the technology, such as a new cam-
era or the replacement of an algorithm. Even
small changes often cause systems to break
unpredictably.

We can address such fragility in several
ways. One approach is to build in more and
more application-specific knowledge. How-
ever, this can lead to unmanageable com-
plexity and performance characteristics that
are not understandable.

The dominant approach has been to
develop mathematical analysis of imagery
and applications. This has led to some highly

encouraging advances, but the real world is
extremely complex. The performance of
computer vision systems falls far short of
human or animal perception. In short, math-
ematical analysis is necessary but unlikely to
ever be sufficient.

We’ve developed an alternative approach:
build architectures that support the integration
of knowledge within a framework that is both
simple enough and retains enough semantic
information to permit analysis of its behavior.
This approach has three advantages:

• We can make semantics explicit and then
construct the interactions algorithmically
to satisfy certain constraints. This way,
the semantics of the parts are known.
Although the specific pattern of interac-
tions might not be understood, the con-
straints that the algorithm satisfied in

composing them can be understood.
• This approach can provide graceful aggre-

gation and degradation of competence.
When we can add (or use) better image
filters, we expect incrementally better
results; when we can’t use certain filters
because the image conditions don’t permit
it, we expect slightly lower performance
because we rely on poorer filters. The
process of building a system that can make
these transitions smoothly is difficult and
haphazard when it depends on manually
constructed ad hoc programming.

• We can incorporate the previous two
advantages into a manageable frame-
work. Producing good image-analysis
results is difficult. We always want to use
the best filters possible and to mobilize
as much knowledge into the interpreta-
tion as possible.

THE AUTHORS DESCRIBE A COMPUTER-VISION SYSTEM THAT

WOULD AUTOMATICALLY MONITOR ITS OWN PERFORMANCE

AND DYNAMICALLY ADAPT TO CHANGING SITUATIONS AND

REQUIREMENTS. THEIR APPROACH IS BASED ON COMPUTA-
TIONAL REFLECTION AND CONTROL-SYSTEM THEORY.

30 1094-7167/99/$10.00 © 1999 IEEE IEEE INTELLIGENT SYSTEMS

Creating stable, adaptive
image-analysis systems

Image-processing programs are typically
constructed from a number of filters whose
results are combined to produce good results.
Image interpretation is divided into a num-
ber of processing stages, so filters are seri-
ally connected.

Figure 1 shows a typical pipelined archi-
tecture for a military aerial-surveillance pro-
gram. The architecture is a network of inter-
connected filters. The raw image is the input
signal to this system. Successive stages of
the program transform this signal. These net-
works, which are manually pieced together,
tend to be simple because the systems get
harder to manage as complexity grows. No
theory exists for what conditions must be sat-
isfied to make the resulting system stable or
for predicting how changes in components
will affect overall system performance.

Introducing adaptability into this system
could increase its robustness. However, this
might decrease the system’s stability. For the
system to self adapt, it must meet these
requirements.

• It must be able to reason about its com-
putational intent and state to assemble the
filters in a way that is consistent with the
system’s task. This sort of self-knowledge
is usually not required by systems that are
assembled by human programmers and
that remain static throughout their life-
time. Reflection(which we discuss in the
next section) provides an approach to
managing this kind of self-information.

• Its structure must allow filters to be added
and removed without complicated entan-
glements with other software. The solu-
tion, therefore, requires a clean architec-
tural approach.

• Human-assembled software is carefully
tested in a controlled environment before
it is used in a live situation. Software that
restructures itself dynamically needs reas-
surance that the restructured software

works as expected. One approach to this
is to generate provably correct code.
Another way is to make the code self-mon-
itoring and to have an architecture that is
simple enough to facilitate reasoning about
the overall system’s runtime state. One
such architecture structures the software
update process as a control system.

