SELF-ADAPTIVE SOFTWARE

Paul Robertson and J. Michael Brady, Robotics Research Group, Oxford University

'N MILITARY INTELLIGENCE APPLI-
cations, robustness and predictability are gru-
cial because the fate of a battle and those who
are fighting it is at stake. Computer-vision
systems must have robust, predictable per-
formance before they will be fully embraced
in military applications and other safety-
critical applications such as medical imag-
ing and intelligent transportation systems.
We try to deal with these requirements by
keeping systems simple. Experience has
shown that the systems that work best

those whose complexity has been minimizedncouraging advances, but the real worl

THE AUTHORS DESCRIBE A COMPUTER-VISION SYSTEM THAT
WOULD AUTOMATICALLY MONITOR ITS OWN PERFORMANCE
AND DYNAMICALLY ADAPT TO CHANGING SITUATIONS AND
REQUIREMENTS. THEIR APPROACH IS BASED ON COMPUTA-

TIONAL REFLECTION AND CONTROL-SYSTEM THEORY.
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and that have been manually tweaked untédxtremely complex. The performance p#
they perform reasonably well as long as nagtteomputer vision systems falls far short |of

ing changes too much.

human or animal perception. In short, math-

Unfortunately, things do change. Someematical analysis is hecessary but unlikely to

times, what changes is the environment, suatver be sufficient.

as the lighting, altitude, or weather. Other We've developed an alternative approach:
times, itis the technology, such as a new canfpuild architectures that support the integration
era or the replacement of an algorithm. Eveaf knowledge within a framework that is both

small changes often cause systems to breaknple enough and retains enough semantic
information to permit analysis of its behavior.
We can address such fragility in severalhis approach has three advantages:

unpredictably.

ways. One approach is to build in more and

We can make semantics explicit and them
construct the interactions algorithmically
to satisfy certain constraints. This waly,
the semantics of the parts are known.
Although the specific pattern of interac-
tions might not be understood, the con-
straints that the algorithm satisfied jn

composing them can be understood.
This approach can provide graceful aggre
gation and degradation of competence.
When we can add (or use) better imag
filters, we expect incrementally better
results; when we can’t use certain filters
because the image conditions don't perm
it, we expect slightly lower performance
because we rely on poorer filters. The
process of building a system that can make
these transitions smoothly is difficult and
haphazard when it depends on manually
constructed ad hoc programming.
We can incorporate the previous twa
advantages into a manageable frame
work. Producing good image-analysis
results is difficult. We always want to use
the best filters possible and to mobilize
as much knowledge into the interpretar
tion as possible.
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Figure 1. A typical pipelined architecture for aerial surveillance.
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Image-processing programs are typicall 1
constructed from a number of filters whosg Prediction
results are combined to produce good result
Image interpretation is divided into a numj Expected
ber of processing stages, so filters are se L Adapttheimage-analysissystem | responses of
ally connected. structure and modify parameters image-analysis
Figure 1 shows a typical pipelined archi system
tecture for a military aerial-surveillance pro-

gram. The architecture is a network of interigyre 2. The design process of an image-analysis system.

connected filters. The raw image is the inpu.

signal to this system. Successive stages of

the program transform this signal. These net- works as expected. One approach to this An embedded semantic accquvhich is

works, which are manually pieced together, is to generate provably correct code. the reified semantics.

tend to be simple because the systems|get Another way is to make the code self-mane A causal connectiobetween the embed-

harder to manage as complexity grows.

theory exists for what conditions must be sat- simple enough to facilitate reasoning about semantics. This allows interrogation

isfied to make the resulting system stabl

for predicting how changes in components such architecture structures the software tation state; by modifying the data struc

will affect overall system performance.
Introducing adaptability into this syste

could increase its robustness. However, this We can summarize these requirements An appropriate level of detailypically,

might decrease the system'’s stability. For thevith the slogan “Self-adaptation equals re- the entire state of the computation doesn’

system to self adapt, it must meet thestection plus monitoring plus control.” Mon

requirements.

