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Abstract

We consider the problem of constructing
a directed acyclic graph that encodes tem-
poral relations found in a text. The unit of
our analysis is a temporal segment, a frag-
ment of text that maintains temporal co-
herence. The strength of our approach lies
in its ability to simultaneously optimize
pairwise ordering preferences and global
constraints on the graph topology. Our
learning method achieves 83% F-measure
in temporal segmentation and 84% accu-
racy in inferring temporal relations be-
tween two segments.

1 Introduction

Understanding the temporal flow of discourse is
a significant aspect of text comprehension. Con-
sequently, temporal analysis has been a focus of
linguistic research for quite some time. Tem-
poral interpretation encompasses levels ranging
from the syntactic to the lexico-semantic (Re-
ichenbach, 1947; Moens and Steedman, 1987)
and includes the characterization of temporal dis-
course in terms of rhetorical structure and prag-
matic relations (Dowty, 1986; Webber, 1987; Pas-
sonneau, 1988; Lascarides and Asher, 1993).

Besides its linguistic significance, temporal
analysis has important practical implications. In
multidocument summarization, knowledge about
the temporal order of events can enhance both the
content selection and the summary generation pro-
cesses (Barzilay et al., 2002). In question an-
swering, temporal analysis is needed to determine
when a particular event occurs and how events re-
late to each other. Some of these needs can be
addressed by emerging technologies for temporal

analysis (Wilson et al., 2001; Mani et al., 2003;
Lapata and Lascarides, 2004; Boguraev and Ando,
2005).

This paper characterizes the temporal flow of
discourse in terms of temporal segments and their
ordering. We define a temporal segment to be
a fragment of text that does not exhibit abrupt
changes in temporal focus (Webber, 1988). A seg-
ment may contain more than one event or state, but
the key requirement is that its elements maintain
temporal coherence. For instance, a medical case
summary may contain segments describing a pa-
tient’s admission, his previous hospital visit, and
the onset of his original symptoms. Each of these
segments corresponds to a different time frame,
and is clearly delineated as such in a text.

Our ultimate goal is to automatically construct
a graph that encodes ordering between temporal
segments. The key premise is that in a coherent
document, temporal progression is reflected in a
wide range of linguistic features and contextual
dependencies. In some cases, clues to segment or-
dering are embedded in the segments themselves.
For instance, given a pair of adjacent segments,
the temporal adverb next day in the second seg-
ment is a strong predictor of a precedence relation.
In other cases, we can predict the right order be-
tween a pair of segments by analyzing their rela-
tion to other segments in the text. The interaction
between pairwise ordering decisions can easily be
formalized in terms of constraints on the graph
topology. An obvious example of such a con-
straint is prohibiting cycles in the ordering graph.
We show how these complementary sources of in-
formation can be incorporated in a model using
global inference.

We evaluate our temporal ordering algorithm on
a corpus of medical case summaries. Temporal



analysis in this domain is challenging in several re-
spects: a typical summary exhibits no significant
tense or aspect variations and contains few abso-
lute time markers. We demonstrate that humans
can reliably mark temporal segments and deter-
mine segment ordering in this domain. Our learn-
ing method achieves 83% F-measure in temporal
segmentation and 84% accuracy in inferring tem-
poral relations between two segments.

Our contributions are twofold:
Temporal Segmentation We propose a fully

automatic, linguistically rich model for temporal
segmentation. Most work on temporal analysis
is done on a finer granularity than proposed here.
Our results show that the coarse granularity of our
representation facilitates temporal analysis and is
especially suitable for domains with sparse tempo-
ral anchors.

Segment Ordering We introduce a new method
for learning temporal ordering. In contrast to ex-
isting methods that focus on pairwise ordering, we
explore strategies for global temporal inference.
The strength of the proposed model lies in its abil-
ity to simultaneously optimize pairwise ordering
preferences and global constraints on graph topol-
ogy. While the algorithm has been applied at the
segment level, it can be used with other temporal
annotation schemes.