We can summarize these requirements
with the slogan “Self-adaptation equals re-
flection plus monitoring plus control.” Mon-
itoring lets the program measure deviations
from an intended state; control provides a
way of restructuring the program to move
towards the intended state; and reflection
provides the introspection capability neces-
sary to support monitoring and the access to
embedded semantics necessary to facilitate
changes in the program.

Reflection

Brian Smith introduced the term proce-
dural reflectionin 1982 to describe the use
of semantic reification to help write pro-
grams that can manipulate, to some degree,
their own computational nature.1 Reflection
opens up the computational state so that it
can be manipulated within the language or
system. In addition to the basic program
capabilities, support for reflection comes
from these features:

• An embedded semantic account, which is
the reified semantics.

• A causal connectionbetween the embed-
ded semantic account and the program’s
semantics. This allows interrogation
(introspection) of the program’s compu-
tation state; by modifying the data struc-
tures or functions, we can modify the pro-
gram’s semantics.

• An appropriate level of detail. Typically,
the entire state of the computation doesn’t
need to be interrogated, and the entire
semantics doesn’t need to be modified. In
solving real problems, a sense of propor-
tion is necessary, and success is achieved
by selecting which subset of the seman-
tics to reify. This selection requires an
analysis of the reflective system’s goals.

Reflection lets software components mod-
ify their own semantics. By reifying the
semantics of the image-analysis system design
process (see Figure 2), the individual filters
can participate in the program’s adaptation.

Building an adaptive
architecture

We have chosen the problem of image seg-
mentation to focus our efforts on developing
and demonstrating the benefits of an adap-
tive computing approach to aerial image
analysis. Image-segmentation partitions an

MAY/JUNE 1999 31

Registration

Image manager Detection Feature
extractor

Geolocator Terrain
delimitation

Object-level
change detection

Moved object dataImage data

OLCD
database

Figure 1. A typical pipelined architecture for aerial surveillance.

Image-analysis
system

Assumptions Model
Analysis

and
simulation

Model
responses

Prediction

Expected
responses of

image-analysis
system

Adapt the image-analysis system
structure and modify parameters

Figure 2. The design process of an image-analysis system.

image into disjoint regions, each of which is
homogeneous in some property. Examples
of such properties include

• A threshold value or range such that all
pixels in the region have brightness values
in that range—for example, (23, 47).

• Measures of texture, such as co-occur-
rences, fractal measures, or wavelet local
energy.2

• Object membership such that all pixels in
the region belong to the same object. For
example, in an image containing a tank,
the region containing the tank would have
the property that all pixels in the region
belonged to the tank.

The space of possible properties that can be
used for segmentation form a partial ordering
of levels of interpretation of the image.

Much research in image segmentation takes
the view that it is a low-level vision concept.
Certainly many researchers have attempted to
implement segmentation at a low level. Real-
ity seems to be telling us another story.

David Marr gives a graphic example of
why segmentation is difficult by showing two
overlapping leaves with virtually no discern-
able edge or texture shift between the two
leaves.3 Identifying the leaves allows us to see
the subtle leaf edge that would defeat low-
level segmentation. Obviously, using seg-
mentation to aid object recognition is prob-
lematic if the segmentation itself requires
object recognition. Marr and others suggest

that this means that segmentation is an illu-
sion that we have based on introspection of
our own capabilities and that it is probably
not a low-level phenomenon at all.

When matching manmade maps against
aerial-surveillance images, photo interpreters
interpret certain patches in the image by com-
bining knowledge of what aerial images look
like with knowledge of the manmade maps
they are matching against. Medical image
segmentation of tissue types of, for example,
a heart image might be aided by knowledge
from a physiological model of the heart. This
is similar to the way that Marr’s leaves could
be successfully segmented.

In its general form, then, segmentation is
not low-level. Practical systems often achieve
good segmentations by applying knowledge.
We’ll refer to regions that have a semantic
label as image content descriptorsand the
process of generating such segmentations as
image labeling. The semantic label is a hy-
pothesis as to that region’s content, such as an
urban area.