0 itoring and to have an architecture that is ded semantic account and the program

(%)

or the overall system’s runtime state. One (introspection) of the program’s compu-

update process as a control system. tures or functions, we can modify the pro

gram’s semantics.

—

need to be interrogated, and the entir
itoring lets the program measure deviations semantics doesn’'t need to be modified. |
from an intended state; control provides a solving real problems, a sense of propo
It must be able to reason about its comway of restructuring the program to move tion is necessary, and success is achieved
putational intent and state to assemble thiewards the intended state; and reflection by selecting which subset of the seman
filters in a way that is consistent with theprovides the introspection capability neces- tics to reify. This selection requires an
system’s task. This sort of self-knowledgesary to support monitoring and the access to analysis of the reflective system’s goals|
is usually not required by systems that arembedded semantics necessary to facilitate
assembled by human programmers anchanges in the program.
that remain static throughout their life-

time.Reflection(which we discuss in th
next section) provides an approach|tReflection
managing this kind of self-information
Its structure must allow filters to be added Brian Smith introduced the terproce-
and removed without complicated entandural reflectionin 1982 to describe the use

glements with other software. The solu-of semantic reification to help write pr -Building an udup'live
tion, therefore, requires a clean architecgrams that can manipulate, to some degregchitecture

tural approach. their own computational natut&Reflection
Human-assembled software is carefullyopens up the computational state so that it We have chosen the problem of image seg-
tested in a controlled environment befgrean be manipulated within the language| omentation to focus our efforts on developing
it is used in a live situation. Software thasystem. In addition to the basic programand demonstrating the benefits of an adap-
restructures itself dynamically needs reaszapabilities, support for reflection comestive computing approach to aerial image
surance that the restructured softwar&om these features: analysis. Image-segmentation partitions an

T o M

Reflection lets software components mod
ify their own semantics. By reifying the
semantics of the image-analysis system design
process (see Figure 2), the individual filters
can participate in the program’s adaptation.
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oriented, the analysis requirements will dete
mine the choice of appropriate properties.

Adaptive-labeling approachesNormally,
an image-interpretation program (Figure 4a)
combines the results of its filters to yield a
set of image content descriptors. The prg
gram is developed by selecting an appropri
ate set of filters for the task, parameterizing
the filters, and building the region labeler, al
manually.

Such a program is rigid; it cannot be
adapted at runtime. Any changes that woul
cause the program to generate a poor label-
ing must be determined manually. We see
an approach that lets the system adapt the
labeling at runtime, if necessary.

o

~

Knowledge-basedOne way to achieve
greater runtime adaptability is to build a
knowledge-based system that contains expert
knowledge about

Figure 3. Combining evidence from multiple filters. red = belief network; green = fractile estimate; yellow = wavelet
estimate; blue = combined feature images from belief network, fractal, and wavelet. (Image provided by Paul Ducks-
bury, Defense Evaluation Research Agency, Malvern, UK.)

