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ABSTRACT
Recent excitement in the database community surrounding new
applications—analytic, scientific, graph, geospatial, etc.—has led
to an explosion in research on database storage systems. New stor-
age systems are vital to the database community, as they are at the
heart of making database systems perform well in new application
domains. Unfortunately, each such system also represents a sub-
stantial engineering effort including a great deal of duplication of
mechanisms for features such as transactions and caching. In this
paper, we make the case for RodentStore, an adaptive and declara-
tive storage system providing a high-level interface for describing
the physical representation of data. Specifically, RodentStore uses
a declarative storage algebra whereby administrators (or database
design tools) specify how a logical schema should be grouped into
collections of rows, columns, and/or arrays, and the order in which
those groups should be laid out on disk. We describe the key op-
erators and types of our algebra, outline the general architecture
of RodentStore, which interprets algebraic expressions to generate
a physical representation of the data, and describe the interface
between RodentStore and other parts of a database system, such
as the query optimizer and executor. We provide a case study of
the potential use of RodentStore in representing dense geospatial
data collected from a mobile sensor network, showing the ease with
which different storage layouts can be expressed using some of
our algebraic constructs and the potential performance gains that a
RodentStore-built storage system can offer.
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1. INTRODUCTION

The rat . . . is one of nature’s most resourceful,
adaptive creatures. . . . The average rat can wriggle
through a hole the size of a quarter, scale a brick wall,
tread water for several days, gnaw through lead pipes
and cinder blocks, survive a five-story fall, survive
being flushed down a toilet, and even enter a building
through the same route.

-Brian Handwerk, National Geographic News, “Canada
Province Rat-Free for 50 Years”, March 31, 2003.

New database storage systems—based on something other than
pure, row-oriented layouts—have been a popular topic in the data-
base research literature. The recent resurgence in storage system de-
sign is motivated by growing commercial markets (such as OLAP)
and new applications (e.g., scientific and geospatial settings). The
Decomposition Storage Model (DSM) [13], for instance, consid-
ers a separate relation for each attribute and led to the develop-
ment of highly-efficient column-store databases [20, 23], which
can be orders of magnitude faster than traditional databases for
OLAP workload queries. Refinements of the original decomposed-
storage model also include the fractured mirrors approach [21],
and PAX [6], which stores partitions of individual attributes in
mini-pages. Beyond representations for traditional relational data,
a growing number of storage systems [11, 14, 19, 24, 25] and lan-
guages [15, 18] focusing on arrays, geo-spatial data, “big science”,
and biology have been proposed.

Storage system research is vital to the database community, as
it is at the heart of making database systems perform well in new
application domains. Unfortunately, research systems are often far
from usable by outside users, as building a robust storage engine
requires a great deal of supporting code, including transaction, lock,
and memory management facilities. Such features must be repli-
cated in each stand-alone storage system. To address this challenge,
we are building RodentStore, an open-source adaptive storage sys-
tem that supports a variety of physical storage alternatives and can
be used as the backing store for many different relational and array
structured databases, rather than reimplementing a storage system
for each new domain. By adaptive, we mean that RodentStore:

1. Can represent a variety of different physical designs, includ-
ing, rows, columns, arrays, etc., and can store different tables
using different physical representations. Furthermore, a sin-
gle table can be stored using several different schemes (e.g.,
a mix of rows and columns.)

2. Provides a straightforward mechanism, the storage algebra,
whereby a database administrator or a database design tool
can specify the physical layout of data in the database, and
can easily transform the physical representation of data. In
this algebra, expressions represent transformations of the



natural row-based database layout that would be derived
from a logical database design. Operators specify how to
reorder, group, transpose, merge, and compress rows and
columns of the table. Operators are composed into nested
expressions so that, for example, a table can be split into a
collection of columns, each of which can be compressed or
chunked in different ways.

This algebra-based approach makes it easy to explore different
physical design alternatives, enables simple transformations be-
tween storage representations, and provides a layer upon which
automated database design tools can be built. Furthermore, it makes
it possible to explore combinations of storage schemas that haven’t
been considered before.

For example, given a database of sales records of the form:

N = (zipcode:z, year:y, month:m, day:d,
customerid:c, productid:p ... )

The algebraic expression:

zorder(grid[y, z](N))

would repartition (or grid) the tuples into a matrix where years (y)
are on the X axis and zipcodes (z) on the Y axis. Cells would be
stored on disk using a space filling curve (zorder), so that nearby
zipcodes or years are co-located.