Figure 3 shows an aerial image that has
been segmented by several different filters.
Combining the evidence from these sources
enables fairly accurate segmentations. How-
ever, establishing the appropriate structure
for the filters and rules for combining the evi-
dence can be problematic. In general, these
decisions depend not only on the image’s
nature and quality but also on the task for
which the segmentation is required.

Because image analysis is inherently task-

oriented, the analysis requirements will deter-
mine the choice of appropriate properties.

Adaptive-labeling approaches.Normally,
an image-interpretation program (Figure 4a)
combines the results of its filters to yield a
set of image content descriptors. The pro-
gram is developed by selecting an appropri-
ate set of filters for the task, parameterizing
the filters, and building the region labeler, all
manually.

Such a program is rigid; it cannot be
adapted at runtime. Any changes that would
cause the program to generate a poor label-
ing must be determined manually. We seek
an approach that lets the system adapt the
labeling at runtime, if necessary.

Knowledge-based.One way to achieve
greater runtime adaptability is to build a
knowledge-based system that contains expert
knowledge about

• labeling images;
• the set of filters, which we call the tool-

box;
• constructing a labeling program; and
• determining the labeling’s success.

Figure 4b depicts a system in which an
knowledge-based system constructs a label-
ing program from a toolbox of filters and
evaluates the program. In principle, a system
like this could be built. However, the AI
vision community’s experience applying
expert systems to vision teaches us that the
expert system would soon become unwieldy,
and predicting the system’s performance
would be hard. When new filters are added
to the toolbox, the knowledge base will need
to expand to accommodate rules for those fil-
ters. New expert labeling knowledge will
similarly require extending the knowledge
base. We would prefer an architecture in
which knowledge about the filters was more
tightly associated with the filters, and knowl-
edge of image labeling was less ad hoc.

Reflective.Figure 4c shows an adaptive label-
er that separates the knowledge of images
from the knowledge of filters. Because the
filters are reflective, they can evaluate their
performance and their applicability to an
image-labeling requirement. The knowledge
base has been replaced with an image bank in
which expert image interpretations have been
manually applied. This database should be
large enough to permit statistical analysis of

32 IEEE INTELLIGENT SYSTEMS

Figure 3. Combining evidence from multiple filters. red = belief network; green = fractile estimate; yellow = wavelet
estimate; blue = combined feature images from belief network, fractal, and wavelet. (Image provided by Paul Ducks-
bury, Defense Evaluation Research Agency, Malvern, UK.)

the likelihood of labelings for the target
image types. The box labeled “Image knowl-
edge,” which was an expert system in Figure
4b, is now a fixed algorithm for generating
labeling programs based on the information
in the image bank. Evaluation and labeling
are tightly linked because the reflective fil-
ters evaluate their own performance.

This reformulation of the architecture
removes the need to manually build unwieldy
and unpredictable expert systems. It also lets us
characterize the runtime system in terms of

• a fixed-image-interpretation program
builder that we can analyze so that we are
confident about its characteristics, and

• an image labeler structured as a control
system. The image labeler evaluates its
results and achieves feedback by causing
the labeling program to adapt.

The labeling program can be thought of as
an algorithm that is parameterized by a set
of filters F, a set of parameters P, and a struc-
ture S. As the image quality and content
changes over a sequence of images, the con-
trol system adjusts F, P, and Sto produce the
best possible image interpretation given the
knowledge of images as represented by the
image bank and the filters in the toolbox.
(We’ll further explore the control-system
architecture in the next section.)

Not only will such a system generate
robust labeling behavior in the face of chang-
ing image characteristics, it should enable us
to understand its dynamic behavior.

For examples of other architectural ap-
proaches to computer vision, see the sidebar.

Persistence and change between labelings.
Segmentation, in general, is not static. As
imaging satellites orbit the earth, they produce

image stripes, regularly passing over the same
area. Changes of various forms occur between
frames and between passes, including new
construction; vehicle movement; and changes
in crop cover, terrain type, and weather.
Imagery from an airplane provides, on a
smaller scale, image stripes that might transi-
tion through a number of terrain types.