2 Related Work

Temporal ordering has been extensively studied
in computational linguistics (Passonneau, 1988;
Webber, 1988; Hwang and Schubert, 1992; Las-
carides and Asher, 1993; Lascarides and Ober-
lander, 1993). Prior research has investigated
a variety of language mechanisms and knowl-
edge sources that guide interpretation of tempo-
ral ordering, including tense, aspect, temporal ad-
verbials, rhetorical relations and pragmatic con-
straints. In recent years, the availability of an-
notated corpora, such as TimeBank (Pustejovsky
et al., 2003), has triggered the use of machine-
learning methods for temporal analysis (Mani et
al., 2003; Lapata and Lascarides, 2004; Boguraev
and Ando, 2005). Typical tasks include identifica-
tion of temporal anchors, linking events to times,
and temporal ordering of events.

Since this paper addresses temporal ordering,
we focus our discussion on this task. Existing or-
dering approaches vary both in terms of the or-
dering unit — it can be a clause, a sentence or

an event — and in terms of the set of ordering
relations considered by the algorithm. Despite
these differences, most existing methods have the
same basic design: each pair of ordering units (i.e.,
clauses) is abstracted into a feature vector and a
supervised classifier is employed to learn the map-
ping between feature vectors and their labels. Fea-
tures used in classification include aspect, modal-
ity, event class, and lexical representation. It is im-
portant to note that the classification for each pair
is performed independently and is not guaranteed
to yield a globally consistent order.

In contrast, our focus is on globally optimal
temporal inference. While the importance of
global constraints has been previously validated
in symbolic systems for temporal analysis (Fikes
et al., 2003; Zhou et al., 2005), existing corpus-
based approaches operate at the local level. These
improvements achieved by a global model moti-
vate its use as an alternative to existing pairwise
methods.

3 TDAG: A representation of temporal
flow

We view text as a linear sequence of temporal
segments. Temporal focus is retained within a
segment, but radically changes between segments.
The length of a segment can range from a single
clause to a sequence of adjacent sentences. Fig-
ure 1 shows a sample of temporal segments from
a medical case summary. Consider as an example
the segment S13 of this text. This segment de-
scribes an examination of a patient, encompassing
several events and states (i.e., an abdominal and
neurological examination). All of them belong to
the same time frame, and temporal order between
these events is not explicitly outlined in the text.

We represent ordering of events as a temporal
directed acyclic graph (TDAG). An example of the
transitive reduction1 of a TDAG is shown in Fig-
ure 1. Edges in a TDAG capture temporal prece-
dence relations between segments. Because the
graph encodes an order, cycles are prohibited. We
do not require the graph to be fully connected — if
the precedence relation between two nodes is not
specified in the text, the corresponding nodes will
not be connected. For instance, consider the seg-
ments S5 and S7 from Figure 1, which describe
her previous tests and the history of eczema. Any

1The transitive reduction of a graph is the smallest graph
with the same transitive closure.



S1 S12 S13 S14
S2 S10 S6

S8

S4
S3 S5

S7

S9S11

S1 A 32-year-old woman was admitted to the hospital because of left subcostal pain...
S2 The patient had been well until four years earlier,
S5 Three months before admission an evaluation elsewhere included an ultrasonographic ex-

amination, a computed tomographic (CT) scan of the abdomen...
S7 She had a history of eczema and of asthma...
S8 She had lost 18 kg in weight during the preceding 18 months.

S13 On examination the patient was slim and appeared well. An abdominal examination re-
vealed a soft systolic bruit... and a neurologic examination was normal...

Figure 1: An example of the transitive reduction of a TDAG for a case summary. A sample of segments
corresponding to the nodes marked in bold is shown in the table.

order between the two events is consistent with our
interpretation of the text, therefore we cannot de-
termine the precedence relation between the seg-
ments S5 and S7.

In contrast to many existing temporal represen-
tations (Allen, 1984; Pustejovsky et al., 2003),
TDAG is a coarse annotation scheme: it does not
capture interval overlap and distinguishes only a
subset of commonly used ordering relations. Our
choice of this representation, however, is not ar-
bitrary. The selected relations are shown to be
useful in text processing applications (Zhou et al.,
2005) and can be reliably recognized by humans.
Moreover, the distribution of event ordering links
under a more refined annotation scheme, such as
TimeML, shows that our subset of relations cov-
ers a majority of annotated links (Pustejovsky et
al., 2003).

