Book Title
Book Editors

10S Press, 2003

Belief Propagation on Uncertain
Schema Mappings in Peer Data
Management Systems *

Philippe Cudré-Mauroux 2, and Karl Aberer

School Of Computer and Communication Sciences
EPFL — Switzerland

Abstract. Until recently, most data integration techniques involved central com-
ponents, e.g., global schemas, to enable transparent access to heterogeneous
databases. Today, however, with the democratization of tools facilitating knowledge
elicitation in machine-processable formats, one cannot rely on global, centralized
schemas anymore as knowledge creation and consumption are getting more and
more dynamic and decentralized. Peer Data Management Systems (PDMS) pro-
vide an answer to this problem by eliminating the central semantic component and
considering instead compositions of local, pair-wise mappings to propagate queries
from one database to the others.

In the following, we give an overview of various PDMS approaches; all the ap-
proaches proposed so far make the implicit assumption that all schema mappings
used to reformulate a query are correct. This obviously cannot be taken as granted
in typical PDMS settings where mappings can be created (semi) automatically by
independent parties. Thus, we propose a totally decentralized, efficient message
passing scheme to automatically detect erroneous schema mappings in a PDMS.
Our scheme is based on a probabilistic model where we take advantage of transitive
closures of mapping operations to confront local belief on the correctness of a map-
ping against evidences gathered around the network. We show that our scheme can
be efficiently embedded in any PDMS and provide an evaluation of our techniques
on large sets of automatically-generated schemas.

Keywords. Data Integration, Peer Data Management Systems, Belief Propagation

1. Introduction

Data integration techniques have traditionally revolved around global schemas to query
heterogeneous databases in a transparent way: popular techniques such as LAV (Local-

IThe work presented in this chapter was carried out in the framework of the EPFL Center for Global
nd supported by the Swiss National Funding Agency OFES as part of the IST European project
Evergrow No 001935, and was supported (in part) by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a center supported by the Swiss National Science

Computing ai

Foundation under grant number 5005-67322.

2Correspondence to: Philippe Cudré-Mauroux, School Of Computer and Communication Sciences, Station
10 Lausanne, Switzerland. Tel.: +41 21 693 6787; Fax: +41 21 693 8115; E-mail: philippe.cudre-

14, EPFL, 10

mauroux @epfl.ch.

2 Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems

As-View) or GAV (Global-As-View) drew considerable attention as they permit de-
terministic reformulations of queries over various data sources. These centralized ap-
proaches, however, require the definition of an integrated schema supposedly subsuming
all local schemas. This requirement is particularly stringent in highly heterogeneous, dy-
namic and decentralized environments such as the Web or Peer-to-Peer overlay networks.
In these settings, largely autonomous and heterogeneous data sources coexist without any
central coordination. Keeping a global schema up-to-date or defining a schema general
enough to encompass all information sources is thus unmanageable in practice in this
context. This evolution motivated the research community to imagine new paradigms for
handling heterogeneous data in decentralized environments. In this chapter, we focus on
the Peer Data Management Systems (PDMS) approach, which recently drew consider-
able attention in this context [1,2].

PDMS take advantage of local, pairwise schema mappings between pairs of
databases to propagate queries posed against a local schema to the rest of the network in
an iterative and cooperative manner. No global semantic coordination is needed as peers
only need to define local mappings to a small set of related databases to be part of the
global network of databases. Once a database sends a query to its immediate neighbors
through local mapping links, its neighbors (after processing the query) in turn propagate
the query to their own neighbors, and so on and so forth until the query reaches all (or a
predefined number of) databases. The way the query spreads around the network mimics
the way messages are routed in a Peer-to-Peer (P2P) system, thus the appellation Peer
Data Management Systems.