As a system moves from one context to
another, in addition to evidence that the con-
text may be changing from the analysis of
the data, there are constraints on the way that
the context can change. For example, change
in altitude cannot happen spontaneously; the
different levels of altitude, which might be
represented in, for example, 1,000-foot inter-
vals, form an adjacency diagram that deter-
mines which states can be reached from the
current one.

By analyzing sequences from the image
bank, we can extract not only the adjacency
information but also the likelihood of a state
transition.

The context consists of a number of mark-
ers such as altitude, time of day, and season.
Each component might have adjacency con-
straints. Adjacency diagrams relate contexts.
The diagrams can be used in filter selection
and calibration.

For example, transitions between adjacent
states can help us select between different
interpretations of evidence about the context
detected by the filter. For example, trees
might suddenly change their texture, and the
change could be compatible with a sudden
change in season from winter to summer or
a change from trees to bushes. The adjacency
diagram might suggest that the transition to
a different season is less likely than a change
from trees to bushes.

When a filter can’t provide enough (or
any) information about the context to sup-

port a state change, we can use quality com-
putations to determine when changes should
occur by occasionally exploring adjacent
states. By using adjacency information, we
don’t need to search the entire state space as
we might have done in a semantics-free
approach such as a genetic algorithm. By
objectifying (normalizing) quality informa-
tion so that quality measures from different
filters with different models can be compared
against the same scale, we can use a hypoth-
esize-and-test approach to search the local
adjacency space.

The probability of exploring an adjacent
state and the distance along adjacent states
that are searched could be a function of qual-
ity being reported by the prevailing filter. In
this way, when quality starts to drop off, the
system starts looking for a more successful
filter, model, or topology through a focused
local search of the adjacency information.
The dynamic behavior of systems such as
this will likely be analyzable.

We can obtain the context vocabulary and
its structural relationships (adjacency dia-
gram) in several ways:

• Specification: We specify the contexts in
some language of more primitive tokens.
This removes the inductive-learning step
necessary in stipulation (see the next bullet)
but requires access to subprimitive opera-
tors and a language for expressing the spec-
ifications. Access to a fixed language of
subprimitives reduces the orthogonality of
the system’s primitive components.

• Stipulation: Providing examples, such as
in an image corpus, indicates the contexts.
The system learns the vocabulary of con-
texts from these hand-annotated images.

• Hypothesized: The contexts are induced
directly from representative images.

MAY/JUNE 1999 33

Build image
segmentation
and labeling

Filters

Design and
build image

segmentation
and labeling

(manual)

Evaluate
(manual)

Build filters
(manual)

RuntimeDesign time

Images
Images Images

Labeled
regions

Segment
and label

Labeled
regions

Build filters
(manual)

RuntimeDesign time

(a) (b)

Segment
and label

Image
knowledge

Evaluate

Build image
segmentation
and labeling

Reflective
filters

Labeled
regions

Build
image

database
with

expert
labeling
(manual)

Build
reflective

filters
(manual)

RuntimeDesign time

(c)

Segment
and label

Image
knowledge

Evaluate

Build
image-
labeling

knowledge
base

(manual)

Figure 4. Adaptive vision systems: (a) the standard approach; (b) knowledge-based; (c) reflective.

These three approaches represent differing
levels of specification of intent. Specification
is programming intent directly in a specifica-
tion language. Stipulation lets a system pro-
cedure optimize an approximation to the intent
provided by examples. Hypothesized contexts
let the environment drive the adaptation model
without any human modeling.

Stipulation, therefore, is interesting as a
mechanism for assimilating expert knowledge
that cleanly separates intent from the filters
involved in its detection and representation.