image into disjoint regions, each of whichlighat this means that segmentation is an illu- labeling images;
homogeneous in some property. Examplesion that we have based on introspection of the set of filters, which we call theol-
of such properties include our own capabilities and that it is probably box
not a low-level phenomenon at all. e constructing a labeling program; and
e A threshold value or range such that gll When matching manmade maps against determining the labeling’s success.
pixels in the region have brightness valueaerial-surveillance images, photo interpreters
in that range—for example, (23, 47). | interpret certain patches in the image by cam- Figure 4b depicts a system in which an
« Measures of texture, such as co-occutbining knowledge of what aerial images lookknowledge-based system constructs a labe
rences, fractal measures, or wavelet locdike with knowledge of the manmade mapsng program from a toolbox of filters and
energy? they are matching against. Medical imagevaluates the program. In principle, a system
* Object membership such that all pixels|irsegmentation of tissue types of, for exampldike this could be built. However, the Al
the region belong to the same object. Faa heart image might be aided by knowledgeision community’s experience applying
example, in an image containing a tankfrom a physiological model of the heart. Thisexpert systems to vision teaches us that the
the region containing the tank would haves similar to the way that Marr’s leaves couldexpert system would soon become unwieldy,
the property that all pixels in the regionbe successfully segmented. and predicting the system’s performance
belonged to the tank. In its general form, then, segmentation isvould be hard. When new filters are added
not low-level. Practical systems often achievéo the toolbox, the knowledge base will need
The space of possible properties that can lgwod segmentations by applying knowledgeto expand to accommodate rules for those fil-
used for segmentation form a partial orderingVe'll refer to regions that have a semantiders. New expert labeling knowledge will
of levels of interpretation of the image. label asmage content descriptoend the| similarly require extending the knowledge
Much research in image segmentation takggocess of generating such segmentations base. We would prefer an architecture in
the view that it is a low-level vision concept.image labeling The semantic label is a hy-which knowledge about the filters was more
Certainly many researchers have attempted pmthesis as to that region’s content, such as #éightly associated with the filters, and knowl-
implement segmentation at a low level. Realdrban area. edge of image labeling was less ad hoc.
ity seems to be telling us another story. Figure 3 shows an aerial image that has
David Marr gives a graphic example ofbeen segmented by several different filterReflectiveFigure 4c shows an adaptive label
why segmentation is difficult by showing two Combining the evidence from these sourcesr that separates the knowledge of images
overlapping leaves with virtually no discern-enables fairly accurate segmentations. Howirom the knowledge of filters. Because the
able edge or texture shift between the twever, establishing the appropriate structurlters are reflective, they can evaluate their
leaves’ Identifying the leaves allows us to sedor the filters and rules for combining the evi-performance and their applicability to an
the subtle leaf edge that would defeat lowdence can be problematic. In general, thesmage-labeling requirement. The knowledge
level segmentation. Obviously, using segeecisions depend not only on the image’base has been replaced with an image bank in
mentation to aid object recognition is probnature and quality but also on the task fowhich expertimage interpretations have been
lematic if the segmentation itself requireswvhich the segmentation is required. manually applied. This database should be
object recognition. Marr and others suggest Because image analysis is inherently taskarge enough to permit statistical analysis of
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Figure 4. Adaptive vision systems: (a) the standard approac

the likelihood of labelings for the targ
image types. The box labeled “Image kno
edge,” which was an expert system in Fig
4b, is now a fixed algorithm for generatin
labeling programs based on the informati
in the image bank. Evaluation and labeli
are tightly linked because the reflective f
ters evaluate their own performance.
This reformulation of the architectur
removes the need to manually build unwiel

and unpredictable expert systems. It also lets tsxt may be changing from the analysis

characterize the runtime system in terms @
» a fixed-image-interpretation progra
builder that we can analyze so that we

confident about its characteristics, and
an image labeler structured as a cont
system. The image labeler evaluates
results and achieves feedback by caus
the labeling program to adapt.

The labeling program can be thought of
an algorithm that is parameterized by a
of filtersF, a set of parametelPs and a struc-
ture S. As the image quality and conte
changes over a sequence of images, the
trol system adjusts, P, andSto produce the|
best possible image interpretation given
knowledge of images as represented by
image bank and the filters in the toolbg
(We'll further explore the control-syste
architecture in the next section.)

Not only will such a system genera
robust labeling behavior in the face of cha
ing image characteristics, it should enable
to understand its dynamic behavior.

For examples of other architectural a
proaches to computer vision, see the sidek

Persistence and change between labeling
Segmentation, in general, is not static.
imaging satellites orhit the earth, they produ

\:Etimage stripes, regularly passing over the sd

h; (b) knowledge-hased; (c) reflective.

larea. Changes of various forms occur betw
récames and between passes, including 1
gconstruction; vehicle movement; and chan
oin crop cover, terrain type, and weathg¢
ndmagery from an airplane provides, on
I-smaller scale, image stripes that might tran

tion through a number of terrain types.
e As a system moves from one context
dwnother, in addition to evidence that the c¢

