
Randomized Decoding for Selection-and-Ordering Problems

Pawan Deshpande, Regina Barzilay and David R. Karger
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{pawand,regina,karger}@csail.mit.edu

Abstract

The task of selecting and ordering infor-
mation appears in multiple contexts in text
generation and summarization. For in-
stance, methods for title generation con-
struct a headline by selecting and order-
ing words from the input text. In this pa-
per, we investigate decoding methods that
simultaneously optimize selection and or-
dering preferences. We formalize decod-
ing as a task of finding an acyclic path
in a directed weighted graph. Since the
problem is NP-hard, finding an exact so-
lution is challenging. We describe a novel
decoding method based on a randomized
color-coding algorithm. We prove bounds
on the number of color-coding iterations
necessary to guarantee any desired likeli-
hood of finding the correct solution. Our
experiments show that the randomized de-
coder is an appealing alternative to a range
of decoding algorithms for selection-and-
ordering problems, including beam search
and Integer Linear Programming.

1 Introduction

The task of selecting and ordering information ap-
pears in multiple contexts in text generation and
summarization. For instance, a typical multidocu-
ment summarization system creates a summary by
selecting a subset of input sentences and ordering
them into a coherent text. Selection and ordering at

the word level is commonly employed in lexical re-
alization. For instance, in the task of title generation,
the headline is constructed by selecting and ordering
words from the input text.

Decoding is an essential component of the
selection-and-ordering process. Given selection and
ordering preferences, the task is to find a sequence of
elements that maximally satisfies these preferences.
One possible approach for finding such a solution
is to decompose it into two tasks: first, select a set
of words based on individual selection preferences,
and then order the selected units into a well-formed
sequence. Although the modularity of this approach
is appealing, the decisions made in the selection step
cannot be retracted. Therefore, we cannot guarantee
that selected units can be ordered in a meaningful
way, and we may end up with a suboptimal output.

In this paper, we investigate decoding methods
that simultaneously optimize selection and order-
ing preferences. We formalize decoding as find-
ing a path in a directed weighted graph.1 The
vertices in the graph represent units with associ-
ated selection scores, and the edges represent pair-
wise ordering preferences. The desired solution is
the highest-weighted acyclic path of a prespecified
length. The requirement for acyclicity is essential
because in a typical selection-and-ordering problem,
a well-formed output does not include any repeated
units. For instance, a summary of multiple docu-
ments should not contain any repeated sentences.

1We assume that the scoring function is local; that is, it is
computed by combining pairwise scores. In fact, the majority
of models that are used to guide ordering (i.e., bigrams) are local
scoring functions.

Since the problem is NP-hard, finding an exact
solution is challenging. We introduce a novel ran-
domized decoding algorithm2 based on the idea of
color-coding (Alon et al., 1995). Although the algo-
rithm is not guaranteed to find the optimal solution
on any single run, by increasing the number of runs
the algorithm can guarantee an arbitrarily high prob-
ability of success. The paper provides a theoretical
analysis that establishes the connection between the
required number of runs and the likelihood of find-
ing the correct solution.

Next, we show how to find an exact solution using
an integer linear programming (ILP) formulation.
Although ILP is NP-hard, this method is guaranteed
to compute the optimal solution. This allows us to
experimentally investigate the trade-off between the
accuracy and the efficiency of decoding algorithms
considered in the paper.

We evaluate the accuracy of the decoding algo-
rithms on the task of title generation. The decod-
ing algorithms introduced in the paper are compared
against beam search, a heuristic search algorithm
commonly used for selection-and-ordering and other
natural language processing tasks. Our experiments
show that the randomized decoder is an appealing al-
ternative to both beam search and ILP when applied
to selection-and-ordering problems.

2 Problem Formulation

In this section, we formally define the decoding task
for selection-and-ordering problems. First, we intro-
duce our graph representation and show an example
of its construction for multidocument summariza-
tion. (An additional example of graph construction
for title generation is given in Section 6.) Then, we
discuss the complexity of this task and its connec-
tion to classical NP-hard problems.

