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Abstract

This thesis focuses on developing decoding techniques for complex Natural Language
Processing (NLP) tasks. The goal of decoding is to find an optimal or near optimal
solution given a model that defines the goodness of a candidate. The task is chal-
lenging because in a typical problem the search space is large, and the dependencies
between elements of the solution are complex.

The goal of this work is two-fold. First, we are interested in developing decoding
techniques with strong theoretical guarantees. We develop a decoding model based on
the Integer Linear Programming paradigm which is guaranteed to compute the opti-
mal solution and is capable of accounting for a wide range of global constraints. As an
alternative, we also present a novel randomized algorithm which can guarantee an ar-
bitrarily high probability of finding the optimal solution. We apply these methods to
the task of constructing temporal graphs and to the task of title generation. Second,
we are interested in carefully investigating the relations between learning and decod-
ing. We build on the Perceptron framework to integrate the learning and decoding
procedures into a single unified process. We use the resulting model to automati-
cally generate tables-of-contents, structures with deep hierarchies and rich contextual
dependencies. In all three natural language tasks, our experimental results demon-
strate that theoretically grounded and stronger decoding strategies perform better
than existing methods. As a final contribution, we have made the source code for
these algorithms publicly available for the NLP research community.

Thesis Supervisor: Regina Barzilay
Title: Assistant Professor
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Chapter 1

Introduction

1.1 Decoding in NLP

In Natural Language Processing (NLP), researchers study systems that take natu-

ral language as input and/or produce natural language as an output. In order for

these systems to perform effectively, we need to exploit both syntactic and semantic

knowledge. In the past, NLP systems relied on human experts to manually encode

this information. In recent years, increased computing power, advances in machine

learning, and the availability of large corpora have allowed the research community

to adopt a statistical approach for many language processing tasks. Since then, the

success of statistical methods have made them the predominant technique in nearly

all areas of NLP from syntactic parsing to natural language generation.

A typical model consists of a function f : X → Y that maps a set of possible inputs

X to a set of possible outputs Y. With supervised models, we seek to learn f from a

set of annotated pairs (x1, y1) . . . (xn, yn) where xi ∈ X and yi ∈ Y. We then use the

learned model to predict an output for a previously unseen input. For example, in

a document classification system, we are provided with a set of document-class pairs

to learn a model. The model then predicts the class y of an input document x.

In many NLP tasks, the set of outputs Y consists of a large, possibly infinite,

number of highly structured objects such as parse trees or document summaries.

In these cases, the mapping function f is not learned directly. Instead, we learn a
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function g : X × Y → [0, 1] that returns a score or probability of an input-output

hypothesis pair. We then use g to find the best output ŷ in Y for an input x:

ŷ = arg max
y∈Y

g(x, y)

To date, a major focus of research has been on learning the function g in an effective

and robust manner. However, little progress has been made on improving decoding,

the process of finding the best output ŷ given the learned scoring function.

The complexity of decoding depends on the size of the output space. If the

output space is small, then decoding is simple. An important class of problems with

this property are classification problems. For instance, in the task of word sense

disambiguation, a word and its context are provided and we need to determine the

sense in which the word is used. For example, if we are given the word “bass” in the

sentence “I caught a bass in the river.”, we must determine if the word refers to a

type of fish or a low frequency tone. In this case, because the size of the output space

is two, we only need to compare the probabilities of each word sense and return the

one with the higher probability.

Unfortunately, many NLP tasks cannot be cast as classification problems. When

the output structure is a sequence, as in part-of-speech tagging, or a syntax tree, as in

parsing, a simplistic decoding technique may not suffice. In these cases, we may want

to account for complex inter-dependencies between elements of the output solution.

For instance, in part-of-speech tagging, we may want to select the part-of-speech tag

of a word, based on the parts-of-speech of the words surrounding it. In the sentence

“He can see.”, a model that captures these dependencies would correctly determine

“can” to be a modal verb rather than a noun because it is preceded by the pronoun,

“He”, and followed by the verb, “see”. However, capturing these dependencies can

greatly increase the size of the output space. If we consider the parts-of-speech of

all other words when selecting the part-of-speech for each word, we would need to

consider nm possible tag sequences for a sentence of n words with m possible parts-

of-speech.
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Of course, we could simplify the decoding process by assuming that each element

of the output solution is selected in isolation. Under this assumption, the part-of-

speech tagger would ignore the dependencies between words altogether. Though such

a decomposition would make decoding constant in the size of the input, it could have

potentially drastic effects on the performance of the system. For example, the tagging

model would no longer leverage the presence of the parts-of-speech of adjacent words

and may now incorrectly determine “can” to be a noun.

In summary, the art of decoding lies in balancing the accuracy and the complexity

of the dependencies considered. In the next section, we give examples of common

decoding strategies to problems where the the output space may be exponential in

the size of the input.

1.2 Common Decoding Strategies

How is decoding performed when the output space is exponential in the size of the

input space? For many tasks, where we can assume local dependencies between ele-

ments of the output, we can use efficient solutions, such as dynamic programming, to

find the exact solution. For example, in probabilistic context-free grammar (PCFG)

parsing, we can model the local dependency between a child node and its parent,

while disregarding global dependencies across the rest of the parse tree. Under this

independence assumption, we can use the Cocke-Younger-Kasami (CYK) dynamic

programming algorithm to efficiently find the best parse tree for a given input sen-

tence [14].

For other tasks, where global dependencies cannot be decomposed into a set of

local dependencies, it is not possible to find the exact solution in an efficient manner.

In such cases, a common decoding strategy is to return an approximate solution,

sacrificing accuracy for efficiency. A typical solution in this case is to employ a

heuristic search method, such as a beam or greedy search, that considers only a

subset of the total output space [45]. These methods incrementally build the output

solution while maintaining a list of the top partial solutions during the process. For
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instance, beam search is the primary means of decoding in machine translation [34].

Because these methods prune out large portions of the output space, it is possible

that the optimal solution may never be considered.

Another approximate decoding approach is to use sampling-based techniques such

as simulated annealing or the Metropolis-Hastings algorithm. Rather than building

a solution incrementally, these sampling techniques are initialized with a complete

solution and iteratively refine the solution until there can be no further improvement

or the desired number of iterations has been exceeded. These techniques are guaran-

teed to return a locally optimal solution, but not the globally optimal one. In many

applications, returning a locally optimal solution is sufficient. In recent years, these

methods have been successfully applied to a handful of tasks such as named entity

recognition [27] and machine translation [24]. While these approximation methods

may perform well in practice, there are no theoretical guarantees on their likelihood

of finding the exact solution.

Furthermore, when an inexact inference method is employed, most learning algo-

rithms make no assumptions about the nature of the decoder – the model is learned

independent of the decoder. However, during the search for a solution, the actual

decoder is in fact approximate and inexact. This failure to account for the actual

decoder during training results in suboptimal performance of the entire system.

1.3 Scope of the Thesis and Contributions

In this thesis we explore decoding methods in the context of two NLP areas: natural

language generation and discourse processing. Natural language generation deals with

translating a semantic representation to a natural language text. For example, we

may want to automatically convert a database of financial records into a financial

report. Discourse processing involves modelling relations between sentences in a text,

covering aspects such as topical, temporal and rhetorical progression. For example,

a discourse processing system could be developed to understand the chronology of

events described in a text. Both areas need to capture complex dependencies and are
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still challenging for statistical techniques.

This thesis is a first attempt at developing decoding techniques for these two ar-

eas of NLP. The goal of this work is two-fold. First, we are interested in developing

decoding techniques with strong theoretical guarantees. In some cases, we can em-

ploy Integer Linear Programming (ILP) which is guaranteed to compute the optimal

solution and is capable of accounting for a wide range of global constraints [28, 44]. Al-

though ILP is NP-hard, some ILP formulations can be solved in a reasonable amount

of time since many powerful heuristics have been developed for this optimization tech-

nique. In other cases, where a problem can not be solved quickly with ILP, we can use

randomized algorithms that guarantee an arbitrarily high probability of finding the

optimal solution. The second objective of this thesis is to carefully investigate the re-

lations between learning and decoding. Ideally, the learning algorithm is aware of the

shortcuts used by decoder. However, in traditional approaches, the learning model

does not have knowledge of the decoding procedure, divorcing the actual decoder

from the learning process. We might therefore improve performance by integrating

the learning and decoding processes into a single unified process.

In chapter 2, we investigate decoding in the ILP framework. We consider the

problem of constructing a directed acyclic graph that encodes temporal relations

found in a text. The unit of our analysis is a temporal segment, a fragment of text

that maintains temporal coherence. The strength of our approach lies in its ability

to simultaneously optimize pairwise ordering preferences between temporal segments

as well as global constraints on the graph topology. We show that the ILP model

outperforms two greedy baseline methods.

Chapter 2 is organized as follows. First, we introduce the problem and highlight

the importance of the application. Next, we discuss previous approaches for temporal

ordering. We formalize our representation of temporal flow and discuss our method

for temporal segmentation. We then describe two greedy decoding methods and one

ILP method for graph induction. After that, we discuss our corpus and evaluation

methods. To conclude the chapter, we present our results and discuss the performance

of our system.
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In chapter 3, we propose the use of a randomized decoding algorithm for selection-

and-ordering problems. The task of selecting and ordering information appears in

multiple contexts in text generation and summarization. For instance, methods for

title generation construct a headline by selecting and ordering words from the input

text. In this chapter, we investigate decoding methods that simultaneously optimize

selection and ordering preferences. We formalize decoding as a task of finding an

acyclic path in a directed weighted graph. Since the problem is NP-hard, finding

an exact solution is challenging. We describe a novel decoding method based on a

randomized color-coding algorithm [2]. We prove bounds on the number of color-

coding iterations necessary to guarantee any desired likelihood of finding the correct

solution. Our experiments show that the randomized decoder is an appealing alterna-

tive to a range of decoding algorithms for selection-and-ordering problems, including

beam search and ILP.

The organization of chapter 3 is as follows. We first discuss the importance of

decoding in selection-and-ordering problems. Then, we provide an overview of ex-

isting work on decoding in text generation and other relevant tasks. Following that,

we formalize decoding in a graph-theoretic framework and introduce our representa-

tion. Next, we discuss the connections between our decoding problem and classical

graph-traversal algorithms. The randomized algorithm and an ILP formulation are

presented next. Finally, we describe our evaluation setup and data. We conclude the

chapter by presenting and discussing our results.

In chapter 4, we explore how incorporating a heuristic decoder into the learning

process can affect system performance for the task of table-of-contents generation.

We implement a model that accounts for decoding during the learning process and

apply it to automatically generate a table-of-contents. To generate a coherent table-

of-contents, we need to capture both global dependencies across different titles in the

table and local constraints within sections. Our algorithm effectively handles these

complex dependencies by factoring the model into local and global components, and

incrementally constructing the model’s output. The results of automatic evaluation

and manual assessment confirm the benefits of this design: our system is consistently
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ranked higher than non-hierarchical baselines.

At the start of chapter 4, we explain the benefits of an automated means of

generating a table-of-contents and provide an overview of the challenges involved.

We then provide an overview of relevant work on text summarization. Then, we

formalize the problem of table-of-contents generation and introduce our approach for

incremental learning and decoding. Next, we describe our experimental framework

and data. At the end the chapter, we present our results and provide directions for

future work.

In chapter 5, we conclude the thesis by discussing the key points and discuss

avenues for future research.