4 Method for Temporal Segmentation

Our first goal is to automatically predict shifts
in temporal focus that are indicative of segment
boundaries. Linguistic studies show that speakers
and writers employ a wide range of language de-
vices to signal change in temporal discourse (Best-
gen and Vonk, 1995). For instance, the presence of
the temporal anchor last year indicates the lack of
temporal continuity between the current and the
previous sentence. However, many of these pre-
dictors are heavily context-dependent and, thus,
cannot be considered independently. Instead of
manually crafting complex rules controlling fea-
ture interaction, we opt to learn them from data.

We model temporal segmentation as a binary

classification task. Given a set of candidate bound-
aries (e.g., sentence boundaries), our task is to se-
lect a subset of the boundaries that delineate tem-
poral segment transitions. To implement this ap-
proach, we first identify a set of potential bound-
aries. Our analysis of the manually-annotated cor-
pus reveals that boundaries can occur not only be-
tween sentences, but also within a sentence, at the
boundary of syntactic clauses. We automatically
segment sentences into clauses using a robust sta-
tistical parser (Charniak, 2000). Next, we encode
each boundary as a vector of features. Given a
set of annotated examples, we train a classifier2 to
predict boundaries based on the following feature
set:

Lexical Features Temporal expressions, such
as tomorrow and earlier, are among the strongest
markers of temporal discontinuity (Passonneau,
1988; Bestgen and Vonk, 1995). In addition to
a well-studied set of domain-independent tempo-
ral markers, there are a variety of domain-specific
temporal markers. For instance, the phrase ini-
tial hospital visit functions as a time anchor in the
medical domain.

To automatically extract these expressions, we
provide a classifier with n-grams from each of the
candidate sentences preceding and following the
candidate segment boundary.

Topical Continuity Temporal segmentation is
closely related to topical segmentation (Chafe,
1979). Transitions from one topic to another may
indicate changes in temporal flow and, therefore,

2BoosTexter package (Schapire and Singer, 2000).



identifying such transitions is relevant for tempo-
ral segmentation.

We quantify the strength of a topic change
by computing a cosine similarity between sen-
tences bordering the proposed segmentation. This
measure is commonly used in topic segmenta-
tion (Hearst, 1994) under the assumption that
change in lexical distribution corresponds to topi-
cal change.

Positional Features Some parts of the docu-
ment are more likely to exhibit temporal change
than others. This property is related to patterns in
discourse organization of a document as a whole.
For instance, a medical case summary first dis-
cusses various developments in the medical his-
tory of a patient and then focuses on his current
conditions. As a result, the first part of the sum-
mary contains many short temporal segments. We
encode positional features by recording the rela-
tive position of a sentence in a document.

Syntactic Features Because our segment
boundaries are considered at the clausal level,
rather than at the sentence level, the syntax sur-
rounding a hypothesized boundary may be indica-
tive of temporal shifts. This feature takes into ac-
count the position of a word with respect to the
boundary. For each word within three words of
the hypothesized boundary, we record its part-of-
speech tag along with its distance from the bound-
ary. For example, NNP+1 encodes the presence
of a proper noun immediately following the pro-
posed boundary.

5 Learning to Order Segments

Our next goal is to automatically construct a graph
that encodes ordering relations between tempo-
ral segments. One possible approach is to cast
graph construction as a standard binary classifica-
tion task: predict an ordering for each pair of dis-
tinct segments based on their attributes alone. If
a pair contains a temporal marker, like later, then
accurate prediction is feasible. In fact, this method
is commonly used in event ordering (Mani et al.,
2003; Lapata and Lascarides, 2004; Boguraev and
Ando, 2005). However, many segment pairs lack
temporal markers and other explicit cues for order-
ing. Determining their relation out of context can
be difficult, even for humans. Moreover, by treat-
ing each segment pair in isolation, we cannot guar-
antee that all the pairwise assignments are consis-
tent with each other and yield a valid TDAG.

Rather than ordering each pair separately, our
ordering model relies on global inference. Given
the pairwise ordering predictions of a local clas-
sifier3, our model finds a globally optimal assign-
ment. In essence, the algorithm constructs a graph
that is maximally consistent with individual order-
ing preferences of each segment pair and at the
same time satisfies graph-level constraints on the
TDAG topology.