Hypothesis is interesting because it allows
much to be learned from the environment,
thereby reducing the extent to which a human

developer needs to specify all the details. The
hypothesis approach is sympathetic to the
“let the environment be its own model”
approach, advocated by Rodney Brooks.4

These approaches need to be mutually
exclusive. An adaptive system might use each
of these three mechanisms in varying degrees.

Image analysis as control

Considering an image-processing program
to be a closed-loop control system or a collec-
tion of such systems is a natural approach to
designing a system that performs consistently,

even when the environment and perhaps the
imaging platform changes. The closed-loop
structure is already apparent in Figure 4c.

A control system is an interconnection of
components forming a system configuration
that will provide a desired response. The foun-
dation for analysis of a conventional control
system comes from linear system theory,
which assumes a cause-and-effect relation-
ship for the system’s components. A closed-
loop control system compares feedback from
the output signal with the desired input.

Linear system theory is of little help when
the components are complex software pro-
cesses, but we’d like to preserve the ability to

34 IEEE INTELLIGENT SYSTEMS

Architectures for computer vision
Early in the development of computer vision, researchers realized that

a single sequential thread of processing was inadequate. This was clear
even in early experiments aimed at developing printed-character-recogni-
tion programs: the recognition step depended on perfect segmentation
and enhancement of the printed characters; yet these two processes could
benefit from each other’s intermediate results and those of the recogni-
tion step.

The fundamental reason a single sequential thread does not work well
is that such a program resembles a house of cards: failure of the early
processes inevitably foils later processes. Because the early processes
proved to be (and still are) difficult (if not impossible) to make absolutely
reliable, early programs only worked in carefully contrived situations.

It was, and remains, tempting to imagine that simply making the
arrows that indicate the flow of control between two processes point in
both directions will somehow advance understanding. This “insight”
has been the basis for a great deal of work in computer vision, leading
to systems that are admirably baroque but mostly do not work, or, if
they do work, are quite sensitive to changes to their environment.

One popular variant of this theme was the blackboardarchitecture.1

In this architecture, independent processes “interact” by reading the
intermediate results of other processes (about which they have limited
understanding) from a single central data structure called a blackboard,
and writing their own results onto the blackboard.

Although the semantics of the blackboard knowledge sources ap-
pears simple, it is not represented explicitly. Also, the interactions of
the parts, as well the data structures that trigger their interactions, are
manually designed. Building and debugging these systems can be every
bit as hard as developing a complex tangled web of code. Similar com-
ments apply to other complex software architectures developed for
vision over the last 20 years, such as Riseman’s vision system.2 Com-
plex architectures provide the illusion of power, but systems that defy
analysis are too dangerous for use in critical applications.

Another idea, borrowed from control theory, is to make explicit a
task’s constraints and then attempt to maximize agreement with the
particular image data while mostly satisfying the constraints. This
framework is powerful, but it’s limited to representing knowledge as
constraints. Further, optimization of nonlinear sets of constraints
encourages programs to become trapped in local minima as they search
for the global minimum. This, in turn, encourages algorithms that
attempt to escape from local minima, such as simulated annealing,3

genetic algorithms, and graduated nonconvexity.4

Recently, considerable interest has focused on perceptual psychol-
ogy in parallel distributed processes5,6 and on neural networks, which
are computational models of brain operation.7 However, to date, neither
PDP nor neural networks have had much impact on computer vision.
One reason is the need for normalization, which is often hard to attain.
Mostly, however, the problem seems to be that current neural techniques
work from impoverished representations of knowledge. This problem
might be solvable.

In light of the limited success of these earlier experiments with archi-
tecture, why should we be optimistic that reflection can make a positive
contribution? The reflective approach’s principal value is that it enables
us to represent cleanly and explicitly the architectural framework. Ap-
proaches such as neural networks and blackboard systems introduce
knowledge at the expense of clarity. Reflection lets us expose the sys-
tem’s semantics so that we can reason about its behavior.

References

1. L.D. Erman et al., “The Hearsay-II Speech Understanding System:
Integrating Knowledge to Resolve Uncertainty,”Computing Sur-
veys, Vol. 12, No. 2, June 1980, pp. 213–253.