f the data, there are constraints on the way
the context can change. For example, cha
min altitude cannot happen spontaneously;
ardifferent levels of altitude, which might b
represented in, for example, 1,000-foot int
ralals, form an adjacency diagram that det
itsines which states can be reached from
ingurrent one.
By analyzing sequences from the ima
bank, we can extract not only the adjacer
amformation but also the likelihood of a sta
sdtansition.
The context consists of a number of ma
nters such as altitude, time of day, and seas
cdBach component might have adjacency c
straints. Adjacency diagrams relate conte
h&he diagrams can be used in filter select
trend calibration.
X. For example, transitions between adjac
n states can help us select between differ
interpretations of evidence about the cont
tedetected by the filter. For example, tre
gmight suddenly change their texture, and
ushange could be compatible with a sudd
change in season from winter to summe
pa change from trees to bushes. The adjace
adiagram might suggest that the transition
a different season is less likely than a cha
s.from trees to bushes.
As When a filter can’t provide enough (¢
cany) information about the context to su

nEort a state change, we can use quality con
egutations to determine when changes shou
ewccur by occasionally exploring adjacen

erdon’t need to search the entire state space
ave might have done in a semantics-fre
sapproach such as a genetic algorithm. B
objectifying (normalizing) quality informa-
teion so that quality measures from differen
brfilters with different models can be compare
oégainst the same scale, we can use a hypo
thasize-and-test approach to search the log
ngeljacency space.
the The probability of exploring an adjacent
e state and the distance along adjacent sta
erthat are searched could be a function of qua
eiity being reported by the prevailing filter. In
this way, when quality starts to drop off, the
system starts looking for a more successf
géilter, model, or topology through a focused

teThe dynamic behavior of systems such g
this will likely be analyzable.

k- We can obtain the context vocabulary an

soibs structural relationships (adjacency dia

omgram) in several ways:

ts.

on SpecificationWe specify the contexts in

ent This removes the inductive-learning stey
ent necessary in stipulation (see the next bulle
ext but requires access to subprimitive opera
es torsand alanguage for expressing the spe
he ifications. Access to a fixed language o
en subprimitives reduces the orthogonality o
or the system’s primitive components.
2ney Stipulation Providing examples, such as
to inanimage corpus, indicates the context
nge The system learns the vocabulary of con
texts from these hand-annotated images
HypothesizedThe contexts are induced
directly from representative images.

[e
p_

jestates. By using adjacency information, we

chocal search of the adjacency information.

some language of more primitive tokens.
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These three approaches represent differirdeveloper needs to specify all the details. Theven when the environment and perhaps the
levels of specification of intent. Specificationhypothesis approach is sympathetic to thienaging platform changes. The closed-loop
is programming intent directly in a specifica-‘let the environment be its own mode]” structure is already apparent in Figure 4c.
tion language. Stipulation lets a system proapproach, advocated by Rodney Brobks. A control system is an interconnection o
cedure optimize an approximation to the intent These approaches need to be mutuallgomponents forming a system configuration
provided by examples. Hypothesized contextsxclusive. An adaptive system might use eadhat will provide a desired response. The foun
let the environment drive the adaptation modeif these three mechanisms in varying degreedation for analysis of a conventional contro
without any human modeling. system comes from linear system theory

Stipulation, therefore, is interesting as a which assumes a cause-and-effect relation-

. . . . o .
mechanism for assimilating expert knowled dmuge unulysls as control ship for the system’s components. A closed-
that cleanly separates intent from the filters loop control system compares feedback from

involved in its detection and representation. Considering an image-processing prograrthe output signal with the desired input.
Hypothesis is interesting because it allow$o be a closed-loop control system or a collec- Linear system theory is of little help when

much to be learned from the environmenttion of such systems is a natural approach the components are complex software pra

thereby reducing the extent to which a humadesigning a system that performs consistentlgesses, but we’d like to preserve the ability t

(@]

Archileclures for ¢ompuler visio“ Rz_acently, con_sidgrable interest has focused on perceptual ps_ycho
ogy in parallel distributed proces&€and on neural networks, which