Several detailed storage models were proposed in the mid-eighties
for the study of database performance [8] or the unambiguous de-
scription of physical structures [7]. Contrary to those models, we
focus our efforts on a higher-level and declarative description of the
storage layout. We do not provide exhaustive descriptions of the
storage structures, but rather focus on expressing the decomposition
of logical tables into lists of relatively large chunks of data in order
to model the recent storage placement schemes described above. In
addition to the simple constructs supported by previous languages,
however, we model important aspects of modern storage systems,
such as compression schemes, multidimensional arrays, or nested
structures.

Our approach is different from that taken in most current com-
mercial systems, where a more conservative approach is called for.
Major commercial database systems, for example, all offer tools
to automatically select auxiliary data structures like indices and
materialized views [4, 26] or partitioning techniques [5, 17, 21]
in order to compensate for suboptimal physical data placements.
These tools represent a significant first-step towards adaptive stor-
age systems, but are limited in their scope, focusing typically on
only one database system and one storage layout. Similarly, mate-
rialized views, though a valuable physical tuning tool, only allow
database administrators to create tabular structures. Storing data as
arrays, expressing unusual orderings (like z-order) or compression
methods, and creating nested storage structures is not possible.

In the rest of this paper, we make the case for RodentStore,
focusing on several key aspects of its design, including: the for-
mulation of the storage algebra for describing equivalent physical
representations of a given logical schema; a sketch of our pro-
posed RodentStore storage engine implementation; a description
of how the algebra can be used by a query optimizer to enumerate
different storage policies; and a case study with geospatial data,
showing that appropriate, high-level physical reorganization can
offer orders-of-magnitude performance gains.

There are a few issues that we explicitly don’t discuss in this
paper, even though they will be included in our initial RodentStore
prototype. The first is indexing—RodentStore will include both
B+Trees as well as a variety of geo-spatial indices, but we don’t
anticipate innovating in this regard so we don’t discuss it here. The
second is distribution; we think it is essential that RodentStore

supports multi-site distribution but focus our discussion here on the
storage of tables on a single node.

2. ADAPTIVE STORAGE ARCHITECTURE
Figure 1 shows the basic architecture of RodentStore. Using a

logical schema and workload as input, the database administrator
or the optimizer specify the algebra that defines the physical ar-
rangement of the storage system. The algebra interpreter compiles
this algebra into a physical storage plan (or a plan that transforms
the current representation into the new representation.) Commands
to create and transform this representation are passed to the storage
backend. The backend stores data according to this representa-
tion and implements methods for manipulating and retrieving data
stored on disk.
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Figure 1: The RodentStore architecture.

We describe the storage algebra more detail in Section 3. We
then discuss the storage backend, including its interface to the
algebra interpreter and front end. Finally, we describe our initial
ideas regarding the algebra optimizer in Section 5.

We do not discuss the front end in detail here; it may be a
SQL database, an array oriented system, or any other interface (for
example, object-relational mapping systems like Ruby-on-Rails and
Django could use RodentStore as a backend.) We note that to get
optimal performance out of a storage backend, the front end may
need to be optimized; for example, in our work on column-stores,
we showed that many optimizations inside the query processing are
possible in addition to the advantages of column-oriented layout
and compression [3].

3. STORAGE ALGEBRA
In the following, we introduce the basic principles and operators

of our storage algebra, which is used to formulate storage variants
for a given logical schema. The basic idea of our algebra is to
specify physical layout transformations from the canonical repre-
sentation of row-oriented tables. The storage algebra supports a set
of declarative constructs to describe, combine, or modify arbitrary
layouts defined as nested structures. These declarations can then
be compiled and efficiently executed using various optimization
strategies. We give a short overview of the main features of our
language below.

3.1 Physical Layout Dimensions
Laying out physical objects on disk involves optimizations in a

number of dimensions, which we briefly review here.

Data Co-location and Isolation regroups co-accessed data in the
same vicinity on the storage medium. Co-location of data
helps to minimize random accesses and to avoid cache misses
when fetching data to answer a query. Isolation considers



dedicated storage space to pull apart subsets of data, for
example for isolating elements that are frequently updated.