In Section 5.2, we present three global inference
strategies that vary in their computational and lin-
guistic complexity. But first we present our under-
lying local ordering model.

5.1 Learning Pairwise Ordering

Given a pair of segments (i, j), our goal is to as-
sign it to one of three classes: forward, backward,
and null (not connected). We generate the train-
ing data by using all pairs of segments (i, j) that
belong to the same document, such that i appears
before j in the text.

The features we consider for the pairwise order-
ing task are similar to ones used in previous re-
search on event ordering (Mani et al., 2003; Lapata
and Lascarides, 2004; Boguraev and Ando, 2005).
Below we briefly summarize these features.

Lexical Features This class of features cap-
tures temporal markers and other phrases indica-
tive of order between two segments. Represen-
tative examples in this category include domain-
independent cues like years earlier and domain-
specific markers like during next visit. To automat-
ically identify these phrases, we provide a classi-
fier with two sets of n-grams extracted from the
first and the second segments. The classifier then
learns phrases with high predictive power.

Temporal Anchor Comparison Temporal an-
chors are one of the strongest cues for the order-
ing of events in text. For instance, medical case
summaries use phrases like two days before ad-
mission and one day before admission to express
relative order between events. If the two segments
contain temporal anchors, we can determine their
ordering by comparing the relation between the
two anchors. We identified a set of temporal an-
chors commonly used in the medical domain and
devised a small set of regular expressions for their
comparison.4 The corresponding feature has three

3The perceptron classifier.
4We could not use standard tools for extraction and analy-

sis of temporal anchors as they were developed on the news-
paper corpora, and are not suitable for analysis of medical



values that encode preceding, following and in-
compatible relations.

Segment Adjacency Feature Multiple studies
have shown that two subsequent sentences are
likely to follow a chronological progression (Best-
gen and Vonk, 1995). To encode this information,
we include a binary feature that captures the adja-
cency relation between two segments.

5.2 Global Inference Strategies for Segment
Ordering

Given the scores (or probabilities) of all pairwise
edges produced by a local classifier, our task is
to construct a TDAG. In this section, we describe
three inference strategies that aim to find a con-
sistent ordering between all segment pairs. These
strategies vary significantly in terms of linguistic
motivation and computational complexity. Exam-
ples of automatically constructed TDAGs derived
from different inference strategies are shown in
Figure 2.

5.2.1 Greedy Inference in Natural Reading
Order (NRO)

The simplest way to construct a consistent
TDAG is by adding segments in the order of their
appearance in a text. Intuitively speaking, this
technique processes segments in the same order
as a reader of the text. The motivation underly-
ing this approach is that the reader incrementally
builds temporal interpretation of a text; when a
new piece of information is introduced, the reader
knows how to relate it to already processed text.

This technique starts with an empty graph and
incrementally adds nodes in order of their appear-
ance in the text. When a new node is added, we
greedily select the edge with the highest score that
connects the new node to the existing graph, with-
out violating the consistency of the TDAG. Next,
we expand the graph with its transitive closure.
We continue greedily adding edges and applying
transitive closure until the new node is connected
to all other nodes already in the TDAG. The pro-
cess continues until all the nodes have been added
to the graph.

5.2.2 Greedy Best-first Inference (BF)

Our second inference strategy is also greedy. It
aims to optimize the score of the graph. The score
of the graph is computed by summing the scores of

text (Wilson et al., 2001).

its edges. While this greedy strategy is not guar-
anteed to find the optimal solution, it finds a rea-
sonable approximation (Cohen et al., 1999).

This method begins by sorting the edges by their
score. Starting with an empty graph, we add one
edge at a time, without violating the consistency
constraints. As in the previous strategy, at each
step we expand the graph with its transitive clo-
sure. We continue this process until all the edges
have been considered.

5.2.3 Exact Inference with Integer Linear
Programming (ILP)

We can cast the task of constructing a globally
optimal TDAG as an optimization problem. In
contrast to the previous approaches, the method
is not greedy. It computes the optimal solu-
tion within the Integer Linear Programming (ILP)
framework.