As a final contribution, we have made the source code for the decoding algorithms

discussed in the thesis publicly available for the NLP research community.1

1The source code for the methods described in chapter 3 is available at
http://people.csail.mit.edu/pawand/randomized/. The code for the model described in
chapter 4 is accessible at http://people.csail.mit.edu/pawand/toc/.
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Chapter 2

Inducing Temporal Graphs

2.1 Introduction

Understanding the temporal flow of discourse is a significant aspect of text compre-

hension. Consequently, temporal analysis has been a focus of linguistic research for

quite some time. Temporal interpretation encompasses levels ranging from the syn-

tactic to the lexico-semantic [43, 39] and includes the characterization of temporal

discourse in terms of rhetorical structure and pragmatic relations [23, 51, 41, 36].

Besides its linguistic significance, temporal analysis has important practical im-

plications. In multidocument summarization, knowledge about the temporal order

of events can enhance both the content selection and the summary generation pro-

cesses [7]. In question answering, temporal analysis is needed to determine when a

particular event occurs and how events relate to each other. Some of these needs can

be addressed by emerging technologies for temporal analysis [53, 38, 35, 9].

We characterize the temporal flow of discourse in terms of temporal segments and

their ordering. We define a temporal segment to be a fragment of text that does not

exhibit abrupt changes in temporal focus [52]. A segment may contain more than

one event or state, but the key requirement is that its elements maintain temporal

coherence. For instance, a medical case summary may contain segments describing a

patient’s admission, his previous hospital visit, and the onset of his original symptoms.

Each of these segments corresponds to a different time frame, and is clearly delineated
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as such in a text.

Our ultimate goal is to automatically construct a graph that encodes ordering be-

tween temporal segments. The key premise is that in a coherent document, temporal

progression is reflected in a wide range of linguistic features and contextual depen-

dencies. In some cases, clues to segment ordering are embedded in the segments

themselves. For instance, given a pair of adjacent segments, the temporal adverb

next day in the second segment is a strong predictor of a precedence relation. In

other cases, we can predict the right order between a pair of segments by analyzing

their relation to other segments in the text. The interaction between pairwise order-

ing decisions can easily be formalized in terms of constraints on the graph topology.

An obvious example of such a constraint is prohibiting cycles in the ordering graph.

We show how these complementary sources of information can be incorporated in a

model using global inference.

We evaluate our temporal ordering algorithm on a corpus of medical case sum-

maries. Temporal analysis in this domain is challenging in several respects: a typical

summary exhibits no significant tense or aspect variations and contains few absolute

time markers. We demonstrate that humans can reliably mark temporal segments

and determine segment ordering in this domain. Our learning method achieves 83%

F-measure in temporal segmentation and 84% accuracy in inferring temporal relations

between two segments.

Our contributions are twofold:

Temporal Segmentation We propose a fully automatic, linguistically rich model

for temporal segmentation. Most work on temporal analysis is done on a finer gran-

ularity than proposed here. Our results show that the coarse granularity of our rep-

resentation facilitates temporal analysis and is especially suitable for domains with

sparse temporal anchors.

Segment Ordering We introduce a new method for learning temporal ordering.

In contrast to existing methods that focus on pairwise ordering, we explore strategies

for global temporal inference. The strength of the proposed model lies in its ability

to simultaneously optimize pairwise ordering preferences and global constraints on
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graph topology. While the algorithm has been applied at the segment level, it can be

used with other temporal annotation schemes.

2.2 Related Work

Temporal ordering has been extensively studied in computational linguistics [41, 52,

31, 36, 37]. Prior research has investigated a variety of language mechanisms and

knowledge sources that guide interpretation of temporal ordering, including tense,

aspect, temporal adverbials, rhetorical relations and pragmatic constraints. In recent

years, the availability of annotated corpora, such as TimeBank [42], has triggered

the use of machine-learning methods for temporal analysis [38, 35, 9]. Typical tasks

include identification of temporal anchors, linking events to times, and temporal

ordering of events.

Since this chapter addresses temporal ordering, we focus our discussion on this

task. Existing ordering approaches vary both in terms of the ordering unit — it can

be a clause, a sentence or an event — and in terms of the set of ordering relations

considered by the algorithm. Despite these differences, most existing methods have

the same basic design: each pair of ordering units (i.e., clauses) is abstracted into

a feature vector and a supervised classifier is employed to learn the mapping be-

tween feature vectors and their labels. Features used in classification include aspect,

modality, event class, and lexical representation. It is important to note that the

classification for each pair is performed independently and is not guaranteed to yield

a globally consistent order.

In contrast, our focus is on globally optimal temporal inference. While the im-

portance of global constraints has been previously validated in symbolic systems for

temporal analysis [26, 55], existing corpus-based approaches operate at the local level.

These improvements achieved by a global model motivate its use as an alternative to

existing pairwise methods.
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S1 S12 S13 S14
S2 S10 S6

S8

S4
S3 S5

S7

S9S11

S1 A 32-year-old woman was admitted to the hospital because of left subcostal
pain...

S2 The patient had been well until four years earlier,
S5 Three months before admission an evaluation elsewhere included an ultrasono-

graphic examination, a computed tomographic (CT) scan of the abdomen...
S7 She had a history of eczema and of asthma...
S8 She had lost 18 kg in weight during the preceding 18 months.
S13 On examination the patient was slim and appeared well. An abdominal ex-

amination revealed a soft systolic bruit... and a neurologic examination was
normal...

Figure 2-1: An example of the transitive reduction of a TDAG for a case summary. A
sample of segments corresponding to the nodes marked in bold is shown in the table.

2.3 TDAG: A representation of temporal flow

We view text as a linear sequence of temporal segments. Temporal focus is retained

within a segment, but radically changes between segments. The length of a segment

can range from a single clause to a sequence of adjacent sentences. Figure 2-1 shows a

sample of temporal segments from a medical case summary. Consider as an example

the segment S13 of this text. This segment describes an examination of a patient,

encompassing several events and states (i.e., an abdominal and neurological examina-

tion). All of them belong to the same time frame, and temporal order between these

events is not explicitly outlined in the text.

We represent the ordering of events as a temporal directed acyclic graph (TDAG).

An example of the transitive reduction1 of a TDAG is shown in Figure 2-1. Edges

in a TDAG capture temporal precedence relations between segments. Because the

graph encodes an order, cycles are prohibited. We do not require the graph to be fully

connected — if the precedence relation between two nodes is not specified in the text,

the corresponding nodes will not be connected. For instance, consider the segments

1The transitive reduction of a graph is the smallest graph with the same transitive closure.
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S5 and S7 from Figure 2-1, which describe the patient’s previous tests and the history

of eczema. Any order between the two events is consistent with our interpretation of

the text, therefore we cannot determine the precedence relation between the segments

S5 and S7.

In contrast to many existing temporal representations [1, 42], TDAG is a coarse

annotation scheme: it does not capture interval overlap and distinguishes only a sub-

set of commonly used ordering relations. Our choice of this representation, however,

is not arbitrary. The selected relations are shown to be useful in text processing ap-

plications [55] and can be reliably recognized by humans. Moreover, the distribution

of event ordering links under a more refined annotation scheme, such as TimeML,

shows that our subset of relations covers a majority of annotated links [42].

2.4 Method for Temporal Segmentation

Our first goal is to automatically predict shifts in temporal focus that are indicative of

segment boundaries. Linguistic studies show that speakers and writers employ a wide

range of language devices to signal change in temporal discourse [8]. For instance, the

presence of the temporal anchor last year indicates the lack of temporal continuity

between the current and the previous sentence. However, many of these predictors are

heavily context-dependent and, thus, cannot be considered independently. Instead of

manually crafting complex rules controlling feature interaction, we opt to learn them

from data.

We model temporal segmentation as a binary classification task. Given a set of

candidate boundaries (e.g., sentence boundaries), our task is to select a subset of the

boundaries that delineate temporal segment transitions. To implement this approach,

we first identify a set of potential boundaries. Our analysis of the manually-annotated

corpus reveals that boundaries can occur not only between sentences, but also within

a sentence, at the boundary of syntactic clauses. We automatically segment sentences

into clauses using a robust statistical parser [12]. Next, we encode each boundary as a
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vector of features. Given a set of annotated examples, we train a classifier2 to predict

boundaries based on the following feature set:

Lexical Features Temporal expressions, such as tomorrow and earlier, are among

the strongest markers of temporal discontinuity [41, 8]. In addition to a well-studied

set of domain-independent temporal markers, there are a variety of domain-specific

temporal markers. For instance, the phrase initial hospital visit functions as a time

anchor in the medical domain.

To automatically extract these expressions, we provide a classifier with n-grams

from each of the candidate sentences preceding and following the candidate segment

boundary.

Topical Continuity Temporal segmentation is closely related to topical segmen-

tation [11]. Transitions from one topic to another may indicate changes in temporal

flow and, therefore, identifying such transitions is relevant for temporal segmentation.

We quantify the strength of a topic change by computing a cosine similarity be-

tween sentences bordering the proposed segmentation. This measure is commonly

used in topic segmentation [29] under the assumption that change in lexical distribu-

tion corresponds to topical change.

Positional Features Some parts of the document are more likely to exhibit

temporal change than others. This property is related to patterns in discourse or-

ganization of a document as a whole. For instance, a medical case summary first

discusses various developments in the medical history of a patient and then focuses

on his current conditions. As a result, the first part of the summary contains many

short temporal segments. We encode positional features by recording the relative

position of a sentence in a document.

Syntactic Features Because our segment boundaries are considered at the clausal

level, rather than at the sentence level, the syntax surrounding a hypothesized bound-

ary may be indicative of temporal shifts. This feature takes into account the position

of a word with respect to the boundary. For each word within three words of the hy-

pothesized boundary, we record its part-of-speech tag along with its distance from the

2BoosTexter package [46].
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boundary. For example, NNP+1 encodes the presence of a proper noun immediately

following the proposed boundary.

2.5 Learning to Order Segments

Our next goal is to automatically construct a graph that encodes ordering relations

between temporal segments. One possible approach is to cast graph construction as

a standard binary classification task: predict an ordering for each pair of distinct

segments based on their attributes alone. If a pair contains a temporal marker, like

later, then accurate prediction is feasible. In fact, this method is commonly used

in event ordering [38, 35, 9]. However, many segment pairs lack temporal markers

and other explicit cues for ordering. Determining their relation out of context can

be difficult, even for humans. Moreover, by treating each segment pair in isolation,

we cannot guarantee that all the pairwise assignments are consistent with each other

and yield a valid TDAG.

Rather than ordering each pair separately, our ordering model relies on global

inference. Given the pairwise ordering predictions of a local classifier3, our model

finds a globally optimal assignment. In essence, the algorithm constructs a graph

that is maximally consistent with the individual ordering preferences of each segment

pair and at the same time satisfies graph-level constraints on the TDAG topology.

In Section 2.5.2, we present three global inference strategies that vary in their

computational and linguistic complexity. But first we present our underlying local

ordering model.

2.5.1 Learning Pairwise Ordering

Given a pair of segments (i, j), our goal is to assign it to one of three classes: forward,

backward, and null (not connected). We generate the training data by using all pairs

of segments (i, j) that belong to the same document, such that i appears before j in

the text.

3The perceptron classifier.
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The features we consider for the pairwise ordering task are similar to ones used

in previous research on event ordering [38, 35, 9]. Below we briefly summarize these

features.

Lexical Features This class of features captures temporal markers and other

phrases indicative of the order between two segments. Representative examples in

this category include domain-independent cues like years earlier and domain-specific

markers like during next visit. To automatically identify these phrases, we provide a

classifier with two sets of n-grams extracted from the first and the second segments.

The classifier then learns phrases with high predictive power.