Data Reduction aims at maximizing the effective data throughput
by minimizing the space needed to store data. It encom-
passes both dense-packing, which strives to minimize dead
space and superfluous metadata like tuple headers, and data
compression schemes.

Data Reordering can be used to enforce specific arrangements of
successive data values on disk. It can be used to channel data
according to a given access pattern or sorting criterion to
avoid data reshuffling and repeated data scans. Data ordering
can also be exploited to efficiently navigate through regular
data structures like ordered lists of fixed-size elements or
arrays, by direct-offsetting to particular values.

We divide our discussion of operations in our algebra according
to these dimensions.

3.2 Data Model
We consider logical representations of databases comprising col-

lections of tables. Each table consists of a set of records following
the same schema. More formally, we say that a database D is a set
of tables T such that each table t ∈ T contains a set of mt records
r1, . . . , rmt , where each record contains n elements (e.g., fields)
e1, . . . , en.

The storage algebra manipulates lists of elements through suc-
cessive nestings and transformations. Each element is associated
with one of the data types supported by the algebra:

τ := int | float | string | . . . | l : τ | [τ1, . . . , τn]

where the first few entries int | float | string | . . . represent a
collection of data types, either of fixed or variable size, commonly
supported by database systems. l : τ names an element by associat-
ing a literal to a given type, while the nesting clause [τ1, . . . , τn]
allows the creation of arbitrary nestings of types.

3.3 Nestings
Nesting clauses [·] are the primary focus of the storage algebra;

they regroup lists of objects [τ1, . . . , τn] that are to be stored to-
gether. Nestings can be defined in a straightforward manner by
enumerating lists of elements, e.g.,

N0 = [[1, 2, 3], [12, 13, 14]]

defines a list of two elements, each containing a list of three inte-
gers.

In addition, the storage algebra supports a more powerful way
of defining nestings through list comprehensions [10, 27]. List
comprehensions are akin to well-known set definitions and provide
a compact and expressive way of defining lists. They are used by
the storage algebra to declare new nestings from existing nestings.
In the context of the storage algebra, simple list comprehensions
take the following generic form:

e(v) | \v ← N,C

where \v ← N is a generator binding a variable \v to the suc-
cessive elements of an existing nesting N , C is a condition, and
e represents the elements of the resulting nesting written in terms
of the variable v. We allow several generators and conditions per
comprehension.

As an example, consider a simple table T = [[Zip : int, Area :
int, Addr : string]] storing zip and area codes associated with
addresses. By default, suppose that T stores its records in an

arbitrary order using a row-major representation. We can express
this representation explicitly using a list comprehension as follows:

Nr = [[r.Zip, r.Area, r.Addr] | \r ← T ]

≡

264 [zip1 Area1 Addr1]
...

...
...

[zipm Aream Addrm]

375
We can express a different, column-major storage layout for the
same logical schema as follows:

Nc = [[r.Zip|\r ← T ], [r.Area|\r ← T ], [r.Addr|\r ← T ]]

≡

264
264 zip1

...
zipm

375
264 Area1

...
Aream

375
264 Addr1

...
Addrm

375
375

In the storage algebra, conditions C represent either boolean val-
ued expressions or clauses [16] that limit the number of elements
returned (limit), order elements (orderby), regroup (groupby) or
partition (partitionby) elements into sub-nestings. The algebra also
includes helper functions, e.g., to return the position of an element
(pos()) or the number of elements contained in a nesting (count()).
The following comprehension returns, for example, a sorted list of
zip codes associated with a given area code:

Nz = [r.Zip | \r ← T, r.Area = 617, orderby r.Zip ASC]

List comprehensions can be physically executed using a number of
implementations, including recursive functions and nested iterators
(see Section 4).

3.4 Physical Representation
All the storage schemes discussed in the introduction (e.g., column-

stores, DSM, PAX, etc.) can be seen as laying out data in hierar-
chically organized chunks on disk. RodentStore takes advantage
of nesting clauses to describe such storage schemes in a generic
manner. Nesting clauses represent a natural way to describe stored
data, as they consider ordered lists of elements that can be nested ar-
bitrarily. In addition to relations, nestings can also naturally support
time-series values and multidimensional objects, as we describe in
Section 3.6 below. RodentStore lays out data on disk by flattening
the nesting clauses given as input. The physical representation of a
nesting gives the order with which the data is to be written:

Physical Representation The physical representation φ(N) of a
nesting N is obtained by recursively enumerating all its entries
starting from the leftmost entry. Hence, the physical representation
φ(N) of a nestingN can be represented as a list of entries: φ(N) =
[e1, . . . , eN ]

In Section 4, we discuss algorithms for generating such represen-
tations.