The vast majority of PDMS approaches, however, propagate queries without concern
on the validity or quality of the mappings. This obviously represents a severe limitation,
as one cannot expect any level of consistency or quality on PDMS mappings for several
reasons: first, remember that PDMS target large-scale, decentralized and heterogeneous
environments where autonomous parties have full control on schema designs. As a result,
we can expect irreconcilable differences on conceptualizations (e.g., epistemic or meta-
physical differences on a given modelization problem, see also [3]) among the databases.
Also, the limited expressivity of the mappings, usually defined as queries or using an
ontology definition language like OWL [4], precludes the creation of correct mappings
in many situations (e.g., mapping an attribute onto a relation). Finally, given the vibrant
activity on (semi-) automatic alignment techniques (see [5] for a recent overview), we
can expect some (most?) of the mappings to be generated automatically in large-scale
settings, with all the evident quality problems associated.

In the following, we propose a probabilistic technique to determine the quality of
schema mappings in PDMS settings in a totally automated way and without any form
of central coordination. As peers do not always share common data, mapping errors are
typically difficult to discover from a local perspective in PDMS. Our methods are based
on the analysis of cycles and parallels paths in the graph of schema mappings: after de-
tecting mapping inconsistencies by comparing transitive closures of mapping operations,
we build a global probabilistic inference model spanning the entire PDMS system. We
show how to construct this model in a totally decentralized way by involving local infor-
mation only. We describe a decentralized and efficient method to derive mapping quality
measures from our model. Our approach is based on a decentralized version of iterative
sum-product message passing techniques (loopy belief propagation). We show how to
embed our approach in PDMS systems with a very modest communication overhead by

Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems 3

piggybacking on normal query processing operations. Finally, we present an evaluation
of our techniques applied on large corpuses of automatically-generated schemas.

2. Peer Data Management Systems

Integration systems traditionally adopted the Federated Databases model (see Figure 1 a).
This model provides a uniform access to multiple heterogeneous data sources through
a centralized Federated Database Server. Wrappers deal with syntactic heterogeneity by
converting each local database to a common representation. In this way, data can be
stored using various data models (e.g., semi-structured, text files) at the local databases,
while the Federated Database only deals with a unique — typically relational — repre-
sentation. A mediator integrates data with the same meaning but stored using differ-
ent schemas. It can for example define correspondences (mappings) between various
schemas to reformulate a query posed against the integrated schema to queries posed
against each local database. The Local As View (LAV) approach defines each local
database as a view on an federated, centralized schema. In the Global As View approach,
on the other hand, the federated schema is defined in terms of the local schemas. Clients
can thus query the Federated Database Server, typically through a SQL interface, which
is able to reformulate the query thanks to the mediator, query the local databases and
collect results through the wrappers to finally return all answers to the clients.

Y Y
(@ ()

SPARQL SPARQL
Interface fterface
Query Query
Reformulator Reformulator
Wrapper Wrapper

SQL Interface i i

_ Federated Relational .
Mediator Database Database SPARQL

Server Interface
— —

Query
Wrapper Wrapper Wrapper Reformulator

Client Client

File System

Wrapper

—t

Object
Oriented
Database

Relational
Database 1

Relateional)
Database 2 Native XML
Database

—

a) Federated Database System b) Peer Data Management System (PDMS)

Figure 1. Two data integration models: Federated Databases (a) based on a central federated schema and Peer
Data Management Systems (b) based on peer-to-peer mappings between the databases

One of the main limitations of this model lies in its centralization: the Federated
Database Server represents a single point of failure and is responsible for integrating all
databases taking advantage of a global schema. The server severely hampers the scalabil-
ity of the approach and violates the autonomy of the local sources. Aware of these limita-
tions, the research community recently explored new techniques to manage and integrate

4 Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems

data in large scale, decentralized or Peer-to-Peer settings (see [1] for a recent tutorial on
Semantic Overlay Networks). In Peer Data Management Systems settings (see Figure 1
b), the centralized mediator disappears and is replaced by an unstructured collection of
peer-to-peer mappings between the databases. PDMS take advantage of these local, pair-
wise schema mappings between pairs of databases to propagate queries posed against a
local schema to the rest of the network in an iterative and cooperative manner. No global
semantic coordination is needed as peers only need to define local mappings to a small
set of related databases to be part of the global network of databases. Once a database
sends a query to its immediate neighbors, its neighbors (after processing the query) can
reformulate the query against their local databases, and propagate the query to their own
neighbors, and so on and so forth until the query reaches all (or a predefined number of)
databases.