2. A. Hansen, E. Riseman, and R. Belknap,The Information Fusion
Problem: Forming Token Aggregations across Multiple Represen-
tations, Tech. Report COINS TR87-48, Computer and Information
Science Dept., Univ. of Massachusetts, Amherst, Mass., 1987.

3. D.W. Murray, A. Kashko, and H. Buxton, “A Parallel Approach to
the Picture Restoration Algorithm of Geman and Geman on an
SIMD Machine,”Image and Vision Computing, Vol. 4, No. 3, Mar.
1986, pp. 133–142.

4. A. Blake and A. Zisserman,Visual Reconstruction, MIT Press,
Cambridge, Mass., 1987.

5. J.L. McClelland and D.E. Rumelhart,Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol.
1: Foundations,MIT Press, 1986.

6. J.L. McClelland and D.E. Rumelhart,Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol.
2: Psychological and Biological Models,MIT Press, 1986.

7. C.M. Bishop,Neural Networks for Pattern Recognition, Oxford
Univ. Press, Oxford, UK, 1996.

analyze the resulting software systems to
understand the system’s expected behavior in
terms of robustness and stability.

Robustness is a qualitative attribute related
to a system’s sensitivity. A robust system’s
operation is insensitive to parameter variations.
Robustness can be characterized by a set of
performance indices to system parameters or
as the sensitivity of the transfer function.

Stability is defined in terms of a system’s
response to its input. In a stable system, the
response diminishes over time. In an unstable
system, the response grows over time. In a
marginally stable system, the response doesn’t
diminish over time but is bounded.

We wish to build systems that are robust and
that are stable in that adjustments to the sys-
tem (changes to the component filters, struc-
ture, and parameterization) converge over time.

Finding a basis for analysis.In an aerial-sur-
veillance program, the image’s regions will
be labeled as being of specific terrain types—
such as “dense forest.” The program that per-
forms the segmentation might consist of a col-
lection of filters (algorithms) such as texture
analysis, image segmentation, and region
labeling. During this discussion, we will not
consider specific image-labeling algorithms.

In general, an image-labeling algorithm
takes a 2D array of pixels in image space and
produces a set of image-content descriptors.
These descriptors designate areas in the
imaged landscape that give rise to homoge-
neous (in some measure) regions in the
image. The set of parameters that govern the
algorithm’s behavior and every aspect of
image labeling is the model for the algorithm.

In most cases, the filter that produced an
image-content descriptor will be able to sup-
ply quality information that is subjective to the
algorithm-model combination that produced it.

If model space was a real line such that each
point along the line was a valid model, if we
had a function delta that defined a metric space
by telling us for any result how far it was from
the ideal result, and if continuous changes in
model space caused continuous changes in the
delta, we could apply standard control-theory
techniques to the filter’s calibration. Root locus
analysis would let us say certain things about
the system’s stability. In practice, models are
not obviously related to the real line, and the
function delta is unlikely to be defined.

The best model for the image labeling is a
function of the environment. For example,
changes in altitude will affect the expected
texture of, say, dense forest.

Aspects of the environment might be
detectable. Textures discovered at different
altitudes might suggest environmental char-
acteristics. If we have a set of environmen-
tal markers, we can seek support for these
markers from the properties (such as tex-
tures) found during the data analysis.

The likelihood of environmental markers
given a property (such as a texture) can be
extracted straightforwardly from the image
bank, which lets us hypothesize environment
marker transitions.

Figure 5 shows how the environment can
be inferred from evidence produced by the
labeling program.

Given hypotheses for what the imaged
environment is, we can use them to select the
best model for the algorithm. This can then
be generalized to include filter and model
selection so that given an environment, we
can select appropriate pairs of < model, fil-
ter >. This allows the selection and calibra-
tion of filters to occur while the incoming
aerial image data is being processed.