3.5 Transforms
The storage algebra includes a series of functions (a.k.a. trans-

forms) that capture various dimensions of physical layout optimiza-
tion. We briefly describe some of those transforms below.

3.5.1 Data Co-location & Isolation
The project transform is an important construct that isolates an

element or a series of elements from a nesting:

project[Ai,...,Aj ](N) ≡ [[r.Ai, . . . , r.Aj ] | \r ← N ]

The reciprocal transform, append([e1, . . . , em], N), attaches ele-
ments to the tuples in N . selectC(A)(N) returns all elements A



in N satisfying the condition C. Horizontal partitioning, finally, is
supported through partitionC(N), which subdivides all first-level
nestings of N using a condition C.

3.5.2 Data Reduction
For each value a of some (set of) attribute(s)A, the fold operation

nests values b of attribute(s) B that co-occur with a:

foldB,A(N) ≡ [r.A, [r′.B | \r′ ← N, r.A = r′.A] | \r ← N ]

This transform can be reversed by unfold. fold, can, for example,
be used to group of a list of zip codes and addresses with each area
code in our previous example:24 Area1, [[Zip11, Addr11], . . . [Zip1n, Addr1n]]

Area2, [[Zip21, Addr21], . . . [Zip2n, Addr2n]]
. . .

35
fold is most useful when run over denormalized data generated by
the prejoin transform, since prejoined data is likely to include
many repeated values:

prejoinjoinatt(N1, N2) ≡
[[r1, r2]|\r1 ← N1, \r2 ← N2, r1.joinatt = r2.joinatt]

In addition, the storage algebra supports a wide range of compres-
sion schemes by producing nestings through user-defined functions.
As an example, here is a delta compression scheme, which can be
used to compress time series or ordered values by considering the
differences between subsequent elements:

∆(N) ≡ [a− b
| [a, b]← [N, [0, n | \n← N, limit count(N)− 1]]].

3.5.3 Data Reordering
Reordering of data is supported by the orderby clause. orderby

can reorder elements according to several attributes (as in SQL),
and can also be used to reorder complex sub-nestings. zorder(N),
for example, takes into account the position of both first-order
and second-order nested elements in N to rearrange the elements
according to a z-order traversal of the structure:

zorder(N) ≡ [r′ | \r ← N, \r′ ← r, r′ orderby

interleave(bin(pos(r)), bin(pos(r′)) ASC]

where

interleave(A,B) ≡ [a, b | [\a, \b]← [A,B]]

is used to interleave the bits of the binary representation (bin) of
the position of the elements to produce the proper z-order.

3.6 Arrays
As can be seen by the previous transform, multidimensional

data such as arrays can be naturally supported by our algebra by
specifying several levels of nestings. For instance,

Nm = [[1, 2, 3], [4, 5, 6]]

represents a 3 x 2 matrix stored in a row-major fashion. Many com-
mon multidimensional operations, such as matrix transpositions,
are easy to express using our formalism:

transpose(N) ≡
[[ai, . . . , ni] | [\a, . . . , \n]← N, \ai ← a, . . . , \ni ← n].

For example, transpose(Nm) run on the Nm matrix would pro-
duce [[1, 4], [2, 5], [3, 6]]. The storage algebra defines several trans-
forms to chunk arrays for storage purposes [22] and to shift from

unidimensional to multidimensional representations. The grid
transform, for instance, creates a n-dimensional array from a list of
tuples by repartitioning the tuples along n discretized dimensions:

grid[A1,...,An],[stride1,...,striden](N) ≡
[r | \r ← N, partitionby r.A1 stride1, . . . , r.An striden]

Section 6 shows how we can use this transform to rearrange lists of
tuples on a 2D plane.

This completes the summary of the storage algebra. We showed
how its expressions can capture a range of storage options, in-
cluding storing arrays, converting between columns and rows, and
decomposing and grouping relations in a variety of ways.