For a document with N segments, each pair of
segments (i, j) can be related in the graph in one
of three ways: forward, backward, and null (not
connected). Let si→j , si←j , and si=j be the scores
assigned by a local classifier to each of the three
relations respectively. Let Ii→j , Ii←j , and Ii=j

be indicator variables that are set to 1 if the corre-
sponding relation is active, or 0 otherwise.

The objective is then to optimize the score of a
TDAG by maximizing the sum of the scores of all
edges in the graph:

max

N
X

i=1

N
X

j=i+1

si→jIi→j + si←jIi←j + si=jIi=j (1)

subject to:

Ii→j , Ii←j , Ii=j ∈ {0, 1} ∀ i, j = 1, . . . N, i < j (2)

Ii→j + Ii←j + Ii=j = 1 ∀ i, j = 1, . . . N, i < j (3)

We augment this basic formulation with two more
sets of constraints to enforce validity of the con-
structed TDAG.

Transitivity Constraints The key requirement
on the edge assignment is the transitivity of the
resulting graph. Transitivity also guarantees that
the graph does not have cycles. We enforce tran-
sitivity by introducing the following constraint for
every triple (i, j, k):

Ii→j + Ij→k − 1 ≤ Ii→k (4)

If both indicator variables on the left side of the
inequality are set to 1, then the indicator variable



on the right side must be equal to 1. Otherwise, the
indicator variable on the right can take any value.

Connectivity Constraints The connectivity
constraint states that each node i is connected to
at least one other node and thereby enforces con-
nectivity of the generated TDAG. We introduce
these constraints because manually-constructed
TDAGs do not have any disconnected nodes. This
observation is consistent with the intuition that the
reader is capable to order a segment with respect
to other segments in the TDAG.

(

i−1∑

j=1

Ii=j +

N∑

j=i+1

Ij=i) < N − 1 (5)

The above constraint rules out edge assignments
in which node i has null edges to the rest of the
nodes.

Solving ILP Solving an integer linear program
is NP-hard (Cormen et al., 1992). Fortunately,
there exist several strategies for solving ILPs. We
employ an efficient Mixed Integer Programming
solver lp solve5 which implements the Branch-
and-Bound algorithm. It takes less than five sec-
onds to decode each document on a 2.8 GHz Intel
Xeon machine.

6 Evaluation Set-Up

We first describe the corpora used in our experi-
ments and the results of human agreement on the
segmentation and the ordering tasks. Then, we in-
troduce the evaluation measures that we use to as-
sess the performance of our model.

6.1 Corpus Characteristics

We applied our method for temporal ordering to
a corpus of medical case summaries. The medical
domain has been a popular testbed for methods for
automatic temporal analyzers (Combi and Shahar,
1997; Zhou et al., 2005). The appeal is partly due
to rich temporal structure of these documents and
the practical need to parse this structure for mean-
ingful processing of medical data.

We compiled a corpus of medical case sum-
maries from the online edition of The New Eng-
land Journal of Medicine.6 The summaries are
written by physicians of Massachusetts General

5
http://groups.yahoo.com/group/lp_solve

6
http://content.nejm.org

Hospital. A typical summary describes an admis-
sion status, previous diseases related to the cur-
rent conditions and their treatments, family his-
tory, and the current course of treatment. For
privacy protection, names and dates are removed
from the summaries before publication.

The average length of a summary is 47 sen-
tences. The summaries are written in the past
tense, and a typical summary does not include in-
stances of the past perfect. The summaries do
not follow a chronological order. The ordering of
information in this domain is guided by stylistic
conventions (i.e., symptoms are presented before
treatment) and the relevance of information to the
current conditions (i.e., previous onset of the same
disease is summarized before the description of
other diseases).

6.2 Annotating Temporal Segmentation

Our approach for temporal segmentation requires
annotated data for supervised training. We first
conducted a pilot study to assess the human agree-
ment on the task. We employed two annotators to
manually segment a portion of our corpus. The an-
notators were provided with two-page instructions
that defined the notion of a temporal segment and
included examples of segmented texts. Each an-
notator segmented eight summaries which on av-
erage contained 49 sentences. Because annotators
were instructed to consider segmentation bound-
aries at the level of a clause, there were 877 po-
tential boundaries. The first annotator created 168
boundaries, while the second — 224 boundaries.
We computed a Kappa coefficient of 0.71 indicat-
ing a high inter-annotator agreement and thereby
confirming our hypothesis about the reliability of
temporal segmentation.