Mappings in a PDMS can be defined as views, or by taking advantage of an on-
tology language such as OWL. Note that in practice, the way the various schemas and
schema mappings are organized might be independent of the physical organization of
the databases: Figure 2 depicts a Semantic Overlay Network where the organization of
the peer at the overlay layer is uncorrelated with the organization of the schemas and
schema mappings at the mediation layer. In this way, peers can create or share schemas
irrespective of their location in the overlay network.

Schema D

Schema A Schema C
Semantic
Mediation
Layer &

Schema H

Schemaz .-

Overlay
Layer

-
127.144 oo - =

125, o |
subnet 5.98 117122 -l

"Physical” S <
Network 112.144
SIWOTK 427,143 ! IP Network

127.145[(=
‘ ! - 109.144

o N 45.123
34.109 35.142 38.143

Figure 2. A three-layered representation of a Semantic Overlay Network: machines (bottom layer) organize
themselves into a peer-to-peer overlay (intermediate layer) and communicate through a Semantic Mediation
Layer (top layer) defining mappings between the various schemas used in the network

In the following, we concentrate on a probabilistic analysis of the Semantic Media-
tion Layer in order to detect inconsistent schema mappings. Our approach is quite natu-

Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems 5

rally based on some of our previous ideas [6,7] for analyzing the network of mappings.
Others have also focused on PDMS settings recently: in [8], Bernstein et al. formulated
requirements for P2P databases in terms of local mappings and semi-automatic solutions
for data integration. Edutella [9], based on a super-peer topology, was one of the early
PDMS systems deployed. Piazza [10,11] is a PDMS system which provides efficient
query reformulations algorithms for relational and semi-structured data models. The Hy-
perion [12] project relies on rules to propagate data in a PDMS network according to
mapping tables. PeerDB [13] examines the problem of sharing relational data in P2P
networks from an information retrieval perspective. One of our earlier systems, Grid-
Vine [14], is based on a structured overlay layers and thus supports three uncorrelated
layers as depicted in Figure 2.

3. Problem Definition

For the sake of clarity, we consider in the following only simple PDMS settings where
each peer represents a separate database (i.e., there is a direct correlation between the
overlay layer and the semantic mediation layer). Our methods work in an identical man-
ner in more complex settings.

We model PDMS as collections of peers; Each individual peer p represents a
database storing data according to a distinct structured schema. As we wish to present an
approach as generic as possible, we do not make any assumption on the exact data model
used by the databases in the following but illustrate some of our claims with examples
in XML and RDF. We only require the databases to store information with respect to
some concepts we call attributes a (e.g., attributes in a relational schema, elements or
attributes in XML and classes or properties in RDF). Additionally, we suppose that each
peer can be identified and contacted by a unique identifier (e.g., an IP address or a peer
ID in a P2P network).

Peers are connected one another through (un)directed edges representing (un)directed
pairwise schema mappings. A schema mapping m allows a query posed against a local
schema to be evaluated against another schema. This operation is uni or bi-directional
depending on the language used to express the mappings. Again, we do not make as-
sumptions on that language, except that it should allow to connect pairs of semantically
similar attributes. Note that this language may for example allow for syntactic transfor-
mations (e.g., transforming a date from one format to another) or complex mappings
(e.g., mapping an attribute to part of another attribute). Finally, remember that our funda-
mental assumption is that some mappings might be incorrect, i.e., mappings might map
an attribute from one database to a semantically irrelevant attribute in another database.