4. RODENTSTORE IMPLEMENTATION
In this section, we focus on the API for data access and cost

estimation (used, for example, by the query processor front-end)
and the translation of storage algebra expressions into physical,
on-disk structures.

4.1 API
As a storage system, RodentStore exposes a simple API that

allows higher layers to iterate through tuples of a table and to
estimate the cost of various access paths into the storage system.
In that sense, it is similar to the access methods exposed by purely
relational storage systems.

RodentStore provides the following methods:
1. scan(table, [fieldlist, predicate,

order]): Scans an entire relation, with optional projec-
tion, range predicate, and sort order.

2. getElement(table, [fieldlist,] index):
Returns the element at position index of the relation; if the
table is stored as an array, index may be multidimensional.

3. next(table,[order]): called after getElement; re-
turns the next element in the (optional) order order, or in
whatever the default order of the table is.

4. scan cost(table, [fieldlist, predicate,
order]): Returns the estimated cost, in milliseconds, of
the specified scan operation.

5. getElement cost(table, [fieldlist,]
index): Returns the estimated cost, in milliseconds, of
the specified getElement operation.

6. order list(table): Retrieves a list of sort orders for
which the current storage organization is “efficient”.

To implement the scan methods, RodentStore maintains cursors
on each constituent object of a relation, and attempts to store and
walk each object in the same order whenever possible. For example,
if a table is stored as a collection of vertical partitions and no
ordering clause is specified on those vertical partition, then these
partitions will be stored and traversed in the same order. (If the
storage algebra specifies the vertical partitions should be stored
in different orders, then RodentStore may have to re-sort the data
before returning it.) As another example, if a particular attribute is
nested inside of a parent tuple, each inner value is “unnested” by
merging with the parent and outputting the entire tuple. Exploring
variants of the API that, for example, emit blocks of tuples that
are nested or run-length compressed (as in Abadi et al. [1]) is an
interesting research direction.

The scan cost, getElement cost, and order listmeth-
ods are designed to be used by the query optimizer of a database
system sitting on top of RodentStore; additional cost methods may
be necessary as we further develop RodentStore. We also anticipate



adding methods to extend RodentStore with new storage transforms;
these will require additional methods for costing and possibly for
iterating through the data.

4.2 Physical Layout
The algebra interpreter’s job is to translate storage algebra expres-

sions into on-disk structures. This problem is interesting for several
reasons. First, translating a nested algebra expression with several
array completions in it is analogous in many ways to database join
evaluation. As with joins, the simplest way to evaluate an expres-
sion is through nested for loops. For example, consider the fold
expression:

foldB,A(N) ≡ [r.A, [r′.B | \r′ ← N, r.A = r′.A] | \r ← N ]

This can be “rendered” on disk using two for loops, as shown in
Algorithm 1.

/* outerList records values from the outer
we’ve already seen */

outerList = []
foreach r ∈ N do

if r.A ∈ outerList then
continue

end
/* innerList records values nested in

outer tuple */
innerList = []
foreach r′ ∈ N do

if r′.A == r.A then
innerList.append(r′.B)

end
end
outerList.append(r.A)
writeTuple([r.A, innerList])

end
Algorithm 1: Nested for loops implementing the fold transform.

Note, however, that rather than using nested for loops, a hash-join
like algorithm could be used, where a first pass through N builds a
hash table on r.B, and then a second pass writes each r.A along
with the r.B values that match it (which can be found via a single
hash-table lookup.)

Similar rendering algorithms are needed for each of the trans-
forms described above. For example, the grid operator will require
applying a group-by like operation to assemble the values in each
cell of the grid, following by writing out the cells in the appropriate
order.

The second interesting issue with storage rendering is that the
storage algebra is “declarative”, in the sense that it leaves many
things unspecified. This means that there are many layout alter-
natives that RodentStore may consider. For example, for a given
object (e.g., a column), in what order should the records in that
object be written (assuming no ordering is explicitly specified)?
Absent any kind of information about a “good” order (e.g., from
a supplied workload), then at a minimum the storage layout algo-
rithm should try to store different objects from the same table in
the same order. This is important so that when the query processor
iterates through tuples of a relation, the storage manager doesn’t
have to reorder those objects or maintain additional information
about which objects are in a particular tuple.