Temporal Anchor Comparison Temporal anchors are one of the strongest cues

for the ordering of events in text. For instance, medical case summaries use phrases

like two days before admission and one day before admission to express relative order

between events. If the two segments contain temporal anchors, we can determine

their ordering by comparing the relation between the two anchors. We identified a

set of temporal anchors commonly used in the medical domain and devised a small

set of regular expressions for their comparison.4 The corresponding feature has three

values that encode preceding, following and incompatible relations.

Segment Adjacency Feature Multiple studies have shown that two subsequent

sentences are likely to follow a chronological progression [8]. To encode this informa-

tion, we include a binary feature that captures the adjacency relation between two

segments.

2.5.2 Global Inference Strategies for Segment Ordering

Given the scores (or probabilities) of all pairwise edges produced by a local classifier,

our task is to construct a TDAG. In this section, we describe three inference strategies

that aim to find a consistent ordering between all segment pairs. These strategies vary

significantly in terms of linguistic motivation and computational complexity. Exam-

ples of automatically constructed TDAGs derived from different inference strategies

4We could not use standard tools for extraction and analysis of temporal anchors as they were
developed on the newspaper corpora, and are not suitable for analysis of medical text [53].

28



are shown in Figures A-1-A-4 of the appendix.

Greedy Inference in Natural Reading Order (NRO)

The simplest way to construct a consistent TDAG is by adding segments in the order

of their appearance in a text. Intuitively speaking, this technique processes segments

in the same order as a reader of the text. The motivation underlying this approach

is that the reader incrementally builds temporal interpretation of a text; when a

new piece of information is introduced, the reader knows how to relate it to already

processed text.

This technique starts with an empty graph and incrementally adds nodes in order

of their appearance in the text. When a new node is added, we greedily select the

edge with the highest score that connects the new node to the existing graph, without

violating the consistency of the TDAG. Next, we expand the graph with its transitive

closure. We continue greedily adding edges and applying transitive closure until the

new node is connected to all other nodes already in the TDAG. The process continues

until all the nodes have been added to the graph.

Greedy Best-first Inference (BF)

Our second inference strategy is also greedy. It aims to optimize the score of the

graph. The score of the graph is computed by summing the scores of its edges.

While this greedy strategy is not guaranteed to find the optimal solution, it finds a

reasonable approximation [13].

This method begins by sorting the edges by their score. Starting with an empty

graph, we add one edge at a time, without violating the consistency constraints. As

in the previous strategy, at each step we expand the graph with its transitive closure.

We continue this process until all the edges have been considered.

Exact Inference with Integer Linear Programming (ILP)

We can cast the task of constructing a globally optimal TDAG as an optimization

problem. In contrast to the previous approaches, the method is not greedy. It com-
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putes the optimal solution within the Integer Linear Programming (ILP) framework.

For a document with N segments, each pair of segments (i, j) can be related in

the graph in one of three ways: forward, backward, and null (not connected). Let

si→j, si←j, and si=j be the scores assigned by a local classifier to each of the three

relations respectively. Let Ii→j, Ii←j, and Ii=j be indicator variables that are set to

1 if the corresponding relation is active, or 0 otherwise.

The objective is then to optimize the score of a TDAG by maximizing the sum of

the scores of all edges in the graph:

max
N

∑

i=1

N
∑

j=i+1

si→jIi→j + si←jIi←j + si=jIi=j (2.1)

subject to:

Ii→j, Ii←j, Ii=j ∈ {0, 1} ∀ i, j = 1, . . . N, i < j (2.2)

Ii→j + Ii←j + Ii=j = 1 ∀ i, j = 1, . . . N, i < j (2.3)

We augment this basic formulation with two more sets of constraints to enforce

validity of the constructed TDAG.

Transitivity Constraints The key requirement on the edge assignment is the

transitivity of the resulting graph. Transitivity also guarantees that the graph does

not have cycles. We enforce transitivity by introducing the following constraint for

every triple (i, j, k):

Ii→j + Ij→k − 1 ≤ Ii→k (2.4)

If both indicator variables on the left side of the inequality are set to 1, then

the indicator variable on the right side must be equal to 1. Otherwise, the indicator

variable on the right can take any value.

Connectivity Constraints The connectivity constraint states that each node i is

connected to at least one other node and thereby enforces connectivity of the gener-
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ated TDAG. We introduce these constraints because manually-constructed TDAGs

do not have any disconnected nodes. This observation is consistent with the intuition

that the reader is capable to order a segment with respect to other segments in the

TDAG.

(

i−1
∑

j=1

Ii=j +

N
∑

j=i+1

Ij=i) < N − 1 (2.5)

The above constraint rules out edge assignments in which node i has null edges to

the rest of the nodes.

Solving ILP Solving an integer linear program is NP-hard [17]. Fortunately, there

exist several strategies for solving ILPs. We employ an efficient Mixed Integer Pro-

gramming solver lp solve5 which implements the Branch-and-Bound algorithm. It

takes less than five seconds to decode each document on a 2.8 GHz Intel Xeon ma-

chine.

2.6 Evaluation Setup

We first describe the corpora used in our experiments and the results of human

agreement on the segmentation and the ordering tasks. Then, we introduce the

evaluation measures that we use to assess the performance of our model.

2.6.1 Corpus Characteristics

We applied our method for temporal ordering to a corpus of medical case summaries.

The medical domain has been a popular testbed for methods for automatic temporal

analyzers [16, 55]. The appeal is partly due to rich temporal structure of these

documents and the practical need to parse this structure for meaningful processing

of medical data.

We compiled a corpus of medical case summaries from the online edition of The

New England Journal of Medicine.6 The summaries are written by physicians of

5
http://groups.yahoo.com/group/lp_solve

6
http://content.nejm.org
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Massachusetts General Hospital. A typical summary describes an admission status,

previous diseases related to the current conditions and their treatments, family his-

tory, and the current course of treatment. For privacy protection, names and dates

are removed from the summaries before publication.

The average length of a summary is 47 sentences. The summaries are written in

the past tense, and a typical summary does not include instances of the past perfect.

The summaries do not follow a chronological order. The ordering of information in

this domain is guided by stylistic conventions (i.e., symptoms are presented before

treatment) and the relevance of information to the current conditions (i.e., previous

onset of the same disease is summarized before the description of other diseases).

2.6.2 Annotating Temporal Segmentation

Our approach for temporal segmentation requires annotated data for supervised train-

ing. We first conducted a pilot study to assess the human agreement on the task. We

employed two annotators to manually segment a portion of our corpus. The annota-

tors were provided with two-page instructions that defined the notion of a temporal

segment and included examples of segmented texts. Each annotator segmented eight

summaries which on average contained 49 sentences. Because annotators were in-

structed to consider segmentation boundaries at the level of a clause, there were 877

potential boundaries. The first annotator created 168 boundaries, while the second

— 224 boundaries. We computed a Kappa coefficient of 0.71 indicating a high inter-

annotator agreement and thereby confirming our hypothesis about the reliability of

temporal segmentation.

Once we established high inter-annotator agreement on the pilot study, one an-

notator segmented the remaining 52 documents in the corpus.7 Among 3,297 poten-

tial boundaries, 1,178 (35.7%) were identified by the annotator as segment bound-

aries. The average segment length is three sentences, and a typical document contains

around 20 segments.

7It took approximately 20 minutes to segment a case summary.
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2.6.3 Annotating Temporal Ordering

To assess the inter-annotator agreement, we asked two human annotators to construct

TDAGs from five manually segmented summaries. These summaries consist of 97

segments, and their transitive closure contain a total of 1,331 edges. We computed

the agreement between human judges by comparing the transitive closure of the

TDAGs. The annotators achieved a surprisingly high agreement with a Kappa value

of 0.98.

After verifying human agreement on this task, one of the annotators constructed

TDAGs for another 25 summaries.8 The transitive reduction of a graph contains on

average 20.9 nodes and 20.5 edges. The corpus consists of 72% forward, 12% backward

and 16% null segment edges inclusive of edges induced by transitive closure. At the

clause level, the distribution is even more skewed — forward edges account for 74%

edges, equal for 18%, backward for 3% and null for 5%.

2.6.4 Evaluation Measures

We evaluate temporal segmentation by considering the ratio of correctly predicted

boundaries. We quantify the performance using F-measure, a commonly used binary

classification metric. We opt not to use the Pk measure, a standard topical segmen-

tation measure, because the temporal segments are short and we are only interested

in the identification of the exact boundaries.

Our second evaluation task is concerned with ordering manually annotated seg-

ments. In these experiments, we compare an automatically generated TDAG against

the annotated reference graph. In essence, we compare edge assignment in the tran-

sitive closure of two TDAGs, where each edge can be classified into one of the three

types: forward, backward, or null.

Our final evaluation is performed at the clausal level. In this case, each edge can

be classified into one of the four classes: forward, backward, equal, or null. Note that

the clause-level analysis allows us to compare TDAGs based on the automatically

8It took approximately one hour to build a TDAG for each segmented document.
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derived segmentation.

2.7 Results

We evaluate temporal segmentation using leave-one-out cross-validation on our corpus

of 60 summaries. The segmentation algorithm achieves a performance of 83% F-

measure, with a recall of 78% and a precision of 89%.

To evaluate segment ordering, we employ leave-one-out cross-validation on 30

annotated TDAGs that overall contain 13,088 edges in their transitive closure. In

addition to the three global inference algorithms, we include a majority baseline that

classifies all edges as forward, yielding a chronological order.

Our results for ordering the manually annotated temporal segments are shown in

Table 2.1. All inference methods outperform the baseline, and their performance is

consistent with the complexity of the inference mechanism. As expected, the ILP

strategy, which supports exact global inference, achieves the best performance —

84.3%.

An additional point of comparison is the accuracy of the pairwise classification,

prior to the application of global inference. The accuracy of the local ordering is

81.6%, which is lower than that of ILP. The superior performance of ILP demon-

strates that accurate global inference can further refine local predictions. Surprisingly,

the local classifier yields a higher accuracy than the two other inference strategies.

Note, however, the local ordering procedure is not guaranteed to produce a consis-

tent TDAG, and thus the local classifier cannot be used on its own to produce a valid

TDAG.

Table 2.2 shows the ordering results at the clausal level. The four-way classification

is computed using both manually and automatically generated segments. Pairs of

clauses that belong to the same segment stand in the equal relation, otherwise they

have the same ordering relation as the segments to which they belong.

On the clausal level, the difference between the performance of ILP and BF is

blurred. When evaluated on manually-constructed segments, ILP outperforms BF by
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Algorithm Accuracy
Integer Linear Programming (ILP) 84.3
Best First (BF) 78.3
Natural Reading Order (NRO) 74.3
Baseline 72.2

Table 2.1: Accuracy for 3-way ordering classification over manually-constructed seg-
ments.

less than 1%. This unexpected result can be explained by the skewed distribution of

edge types — the two hardest edge types to classify (see Table 2.3), backward and

null, account only for 7.4% of all edges at the clause level.

When evaluated on automatically segmented text, ILP performs slightly worse

than BF. We hypothesize that this result can be explained by the difference between

training and testing conditions for the pairwise classifier: the classifier is trained on

manually-computed segments and is tested on automatically-computed ones, which

negatively affects the accuracy on the test set. While all the strategies are negatively

influenced by this discrepancy, ILP is particularly vulnerable as it relies on the score

values for inference. In contrast, BF only considers the rank between the scores,

which may be less affected by noise.

We advocate a two-stage approach for temporal analysis: we first identify seg-

ments and then order them. A simpler alternative is to directly perform a four-way

classification at the clausal level using the union of features employed in our two-stage

process. The accuracy of this approach, however, is low — it achieves only 74%, most

likely due to the sparsity of clause-level representation for four-way classification. This

result demonstrates the benefits of a coarse representation and a two-stage approach

for temporal analysis.