When a filter or model changes, a new set
of evidence is generated to support the envi-
ronment. Combining this new evidence with
the old will generate a more precise estimate
of the environment that might cause the fil-
ter or model to change again. For a stable sys-
tem, this iterative process will cause the envi-
ronment estimate to converge. The model
and filter selection will also converge.

From this simple sketch,we can see that a fil-
ter’s semantics includes the algorithms involved
in calibration, detection, and selection of a set
of environment markers. Using a reflective
approach, the filters can support a protocol that
enables a generic algorithm to ask the filter for

its set of environment markers and for evidence
that supports those markers, given an image.

A simple elaboration of the approach
shown in Figure 5 will let us choose topolo-
gies in addition to models and filters. Also,
the filters could consider the consumer/pro-
ducer requirements of interconnected filters
when selecting their environment marker
sets. By showing that the accumulating evi-
dence for an environmental state converges
over time, we can show that the model selec-
tion also converges and thus is stable.

In object-oriented languages that support
method combination (such as the Common
Lisp Object System), a program-construction
algorithm—the method-combination algo-
rithm—uses a method’s signature to reason
about that method’s relationship to a specifica-
tion in the form of a generic function template.
Through this process, the algorithm produces
the correctly interwoven combined method. A
self-adaptive program combines components
(methods, agents, filters, or whatever) using an
expanded method signature that allows the
component’s applicability to change based on
runtime events and on the static descriptions of
the components. The filter developer therefore
must be able to write code that can interrogate
the process that is trying to use the filter and
that can determine dynamically that process’s
suitability based on the environment. The
reflective protocol lets the filter developer
extend the semantics of algorithms that support
training, selection, calibration, impedence
matching, and topology manipulation.

Analysis and correction.Designing closed-
loop control systems involves the ability to
measure and compare outputs and to apply a

MAY/JUNE 1999 35

Figure 5. Closed-loop image segmentation with calibration.

Parameters

Calibration

Environment

Evidence of
environment

Choose model,
given environment

Image
segmentation

Selected agent

Infer environment
from model

and signature

Raw image Segmented image

corrective force to the system. We now con-
sider analogs of these abilities for image-
analysis programs.

Measuring and comparing outputs.Closed-
loop control systems measure the output (and
sometimes the input) to detect deviations from
a desired signal and to calculate the force nec-
essary to correct the deviation. For example,
in an amplifier stage, feedback can be used to
hold the amplifier’s gain to a preset value.

Applying this approach to image-analysis
filters is less straightforward because the
nature of the filter’s output is different from
that of its input. Also, the filters are complex
software components that cannot conve-
niently represent their transfer functions.

For a filter to measure its deviation from its
expected behavior, it must have a model of that
behavior. Generally speaking, a filter will
attempt some kind of interpretation of the input-
image features. Sometimes this interpretation
will be low-level; other times it will be high-
level, such as recognition of complex structures
in an image. Whatever the case, the filter should
be able to detect problems that it encounters
during identification. For example, a filter that
attempts to identify settlements in a desert
might have difficulty when it encounters a for-
est. The forest’s texture might not fit well with
either a settlement or sand dunes. Failures to
deal adequately with the input signal will gen-
erate a discrepancy signal—a difficulty, failure,
or low-confidence interpretation. The discrep-
ancy signal can be quite specific about the prob-
lem’s nature; for example, it might exactly
describe the region containing the trees that it
is unable to confidently identify.

Applying the corrective force. Three ways of
responding to discrepancy signals are of par-
ticular interest because they involve reason-
ing about the computational nature of the
image-analysis program itself:

• Dynamically change filters as needs
change by replacing old filters with bet-
ter ones as they become available. This is
the filter-selection problem.

• Autocalibrate filters to work optimally with
the data they are consuming. This is the fil-
ter-refinement or autocalibration problem.

• Let filters modify their input signal expec-
tations and the form of their output to bring
interconnected filters into closer alignment
with their respective needs. This is the inter-
filter-communication problem, sometimes
called the impedance-matching problem.