Early in the development of computer vision, researchers realized thfie computational models of brain operatittowever, to date, neither
a single sequential thread of processing was inadequate. This was cleRPP nor neural networks have had much impact on computer vision
even in early experiments aimed at developing printed-character-recoéﬁ'ﬂe reason is the need for normalization, which is often hard to attain.
tion programs: the recognition step depended on perfect segmentatiorV10stly, however, the problem seems to be that current neural techniglies
and enhancement of the printed characters; yet these two processes a@rl from impoverished representations of knowledge. This problem
benefit from each other's intermediate results and those of the recogniMight be solvable.
tion step. In light of the limited success of these earlier experiments with arch
The fundamental reason a single sequential thread does not work wi@gture, why should we be optimistic that reflection can make a positjve
is that such a program resembles a house of cards: failure of the eanycontribution? The reflective approach’s principal value is that it enables
processes inevitably foils later processes. Because the early processesds to represent cleanly and explicitly the architectural framework. Ap
proved to be (and still are) difficult (if not impossible) to make absoluteroaches such as neural networks and blackboard systems introduc
reliable, early programs only worked in carefully contrived situations. knowledge at the expense of clarity. Reflection lets us expose the sy.
It was, and remains, tempting to imagine that simply making the ~tem’s semantics so that we can reason about its behavior.
arrows that indicate the flow of control between two processes point in
both directions will somehow advance understanding. This “insight”
has been the basis for a great deal of work in computer vision, IeadinBefe"e“‘es

:ﬁ syztemsrtlilatrare a.‘tdm”&:]bl.)t'. ba[oqlque I?Ut mtostt'|1y .C:O :o_trwr(])rrnk,rc])tr, i 1. L.D. Erman et al., “The Hearsay-Il Speech Understanding System:
5 QTGRS EIE GILS SO U S WD ULl EIRI s Integrating Knowledge to Resolve Uncertain@@mputing Sur-

Or_1e popglar varie}nt of this theme was lﬂlm:_kboardarchitectu_rel. veys\ol. 12, No. 2, June 1980, pp. 213-253.
In this architecture, independent processes “interact” by reading the
intermediate results of other processes (about which they have limitec®, A. Hansen, E. Riseman, and R. BelkriHpe Information Fusion
understanding) from a single central data structure called a blackboard, Problem: Forming Token Aggregations across Multiple Represen-
and writing their own results onto the blackboard. tations Tech. Report COINS TR87-48, Computer and Informatio
Although the semantics of the blackboard knowledge sources ap- Science Dept., Univ. of Massachusetts, Amherst, Mass., 1987.
pears simple, it is not represented explicitly. Also, the interactions of

the parts, as well the data structures that trigger their interactions, are the Picture Restoration Algorithm of Geman and Geman on an

manually designed. Building and debugging these systems can be eVery o \MD Machine "Image and Vision Computingol. 4, No. 3, Mar.
bit as hard as developing a complex tangled web of code. Similar com-  1g9gg 1, 133-142. ' '

ments apply to other complex software architectures developed for
vision over the last 20 years, such as Riseman’s vision system.- 4. A. Blake and A. Zissermaijsual ReconstructigrMIT Press,
plex architectures provide the illusion of power, but systems that defy =~ Cambridge, Mass., 1987.
analysis are too dangerous for use in critical applications. o
Another idea, borrowed from control theory, is to make explicita . J.L. McClelland and D.E. RumelhaParallel Distributed
task’s constraints and then attempt to maximize agreement with the Processing: Explorations in the Microstructure of Cognition, Vol.
particular image data while mostly satisfying the constraints. This 1: FoundationsMIT Press, 1986.
framewprk is powerful, b.ut.lts.llmlted to r.epresentlng knowlec_ige @S g J.L. McClelland and D.E. RumelhaParallel Distributed
constraints. Further, optimization of nonlinear sets of constraints Processing: Explorations in the Microstructure of Cognition, Vol.

encourages programs to become trapped in local minima as they search2: psychological and Biological ModelSlIT Press, 1986.
for the global minimum. This, in turn, encourages algorithms that

attempt to escape from local minima, such as simulated annéaling, 7. C.M. BishopNeural Networks for Pattern Recognitiddxford
genetic algorithms, and graduated nonconvékxity. Univ. Press, Oxford, UK, 1996.
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3. D.W. Murray, A. Kashko, and H. Buxton, “A Parallel Approach to
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Choose model, Environment | |nfer environment
given environment from model
and signature

analyze the resulting software systems t
understand the system’s expected behavior Evidence of
terms of robustness and stability. Parameters environment

Robustness is a qualitative attribute relate
to a system’s sensitivity. A robust system’s
operation is insensitive to parameter variation
Robustness can be characterized by a set
performance indices to system parameters
as the sensitivity of the transfer function.