We consider queries posed locally against the schema of a given peer. Queries are
composed of generic selection / projection operations op on attributes. For each attribute
a; appearing in the query, the system (or the expert user) defines a semantic threshold
0., under which the query should not be propagated any further: as the query gets propa-
gated throughout the network of peer databases, each intermediate peer checks the prob-
ability P(a; = correct) of each attribute in the query being semantically preserved by
a mapping operation. The query is forwarded through a mapping link to another peer
database only if all attributes are preserved, that is if for all a;, P(a; = correct) > 0,,
for the given mapping. Note that other per-hop forwarding behaviors could easily be im-
plemented with our techniques (see [7]) but we stick to the given scheme for simplicity.

6 Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems

Given this setting, our goal is to provide probabilistic guarantees on the correctness
of a mapping operation, i.e., to determine P(a; = correct). As any processing in a
PDMS, we wish our methods to operate without any global coordination in a purely de-
centralized manner. Also, we would like our methods to be totally automated, as precise
as possible and fast enough to be applied on large schemas or ontologies.

3.1. An Introductory Example

Before delving into technicalities, we start with a high-level, introductory example of
our approach. Let us consider the simple PDMS network depicted in Figure 3. This net-
work is composed of four databases p1, . .., ps. All databases store a collection of XML
documents related to pieces of art, but structured according to four different schemas
(one per database). Each database supports XQuery as query language. Various pairwise
XQuery schema mappings have been created (both manually and automatically) to link
the databases; Figure 4 below shows an example of mapping between two schemas and
how one can take advantage of this mapping to resolve a query posed against two differ-
ent schemas.

art/creator -> /Creator /Creator -> /Author/DisplayName

/Creator -> /Painting/CreatedOn

/Painting/CreatedOn -> /art/creatDate

/Author/DisplayName -> /Painting/Paint
/Painting/Painter -> /art/creator uthor/DisplayName -> /Painting/Painter

Figure 3. A simple directed PDMS network of four peers and five schema mappings, here depicted for the
attribute Creator

Let us suppose that a user in ps wishes to retrieve the names of all artists having
created a piece of work related to some river. The user could locally pose an XQuery like
the following:

al =

FOR $c IN distinct-values (ArtDatabank//Creator)
WHERE $c/..//Item LIKE "%river%"

RETURN <myArtist> $c </myArtist>

This query basically boils down to a projection on the attribute Creator: op1 = T reator
and a selection on the title: ops = Ortem=%river%- Lhe user issues the query and pa-
tiently awaits for answers, both from his local database and the rest of the network.

Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems 7

Q1= Q2=

<GUID>$p/GUID</GUID> <GUID>$p/G‘UlD\</GUID>

FOR $p IN /Photoshop_ Image FOR $p 11\1;51'12/)

WHERE $p/Creator LIKE "$%Robi%" WHERE‘Sp'/Cfé'ator LIKE "S$Robis%"

i Photoshop
! (own schema)

WinFs i
(known schema) |

\

<Photoshop_Image>

<WinFSImage>
<GUID>178A8CD8865</GUID> <GUID>178A8CD8866</GUID>
<Creator>Robinson</Creator> <Author>
<i;}:;§ct> .lef _ <DisplayName>)
<Item> <Photoshop Image> <ga.enr§1/ P;aCh>ROblnson
— 1S a ame
Tunbridge Wells <GUID>$fs/GUID</GUID> <Rol§>P§otographer</Role>
</Item> <Creator> <Author>
<Item>Royal Council</ $fs/Author/DisplayName <Keyword>
<;éBZ?> . </Creator> Tunbridge
u. ec
J </Photoshop_Image> </Keyword> .
hotoshon Tnages FOR $fs IN /WinFSImage <Keyword>Council</Keyword>
</WinFSImage>

Figure 4. An example of schema mapping (here between peers p2 and p3) expressed as an XQuery