AN ADAPTIVE APPROACH TOAERIAL-
surveillance image analysis has these related
benefits:

• The image-analysis process can smoothly
adapt to changes in image quality that
would otherwise lead to abrupt changes
in interpretation quality.

• Appropriate resources can be selected for
an image’s needs in a way that allows the
efficient use of resources. For example,
filters could be implemented in hardware
using FPGAs. The adaptive mechanism
provides a natural way of reprogramming
FPGAs as needed to deal with changing
interpretation needs and image conditions.

• The system requires less tinkering to
make it work.

• Reflection allows the knowledge of the
filters, task, and imaging environment to
guide the automatic integration of filter
results. (Normally, this integration is
manual and inadequate.)

• The image bank provides a convenient
mechanism for converting expert (photo
interpreter) image-analysis knowledge into
a form usable for control and adaptation.

However, this approach has two problems:

• Filter implementation requires significant
additional effort. In particular, when
designing filters for use in image-analy-
sis applications, we must provide for the
filter to monitor its own performance so
that it can report divergence from its
intended behavior.

• Stability analysis is typically part of con-
trol system design, but generalizing sta-
bility analysis for image analysis might
be difficult. Part of the solution might be
better tools for developing, debugging,
and testing adaptive systems.

The ideas in this article have been imple-
mented in the form of a reflective agent archi-
tecture. Two aerial image corpora have been
produced with manually annotated ground
truth. One corpus is based on 105 512 × 512
multispectral images from the European SPOT
satellite, the other is based on 40 2000 × 2000
pixel Massachusetts GIS grayscale images
taken from a plane at 10,000 feet. By treating
the manual annotations as a specification of
desired performance of the image segmenta-
tion and labeling process, we have been able
to use that specification to automatically com-

pose an image parser. We have also allowed
the parser process to change the selection of
filters used in providing supporting evidence
for the segmentation and labeling of the image
to produce the best parse of the image from the
standpoint of the specification. For more tech-
nical details of our project, visit our Web page
on adaptive aerial-image analysis,www.robots.
ox.ac.uk/~pr/aaia.html.

Acknowledgments
The Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air
Force Material Command, USAF, sponsored this
research under agreement F30602-98-0056. The US
Government is authorized to reproduce and distrib-
ute reprints for governmental purposes notwith-
standing any copyright annotation thereon. The
views and conclusions in this article are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements,
either expressed or implied, of DARPA, the Air
Force Research Laboratory, or the US Government.

References
1. B.C. Smith,Reflection and Semantics in a

Procedural Language, Tech. Report 272, MIT
Laboratory for Computer Science, Massa-
chusetts Inst. of Technology, Cambridge,
Mass., 1982.

2. Z.-Y. Xie and J.M. Brady, “Texture Segmen-
tation Using Local Energy in Wavelet Scale
Space,”ECCV J., Vol. A, 1996, pp. 304–313.

3. D. Marr, “Early Processing of Visual Infor-
mation,”Philsophical Trans. Royal Soc. Lon-
don B, Vol. 275, 1976, pp. 483–524.

4. R.A. Brooks, “Intelligence without Repre-
sentation,”Artificial Intelligence,Vol. 47, Jan.
1987, pp. 139–159.

Paul Robertson is chief technical officer and
cofounder of Dynamic Object Language Labs
Inc.—a company dedicated to advanced software
and AI. He has an interest in computational reflec-
tion, computer vision, advanced languages and
architectures for building intelligent systems. He
holds a BA in computer science, and he is a PhD
candidate at the University of Oxford. Contact him
at pr@robots.ox.ac.uk.

J. Michael Brady is a professor of information
engineering and the founder of the Robotics Lab-
oratory and the Medical Vision Laboratory at the
University of Oxford. He received his PhD in
mathematics.

36 IEEE INTELLIGENT SYSTEMS