2.8 Conclusions

We introduce a new method for temporal ordering. The unit of our analysis is a

temporal segment, a fragment of text that maintains temporal coherence. After in-

35



Algorithm Manual Seg. Automatic Seg.
ILP 91.9 84.8
BF 91.0 85.0
NRO 87.8 81.0
Baseline 73.6 73.6

Table 2.2: Results for 4-way ordering classification over clauses, computed over man-
ually and automatically generated segments.

Algorithm Forward Backward Null
ILP 92.5 45.6 76.0
BF 91.4 42.2 74.7
NRO 87.7 43.6 66.4

Table 2.3: Per class accuracy for clause classification over manually computed seg-
ments.

vestigating several inference strategies, we concluded that integer linear programming

and best first greedy approach are valuable alternatives for TDAG construction.

In the future, we will explore a richer set of constraints on the topology on the

ordering graph. We will build on the existing formal framework [26] for the verifica-

tion of ordering consistency. We are also interested in expanding our framework for

global inference to other temporal annotation schemes. Given a richer set of temporal

relations, the benefits from global inference can be even more significant.
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Chapter 3

Randomized Decoding for

Selection-and-Ordering Problems

3.1 Introduction

The task of selecting and ordering information appears in multiple contexts in text

generation and summarization. For instance, a typical multidocument summarization

system creates a summary by selecting a subset of input sentences and ordering them

into a coherent text. Selection and ordering at the word level is commonly employed

in lexical realization. For instance, in the task of title generation, the headline is

constructed by selecting and ordering words from the input text.

Decoding is an essential component of the selection-and-ordering process. Given

selection and ordering preferences, the task is to find a sequence of elements that

maximally satisfies these preferences. One possible approach for finding such a solu-

tion is to decompose it into two tasks: first, select a set of words based on individual

selection preferences, and then order the selected units into a well-formed sequence.

Although the modularity of this approach is appealing, the decisions made in the se-

lection step cannot be retracted. Therefore, we cannot guarantee that selected units

can be ordered in a meaningful way, and we may end up with a suboptimal output.

In this chapter, we investigate decoding methods that simultaneously optimize

selection and ordering preferences. We formalize decoding as finding a path in a
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directed weighted graph.1 The vertices in the graph represent units with associated

selection scores, and the edges represent pairwise ordering preferences. The desired

solution is the highest-weighted acyclic path of a prespecified length. The requirement

for acyclicity is essential because in a typical selection-and-ordering problem, a well-

formed output does not include any repeated units. For instance, a summary of

multiple documents should not contain any repeated sentences.

Since the problem is NP-hard, finding an exact solution is challenging. We intro-

duce a novel randomized decoding algorithm based on the idea of color-coding [2].

Although the algorithm is not guaranteed to find the optimal solution on any single

run, by increasing the number of runs the algorithm can guarantee an arbitrarily high

probability of success. We provide a theoretical analysis that establishes the connec-

tion between the required number of runs and the likelihood of finding the correct

solution.

Next, we show how to find an exact solution using an integer linear program-

ming (ILP) formulation. Although ILP is NP-hard, this method is guaranteed to

compute the optimal solution. This allows us to experimentally investigate the trade-

off between the accuracy and the efficiency of decoding algorithms considered in the

chapter.

We evaluate the accuracy of the decoding algorithms on the task of title genera-

tion. The decoding algorithms introduced in the chapter are compared against beam

search, a heuristic search algorithm commonly used for selection-and-ordering and

other natural language processing tasks. Our experiments show that the randomized

decoder is an appealing alternative to both beam search and ILP when applied to

selection-and-ordering problems.

1We assume that the scoring function is local; that is, it is computed by combining pairwise
scores. In fact, the majority of models that are used to guide ordering (i.e., bigrams) are local
scoring functions.
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3.2 Problem Formulation

In this section, we formally define the decoding task for selection-and-ordering prob-

lems. First, we introduce our graph representation and show an example of its con-

struction for multidocument summarization. (An additional example of graph con-

struction for title generation is given in Section 3.6.) Then, we discuss the complexity

of this task and its connection to classical NP-hard problems.

3.2.1 Graph Representation

We represent the set of selection units as the set of vertices V in a weighted directed

graph G. The set of edges E represents pairwise ordering scores between all pairs

of vertices in V . We also add a special source vertex s and sink vertex t. For

each vertex v in V , we add an edge from s to v and an edge from v to t. We

then define the set of all vertices as V ∗ = V ∪ {s, t}, and the set of all edges as

E∗ = E ∪ {(s, v) ∀ v ∈ V } ∪ {(v, t) ∀ v ∈ V }.

To simplify the representation, we remove all vertex weights in our graph structure

and instead shift the weight for each vertex onto its incoming edges. For each pair

of distinct vertices (v, u) ∈ V , we set the weight of edge ev,u to be the sum of the

logarithms of the selection score for u and the pairwise ordering score of (v, u).

We also enhance our graph representation by grouping sets of vertices into equiv-

alence classes. We introduce these classes to control for redundancy as required in

many selection-and-ordering problems.2 For instance, in title generation, an equiva-

lence class may consist of morphological variants of the same stem (i.e., examine and

examination). Because a typical title is unlikely to contain more than one word with

the same stem, we can only select a single representative from each class.

Our task is now to find the highest weighted acyclic path starting at s and end-

ing at t with k vertices in between, such that no two vertices belong to the same

2An alternative approach for redundancy control would be to represent all the members of an
equivalence class as a single vertex in the graph. However, such an approach does not allow us to
select the best representative from the class. For instance, one element in the equivalence class may
have a highly weighted incoming edge, while another may have a highly weighted outgoing edge.
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equivalence class.

3.2.2 Example: Decoding for Multidocument summarization

In multidocument summarization, the vertices in the decoding graph represent sen-

tences from input documents. The vertices may be organized into equivalence classes

that correspond to clusters of sentences conveying similar information.3 The edges

in the graph represent the combination of the selection and the ordering scores. The

selection scores encode the likelihood of a sentence to be extracted, while pairwise or-

dering scores capture coherence-based precedence likelihood. The goal of the decoder

is to find the sequence of k non-redundant sentences that optimize both the selection

and the ordering scores. Finding an acyclic path with the highest weight will achieve

this goal.

3.2.3 Relation to Classical Problems

Our path-finding problem may seem to be similar to the tractable shortest paths

problem. However, the requirement that the path be long makes it more similar

to the the Traveling Salesman Problem (TSP). More precisely, our problem is an

instance of the prize collecting traveling salesman problem, in which the salesman is

required to visit k vertices at best cost [5, 4].

Since our problem is NP-hard, we might be pessimistic about finding an exact

solution. But our problem has an important feature: the length k of the path we

want to find is small relative to the number of vertices n. This feature distinguishes

our task from other decoding problems, such as decoding in machine translation [28],

that are modeled using a standard TSP formulation. In general, the connection

between n and k opens up a new range of solutions. For example, if we wanted to

find the best length-2 path, we could simply try all subsets of 2 vertices in the graph,

in all 2 possible orders. This is a set of only O(n2) possibilities, so we can check all

to identify the best in polynomial time.

3Such clusters are computed automatically by analyzing lexical similarity of sentences from dif-
ferent documents.
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This approach is very limited, however: in general, its runtime of O(nk) for paths

of length k makes it prohibitive for all but the smallest values of k. We cannot really

hope to avoid the exponential dependence on k, because doing so would give us a fast

solution to an NP-hard problem, but there is hope of making the dependence “less

exponential.” This is captured by the definition of fixed parameter tractability [22].

A problem is fixed parameter tractable if we can make the exponential dependence

on the parameter k independent of the polynomial dependence on the problem size

n. This is the case for our problem: as we will describe below, an algorithm of Alon

et al. can be used to achieve a running time of roughly O(2kn2). In other words,

the path length k only exponentiates a small constant, instead of the problem size n,

while the dependence on n is in fact quadratic.

3.3 Related Work

Decoding for selection-and-ordering problems is commonly implemented using beam

search [6, 18, 33]. Being heuristic in nature, this algorithm is not guaranteed to find

an optimal solution. However, its simplicity and time efficiency make it a decoding

algorithm of choice for a wide range of NLP applications. In applications where

beam decoding does not yield sufficient accuracy, researchers employ an alternative

heuristic search, A* [32, 28]. While in some cases A* is quite effective, in other cases

its running time and memory requirements may equal that of an exhaustive search.

Time- and memory-bounded modifications of A* (i.e., IDA-A*) do not suffer from this

limitation, but they are not guaranteed to find the exact solution. Nor do they provide

bounds on the likelihood of finding the exact solution. Newly introduced methods

based on local search can effectively examine large areas of a search space [24], but

they still suffer from the same limitations.

As an alternative to heuristic search algorithms, researchers also employ ex-

act methods from combinatorial optimization, in particular integer linear program-

ming [28, 44]. While existing ILP solvers find the exact solution eventually, the

running time may be too slow for practical applications.
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Our randomized decoder represents an important departure from previous ap-

proaches to decoding selection-and-ordering problems. The theoretically established

bounds on the performance of this algorithm enable us to explicitly control the trade-

off between the quality and the efficiency of the decoding process. This property of

our decoder sets it apart from existing heuristic algorithms that cannot guarantee an

arbitrarily high probability of success.

3.4 Randomized Decoding with Color-Coding

One might hope to solve decoding with a dynamic program (like that for shortest

paths) that grows an optimal path one vertex at a time. The problem is that this

dynamic program may grow to include a vertex already on the path, creating a cycle.

One way to prevent this is to remember the vertices used on each partial path, but

this creates a dynamic program with too many states to compute efficiently.

Instead, we apply a color coding technique of Alon et al. [2]. The basic step of the

algorithm consists of randomly coloring the graph vertices with a set of colors of size r,

and using dynamic programming to find the optimum length-k path without repeated

colors. (Later, we describe how to determine the number of colors r.) Forbidding

repeated colors excludes cycles as required, but remembering only colors on the path

requires less state than remembering precisely which vertices are on the path. Since

we color randomly, any single iteration is not guaranteed to find the optimal path; in

a given coloring, two vertices along the optimal path may be assigned the same color,

in which case the optimal path will never be selected. Therefore, the whole process

is repeated multiple times, increasing the likelihood of finding an optimal path.

Our algorithm is a variant of the original color-coding algorithm [2], which was

developed to detect the existence of paths of length k in an unweighted graph. We

modify the original algorithm to find the highest weighted path and also to handle

equivalence classes of vertices. In addition, we provide a method for determining the

optimal number of colors to use for finding the highest weighted path of length k.

We first describe the dynamic programming algorithm. Next, we provide a proba-
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bilistic bound on the likelihood of finding the optimal solution, and present a method

for determining the optimal number of colors for a given value of k.

Dynamic Programming Recall that we began with a weighted directed graph G

to which we added artificial start and end vertices s and t. We now posit a coloring of

that graph that assigns a color cv to each vertex v aside from s and t. Our dynamic

program returns the maximum score path of length k + 2 (including the artificial

vertices s and t) from s to t with no repeated colors.

Our dynamic program grows colorful paths—paths with at most one vertex of

each color. For a given colorful path, we define the spectrum of a path to be the set

of colors (each used exactly once) of nodes on the interior of the path—we exclude

the starting vertex (which will always be s) and the ending vertex. To implement the

dynamic program, we maintain a table q[v, S] indexed by a path-ending vertex v and

a spectrum S. For vertex v and spectrum S, entry q[v, S] contains the value of the

maximum-score colorful path that starts at s, terminates at v, and has spectrum S

in its interior.