Stability is defined in terms of a system’s
response to its input. In a stable system, th
response diminishes over time. In an unstab
system, the response grows over time. In
marginally stable system, the response does
diminish over time but is bounded.

We wish to build systems that are robust an«
that are stable in that adjustments to the syFigure 5. Closed-loop image segmentation with calibration.
tem (changes to the component filters, struc
ture, and parameterization) converge over time.

Image
segmentation

Selected agent e

A

3 o

Rw image Segmented image

Aspects of the environment might beits set of environment markers and for evideng
Finding a basis for analysisin an aerial-sur-| detectable. Textures discovered at differerthat supports those markers, given an image.
veillance program, the image'’s regions willaltitudes might suggest environmental char- A simple elaboration of the approach
be labeled as being of specific terrain types—acteristics. If we have a set of environmenshown in Figure 5 will let us choose topolo
such as “dense forest.” The program that petal markers, we can seek support for thesgies in addition to models and filters. Also
forms the segmentation might consist of a golmarkers from the properties (such as texhe filters could consider the consumer/prg
lection of filters (algorithms) such as texturetures) found during the data analysis. ducer requirements of interconnected filter,
analysis, image segmentation, and regjon The likelihood of environmental markerswhen selecting their environment marke
labeling. During this discussion, we will notgiven a property (such as a texture) can beets. By showing that the accumulating ev
consider specific image-labeling algorithmsextracted straightforwardly from the imagedence for an environmental state converge
In general, an image-labeling algorithmbank, which lets us hypothesize environmerdver time, we can show that the model sele
takes a 2D array of pixels in image space andarker transitions. tion also converges and thus is stable.
produces a set of image-content descriptors. Figure 5 shows how the environment can In object-oriented languages that suppo
These descriptors designate areas in |thee inferred from evidence produced by thenethod combination (such as the Commo
imaged landscape that give rise to homogéabeling program. Lisp Object System), a program-constructio
neous (in some measure) regions in the Given hypotheses for what the imagedlgorithm—the method-combination algo-
image. The set of parameters that govern|trevironment is, we can use them to select|trdhm—uses a method’s signature to reasa
algorithm’s behavior and every aspect jobest model for the algorithm. This can therabout that method’s relationship to a specifica

image labeling is the model for the algorithmbe generalized to include filter and modetion in the form of a generic function templatel

In most cases, the filter that produced |aselection so that given an environment, wé& hrough this process, the algorithm produce
image-content descriptor will be able to supean select appropriate pairs ofrrode] fil- | the correctly interwoven combined method. A
ply quality information that is subjective to theter >. This allows the selection and calibra-self-adaptive program combines componen
algorithm-model combination that produced ittion of filters to occur while the incoming (methods, agents, filters, or whatever) using g

If model space was a real line such that epclerial image data is being processed. expanded method signature that allows th
point along the line was a valid model, if we When a filter or model changes, a new setomponent’s applicability to change based o
had a function delta that defined a metric spac# evidence is generated to support the envitintime events and on the static descriptions
by telling us for any result how far it was fromronment. Combining this new evidence wittthe components. The filter developer therefo
the ideal result, and if continuous changes ithe old will generate a more precise estimateust be able to write code that can interrogal
model space caused continuous changes in thethe environment that might cause the filthe process that is trying to use the filter an
delta, we could apply standard control-theoryer or model to change again. For a stable sythat can determine dynamically that process
techniques to the filter’s calibration. Root locudem, this iterative process will cause the envisuitability based on the environment. Th¢
analysis would let us say certain things abpubnment estimate to converge. The modekflective protocol lets the filter develope
the system'’s stability. In practice, models arand filter selection will also converge.
not obviously related to the real line, and the From this simple sketch, we can see that g fitraining, selection, calibration, impedence
function delta is unlikely to be defined. ter's semantics includes the algorithms involyethatching, and topology manipulation.