2.1 Graph Representation

We represent the set of selection units as the set of
vertices V in a weighted directed graph G. The
set of edges E represents pairwise ordering scores
between all pairs of vertices in V . We also add a
special source vertex s and sink vertex t. For each
vertex v in V , we add an edge from s to v and an

2The code is available at
http://people.csail.mit.edu/pawand/rand/

edge from v to t. We then define the set of all ver-
tices as V ∗ = V ∪ {s, t}, and the set of all edges as
E∗ = E ∪ {(s, v) ∀ v ∈ V } ∪ {(v, t) ∀ v ∈ V }.

To simplify the representation, we remove all ver-
tex weights in our graph structure and instead shift
the weight for each vertex onto its incoming edges.
For each pair of distinct vertices (v, u) ∈ V , we set
the weight of edge ev,u to be the sum of the loga-
rithms of the selection score for u and the pairwise
ordering score of (v, u).

We also enhance our graph representation by
grouping sets of vertices into equivalence classes.
We introduce these classes to control for redundancy
as required in many selection-and-ordering prob-
lems.3 For instance, in title generation, an equiva-
lence class may consist of morphological variants of
the same stem (i.e., examine and examination). Be-
cause a typical title is unlikely to contain more than
one word with the same stem, we can only select a
single representative from each class.

Our task is now to find the highest weighted
acyclic path starting at s and ending at t with k ver-
tices in between, such that no two vertices belong to
the same equivalence class.

2.2 Example: Decoding for Multidocument
Summarization

In multidocument summarization, the vertices in the
decoding graph represent sentences from input doc-
uments. The vertices may be organized into equiva-
lence classes that correspond to clusters of sentences
conveying similar information. The edges in the
graph represent the combination of the selection and
the ordering scores. The selection scores encode the
likelihood of a sentence to be extracted, while pair-
wise ordering scores capture coherence-based prece-
dence likelihood. The goal of the decoder is to find
the sequence of k non-redundant sentences that op-
timize both the selection and the ordering scores.
Finding an acyclic path with the highest weight will
achieve this goal.

3An alternative approach for redundancy control would be
to represent all the members of an equivalence class as a sin-
gle vertex in the graph. However, such an approach does not
allow us to select the best representative from the class. For in-
stance, one element in the equivalence class may have a highly
weighted incoming edge, while another may have a highly
weighted outgoing edge.

2.3 Relation to Classical Problems

Our path-finding problem may seem to be simi-
lar to the tractable shortest paths problem. How-
ever, the requirement that the path be long makes it
more similar to the the Traveling Salesman Problem
(TSP). More precisely, our problem is an instance of
the prize collecting traveling salesman problem, in
which the salesman is required to visit k vertices at
best cost (Balas, 1989; Awerbuch et al., 1995).

Since our problem is NP-hard, we might be pes-
simistic about finding an exact solution. But our
problem has an important feature: the length k of
the path we want to find is small relative to the num-
ber of vertices n. This feature distinguishes our task
from other decoding problems, such as decoding in
machine translation (Germann et al., 2001), that are
modeled using a standard TSP formulation. In gen-
eral, the connection between n and k opens up a new
range of solutions. For example, if we wanted to
find the best length-2 path, we could simply try all
subsets of 2 vertices in the graph, in all 2 possible
orders. This is a set of only O(n2) possibilities, so
we can check all to identify the best in polynomial
time.

This approach is very limited, however: in gen-
eral, its runtime of O(nk) for paths of length k
makes it prohibitive for all but the smallest values
of k. We cannot really hope to avoid the exponential
dependence on k, because doing so would give us
a fast solution to an NP-hard problem, but there is
hope of making the dependence “less exponential.”
This is captured by the definition of fixed parameter
tractability (Downey and Fellows, 1995). A prob-
lem is fixed parameter tractable if we can make the
exponential dependence on the parameter k indepen-
dent of the polynomial dependence on the problem
size n. This is the case for our problem: as we will
describe below, an algorithm of Alon et al. can be
used to achieve a running time of roughly O(2kn2).
In other words, the path length k only exponentiates
a small constant, instead of the problem size n, while
the dependence on n is in fact quadratic.