We initialize the table with length-one paths: q[v, ∅] represents the path from s

to v, whose spectrum is the empty set since there are no interior vertices. Its value is

set to the score of edge (s, v). We then iterate the dynamic program k times in order

to build paths of length k + 1 starting at s. We observe that the optimum colorful

path of length ` and spectrum S from s to v must consist of an optimum path from s

to u (which will already have been found by the dynamic program) concatenated to

the edge (u, v). When we concatenate (u, v), vertex u becomes an interior vertex of

the path, and so its color must not be in the preexisting path’s spectrum, but joins

the spectrum of the path we build. It follows that

q[v, S] = max
(u,v)∈G,cu∈S,cv /∈S

q[u, S − {cu}] + w(u, v)

After k iterations, for each vertex v we will have a list of optimal paths from s to

v of length k + 1 with all possible spectra. The optimum length-k + 2 colorful path

from s to t must follow the optimum length-k + 1 path of some spectrum to some
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penultimate vertex v and then proceed to vertex t; we find it by iterating over all

such possible spectra and all vertices v to determine argmaxv,Sq[v, S] + w(v, t).

Amplification The algorithm of Alon et al., and the variant we describe, are

somewhat peculiar in that the probability of finding the optimal solution in one

coloring iteration is quite small. But this can easily be dealt with using a standard

technique called amplification [40]. Suppose that the algorithm succeeds with small

probability p, but that we would like it to succeed with probability 1 − δ where δ is

very small. We run the algorithm t = (1/p) ln 1/δ times. The probability that the

algorithm fails every single run is then (1 − p)t ≤ e−pt = δ. But if the algorithm

succeeds on even one run, then we will find the optimum answer (by taking the best

of the answers we see).

No matter how many times we run the algorithm, we cannot absolutely guarantee

an optimal answer. However, the chance of failure can easily be driven to negligible

levels—achieving, say, a one-in-a-billion chance of failure requires only 20/p iterations

by the previous analysis.

Determining the number of colors Suppose that we use r random colors and

want to achieve a given failure probability δ. The probability that the optimal path

has no repeated colors is:

1 ·
r − 1

r
·
r − 2

r
· · ·

r − (k − 1)

r
.

By the amplification analysis, the number of trials needed to drive the failure proba-

bility to the desired level will be inversely proportional to this quantity. At the same

time, the dynamic programming table at each vertex will have size 2r (indexing on

a bit vector of colors used per path), and the runtime of each trial will be propor-

tional to this. Thus, the running time for the necessary number of trials Tr will be

proportional to

1 ·
r

r − 1
·

r

r − 2
· · ·

r

r − (k − 1)
· 2r

What r ≥ k should we choose to minimize this quantity? To answer, let us consider

the ratio:
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Tr+1

Tr
=

(

r + 1

r

)k

·
r − (k − 1)

r + 1
· 2

= 2(1 + 1/r)k(1 − k/(r + 1))

If this ratio is less than 1, then using r + 1 colors will be faster than using r;

otherwise it will be slower. When r is very close to k, the above equation is tiny,

indicating that one should increase r. When r � k, the above equation is huge,

indicating one should decrease r. Somewhere in between, the ratio passes through 1,

indicating the optimum point where neither increasing nor decreasing r will help. If

we write α = k/r, and consider large k, then Tr+1

Tr

converges to 2eα(1 − α). Solving

numerically to find where this is equal to 1, we find α ≈ .76804, which yields a running

time proportional to approximately (3/2)k.

In practice, rather than using an (approximate) formula for the optimum r, one

should simply plug all values of r in the range [k, 2k] into the running-time formula

in order to determine the best; doing so takes negligible time.

3.5 Decoding with Integer Linear Programming

In this section, we show how to formulate the selection-and-ordering problem in the

ILP framework. We represent each edge (i, j) from vertex i to vertex j with an

indicator variable Ii,j that is set to 1 if the edge is selected for the optimal path and 0

otherwise. In addition, the associated weight of the edge is represented by a constant

wi,j.

The objective is then to maximize the following sum:

max
I

∑

i∈V

∑

j∈V

wi,jIi,j (3.1)

This sum combines the weights of edges selected to be on the optimal path.

To ensure that the selected edges form a valid acyclic path starting at s and ending
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at t, we introduce the following constraints:

Source-Sink Constraints Exactly one edge originating at source s is selected:

∑

j∈V

Is,j = 1 (3.2)

Exactly one edge ending at sink t is selected:

∑

i∈V

Ii,t = 1 (3.3)

Length Constraint Exactly k + 1 edges are selected:

∑

i∈V

∑

j∈V

Ii,j = k + 1 (3.4)

The k + 1 selected edges connect k + 2 vertices including s and t.

Balance Constraints Every vertex v ∈ V has in-degree equal to its out-degree:

∑

i∈V

Ii,v =
∑

i∈V

Iv,j ∀ v ∈ V ∗ (3.5)

Note that with this constraint, a vertex can have at most one outgoing and one

incoming edge.

Redundancy Constraints To control for redundancy, we require that at most

one representative from each equivalence class is selected. Let Z be a set of vertices

that belong to the same equivalence class. For every equivalence class Z, we force the

total out-degree of all vertices in Z to be at most 1.

∑

i∈Z

∑

j∈V

Ii,j ≤ 1 ∀ Z ⊆ V (3.6)

Acyclicity Constraints The constraints introduced above do not fully prohibit

the presence of cycles in the selected subgraph. Figure 3-1 shows an example of a

selected subgraph that contains a cycle while satisfying all the above constraints.

We force acyclicity with an additional set of variables. The variables fi,j are
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s t

Figure 3-1: A subgraph that contains a cycle, while satisfying constraints 3.2 through
3.5.

intended to number the edges on the path from 1 to k +1, with the first edge getting

number fi,j = k + 1, and the last getting number fi,j = 1. All other edges will get

fi,j = 0. To enforce this, we start by ensuring that only the edges selected for the

path (Ii,j = 1) get nonzero f -values:

0 ≤ fi,j ≤ (k + 1) Ii,j ∀ i, j ∈ V (3.7)

When Ii,j = 0, this constraint forces fi,j = 0. When Ii,j = 1, this allows 0 ≤ fi,j ≤

k + 1. Now we introduce additional variables and constraints. We constrain demand

variables dv by:

dv =
∑

i∈V

Ii,v ∀ v ∈ V ∗ − {s} (3.8)

The right hand side sums the number of selected edges entering v, and will there-

fore be either 0 or 1. Next we add variables av and bv constrained by the equations:

av =
∑

i∈V

fi,v (3.9)

bv =
∑

i∈V

fv,i (3.10)

Note that av sums over f values on all edges entering v. However, by the previous

constraints those f -values can only be nonzero on the (at most one) selected edge
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entering v. So, av is simply the f -value on the selected edge entering v, if one exists,

and 0 otherwise. Similarly, bv is the f -value on the (at most one) selected edge leaving

v.

Finally, we add the constraints

av − bv = dv v 6= s (3.11)

bs = k + 1 (3.12)

at = 1 (3.13)

These last constraints let us argue, by induction, that a path of length exactly k + 1

must run from s to t, as follows. The previous constraints forced exactly one edge

leaving s, to some vertex v, to be selected. The constraint bs = k + 1 means that the

f -value on this edge must be k + 1. The balance constraint on v means some edge

must be selected leaving v. The constraint av − bv = dv means this edge must have

f -value k. The argument continues the same way, building up a path. The balance

constraints mean that the path must terminate at t, and the constraint that at = 1

forces that termination to happen after exactly k + 1 edges.4

For those familiar with max-flow, our program can be understood as follows. The

variables I force a flow, of value 1, from s to t. The variables f represent a flow with

supply k + 1 at s and demand dv at v, being forced to obey “capacity constraints”

that let the flow travel only along edges with I = 1.

3.6 Experimental Set-Up

Task We applied our decoding algorithm to the task of title generation. This task

has been extensively studied over the last six years [6, 33, 50]. Title generation is

a classic selection-and-ordering problem: during title realization, an algorithm has

to take into account both the likelihood of words appearing in the title and their

ordering preferences. In the previous approaches, beam search has been used for

4The network flow constraints allow us to remove the previously placed length constraint.
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decoding. Therefore, it is natural to explore more sophisticated decoding techniques

like the ones described in this chapter.

Our method for estimation of selection-and-ordering preferences is based on the

technique described in [6]. We compute the likelihood of a word in the document

appearing in the title using a maximum entropy classifier. Every stem is represented

by commonly used positional and distributional features, such as location of the first

sentence that contains the stem and its TF*IDF. We estimate the ordering preferences

using a bigram language model with Good-Turing smoothing.

In previous systems, the title length is either provided to a decoder as a parameter,

or heuristics are used to determine it. Since exploration of these heuristics is not the

focus of this thesis, we provide the decoder with the actual title length (as measured

by the number of content words).

Graph Construction We construct a decoding graph in the following fashion.

Every unique content word comprises a vertex in the graph. All the morphological

variants of a stem belong to the same equivalence class. An edge (v, u) in the graph

encodes the selection preference of u and the likelihood of the transition from v to u.

Note that the graph does not contain any auxiliary words in its vertices. We handle

the insertion of auxiliary words by inserting additional edges. For every auxiliary

word x, we add one edge representing the transition from v to u via x, and the

selection preference of u. The auxiliary word set consists of 24 prepositions and

articles extracted from the corpus.

Corpus Our corpus consists of 547 sections of a commonly used undergraduate

algorithms textbook. The average section contains 609.2 words. A title, on average,

contains 3.7 words, among which 3.0 are content words; the shortest and longest

titles have 1 and 13 words respectively. Our training set consists of the first 382

sections, the remaining 165 sections are used for testing. The bigram language model

is estimated from the body text of all sections in the corpus, consisting of 461,351

tokens.

To assess the importance of the acyclicity constraint, we compute the number of

titles that have repeated content words. The empirical findings support our assump-
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tion: 97.9% of the titles do not contain repeated words.

Decoding Algorithms We consider three decoding algorithms: our color-coding

algorithm, ILP, and beam search.5 The beam search algorithm can only consider

vertices which are not already in the path.6

To solve the ILP formulations, we employ a Mixed Integer Programming solver

lp solve which implements the Branch-and-Bound algorithm. We implemented the

rest of the decoders in Python with the Psyco speed-up module. We put substantial

effort to optimize the performance of all of the algorithms. The color-coding algorithm

is implemented using parallelized computation of coloring iterations.

3.7 Results

Table 3.1 shows the performance of various decoding algorithms considered in the

chapter. We first evaluate each algorithm by the running times it requires to find all

the optimal solutions on the test set. Since ILP is guaranteed to find the optimal

solution, we can use its output as a point of comparison. Table 3.1 lists both the

average and the median running times. For some of the decoding algorithms, the

difference between the two measurements is striking — 6,536 seconds versus 57.3

seconds for ILP. This gap can be explained by outliers which greatly increase the

average running time. For instance, in the worst case, ILP takes an astounding 136

hours to find the optimal solution. Therefore, we base our comparison on the median

running time.

The color-coding algorithm requires a median time of 9.7 seconds to find an opti-

mal solution compared to the 57.3 seconds taken by ILP. Furthermore, as Figure 3-2

shows, the algorithm converges quickly: just eleven iterations are required to find

an optimal solution in 90% of the titles, and within 35 iterations all of the solutions

are found. An alternative method for finding optimal solutions is to employ a beam

5The combination of the acyclicity and path length constraints require an exponential number
of states for A* since each state has to preserve the history information. This prevents us from
applying A* to this problem.