There are a number of other questions along these lines that a
layout engine can consider; for example: should objects be dense-
packed or should additional free space be left for inserts? For
arrays, should variable length fields be stored “out of band”, so
that direct offsetting can be used to lookup specific elements in

the array? When multiple disks or multiple nodes in a cluster are
available, how should objects be partitioned across those physical
storage entities? What is the appropriate disk page size to use?
What should the system do to adapt to storage on Flash or in main-
memory (RAM-based) databases?

As the above list of question shows, there are a variety of in-
teresting research issues related to storage layout that we plan to
tackle as we build the RodentStore system.

5. STORAGE DESIGN OPTIMIZER
In many cases, we anticipate that the database administrator will

want to manually specify the storage algebra for his or her database.
However, we also plan to build a storage design optimizer in Ro-
dentStore, which takes as input a relational schema and a workload
of SQL queries and outputs a recommended storage representation.
Note that this is different from the layout optimizations presented in
the previous section—our goal here is to choose the best algebraic
expression, whereas the goal in the previous section was to choose
the best physical layout for a given algebraic expression.

We anticipate this optimizer working similarly to modern physi-
cal design recommendation tools [9, 12]. Specifically, we plan to
use a cost-based optimization method, which uses a cost model to
estimate the cost of running the supplied workload against a series
of candidate physical designs. The optimizer then searches through
the space of possible designs and returns the one that minimizes
the sum of costs of queries in the workload.

We do not anticipate innovating on the cost model; our initial
plans are for it to count bytes of I/O as well as disk seeks, using the
cost functions exposed by the RodentStore storage layer. We will
ignore CPU costs unless we find that operations like decompression
prove to contribute significantly to our overall runtime. Previous
work [1] suggests that even heavyweight schemes like Lempel-Ziv
offer greater time savings as a result of reduced I/O than they cost
in terms of increased decompression time.

Plan enumeration is considerably trickier. Most of the above
transformations lead to an exponential number of physical designs.
For example, if there are n columns in a table, there are 2n ways to
co-locate that table’s columns. Similarly, a table with n columns
can be gridded into two dimensions in O(n2) ways, and in mul-
tiple dimensions in O(2n) ways. For this reason, we anticipate
heavy reliance on heuristic search algorithms. For example, to
find the best gridding, we could use gradient descent or simulated
annealing to add dimensions until a low cost dimensionalization is
achieved. Similarly, for partitioning, we anticipate taking advantage
of previous works (e.g., [5]) to rapidly identify promising groups
of columns that could get co-located. Exploring the ordering in
which different transforms should be applied as well as the effec-
tiveness of these various algorithms will form a significant part of
the research in the RodentStore project.

Deciding what to do when a new physical design is created is a
challenge; we plan to investigate a range of options. One choice
is to eagerly reorganize, where every object with a new design is
rewritten immediately. Another option is to reorganize only new
data, leaving old data as it was. This is obviously much less expen-
sive than eager reorganization, but may result in poor performance
if the workload changes dramatically. It also complicates access
method implementations, as new and old data must be merged; this
is especially true if the query processor expects to receive results
in a particular order, as RodentStore must then buffer and reorder
data on the fly. Thus, we anticipate that a third, lazy reorganization
approach, where objects are rewritten in the background or when
they are accessed, may be superior, as it avoids the up-front delay
of eager reorganization as well as the access method complexities
of reorganizing new data only.



6. CASE STUDY
To illustrate the potential of RodentStore, we manually imple-

mented a few of the transforms over a collection of geospatial data.
Our implementation does not support arbitrary storage algebra con-
structs and transformations, providing only the constructs needed
for the case study. The current prototype emerged from the need
to efficiently query the very large data sets produced by CarTel
(http://cartel.csail.mit.edu/)—a car telematics in-
frastructure that has been used to collect hundred of thousands of
motion traces from a fleet of cars in Boston. CarTel data is of par-
ticular interest in the context of RodentStore as it can be viewed as
relations, time-series values or multidimensional arrays. The data
is currently stored in a PostgreSQL database, whose performance is
not satisfactory for several interactive applications we are currently
developing—in particular, visualization applications that need to
browse large numbers of such traces are very slow. We describe
below some of the physical representations supported by our proto-
type and discuss their respective effectiveness at answering queries
over this data.