3 Related Work

Decoding for selection-and-ordering problems is
commonly implemented using beam search (Banko
et al., 2000; Corston-Oliver et al., 2002; Jin and

Hauptmann, 2001). Being heuristic in nature, this
algorithm is not guaranteed to find an optimal so-
lution. However, its simplicity and time efficiency
make it a decoding algorithm of choice for a wide
range of NLP applications. In applications where
beam decoding does not yield sufficient accuracy,
researchers employ an alternative heuristic search,
A* (Jelinek, 1969; Germann et al., 2001). While in
some cases A* is quite effective, in other cases its
running time and memory requirements may equal
that of an exhaustive search. Time- and memory-
bounded modifications of A* (i.e., IDA-A*) do not
suffer from this limitation, but they are not guaran-
teed to find the exact solution. Nor do they pro-
vide bounds on the likelihood of finding the exact
solution. Newly introduced methods based on lo-
cal search can effectively examine large areas of a
search space (Eisner and Tromble, 2006), but they
still suffer from the same limitations.

As an alternative to heuristic search algorithms,
researchers also employ exact methods from com-
binatorial optimization, in particular integer linear
programming (Germann et al., 2001; Roth and Yih,
2004). While existing ILP solvers find the exact so-
lution eventually, the running time may be too slow
for practical applications.

Our randomized decoder represents an impor-
tant departure from previous approaches to decod-
ing selection-and-ordering problems. The theoreti-
cally established bounds on the performance of this
algorithm enable us to explicitly control the trade-
off between the quality and the efficiency of the de-
coding process. This property of our decoder sets it
apart from existing heuristic algorithms that cannot
guarantee an arbitrarily high probability of success.

4 Randomized Decoding with
Color-Coding

One might hope to solve decoding with a dynamic
program (like that for shortest paths) that grows an
optimal path one vertex at a time. The problem is
that this dynamic program may grow to include a
vertex already on the path, creating a cycle. One way
to prevent this is to remember the vertices used on
each partial path, but this creates a dynamic program
with too many states to compute efficiently.

Instead, we apply a color coding technique of

Alon et al (1995). The basic step of the algo-
rithm consists of randomly coloring the graph ver-
tices with a set of colors of size r, and using dy-
namic programming to find the optimum length-k
path without repeated colors. (Later, we describe
how to determine the number of colors r.) Forbid-
ding repeated colors excludes cycles as required, but
remembering only colors on the path requires less
state than remembering precisely which vertices are
on the path. Since we color randomly, any single it-
eration is not guaranteed to find the optimal path; in
a given coloring, two vertices along the optimal path
may be assigned the same color, in which case the
optimal path will never be selected. Therefore, the
whole process is repeated multiple times, increasing
the likelihood of finding an optimal path.

Our algorithm is a variant of the original color-
coding algorithm (Alon et al., 1995), which was de-
veloped to detect the existence of paths of length k
in an unweighted graph. We modify the original al-
gorithm to find the highest weighted path and also
to handle equivalence classes of vertices. In addi-
tion, we provide a method for determining the opti-
mal number of colors to use for finding the highest
weighted path of length k.

We first describe the dynamic programming algo-
rithm. Next, we provide a probabilistic bound on
the likelihood of finding the optimal solution, and
present a method for determining the optimal num-
ber of colors for a given value of k.

Dynamic Programming Recall that we began
with a weighted directed graphG to which we added
artificial start and end vertices s and t. We now posit
a coloring of that graph that assigns a color cv to
each vertex v aside from s and t. Our dynamic pro-
gram returns the maximum score path of length k+2
(including the artificial vertices s and t) from s to t
with no repeated colors.

Our dynamic program grows colorful paths—
paths with at most one vertex of each color. For
a given colorful path, we define the spectrum of
a path to be the set of colors (each used exactly
once) of nodes on the interior of the path—we ex-
clude the starting vertex (which will always be s)
and the ending vertex. To implement the dynamic
program, we maintain a table q[v, S] indexed by a
path-ending vertex v and a spectrum S. For vertex
v and spectrum S, entry q[v, S] contains the value

of the maximum-score colorful path that starts at s,
terminates at v, and has spectrum S in its interior.