6Similarly, we avoid redundancy by disallowing two vertices from the same equivalence class to
belong to the same path.
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Average (s) Median (s) ROUGE-L Optimal Solutions (%)
Beam 1 0.6 0.4 0.0234 0.0
Beam 80 28.4 19.3 0.2373 64.8
Beam 1345 368.6 224.4 0.2556 100.0
ILP 6,536.2 57.3 0.2556 100.0
Color-coding 73.8 9.7 0.2556 100.0

Table 3.1: Running times in seconds, ROUGE scores, and percentage of optimal
solutions found for each of the decoding algorithms.

search with a large beam size. We found that for our test set, the smallest beam

size that satisfies this condition is 1345, making it twenty-three times slower than the

randomized decoder with respect to the median running time.

Does the decoding accuracy impact the quality of the generated titles? We can

always trade speed for accuracy in heuristic search algorithms. As an extreme, con-

sider a beam search with a beam of size 1: while it is very fast with a median running

time of less than one second, it is unable to find any of the optimal solutions. The

titles generated by this method have substantially lower scores than those produced

by the optimal decoder, yielding a 0.2322 point difference in ROUGE7 scores.8 Even

a larger beam size such as 80 (as used by Banko et al. [6]) does not match the title

quality of the optimal decoder.

3.8 Conclusions

In this chapter, we formalized the decoding task for selection-and-ordering as a prob-

lem of finding the highest-weighted acyclic path in a directed graph. The presented

decoding algorithm employs randomized color-coding, and can closely approximate

the ILP performance, without blowing up the running time. The algorithm has been

tested on title generation, but the decoder is not specific to this task and can be

applied to other generation and summarization applications.

7http://www.isi.edu/licensed-sw/see/rouge/
8Our accuracy of title generation is comparable with the performance of other systems reported

in the literature [50].
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Figure 3-2: The proportion of exact solutions found for each iteration of the color
coding algorithm.
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Chapter 4

Generating a Table-of-Contents: A

Hierarchical Discriminative

Approach

4.1 Introduction

Current research in summarization focuses on processing short articles, primarily in

the news domain. While in practice the existing summarization methods are not

limited to this material, they are not universal: texts in many domains and genres

cannot be summarized using these techniques. A particularly significant challenge is

the summarization of longer texts, such as books. The requirement for high com-

pression rates and the increased need for the preservation of contextual dependencies

between summary sentences places summarization of such texts beyond the scope of

current methods.

In this chapter, we investigate the automatic generation of tables-of-contents, a

type of indicative summary particularly suited for accessing information in long texts.

A typical table-of-contents lists topics described in the source text and provides infor-

mation about their location in the text. The hierarchical organization of information

in the table further refines information access by specifying the relations between dif-
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Scientific computing

Remarkable recursive algorithm for multiplying matrices

Divide and conquer algorithm design

Making a recursive algorithm

Solving systems of linear equations

Computing an LUP decomposition

Forward and back substitution

Symmetric positive definite matrices and least squares approximation

Figure 4-1: A fragment of a table-of-contents generated by our method.

ferent topics and providing rich contextual information during browsing. Commonly

found in books, tables-of-contents can also facilitate access to other types of texts.

For instance, this type of summary could serve as an effective navigation tool for

understanding a long, unstructured transcript for an academic lecture or a meeting.

Given a text, our goal is to generate a tree wherein a node represents a segment

of text and a title that summarizes its content. This process involves two tasks:

the hierarchical segmentation of the text, and the generation of informative titles

for each segment. The first task can be addressed using existing topic segmentation

algorithms, either by directly applying hierarchical methods [54] or by repeatedly

applying linear segmentation algorithms [30]. The second task also seems simple: we

can just employ existing methods of title generation to each segment, and combine

the results into a tree structure.

However, the latter approach cannot guarantee that the generated table-of-contents

forms a coherent representation of the entire text. Since titles of different segments

are generated in isolation, some of the generated titles may be repetitive. Even non-

repetitive titles may not provide sufficient information to discriminate between the

content of one segment and another. Therefore, it is essential to generate an entire

content tree in a concerted fashion.

We present a hierarchical discriminative approach for table-of-contents generation.

Figure 4-1 shows a fragment of a table-of-contents automatically generated by this ap-

proach. Our method has two important points of departure from existing techniques.

First, we introduce a structured discriminative model for table-of-contents generation

that accounts for a wide range of phrase-based and collocational features. The flexi-
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bility of this model results in improved summary quality. Second, our model captures

both global dependencies across different titles in the tree and local dependencies

within sections. We decompose the model into local and global components that

handle different classes of dependencies. We further reduce the search space through

incremental construction of the model’s output by considering only the promising

parts of the decision space.

We apply our method to process a 1,180 page algorithms textbook. To assess the

contribution of our hierarchical model, we compare our method with state-of-the-art

methods that generate each segment title independently. The results of automatic

evaluation and manual assessment of title quality show that the output of our system

is consistently ranked higher than that of non-hierarchical baselines.

4.2 Related Work

Even though most current research in summarization focuses on newspaper articles, a

number of approaches have been developed for processing longer texts. Most of these

approaches are tailored to a particular domain, such as medical literature or scientific

articles. By making strong assumptions about the input structure and the desired

format of the output, these methods achieve a high compression rate while preserving

summary coherence. For instance, Teufel and Moens [48] summarize scientific articles

by selecting rhetorical elements that are commonly present in scientific abstracts.

Elhadad and McKeown [25] generate summaries of medical articles by following a

certain structural template in content selection and realization.

Our work, however, is closer to domain-independent methods for summarizing

long texts. Typically, these approaches employ topic segmentation to identify a list

of topics described in a document, and then produce a summary for each part [10,

3]. In contrast to our method, these approaches perform either sentence or phrase

extraction, rather than summary generation. Moreover, extraction for each segment

is performed in isolation, and global constraints on the summary are not enforced.

Finally, our work is also related to research on title generation [6, 33, 21]. Since
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work in this area focuses on generating titles for newspaper articles, the issue of

hierarchical generation, which is unique to our task, does not arise in that application.

However, this is not the only novel aspect of the proposed approach. Our model learns

title generation in a fully discriminative framework, in contrast to the commonly used

noisy-channel model. Thus, instead of independently modeling the selection and

grammatical constraints, we learn both types of features in a single framework. This

joint training regime supports greater flexibility in capturing a range of contextual

features and modeling their interaction.

4.3 Problem Formulation

We formalize the problem of table-of-contents generation as a supervised learning task

where the goal is to map a tree of text segments S to a tree of titles T . A segment

may correspond to a chapter, section or subsection.

Since the focus of our work is on the generation aspect of table-of-contents con-

struction, we assume that the hierarchical segmentation of a text is provided in the

input. This division can either be automatically computed using one of the many

available text segmentation algorithms [30, 54], or it can be based on demarcations

already present in the input (e.g., paragraph markers).

During training, the algorithm is provided with a set of pairs (S i, T i) for i =

1, . . . , p, where Si is the ith tree of text segments, and T i is the table-of-contents for

that tree. During testing, the algorithm generates tables-of-contents for unseen trees

of text segments.

We also assume that during testing the desired title length is provided as a pa-

rameter to the algorithm.

4.4 Algorithm

To generate a coherent table-of-contents, we need to take into account multiple con-

straints: the titles should be grammatical, they should adequately represent the con-
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tent of their segments, and the table-of-contents as a whole should clearly convey the

relations between the segments. Taking a discriminative approach for modeling this

task would allow us to achieve this goal: we can easily integrate a range of constraints

in a flexible manner. Since the number of possible labels (i.e., tables-of-contents) is

prohibitively large and the labels themselves exhibit a rich internal structure, we

employ a structured discriminative model that can easily handle complex dependen-

cies. Our solution relies on two orthogonal strategies to balance tractability and

the richness of the model. First, we factor the model into local and global com-

ponents. Second, we incrementally construct the output of each component using

a search-based discriminative algorithm. Both of these strategies have the effect of

intelligently pruning the decision space.

Our model factorization is driven by the different types of dependencies which

are captured by the two components. The first model is local : for each segment, it

generates a list of candidate titles ranked by their individual likelihoods. This model

focuses on grammaticality and word selection constraints, but it does not consider

relations among different titles in the table-of-contents. These latter dependencies

are captured in the global model that constructs a table-of-contents by selecting titles

for each segment from the available candidates. Even after this factorization, the

decision space for each model is large: for the local model, it is exponential in the

length of the segment title, and for the global model it is exponential in the size of

the tree.

Therefore, we construct the output for each of these models incrementally using

beam search. The algorithm maintains the most promising partial output structures,

which are extended at every iteration. The model incorporates this decoding proce-

dure into the training process, thereby learning model parameters best suited for the

specific decoding algorithm. Similar models have been successfully applied in the past

to other tasks including parsing [15], chunking [20], and machine translation [19].
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4.4.1 Model Structure

The model takes as input a tree of text segments S. Each segment s ∈ S and its title

z are represented as a local feature vector Φloc(s, z). Each component of this vector

stores a numerical value. This feature vector can track any feature of the segment s

together with its title z. 1 For instance, the ith component of this vector may indicate

whether the bigram (z[j]z[j + 1]) occurs in s, where z[j] is the j th word in z:

(Φloc(s, z))i =







1 if (z[j]z[j + 1]) ∈ s

0 otherwise

In addition, our model captures dependencies among multiple titles that appear

in the same table-of-contents. We represent a tree of segments S paired with titles T

with the global feature vector Φglob(S, T ). The components here are also numerical

features. For example, the ith component of the vector may indicate whether a title

is repeated in the table-of-contents T :

(Φglob(S, T ))i =







1 repeated title

0 otherwise

Our model constructs a table-of-contents in two basic steps:

Step One The goal of this step is to generate a list of k candidate titles for each

segment s ∈ S. To do so, for each possible title z, the model maps the feature vector

Φloc(s, z) to a real number. This mapping can take the form of a linear model,

Φloc(s, z) · αloc

where αloc is the local parameter vector.

Since the number of possible titles is exponential, we cannot consider all of them.

Instead, we prune the decision space by incrementally constructing promising titles.

At each iteration j, the algorithm maintains a beam Q of the top k partially gener-

ated titles of length j. During iteration j + 1, a new set of candidates is grown by

1In practice, Φloc(s, z) also tracks features of the neighbhoring segments of s.
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appending a word from s to the right of each member of the beam Q. We then sort

the entries in Q: z1, z2, . . . such that Φloc(s, zi) · αloc ≥ Φloc(s, zi+1) · αloc, ∀i. Only

the top k candidates are retained, forming the beam for the next iteration. This

process continues until a title of the desired length is generated. Finally, the list of k

candidates is returned.

Step Two Given a set of candidate titles z1, z2, . . . , zk for each segment s ∈ S,

our goal is to construct a table-of-contents T by selecting the most appropriate title

from each segment’s candidate list. To do so, our model computes a score for the pair

(S, T ) based on the global feature vector Φglob(S, T ):

Φglob(S, T ) · αglob

where αglob is the global parameter vector.

As with the local model (step one), the number of possible tables-of-contents

is too large to be considered exhaustively. Therefore, we incrementally construct

a table-of-contents by traversing the tree of segments in a pre-order walk (i.e., the

order in which segments appear in the text). In this case, the beam contains partially

generated tables-of-contents, which are expanded by one segment title at a time.

4.4.2 Training the Model

Training for Step One We now describe how the local parameter vector αloc is

estimated from training examples. We are given a set of training examples (si, yi) for

i = 1, . . . , l, where si is the ith text segment, and yi is the title of this segment.

This linear model is learned using a variant of the incremental perceptron al-

gorithm [15, 20]. This on-line algorithm traverses the training set multiple times,

updating the parameter vector αloc after each training example. The algorithm en-

courages a setting of the parameter vector αloc that assigns the highest score to the

feature vector associated with the correct title.