In a standard PDMS, the query would be forwarded through both outgoing mappings
of po, generating a fair proportion of false positives as one of these two mappings (the
one between py and p4) is incorrect for the attribute C'reator (the mapping erroneously
maps Creator in py onto CreatedOn in py, see Figure 3). Luckily for our user, the PDMS
system he is using implements our belief propagation techniques. Without any prior in-
formation on the mappings, the system detects inconsistencies for the mappings on Cre-
ator by analyzing the cycles p; — p2 — py — p; and p; — py — p3 — pg — p1, as
well as the parallel paths p; — p4 and p2 — p3 — p4 in the mapping network. In a de-
centralized process, the PDMS constructs a probabilistic network and determines that the
semantics of the attribute Creator will most likely be preserved by all mappings, except
by the mapping between p-» and p, which is more likely to be faulty. Thus, this specific
query will be routed through mapping ps — p3, and then iteratively to p4 and p;. In the
end, the user will retrieve all artist names as specified, without any false-positive since
the mapping p2 — p4 was ignored in the query resolution process.

4. Modeling PDMS as Factor-Graphs

In the following, we take advantage of query messages being forwarded from one peer
to another to detect inconsistencies in the network of mappings. We represent individual
mappings and network information as related random variables in a probabilistic graphi-
cal model. We will then efficiently evaluate marginal probabilities, i.e., mapping quality,
using these models.

4.1. A Quick Reminder on Factor-Graphs and Message Passing Schemes

We give below a brief overview of message passing techniques. For a more in-depth
coverage, we refer the interested reader to one of the many overviews on this domain,
such as [15]. Note that Belief Propagation as introduced by Judea Pearl [16] is actually
a specialized case of a standard message passing sum-product algorithm.

8 Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems

,qu_xz(ﬂ) Hpppl*2)

f4 /B

Figure 5. A simple factor-graph of four variables and two factors

Probabilistic graphical models are a marriage between probability theory and graph
theory. In many situations, one can deal with a complicated global problem by view-
ing it as a factorization of several local functions, each depending on a subset of
the variables appearing in the global problem. As an example, suppose that a global
function g(z1, 22, x3,24) factors into a product of two local functions f4 and fp:
g(x1, 22, 23,24) = fa(x1,22)fB(x2, x5, 24). This factorization can be represented in
a graphical form by the factor-graph depicted in Figure 5, where variables (circles) are
linked to their respective factors (black squares). Often, one is interested in computing a
marginal of this global function, e.g.,

92(x2) 22229(15179527903,334) = Z 9(@1, 22, 3, T4)

r1 T3 T4 N{zz}

where we introduce the summary operator » {x,} tO sum over all variables but z;. Such
marginals can be derived in an efficient way by a series of sum-product operations on the
local function, such as:

g2(x2) = (Z fA($17x2)> <ZZfB(LC27$3,$4)> .

T3 T4

Interestingly, the above computation can be seen as the product of two messages
Hfa—as (T2) and pp, g, (z2) sent respectively by f4 and fp to x4 (see Figure 5). The
sum-product algorithm exploits this observation to compute all marginal functions of a
factor-graph in a concurrent and efficient manner. Message passing algorithms tradition-
ally compute marginals by sending two messages — one in each direction — for every
edge in the factor-graph:

variable z to local factor f:

:U'.r—>f(x) = H ,LLh_,yc<$)

hen(x)\{f}

local factor f to variable x

prea@)= S X))] my—r®)
~{z} yen(f)\{z}

Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems 9

where n(-) stands for the neighbors of a variable / function node in the graph.

These computations are known to be exact for cycle-free factor-graphs; in contrast,
applications of the sum-product algorithm in a factor-graph with cycles only result in
approximate computations for the marginals [17]. However, some of the most exciting
applications of the sum-product algorithms (e.g., decoding of turbo or LDPC codes) arise
precisely in such situations. We show below that this is also the case for factor-graphs
modelling Peer Data Management Systems.

4.2. On Factor-Graphs in Undirected PDMS

In the following, we explain how to model a network of mapping as a factor-graph. These
factor-graphs will in turn be used in Section 5 to derive quality measures for the various
mappings in the network.