We initialize the table with length-one paths:
q[v, ∅] represents the path from s to v, whose spec-
trum is the empty set since there are no interior ver-
tices. Its value is set to the score of edge (s, v). We
then iterate the dynamic program k times in order
to build paths of length k + 1 starting at s. We ob-
serve that the optimum colorful path of length ` and
spectrum S from s to v must consist of an optimum
path from s to u (which will already have been found
by the dynamic program) concatenated to the edge
(u, v). When we concatenate (u, v), vertex u be-
comes an interior vertex of the path, and so its color
must not be in the preexisting path’s spectrum, but
joins the spectrum of the path we build. It follows
that

q[v, S] = max
(u,v)∈G,cu∈S,cv /∈S

q[u, S−{cu}] +w(u, v)

After k iterations, for each vertex v we will have
a list of optimal paths from s to v of length k + 1
with all possible spectra. The optimum length-k+ 2
colorful path from s to t must follow the optimum
length-k + 1 path of some spectrum to some penul-
timate vertex v and then proceed to vertex t; we find
it by iterating over all such possible spectra and all
vertices v to determine argmaxv,Sq[v, S]+w(v, t).

Amplification The algorithm of Alon et al., and
the variant we describe, are somewhat peculiar in
that the probability of finding the optimal solu-
tion in one coloring iteration is quite small. But
this can easily be dealt with using a standard tech-
nique called amplification (Motwani and Raghavan,
1995). Suppose that the algorithm succeeds with
small probability p, but that we would like it to suc-
ceed with probability 1 − δ where δ is very small.
We run the algorithm t = (1/p) ln 1/δ times. The
probability that the algorithm fails every single run
is then (1 − p)t ≤ e−pt = δ. But if the algorithm
succeeds on even one run, then we will find the op-
timum answer (by taking the best of the answers we
see).

No matter how many times we run the algo-
rithm, we cannot absolutely guarantee an optimal
answer. However, the chance of failure can easily be
driven to negligible levels—achieving, say, a one-in-
a-billion chance of failure requires only 20/p itera-

tions by the previous analysis.
Determining the number of colors Suppose that

we use r random colors and want to achieve a given
failure probability δ. The probability that the opti-
mal path has no repeated colors is:

1 · r − 1

r
· r − 2

r
· · · r − (k − 1)

r
.

By the amplification analysis, the number of trials
needed to drive the failure probability to the desired
level will be inversely proportional to this quantity.
At the same time, the dynamic programming table
at each vertex will have size 2r (indexing on a bit
vector of colors used per path), and the runtime of
each trial will be proportional to this. Thus, the run-
ning time for the necessary number of trials Tr will
be proportional to

1 · r

r − 1
· r

r − 2
· · · r

r − (k − 1)
· 2r

What r ≥ k should we choose to minimize this
quantity? To answer, let us consider the ratio:

Tr+1

Tr
=

(
r + 1

r

)k
· r − (k − 1)

r + 1
· 2

= 2(1 + 1/r)k(1− k/(r + 1))

If this ratio is less than 1, then using r + 1 col-
ors will be faster than using r; otherwise it will be
slower. When r is very close to k, the above equa-
tion is tiny, indicating that one should increase r.
When r � k, the above equation is huge, indicating
one should decrease r. Somewhere in between, the
ratio passes through 1, indicating the optimum point
where neither increasing nor decreasing r will help.
If we write α = k/r, and consider large k, then Tr+1

Tr
converges to 2eα(1−α). Solving numerically to find
where this is equal to 1, we find α ≈ .76804, which
yields a running time proportional to approximately
(4.5)k.

In practice, rather than using an (approximate)
formula for the optimum r, one should simply plug
all values of r in the range [k, 2k] into the running-
time formula in order to determine the best; doing
so takes negligible time.

5 Decoding with Integer Linear
Programming

In this section, we show how to formulate the
selection-and-ordering problem in the ILP frame-
work. We represent each edge (i, j) from vertex i
to vertex j with an indicator variable Ii,j that is set
to 1 if the edge is selected for the optimal path and 0
otherwise. In addition, the associated weight of the
edge is represented by a constant wi,j .