The best model for the image labeling is én calibration, detection, and selection of a set
function of the environment. For example of environment markers. Using a reflectiveAnalysis and correction.Designing closed-
changes in altitude will affect the expectedipproach, the filters can support a protocol théhop control systems involves the ability to
texture of, say, dense forest.

extend the semantics of algorithms that support
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enables a generic algorithm to ask the filter fameasure and compare outputs and to apply a
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corrective force to the system. We now con-
sider analogs of these abilities for image: N ADAPTIVE APPROACH TQAERIAL-
analysis programs.
benefits:
Measuring and comparing outputSlosed-
loop control systems measure the output (ard

sometimes the input) to detect deviations fr
a desired signal and to calculate the force n
essary to correct the deviation. For exam
in an amplifier stage, feedback can be used to
hold the amplifier's gain to a preset value.
Applying this approach to image-analysis
filters is less straightforward because the
nature of the filter's output is different fro
that of its input. Also, the filters are complex
software components that cannot conye-
niently represent their transfer functions.
For a filter to measure its deviation from its
expected behavior, it must have a model of that
behavior. Generally speaking, a filter wille
attempt some kind of interpretation of the input-
image features. Sometimes this interpretation
will be low-level; other times it will be high
level, such as recognition of complex structures
in an image. Whatever the case, the filter shoukd
be able to detect problems that it encounters
during identification. For example, a filter that
attempts to identify settlements in a desert
might have difficulty when it encounters a far-
est. The forest's texture might not fit well with  However, this approach has two problems:
either a settlement or sand dunes. Failures to
deal adequately with the input signal will gen-
erate a discrepancy signal—a difficulty, failure,
or low-confidence interpretation. The discrep-
ancy signal can be quite specific about the prob-
lem’s nature; for example, it might exactly
describe the region containing the trees that it
is unable to confidently identify.

in interpretation quality.

efficient use of resources. For examp|
filters could be implemented in hardware

provides a natural way of reprogrammi
FPGAs as needed to deal with chang
interpretation needs and image conditio|

d
n

make it work.
Reflection allows the knowledge of the
filters, task, and imaging environment to

results. (Normally, this integration i
manual and inadequate.)
The image bank provides a convenient

interpreter) image-analysis knowledge into
a form usable for control and adaptation.

Filter implementation requires significant
additional effort. In particular, whe
designing filters for use in image-analy-
sis applications, we must provide for the
filter to monitor its own performance so
that it can report divergence from its
intended behavior.

Applying the corrective forc&hree ways of
responding to discrepancy signals are of g
ticular interest because they involve reas
ing about the computational nature of t
image-analysis program itself:

trol system design, but generalizing sta-
bility analysis for image analysis might
be difficult. Part of the solution might b
better tools for developing, debuggin
and testing adaptive systems.

ar-
on-
he

Dynamically change filters as needs The ideas in this article have been imp
change by replacing old filters with bet-mented in the form of a reflective agent archi
ter ones as they become available. Thi
the filter-selection problem.
Autocalibrate filters to work optimally with
the data they are consuming. This is the
ter-refinement or autocalibration problem satellite, the other is based on 40 28@D00
Let filters modify their input signal expeq
tations and the form of their output to bri

truth. One corpus is based on 105 531512

with their respective needs. This is the interdesired performance of the image segment
filter-communication problem, sometimestion and labeling process, we have been

called the impedance-matching problen. to use that specification to automatically commathematics.

pose an image parser. We have also allow
the parser process to change the selection

for the segmentation and labeling of the imag
to produce the best parse of the image from t
The image-analysis process can smoothistandpoint of the specification. For more tech
adapt to changes in image quality thahical details of our project, visit our Web page
would otherwise lead to abrupt changesn adaptive aerial-image analysisyw.robots.
ox.ac.uk/~pr/aaia.htm=

Appropriate resources can be selected|for

an image’s needs in a way that allows the
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