Once we established high inter-annotator agree-
ment on the pilot study, one annotator seg-
mented the remaining 52 documents in the cor-
pus.7 Among 3,297 potential boundaries, 1,178
(35.7%) were identified by the annotator as seg-
ment boundaries. The average segment length is
three sentences, and a typical document contains
around 20 segments.

6.3 Annotating Temporal Ordering

To assess the inter-annotator agreement, we asked
two human annotators to construct TDAGs from

7It took approximately 20 minutes to segment a case sum-
mary.



five manually segmented summaries. These sum-
maries consist of 97 segments, and their transi-
tive closure contain a total of 1,331 edges. We
computed the agreement between human judges
by comparing the transitive closure of the TDAGs.
The annotators achieved a surprisingly high agree-
ment with a Kappa value of 0.98.

After verifying human agreement on this task,
one of the annotators constructed TDAGs for an-
other 25 summaries.8 The transitive reduction of
a graph contains on average 20.9 nodes and 20.5
edges. The corpus consists of 72% forward, 12%
backward and 16% null segment edges inclusive
of edges induced by transitive closure. At the
clause level, the distribution is even more skewed
— forward edges account for 74% edges, equal for
18%, backward for 3% and null for 5%.

6.4 Evaluation Measures

We evaluate temporal segmentation by consider-
ing the ratio of correctly predicted boundaries.
We quantify the performance using F-measure, a
commonly used binary classification metric. We
opt not to use the Pk measure, a standard topical
segmentation measure, because the temporal seg-
ments are short and we are only interested in the
identification of the exact boundaries.

Our second evaluation task is concerned with
ordering manually annotated segments. In these
experiments, we compare an automatically gener-
ated TDAG against the annotated reference graph.
In essence, we compare edge assignment in the
transitive closure of two TDAGs, where each edge
can be classified into one of the three types: for-
ward, backward, or null.

Our final evaluation is performed at the clausal
level. In this case, each edge can be classified into
one of the four classes: forward, backward, equal,
or null. Note that the clause-level analysis allows
us to compare TDAGs based on the automatically
derived segmentation.

7 Results

We evaluate temporal segmentation using leave-
one-out cross-validation on our corpus of 60 sum-
maries. The segmentation algorithm achieves a
performance of 83% F-measure, with a recall of
78% and a precision of 89%.

8It took approximately one hour to build a TDAG for each
segmented document.

To evaluate segment ordering, we employ leave-
one-out cross-validation on 30 annotated TDAGs
that overall contain 13,088 edges in their transi-
tive closure. In addition to the three global in-
ference algorithms, we include a majority base-
line that classifies all edges as forward, yielding
a chronological order.

Our results for ordering the manually annotated
temporal segments are shown in Table 1. All infer-
ence methods outperform the baseline, and their
performance is consistent with the complexity of
the inference mechanism. As expected, the ILP
strategy, which supports exact global inference,
achieves the best performance — 84.3%.

An additional point of comparison is the accu-
racy of the pairwise classification, prior to the ap-
plication of global inference. The accuracy of the
local ordering is 81.6%, which is lower than that
of ILP. The superior performance of ILP demon-
strates that accurate global inference can further
refine local predictions. Surprisingly, the local
classifier yields a higher accuracy than the two
other inference strategies. Note, however, the local
ordering procedure is not guaranteed to produce a
consistent TDAG, and thus the local classifier can-
not be used on its own to produce a valid TDAG.

Table 2 shows the ordering results at the clausal
level. The four-way classification is computed
using both manually and automatically generated
segments. Pairs of clauses that belong to the same
segment stand in the equal relation, otherwise they
have the same ordering relation as the segments to
which they belong.

On the clausal level, the difference between the
performance of ILP and BF is blurred. When eval-
uated on manually-constructed segments, ILP out-
performs BF by less than 1%. This unexpected re-
sult can be explained by the skewed distribution of
edge types — the two hardest edge types to clas-
sify (see Table 3), backward and null, account only
for 7.4% of all edges at the clause level.