4.2.1. Cyclic Mappings

Semantic overlay network topologies are not generated at random. On the contrary, they
are constructed by (computerized or human) agents aiming at interconnecting partially
overlapping information sources. We can expect very high clustering coefficients in these
networks, since similar sources will tend to bond together and create cluster of sources.
As an example, a study of an online network of related biologic schemas (in the the SRS
system, http://www.lionbioscience.com) shows an exponential degree distribution and an
unusually high clustering coefficient of 0.54 (as of May 2005). Consequently, we can
expect semantic schema graphs to exhibit scale-free properties and an unusually high
number of loops [18].

Let us assume we have detected a cycle of mappings mg, my, ..., m,_1 connecting
T PEETS Po, P1, - - - » P(n—1), Po in a circle. Cycles of mappings can be easily discovered by
the peers in the PDMS network, either by proactively flooding their neighborhood with
probe messages with a certain Time-To-Live (TTL) or by examining the trace of routed
queries in the network. We take advantage of transitive closures of mapping operations in
the cycle to compare a query g posed against the schema of p to the corresponding query
¢’ forwarded through all n mappings along the cycle: ¢ = m,,—1(mp—2(... (Mmo)(q)))).
q and ¢’ can be compared on an equal basis since they are both expressed in terms of the
schema of pg. In an ideal world, ¢’ = ¢ since the transformed query ¢’ is the result of n
identity mappings applied on the original query ¢. In a distributed setting, however, this
might not always be the case, both because of the lack of expressiveness of the mappings
and of the fact that mappings can be created in (semi-) automatic ways.

When comparing an attribute a; in an operation op,(a;) appearing in the original
query ¢ to the attribute a; from the corresponding operation op’(a;) in the transformed
query ¢, three subcases may occur in practice:

a; = a;: this occurs when the attribute, after having been transformed n times through
the mappings, still maps to the original attribute when returning to the semantic
domain of pg. Since this indicates a high level of semantic agreement along the
cycle for this particular attribute, we say that this represents positive feedback fT
on the mappings constituting the cycles.

10 Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems

aj # a;: this occurs when the attribute, after having been transformed n times through
the mappings, maps to a different attribute when returning to the semantic domain
of pg. As this indicates some disagreement on the semantics of a; along the cycle
of mappings, we say that this represents negative feedback f~ on the mappings
constituting the cycles.

a; = _L: this occurs when some intermediary schema does not have a representation
for the attribute in question, i.e., cannot map the attribute onto one of its own at-
tributes. This does not give us any additional (feedback) information on the level
of semantic agreement along the cycle, but can still represent some valuable in-
formation in other contexts, for example when analyzing query forwarding on a
syntactic level (see also [7]). In the current case, we consider that the probability
on the correctness of a mapping drops to zero for a specific attribute if the mapping
does not provide any mapping for the attribute.

We focus here on single-attribute operations for simplicity, but our results can be ex-
tended to multi-attribute operations as well.

Also, we take into account the fact that series of erroneous mappings on a,; can ac-
cidentally compensate their respective errors and actually create a correct composite
mapping m,,_1 © My_o ... 0 Mg in the end. Assuming a probability A of two or more
mapping errors being compensated along a cycle in this way, we can determine the con-
ditional probability of a cycle producing positive feedback f{g given the correctness of
its constituting mappings mg, . .., My—1:

1 if all mappings correct

0 if one mapping incorrect

A if two or more
mappings incorrect

P(f(_)‘—|m03 R 7mn—l) =

This conditional probability function allows us to create a factor-graph from a network
of interconnected mappings. We create a global factor-graph as follows:

for all mapping m in PDMS
add m.factor to global factor—-graph;
add m.variable to m.factor;
for all mapping cycle ¢ in PDMS
add c.feedback.factor to global factor-graph;
add c.feedback.variable to c.feedback.factor;
for all mapping m in mapping cycle c
link c.feedback.factor to m.variable;

Figure 6 illustrates the derivation of a factor-graph from a simple semantic network
of four peers py, . .., p4 (left-hand side of Figure 6). The peers are interconnected through
five mappings mq2, mos, m34, my1 and moy. One may attempt to obtain feedback from
three different mapping cycles in this network:

Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems 11

Figure 6. Modeling an undirected network of mappings as a factor-graph

1.