The pseudocode of the algorithm is shown in Figure 4-2. Given a segment text s

and the corresponding title y, the training algorithm maintains a beam Q containing
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the top k partial titles of length j. The beam is updated on each iteration using the

functions GROW and PRUNE. For every word in segment s and for every title in Q,

GROW creates a new title by appending this word to the title. PRUNE retains only

the top ranked candidates based on the scoring function Φloc(s, z) · αloc. If y[1 . . . j]

(i.e., the prefix of y of length j) is not in the modified beam Q, then αloc is updated2

as shown in line 4 of the pseudocode in Figure 4-2. In addition, Q is replaced with a

beam containing only y[1 . . . j] (line 5). This process is performed |y| times. We repeat

this process for all training examples over a specified number of training iterations.3

s – segment text.
y – segment title.
y[1 . . . j] – prefix of y of length j.
Q – beam containing partial titles.

1. for j = 1 . . . |y|
2. Q = PRUNE(GROW(s, Q))
3. if y[1 . . . j] /∈ Q
4. αloc = αloc + Φloc(s, y[1 . . . j])

−
∑

z∈Q
Φloc(s,z)
|Q|

5. Q = {y[1 . . . j]}

Figure 4-2: The training algorithm for the local model.

Training for Step Two To train the global parameter vector αglob, we are given

training examples (Si, T i) for i = 1, . . . , p, where Si is the ith tree of text segments,

and T i is the table-of-contents for that tree. However, we cannot directly use these

tables-of-contents for training our global model. Since this model selects one of the

candidate titles zi
1, . . . , z

i
k returned by the local model, the true title of the segment

may not be among these candidates. Therefore, to determine a new target title for

the segment, we need to identify the title in the set of candidates that is closest to

the true title.

2If the word in the jth position of y does not occur in s, then the parameter update is not
performed.

3For decoding, αloc is averaged over the training iterations as in Collins and Roark [15].
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We employ the L1 distance measure to compare the content word overlap between

two titles.4 For each input (S, T ), and each segment s ∈ S, we identify the segment

title closest in the L1 measure to the true title y:

z∗ = arg min
i

L1(zi, y)

Once all the training targets in the corpus have been identified through this pro-

cedure, the global linear model Φglob(S, T ) ·αglob is learned using the same perceptron

algorithm as in step one. Rather than maintaining the beam of partially generated

titles, the beam Q holds partially generated tables-of-contents. Also, the loop in line

1 of Figure 4-2 iterates over segment titles rather than words.

4.5 Features

Local Features Our local model aims to generate titles which adequately repre-

sent the meaning of the segment and are grammatical. Selection and contextual

preferences are encoded in the local features. The features that capture selection

constraints are specified at the word level, and contextual features are expressed at

the word sequence level.

The selection features capture the position of the word, its TF*IDF, and part-

of-speech information. In addition, they also record whether the word occurs in the

body of neighboring segments. We also generate conjunctive features by combining

features of different types.

The contextual features record the trigram language model scores, one for words

and one for part-of-speech tags. The trigram scores are averaged over the title. Both

language models5 are trained using the SRILM toolkit. Another type of contextual

feature models the collocational properties of noun phrases in the title. This feature

aims to eliminate from titles generic phrases, such as “the following section”.6 To

4This measure is close to ROUGE-1 which in addition considers the overlap in auxiliary words.
5Witten-Bell discounting is used for the part-of-speech language model, and Chen and Goodman’s

modified Kneser-Ney discounting is used for the lexical language model.
6Unfortunately, we could not use more sophisticated syntactic features due to the low accuracy
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Segment has the same title as its sibling
Segment has the same title as its parent
Two adjacent segment titles have the same head
Two adjacent segment titles start with the same word
Rank given to the title by the local model

Table 4.1: Examples of global features.

Training Testing
# Titles 436 104
# Trees 31 8
Tree Depth 4 4
# Words 206,319 62,070
Avg. Title Length 3.74 3.57
Avg. Branching 3.38 2.95
Avg. Title Duplicates 12 9

Table 4.2: Statistics on the corpus used in the experiments.

achieve this effect, for each noun phrase in the title, we measure the ratio of their

frequency in the segment to their frequency in the corpus.

Global Features Our global model describes the interaction between different ti-

tles in the tree (See Table 4.1). These interactions are encoded in three types of

global features. The first type of global feature indicates whether titles in the tree

are redundant at various levels of the tree structure. The second type of feature en-

courages parallel constructions within the same tree. For instance, titles in the same

segment may all be verbalized as noun phrases with the same head (e.g., “Bubble sort

algorithm”, “Merge sort algorithm”). We capture this property by comparing words

that appear in certain positions in adjacent sibling titles. Finally, our global model

also uses the rank of the title provided by the local model. This feature enables the

global model to account for the preferences of the local model in the title selection

process.
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4.6 Evaluation Setup

Data We apply our method to an undergraduate algorithms textbook. We divide

its table-of-contents into training and testing portions by splitting it into a set of

independent subtrees. Given a table-of-contents of depth n with a root branching

factor of r, we generate r subtrees, with a depth of at most n − 1. We randomly

select 80% of these trees for training, and the rest are used for testing. For detailed

statistics on the training and testing data see Table 4.2.

Admittedly, this method for generating training and testing data omits some

dependencies at the level of the table-of-contents as a whole. However, the subtrees

used in our experiments still exhibit a sufficiently deep hierarchical structure, rich

with contextual dependencies.

Baselines As an alternative to our hierarchical method, we consider three baselines

that build a table-of-contents by generating a title for each segment individually,

without taking into account the tree structure. The first method generates a title for

a segment by selecting the noun phrase from that segment with the highest TF*IDF.7

This simple method is commonly used to generate keywords for browsing applications

in information retrieval, and has been shown to be effective for summarizing technical

content [49].

The second baseline is based on the noisy-channel generative model proposed by

Banko et al. [6]. Similar to our local model, this method captures both selection and

grammatical constraints. However, these constraints are modeled separately, and

then combined in a generative framework.

We use our local model as the third baseline. Like the second baseline, this model

omits global dependencies, and only focuses on features that capture relations within

individual segments. This model is close to traditional methods for title generation as

it does not have access to hierarchical information. Note that we could not compare

against other methods for title generation because they are designed exclusively for

of statistical parsers on our corpus.
7This is the only baseline that does not use a length parameter in the selection process.
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newspaper articles [21, 50].

The last two baselines and our algorithm are provided with the title length as a

parameter. In our experiments, the algorithms use the reference title length.

Experimental Design: Comparison with reference tables-of-contents Ref-

erence based evaluation is most commonly used to assess the quality of machine-

generated headlines [50]. We compare our system’s output with the table-of-contents

from the textbook using ROUGE metrics. We employ a publicly available software

package,8 with all the parameters set to default values.

Experimental Design: Human assessment In this experiment, human judges

evaluated the generated tables-of-contents. For each test segment, the judges were

presented with its text, and a list of alternative titles consisting of the reference and

the automatically generated titles. The system identities were hidden from the judges,

and the titles were presented in random order. The judges rated the titles from one

to five based on how well they represent the content of the segment. We compute the

score of a system by averaging its ratings over all the test instances.

Four people participated in this experiment. All the participants were graduate

students in computer science who had taken the algorithms class in the past and were

reasonably familiar with the material.

Parameter Settings For the local model, we train and test with a beam size of 50,

while for the global model we use a beam size of 250. We used 50 and 170 iterations

for training the local and the global models, respectively.

4.7 Results

Figure 4-3 shows fragments of the tables-of-contents generated by our method and the

three baselines along with the reference counterpart. These extracts illustrate three

general phenomena that we observed in the test corpus. First, the titles produced by

8http://www.isi.edu/licensed-sw/see/rouge/
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Reference:

NP Completeness

Polynomial time

Abstract problems

Encodings

A formal language framework

NP completeness proofs

Formula satisfiability

3 CNF satisfiability

NP complete problems

Keyword Extraction:

Polynomial time

Polynomial time

Decision problem

Polynomial time

Polynomial time

Circuit satisfiability problem

Polynomial time

CNF formula

Vertex cover

Noisy-channel:

Shortest paths

Running time

Shortest paths

Braces

Finding a shortest path

Reducing the algorithm

Combinational circuit

Conjunctive normal form

Dynamic programming algorithm

Local Discriminative:

Worst case

NP completeness

Polynomial time

Programs

Using a decision problem

Circuit satisfiability problem

NP completeness

Conjunctive normal form

Optimal solutions to

Hierarchical Discriminative:

Polynomial time

NP completeness

Abstract problems

Programs

Using a decision problem

Formula satisfiability problems

Satisfiability problem

CNF satisfiability problem

NP complete problems

Figure 4-3: Fragments of tables-of-contents generated by our method and the three
baselines along with the corresponding reference.

Unigram Bigram Full
Reference 83.5% 54.4% 35.5%
Hierarchical 100.0% 66.1% 56.7%
Noisy-channel 100.0% 64.4% 42.3%
Local 100.0% 71.0% 61.5%
Keyword 100.0% 100.0% 100.0%

Table 4.3: The ratio of titles that fully overlap with words in the corresponding
segment. The overlap is measured by unigram, bigram and full matches.
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ROUGE-1 ROUGE-L ROUGE-W Full Match
Hierarchical 0.29 0.29 0.25 14
Noisy-channel 0.14 0.13 0.12 3
Local 0.25 0.25 0.22 12
Keyword 0.22 0.22 0.21 9

Table 4.4: Comparison with reference titles.

Reference 4.82 4.88 4.71 4.82
Hierarchical 2.91 3.53 3.18 3.00
Noisy-channel 1.97 3.00 2.53 2.59
Local 2.68 3.44 3.03 2.65
Keyword 2.62 3.32 2.88 2.88

Table 4.5: Average ratings assigned to each system by each of the four judges.

keyword extraction exhibit a high degree of redundancy. In fact, 40% of the titles

produced by this method are repeated more than once in the table-of-contents. In

contrast, our method yields 11% of the titles as duplicates, as compared to 9% in the

reference table-of-contents.9 The full output of the Hierarchical model is shown in

Appendix B.

Second, the fragments show that the two discriminative models — Local and

Hierarchical — have a number of common titles. However, adding global dependencies

to rerank titles generated by the local model changes 35.5% of the titles in the test

set. The titles produced by the rest of the methods exhibit relatively little mutual

similarity.

Finally, some titles in Figure 4-3 are extracted verbatim from the corresponding

sections. Table 4.3 provides statistics on the extent of extraction in the reference

and automatically produced tables-of-contents. As the first row of this table shows,

most of the reference titles (64.5%) do not appear verbatim in the text. The ratio of

titles appearing verbatim in the text varies significantly across the systems: while all

the titles produced by the keyword method appear in full in the segment, only 57%

of the titles produced by our method fully match a phrase in the text. The noisy-

channel model has a lower ratio of extracted titles than our system. We attribute this

difference to the fact that our model incorporates noun phrase dependencies which

encourage selection at the phrase level.

9Titles such as “Analysis” and “Chapter Outline” are repeated multiple times in the text.
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Comparison with reference tables-of-contents Table 4.4 shows the ROUGE

scores for the four automatic methods. The hierarchical method consistently outper-

forms the three baselines according to all ROUGE metrics.

At the same time, these results also show that only a small ratio of the auto-

matically generated titles are identical to the reference ones. In some cases, the

machine-generated titles are very close in meaning to the reference, but are verbalized

differently. Examples include pairs such as (“Minimum Spanning Trees”, “Spanning

Tree Problem”) and (“Wallace Tree”, “Multiplication Circuit”).10 While measures

like ROUGE can capture the similarity in the first pair, they cannot identify se-

mantic proximity between the titles in the second pair. Therefore, we supplement

the results of this experiment with a manual assessment of title quality as described

below.