When evaluated on automatically segmented
text, ILP performs slightly worse than BF. We hy-
pothesize that this result can be explained by the
difference between training and testing conditions
for the pairwise classifier: the classifier is trained
on manually-computed segments and is tested on
automatically-computed ones, which negatively
affects the accuracy on the test set. While all
the strategies are negatively influenced by this dis-
crepancy, ILP is particularly vulnerable as it relies



Algorithm Accuracy
Integer Linear Programming (ILP) 84.3
Best First (BF) 78.3
Natural Reading Order (NRO) 74.3
Baseline 72.2

Table 1: Accuracy for 3-way ordering classifica-
tion over manually-constructed segments.

Algorithm Manual Seg. Automatic Seg.
ILP 91.9 84.8
BF 91.0 85.0
NRO 87.8 81.0
Baseline 73.6 73.6

Table 2: Results for 4-way ordering classification
over clauses, computed over manually and auto-
matically generated segments.

on the score values for inference. In contrast, BF
only considers the rank between the scores, which
may be less affected by noise.

We advocate a two-stage approach for temporal
analysis: we first identify segments and then order
them. A simpler alternative is to directly perform
a four-way classification at the clausal level using
the union of features employed in our two-stage
process. The accuracy of this approach, however,
is low — it achieves only 74%, most likely due
to the sparsity of clause-level representation for
four-way classification. This result demonstrates
the benefits of a coarse representation and a two-
stage approach for temporal analysis.

8 Conclusions

This paper introduces a new method for temporal
ordering. The unit of our analysis is a temporal
segment, a fragment of text that maintains tem-
poral coherence. After investigating several infer-
ence strategies, we concluded that integer linear
programming and best first greedy approach are
valuable alternatives for TDAG construction.

In the future, we will explore a richer set of con-
straints on the topology on the ordering graph. We
will build on the existing formal framework (Fikes
et al., 2003) for the verification of ordering con-
sistency. We are also interested in expanding our
framework for global inference to other temporal
annotation schemes. Given a richer set of temporal
relations, the benefits from global inference can be
even more significant.

Algorithm Forward Backward Null
ILP 92.5 45.6 76.0
BF 91.4 42.2 74.7
NRO 87.7 43.6 66.4

Table 3: Per class accuracy for clause classifica-
tion over manually computed segments.
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(a) Reference TDAG
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(b) ILP generated TDAG with an accuracy of 84.6%
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(c) BF generated TDAG with an accuracy of 71.4%; NRO produces the same graph for this example.

S1 A 32-year-old woman was admitted to the hospital because of left subcostal pain. . .

S2 The patient had been well until four years earlier,
S3 when she began to have progressive, constant left subcostal pain, with an intermittent in-

crease in the temperature to 39.4◦C, anorexia, and nausea. The episodes occurred approxi-
mately every six months and lasted for a week or two;

S4 they had recently begun to occur every four months.
S5 Three months before admission an evaluation elsewhere included an ultrasonographic ex-

amination, a computed tomographic (CT) scan of the abdomen. . .

S6 Because of worsening pain she came to this hospital.
S7 The patient was an unemployed child-care worker. She had a history of eczema and of

asthma. . .
S8 She had lost 18 kg in weight during the preceding 18 months.
S9 Her only medications were an albuterol inhaler, which was used as needed,

S10 and an oral contraceptive, which she had taken during the month before admission.
S11 There was no history of jaundice, dark urine, light stools, intravenous drug abuse, hyper-

tension, diabetes mellitus, tuberculosis, risk factors for infection with the human immunod-
eficiency virus, or a change in bowel habits. She did not smoke and drank little alcohol.

S12 The temperature was 36.5◦C, the pulse was 68, and the respirations were 16. . .

S13 On examination the patient was slim and appeared well. . . An abdominal examination re-
vealed a soft systolic bruit. . . and a neurologic examination was normal. . .

S14 A diagnostic procedure was performed.

(d) An example of a case summary

Figure 2: Examples of automatically constructed TDAGs with the reference TDAG and text.