The objective is then to maximize the following
sum:

max
I

∑

i∈V

∑

j∈V
wi,jIi,j (1)

This sum combines the weights of edges selected to
be on the optimal path.

To ensure that the selected edges form a valid
acyclic path starting at s and ending at t, we intro-
duce the following constraints:

Source-Sink Constraints Exactly one edge orig-
inating at source s is selected:

∑

j∈V
Is,j = 1 (2)

Exactly one edge ending at sink t is selected:
∑

i∈V
Ii,t = 1 (3)

Length Constraint Exactly k + 1 edges are se-
lected: ∑

i∈V

∑

j∈V
Ii,j = k + 1 (4)

The k + 1 selected edges connect k + 2 vertices in-
cluding s and t.

Balance Constraints Every vertex v ∈ V has in-
degree equal to its out-degree:

∑

i∈V
Ii,v =

∑

i∈V
Iv,j ∀ v ∈ V ∗ (5)

Note that with this constraint, a vertex can have at
most one outgoing and one incoming edge.

Redundancy Constraints To control for redun-
dancy, we require that at most one representative
from each equivalence class is selected. Let Z be
a set of vertices that belong to the same equivalence
class. For every equivalence class Z, we force the
total out-degree of all vertices in Z to be at most 1.

s t

Figure 1: A subgraph that contains a cycle, while
satisfying constraints 2 through 5.

∑

i∈Z

∑

j∈V
Ii,j ≤ 1 ∀ Z ⊆ V (6)

Acyclicity Constraints The constraints intro-
duced above do not fully prohibit the presence of
cycles in the selected subgraph. Figure 1 shows an
example of a selected subgraph that contains a cycle
while satisfying all the above constraints.

We force acyclicity with an additional set of vari-
ables. The variables fi,j are intended to number the
edges on the path from 1 to k+ 1, with the first edge
getting number fi,j = k + 1, and the last getting
number fi,j = 1. All other edges will get fi,j = 0.
To enforce this, we start by ensuring that only the
edges selected for the path (Ii,j = 1) get nonzero
f -values:

0 ≤ fi,j ≤ (k + 1) Ii,j ∀ i, j ∈ V (7)

When Ii,j = 0, this constraint forces fi,j = 0.
When Ii,j = 1, this allows 0 ≤ fi,j ≤ k+1. Now we
introduce additional variables and constraints. We
constrain demand variables dv by:

dv =
∑

i∈V
Ii,v ∀ v ∈ V ∗ − {s} (8)

The right hand side sums the number of selected
edges entering v, and will therefore be either 0 or 1.
Next we add variables av and bv constrained by the
equations:

av =
∑

i∈V
fi,v (9)

bv =
∑

i∈V
fv,i (10)

Note that av sums over f values on all edges enter-
ing v. However, by the previous constraints those
f -values can only be nonzero on the (at most one)

selected edge entering v. So, av is simply the f -
value on the selected edge entering v, if one exists,
and 0 otherwise. Similarly, bv is the f -value on the
(at most one) selected edge leaving v.

Finally, we add the constraints

av − bv = dv v 6= s (11)

bs = k + 1 (12)

at = 1 (13)

These last constraints let us argue, by induction, that
a path of length exactly k + 1 must run from s to t,
as follows. The previous constraints forced exactly
one edge leaving s, to some vertex v, to be selected.
The constraint bs = k+ 1 means that the f -value on
this edge must be k + 1. The balance constraint on
v means some edge must be selected leaving v. The
constraint av − bv = dv means this edge must have
f -value k. The argument continues the same way,
building up a path. The balance constraints mean
that the path must terminate at t, and the constraint
that at = 1 forces that termination to happen after
exactly k + 1 edges.4

For those familiar with max-flow, our program
can be understood as follows. The variables I force
a flow, of value 1, from s to t. The variables f rep-
resent a flow with supply k + 1 at s and demand dv
at v, being forced to obey “capacity constraints” that
let the flow travel only along edges with I = 1.