Human assessment To evaluate agreement between human judges, we analyze

the relative rating of the systems for each example. We measure inter-evaluator

agreement using the Kendall coefficient of concordance W [47], which expresses the

degree of association among k rankings (k ≥ 2) of n objects. This measure varies

from 0 to 1, where 1 indicates perfect agreement. In our experiment, we compute

Kendall’s W coefficient among the four judges for each training instance and then

average the results. The overall value of Kendall’s W is 0.83.

The results of manual evaluation by the four judges are shown in Table 4.5. As

expected, all the participants rated the reference titles the highest. Among the au-

tomatic systems, our method yields the best result. In general, the results obtained

in this experiment are similar to the results obtained through automatic evaluation.

In fact, the ranking produced by the first three judges exactly mirrors the ranking

derived from ROUGE: Reference > Hierarchical > Local > Keyword > Noisy-channel.

10A Wallace Tree is a circuit that multiplies two integers.
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4.8 Conclusions

We present a method for the automatic generation of a table-of-contents. The key

strength of our method lies in its ability to track dependencies between generation

decisions across different levels of the tree structure. The results of automatic evalu-

ation and manual assessment confirm the benefits of joint tree learning: our system

is consistently ranked higher than non-hierarchical baselines.

We also plan to expand our method for the task of slide generation. Like tables-

of-contents, slide bullets are organized in a hierarchical fashion and are written in

relatively short phrases. From the language viewpoint, however, slides exhibit more

variability and complexity than a typical table-of-contents. To address this challenge,

we will explore more powerful generation methods that take into account syntactic

information.

68



Chapter 5

Conclusions and Future Work

In this thesis, we explored three decoding methods in the context of natural language

generation and discourse processing. The first two methods have strong theoretical

guarantees on their decoding performance, while the third method incorporates de-

coding into the learning procedure. We applied these methods to three tasks in the

areas of natural language generation and discourse processing and found that stronger

decoding strategies result in better system performance as compared to existing com-

monly used methods.

The first decoding strategy we examined was Integer Linear Programming (ILP),

an optimization technique theoretically guaranteed to return the optimal solution.

We assessed the performance of this exact decoding method by applying this model

on the task of temporal graph induction. The results of our experiments showed that

ILP produced more accurate temporal graphs than two greedy decoding algorithms.

Next, we investigated the use of a novel randomized algorithm, based on the idea

of color-coding [2], for decoding in selection-and-ordering problems. Though we are

not assured that the algorithm will find the optimal solution on any one run, we

proved theoretical bounds on the number of iterations required to guarantee any

desired likelihood of finding the correct solution. We evaluated this algorithm against

ILP and beam search on the task of title generation. We demonstrated that the

randomized algorithm was able to efficiently find the optimal solution, approximating

the performance of ILP, while maintaining a low running time. We also showed that
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exact decoding methods were able to produce better titles than those produced by

inexact algorithms.

Finally, we explored how the incorporation of the decoder into the learning al-

gorithm affects system performance. Rather than following a traditional approach

where the learner is unaware of the decoding procedure, we implemented a learning

algorithm that is fully cognizant of the actual decoder. We tested this algorithm on

the task of automatic generation of tables-of-contents. By decoding while learning,

and accounting for intricate dependencies across various levels of table-of-contents hi-

erarchy, our model was able to perform better than standard non-hierarchical models.

Our increased performance was confirmed by both automatic and human evaluations.

An important direction for future research is the investigation of the type of con-

straints that these decoding algorithms can handle. For example, the randomized

decoder can account only for local constraints under the current formulation, but

ideally we would also want to consider global constraints. We believe that these con-

straints could be added to the randomized decoder without increasing its complexity.

We would also like to explore the applicability of these decoding methods in a

wider context. In this thesis, we only analyzed the performance of the algorithms

for tasks in the areas of natural language generation and discourse processing. We

believe that other areas of NLP stand to benefit from the described methods.
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Appendix A

Examples of Automatically

Constructed TDAGs
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Figure A-1: The reference TDAG
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Figure A-2: ILP generated TDAG with an accuracy of 84.6%
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Figure A-3: BF generated TDAG with an accuracy of 71.4%; NRO produces the same
graph for this example.

S1 A 32-year-old woman was admitted to the hospital because of left subcostal
pain. . .

S2 The patient had been well until four years earlier,
S3 when she began to have progressive, constant left subcostal pain, with an

intermittent increase in the temperature to 39.4◦C, anorexia, and nausea. The
episodes occurred approximately every six months and lasted for a week or two;

S4 they had recently begun to occur every four months.
S5 Three months before admission an evaluation elsewhere included an ultrasono-

graphic examination, a computed tomographic (CT) scan of the abdomen. . .
S6 Because of worsening pain she came to this hospital.
S7 The patient was an unemployed child-care worker. She had a history of eczema

and of asthma. . .
S8 She had lost 18 kg in weight during the preceding 18 months.
S9 Her only medications were an albuterol inhaler, which was used as needed,
S10 and an oral contraceptive, which she had taken during the month before ad-

mission.
S11 There was no history of jaundice, dark urine, light stools, intravenous drug

abuse, hypertension, diabetes mellitus, tuberculosis, risk factors for infection
with the human immunodeficiency virus, or a change in bowel habits. She did
not smoke and drank little alcohol.

S12 The temperature was 36.5◦C, the pulse was 68, and the respirations were 16. . .
S13 On examination the patient was slim and appeared well. . . An abdominal

examination revealed a soft systolic bruit. . . and a neurologic examination
was normal. . .

S14 A diagnostic procedure was performed.

Figure A-4: An example of a case summary.
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Appendix B

Generated Tables of Contents

Table of Contents Generated by the Hierarchical Model

Grade School

Combinational Circuits

Combinational Circuits

Combinational Circuits

Truth Table

Comparison Networks

Combinational Circuits

Ripple Carry

Using an Element with a Parallel Prefix Circuit

Computing an Input and Output

Wallace Tree

Lower

Inputs

Clock Period

Periods

Replicated Bit of a Combinational Circuit Elements

Bit Numbers Takes Constant Time

Using a Linear Time Algorithm

Spanning Tree Problem

Finding a Minimum Spanning Tree

Elaborations of a Minimum Spanning Tree

Minimum Spanning Tree

Minimum Spanning Tree

Probabilistic Analysis and Randomized Algorithms

Counting the Number

Situation in Which

Running Time
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Probability Distribution

Indicator Random Variables

Computing the Value of the Expected Number of Times

Probabilistic Analysis

Permuting the Input

Using the Definition of the Variables

Study of the Algorithms of Chapter

Values

Solving the Problem of Sorting Algorithms and Solutions

Data Structures

Problems

Efficient Algorithms

Infinitely Fast Algorithms for

Differences

Computing an Efficient Algorithm

Finding a Shortest Path

Warshall Algorithm

Developing a Shortest Paths Problem

Characterizing the Shortest Paths and Vertices

Consisting of a Shortest Path from the Minimum Weight Edges

Taking a Shortest Path Weights and Matrices

Computing the Matrix Product

Floyd Warshall Algorithm to

Vertices on Shortest Paths and Algorithms

Formulation of a Shortest Path Estimates and Recursive and Observations

Recurrence for the Following Procedure and Values

Constructing Shortest Path Weights

Transitive Closure of a Directed Graph

Sparse Graphs and Shortest Path Weights

Showing the Shortest Path Weights

Paths from a Source Vertex

Using the Bellman Ford Algorithm

Chapter 9999 Presents

Adjacency List Representation

Breadth First Search

Easier

Source Vertex

Breadth First Search

Depth First Search

Property of Depth First Search

Depth First Search

Topological Sort
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Depth First Search

Dictionary Operations

Direct Address Table

Computer Memory

Worst Case Running Time

Searching for a Given Set

Hash Functions

Real Numbers and a Hash Function

Creating a Set of Keys

Hash Functions and the Number of Keys

Hash Table

Hash Function

Hash Function

Double Hashing

Hash Table with Load Factor

Polynomial Time

Classes of a Directed Graph of NP Completeness

Using the Technique of a Directed Graph Algorithms

NP Completeness

NP Completeness

Abstract Problems

Programs

Using a Decision Problem

Algorithms for Which

Hamiltonian Cycle

Verification Algorithm

Complexity Class of Languages

Why Theoretical Computer Scientists

Problems

NP Completeness

NP Completeness

Formula Satisfiability Problems

Satisfiability Problem

CNF Satisfiability Problem

NP Complete Problems
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Reference Table of Contents

Arithmetic Circuits

Combinational Circuits

Combinational Elements

Combinational Circuits

Full Adders

Circuit Depth

Circuit Size

Addition Circuits

Computing Carry Statuses with a Parallel Prefix Circuit

Completing the Carry Lookahead Adder

Multiplication Circuits

Analysis

Analysis

Clocked Circuits

Analysis

Ripple Carry Addition Versus Bit Serial Addition

A Slow Linear Array Implementation

A Fast Linear Array Implementation

Minimum Spanning Trees

Growing a Minimum Spanning Tree

The Algorithms of Kruskal and Prim

Kruskal ’s Algorithm

Prim ’s Algorithm

Probabilistic Analysis and Randomized Algorithms

The Hiring Problem

Worst Case Analysis

Probabilistic Analysis

Randomized Algorithms

Indicator Random Variables

Analysis of the Hiring Problem Using Indicator Random Variables

Randomized Algorithms

Randomly Permuting Arrays

An Analysis Using Indicator Random Variables

The Role of Algorithms in Computing

Algorithms

What Kinds of Problems Are Solved by Algorithms ?

Data Structures

Technique

Hard Problems

Algorithms as a Technology
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Efficiency

Algorithms and Other Technologies

All Pairs Shortest Paths

Chapter Outline

Shortest Paths and Matrix Multiplication

The Structure of a Shortest Path

A Recursive Solution to the All Pairs Shortest Paths Problem

Computing the Shortest Path Weights Bottom Up

Improving the Running Time

The Floyd Warshall Algorithm

The Structure of a Shortest Path

A Recursive Solution to the All Pairs Shortest Paths Problem

Computing the Shortest Path Weights Bottom Up

Constructing a Shortest Path

Transitive Closure of a Directed Graph

Johnson ’s Algorithm for Sparse Graphs

Preserving Shortest Paths by Reweighting

Producing Nonnegative Weights by Reweighting

Computing All Pairs Shortest Paths

Elementary Graph Algorithms

Representations of Graphs

Breadth First Search

Analysis

Shortest Paths

Breadth First Trees

Depth First Search

Properties of Depth First Search

Classification of Edges

Topological Sort

Strongly Connected Components

Hash Tables

Direct Address Tables

Hash Tables

Collision Resolution by Chaining

Analysis of Hashing with Chaining

Hash Functions

What Makes a Good Hash Function ?

Interpreting Keys as Natural Numbers

Designing a Universal Class of Hash Functions

Open Addressing

Linear Probing

Quadratic Probing
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Double Hashing

Analysis of Open Address Hashing

NP Completeness

NP Completeness and the Classes ¡P¿ and ¡NP¿

Overview of Showing Problems to Be NP Complete

Chapter Outline

Polynomial Time

Abstract Problems

Encodings

A Formal Language Framework

Polynomial Time Verification

Hamiltonian Cycles

Verification Algorithms

The Complexity Class NP

NP Completeness and Reducibility

Reducibility

NP Completeness

Circuit Satisfiability

NP Completeness Proofs

Formula Satisfiability

3 CNF Satisfiability

NP Complete Problems
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