Interoperability Introduction to the Semantic Web Tutorial at ISWC 2010

Jérôme Euzenat

Montbonnot, France Jerome.Euzenat@inrialpes.fr

Thanks to Natasha Noy for our collaboration on a former version of these slides

► Data can be expressed in RDF

What you have learned so far

- Linked through URIs
- Modelled with OWL ontologies
- Retrieved through SPARQL queries

Jérôme Euzenat Interoperability

2 / 24

Being serious about the semantic web

- ► It is not one person's ontology
- It is not several people common ontology
- ► It is many people's many ontologies
- ► So it is a mess, but a meaningful mess.

Ontology heterogeneity

Heterogeneity problem

How can we address the problem?

Resources being expressed in different ways must be reconciled before being used.

Mismatch between formalized knowledge can occur when:

- different languages are used (OWL vs. Topic maps);
- different terminologies are used:
 - English vs. Chinese;
 - Book vs. Monograph.
- different models are used:
 - different classes: Autobiography vs. Paperback;
 - classes vs. property: Essay vs. literarygenre;
 - classes vs. instances: One physical book as an instance vs. one work as an instance.
- different scopes and granularity are used.
 - Only books vs. cultural items vs. any product;
 - Books detailed to the print and translation level vs. books as works.

```
Jérôme Euzenat Interoperability
```

5 / 24

Ontology alignment

Jérôme Euzenat Interoperability

6 / 24

Transformation and mediation

Why should we deal with this?

Application: Catalog integration

Applications of semantic integration

- Catalogue integration
- Schema and data integration
- ► Query answering
- Peer-to-peer information sharing
- ► Web service composition
- Agent communication
- Data transformation
- Ontology evolution

9 / 24

Applications: Query answering

Applications: Agent communication

Jérôme Euzenat Interoperability

10 / 24

Ontology matching in three steps

Reconciliation can be performed in 3 steps o

a processor (for merging, transforming, etc.)

thereby determines the alignment

Match.

Generate

Apply

On what basis can we match?

- ► Content: relying on what is inside the ontology
 - ▶ Name, comments, alternate names, names of related entities: NLP, IR, etc.
 - ▶ Internal structure: constraints on relations, typing
 - External structure: relations between entities: Data mining, Discrete mathematics
 - Extension: Statistics, data analysis, data mining, machine learning
 - Semantics (models): Reasoning techniques
- ► Context: the relations of the ontology with the outside
 - Annotated resources:
 - The web
 - External ontologies: dbpedia, etc.
 - ► External resources: wordnet, etc.

0'

Matcher

Generator

Transformation

Instance similarity

Combining different techniques

Basic matchers provide candidate correspondences, most of the systems use several such matchers and further combine and filter their results.

Jérôme Euzenat Interoperability

How well do these approaches work?

Ontology Alignment Evaluation Initiative (OAEI)

- ▶ Formal comparative evaluation of different ontology-matching tools;
- Run every year since 2004;
- ► Variety of test cases (in size, in formalism, in content);
- Results consistent across test cases;
- Results very dependent on the tasks and the data (from under 50% of precision and recall to well over 80% if ontologies are relatively similar)
- Progress every year!

http://oaei.ontologymatching.org

Now involved in the SEALS (Semantics Evaluation At Large Scale) project.

Benchmark results (precision and recall curves)

Jérôme Euzenat Interoperability

17 / 24

18 / 24

Tools you should be aware of

Frameworks

- PROMPT (a Protégé plug-in): includes a user interface and a plug-in architecture.
- Alignment API: used by many tools; provides an exchange format and evaluation tools for OAEI.
- COMA++: oriented toward database integration (many basic algorithms implemented).
- Matching systems
 - OAEI best performers (Falcon, RiMOM, ASMOV, etc.)
 - Available systems (FOAM, Falcon, COMA++, Aroma, etc.)

Selected challenges

- Scalability and efficiency
 - ► Current matchers can be fast, scale and accurate, but not all at once.
- New sources of matching
 - Context-based matching,
- General purpose matching (vs. special purpose matching)
 - Matcher combination,
 - Matcher selection and self-configuration,
- User involvement,
 - Matching (serendipitously) while working,
 - How to explain alignments?
 - Social and collaborative ontology matching,
- Alignment management: infrastructure and support,
 - How do we maintain alignments when ontologies evolve?
 - Reasoning with alignments,
 - Being robust to incorrect alignments.

and, of course, many others,