6 Experimental Set-Up

Task We applied our decoding algorithm to the task
of title generation. This task has been extensively
studied over the last six years (Banko et al., 2000; Jin
and Hauptmann, 2001). Title generation is a classic
selection-and-ordering problem: during title realiza-
tion, an algorithm has to take into account both the
likelihood of words appearing in the title and their
ordering preferences. In the previous approaches,
beam search has been used for decoding. Therefore,
it is natural to explore more sophisticated decoding
techniques like the ones described in this paper.

Our method for estimation of selection-and-
ordering preferences is based on the technique de-
scribed in (Banko et al., 2000). We compute the

4The network flow constraints allow us to remove the previ-
ously placed length constraint.

likelihood of a word in the document appearing in
the title using a maximum entropy classifier. Every
stem is represented by commonly used positional
and distributional features, such as location of the
first sentence that contains the stem and its TF*IDF.
We estimate the ordering preferences using a bigram
language model with Good-Turing smoothing.

In previous systems, the title length is either pro-
vided to a decoder as a parameter, or heuristics are
used to determine it. Since exploration of these
heuristics is not the focus of our paper, we provide
the decoder with the actual title length (as measured
by the number of content words).

Graph Construction We construct a decoding
graph in the following fashion. Every unique con-
tent word comprises a vertex in the graph. All the
morphological variants of a stem belong to the same
equivalence class. An edge (v, u) in the graph en-
codes the selection preference of u and the likeli-
hood of the transition from v to u.

Note that the graph does not contain any auxiliary
words in its vertices. We handle the insertion of aux-
iliary words by inserting additional edges. For every
auxiliary word x, we add one edge representing the
transition from v to u via x, and the selection pref-
erence of u. The auxiliary word set consists of 24
prepositions and articles extracted from the corpus.

Corpus Our corpus consists of 547 sections of a
commonly used undergraduate algorithms textbook.
The average section contains 609.2 words. A title,
on average, contains 3.7 words, among which 3.0 are
content words; the shortest and longest titles have 1
and 13 words respectively. Our training set consists
of the first 382 sections, the remaining 165 sections
are used for testing. The bigram language model is
estimated from the body text of all sections in the
corpus, consisting of 461,351 tokens.

To assess the importance of the acyclicity con-
straint, we compute the number of titles that have
repeated content words. The empirical findings sup-
port our assumption: 97.9% of the titles do not con-
tain repeated words.

Decoding Algorithms We consider three decod-
ing algorithms: our color-coding algorithm, ILP, and
beam search.5 The beam search algorithm can only

5The combination of the acyclicity and path length con-
straints require an exponential number of states for A* since
each state has to preserve the history information. This prevents

consider vertices which are not already in the path.6

To solve the ILP formulations, we employ a
Mixed Integer Programming solver lp solve which
implements the Branch-and-Bound algorithm. We
implemented the rest of the decoders in Python with
the Psyco speed-up module. We put substantial ef-
fort to optimize the performance of all of the al-
gorithms. The color-coding algorithm is imple-
mented using parallelized computation of coloring
iterations.

7 Results

Table 1 shows the performance of various decoding
algorithms considered in the paper. We first evalu-
ate each algorithm by the running times it requires
to find all the optimal solutions on the test set. Since
ILP is guaranteed to find the optimal solution, we
can use its output as a point of comparison. Table 1
lists both the average and the median running times.
For some of the decoding algorithms, the difference
between the two measurements is striking — 6,536
seconds versus 57.3 seconds for ILP. This gap can be
explained by outliers which greatly increase the av-
erage running time. For instance, in the worst case,
ILP takes an astounding 136 hours to find the opti-
mal solution. Therefore, we base our comparison on
the median running time.

The color-coding algorithm requires a median
time of 9.7 seconds to find an optimal solution com-
pared to the 57.3 seconds taken by ILP. Furthermore,
as Figure 2 shows, the algorithm converges quickly:
just eleven iterations are required to find an optimal
solution in 90% of the titles, and within 35 itera-
tions all of the solutions are found. An alternative
method for finding optimal solutions is to employ a
beam search with a large beam size. We found that
for our test set, the smallest beam size that satisfies
this condition is 1345, making it twenty-three times
slower than the randomized decoder with respect to
the median running time.