We focus on a relation storing raw GPS traces and on queries
retrieving trajectory data given a geographic region expressed as a
spatial rectangle. The logical schema of this data is:

Traces(int t, float lat, float lon, double ID, . . .)

where t is a timestamp attached to the observations, lat and lon are
the latitude and longitude of the taxi, and ID is a string uniquely
identifying a taxi. There are a number of additional attributes
for each reading that we omit. We first consider a classical, row-
oriented physical layout:

N1 = [[r.t, r.lat, r.lon, r.ID] | \r ← Traces].

N1 retrieves all tuples from Traces and stores them contiguously
on disk. Without any ordering or indices, spatial queries retrieving
(lat, lon) points within certain bounds are answered by performing
a full table scan inspecting all tuples. A more efficient layout could
order observations by time and regroup tuples by trajectory in order
to drop all unnecessary attributes for this particular class of queries:

N2 = [[r.lat, r.lon] | \r ← N1, orderby r.t, groupby r.ID]]

Since we in fact are processing two-dimensional queries and
values, we repartition the data on disk taking advantage of a two-
dimensional lattice:

N3 = [gridcellHeight,cellWidth(N2)].

This nesting arranges the lat and lon values on a two-dimensional
grid, groups them into cells of size cellWidth× cellHeight, co-
locates all values belonging to the same cell on disk, and creates
a hash table that tracks the spatial boundaries of each cell. This
representation is particularly efficient in our context as it allows
the system to skip over all cells whose spatial boundaries do not
overlap with the query. In addition, we reorder the cells on disk
using a space-filling curve in order to minimize the disk seek times
when retrieving spatially contiguous objects:

N ′
3 = [zorder(N3)]

Finally, to compress the size of the scanned data even further, we
apply delta compression on the latitude and longitude values:

N4 = [∆[r.lat] | \r.lat ← N ′
3, ∆[r.lon] | \r.lon ← N ′

3]

The rationale behind this nesting lies in the fact that cars move
continuously by small increments on the spatial plane, and that
it is more efficient to store these small increments rather than the
absolute latitude and longitude values.
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Figure 2: Performance in terms of number of pages read by
RodentStore prototype on geospatial trajectory data from the
CarTel project.

Figure 2 gives the average number of disk pages read for the vari-
ous physical layouts described above. The results are averaged over
200 random geographical queries retrieving square regions cover-
ing 1% of the total area considered (the entire region covers the
greater Boston area; as such, each grid cell is about 400 m2.) We
focused on a subset of the data centered around MIT and containing
ten million observations (more than 200 MB of data, representing a
few thousand trajectories), and a page size set to 1000 KB. Results
using the original raw files (“raw+scan”) are given for comparison
purposes. The results show that data isolation (“drop column”) and
gridding (“grid”) reduce the total number of pages that must be
read by about two orders of magnitude versus a raw scan; the total
query time (not shown) is also about one hundred times faster (a
few 10s of milliseconds vs five seconds.) Using z-ordering reduces
the number of disk seeks needed to fetch data in a given spatial
region. Finally, delta compression (“zcurve + delta”) reduces the
database size, thus the I/O cost, even further. We also experimented
with a relatively common approach to index spatial objects using a
secondary R-Tree over the trajectories (“rtree”). Using an R-Tree
is in our case suboptimal, given that our dense data set generated
a high number of overlapping bounding boxes, each requiring a
random I/O and containing a large number of observations.

7. CONCLUSIONS
In this paper, we made the case for RodentStore, an adaptive

storage system that provides a high-level, declarative interface for
describing and dynamically modifying physical data layouts. In
light of recent excitement surrounding database storage schemes,
a system like RodentStore is important because it substantially re-
duces the engineering efforts involved in building a storage manager
for new types of data and in evaluating new layout mechanisms. Ro-
dentStore supports a wide range of physical structures, encompass-
ing nested lists of tuples, time-series values, and multidimensional
arrays. Our system can handle unusual storage schemes—such as
attribute-dependent layouts for RDF data [2]—while still expos-
ing logical tables or array schemas at the application layer. The
general outline of the system given above opens the door to many
research challenges. Our immediate efforts will focus on generic
mechanisms for storing arbitrary nestings in a compact way, and
on specific techniques for optimizing the transforms supported by
the system.
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