Does the decoding accuracy impact the quality of
the generated titles? We can always trade speed for
accuracy in heuristic search algorithms. As an ex-
treme, consider a beam search with a beam of size
1: while it is very fast with a median running time

us from applying A* to this problem.
6Similarly, we avoid redundancy by disallowing two vertices

from the same equivalence class to belong to the same path.

Average (s) Median (s) ROUGE-L Optimal Solutions (%)
Beam 1 0.6 0.4 0.0234 0.0
Beam 80 28.4 19.3 0.2373 64.8
Beam 1345 368.6 224.4 0.2556 100.0
ILP 6,536.2 57.3 0.2556 100.0
Color-coding 73.8 9.7 0.2556 100.0

Table 1: Running times in seconds, ROUGE scores, and percentage of optimal solutions found for each of
the decoding algorithms.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

E
xa

ct
 S

ol
ut

io
ns

 (%
)

Iterations

Figure 2: The proportion of exact solutions found
for each iteration of the color coding algorithm.

of less than one second, it is unable to find any of
the optimal solutions. The titles generated by this
method have substantially lower scores than those
produced by the optimal decoder, yielding a 0.2322
point difference in ROUGE scores. Even a larger
beam size such as 80 (as used by Banko et al. (2000))
does not match the title quality of the optimal de-
coder.

8 Conclusions

In this paper, we formalized the decoding task for
selection-and-ordering as a problem of finding the
highest-weighted acyclic path in a directed graph.
The presented decoding algorithm employs random-
ized color-coding, and can closely approximate the
ILP performance, without blowing up the running
time. The algorithm has been tested on title genera-
tion, but the decoder is not specific to this task and
can be applied to other generation and summariza-
tion applications.

9 Acknowledgements

The authors acknowledge the support of the Na-
tional Science Foundation (CAREER grant IIS-

0448168 and grant IIS-0415865). We also would
like to acknowledge the MIT NLP group and the
anonymous reviewers for valuable comments.

References
N. Alon, R. Yuster, U. Zwick. 1995. Color-coding. Jour-

nal of the ACM (JACM), 42(4):844–856.
B. Awerbuch, Y. Azar, A. Blum, S. Vempala. 1995.

Improved approximation guarantees for minimum-
weight k-trees and prize-collecting salesmen. In Pro-
ceedings of the STOC, 277–283.

E. Balas. 1989. The prize collecting traveling salesman
problem. Networks, 19:621–636.

M. Banko, V. O. Mittal, M. J. Witbrock. 2000. Headline
generation based on statistical translation. In Proceed-
ings of the ACL, 318–325.

S. Corston-Oliver, M. Gamon, E. Ringger, R. Moore.
2002. An overview of amalgam: A machine-learned
generation module. In Proceedings of INLG, 33–40.

R. G. Downey, M. R. Fellows. 1995. Fixed-parameter
tractability and completeness II: On completeness for
W [1]. Theoretical Computer Science, 141(1–2):109–
131.

J. Eisner, R. W. Tromble. 2006. Local search with very
large-scale neighborhoods for optimal permutations
in machine translation. In Proceedings of the HLT-
NAACL Workshop on Computationally Hard Problems
and Joint Inference in Speech and Language Process-
ing.

U. Germann, M. Jahr, K. Knight, D. Marcu, K. Yamada.
2001. Fast decoding and optimal decoding for ma-
chine translation. In Proceedings of the EACL/ACL,
228–235.

F. Jelinek. 1969. A fast sequential decoding algorithm
using a stack. IBM Research Journal of Research and
Development.

R. Jin, A. G. Hauptmann. 2001. Automatic title genera-
tion for spoken broadcast news. In Proceedings of the
HLT, 1–3.

R. Motwani, P. Raghavan. 1995. Randomized Algo-
rithms. Cambridge University Press, New York, NY.

D. Roth, W. Yih. 2004. A linear programming formula-
tion for global inference in natural language tasks. In
Proceedings of the CONLL, 1–8.