'fO Mg — MMo3 — Migq — 41
2.

fO Mg — Mog — Mgy
3.

fO S Moz — M34 — M24.

The right-hand side of Figure 6 depicts the resulting factor-graph, containing from top
to bottom: five one-variable factors for the prior probability functions on the mappings,
five mappings variables m;;, three factors linking feedback variables to mapping vari-
ables through conditional probability functions (defined as explained above), and finally
three feedback variables fj. Note that feedback variables are usually not independent:
two feedback variables are correlated as soon as the two mapping cycles they represent
have at least one mapping in common (e.g., in Figure 6, where all three feedbacks are
correlated).

4.3. On Factor-Graphs in Directed PDMS

One may derive similar factor-graphs in directed PDMS networks, focusing this time on
directed mapping cycles and parallel mapping paths. Parallel mapping paths occur when
two different series of mappings m’ and m/’ share the same source and destination. The
conditional probability function for receiving positive feedback f; through two parallel
paths m’ and m”’ is as follows (see [19] for details):

1 if all mappings correct
0 if one mapping incorrect
A if two or more

mappings incorrect

P(fL[{m'} {m"}) =

Figure 7 shows an example of a directed mapping network with four peers and six
mappings. Feedback from two directed cycles and three pairs of parallel paths might be
gathered from the network:

1.
Jo tmig — mag — mag — ma
F3mig — mas — ma
I3, marllmas — ma
fi; t Mag|maz — mag

I3 i mar|mas — mas — mar.

12 Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems

Figure 7. Modeling a directed network of mappings as a factor-graph

As for the undirected case, the right-hand side of Figure 7 represents the factor-graph
derived from the directed mapping network of the left-hand side.

Since undirected mapping networks and directed mapping networks result in struc-
turally similar factor-graphs in the end, we treat them on the same basis in the follow-
ing. We only include two versions of our derivations when some noticeable difference
between the undirected and the directed case surfaces.

5. Embedded Message Passing

So far, we have developed a graphical probabilistic model capturing the relations between
mappings and network feedback in a PDMS. To take advantage of these models, one
would have to gather all information pertaining to a/l mappings, cycles and parallel paths
in a system. However, adopting this centralized approach makes no sense in our context,
as PDMS were precisely invented to avoid such centralization. Instead, we devise below
a method to embed message passing into normal operations of a Peer Data Management
System. Thus, we are able to get globally consistent mapping quality measures in a
scalable, decentralized and efficient manner while respecting the autonomy of the peers.

Looking back at the factor-graphs introduced in Section 4.2 and 4.3, we make two
observations: i) some (but not all) nodes appearing in the factor-graphs can be mapped
back onto the original PDMS graph, and ii) the factor-graphs contain cycles.

5.1. On Feedback Variables in PDMS Factor-Graphs

Going through one of the figures representing a PDMS factor-graph from top to bottom,
one may identify four different kinds of nodes: factors for the prior probability functions
on the mappings, variable nodes for the correctness of the mappings, factors for the
probability functions linking mapping and feedback variables, and finally variable nodes
for the feedback information. Going one step further, one can make a distinction between
nodes representing local information, i.e., mapping factors and mapping variables, and
nodes pertaining to global information, i.e., feedback factors and feedback variables.
Mapping back local information nodes onto the PDMS is easy, as only the nodes
from which a mapping is departing need to store information about that mapping (see
per hop routing behavior in Section 3). Luckily, we can also map the other nodes rather
easily, as they either contain global but static information (density function in feedback
factors), or information gathered around the local neighborhood of a node (A, observed

Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems 13

Figure 8. Creating a local factor-graph in the PDMS (here for peer p1)

values for fé and f;). Hence, each peer p only needs to store a fraction of the global
factor-graph, fraction selected as follows:

-
for all outgoing mapping m
add m.factor to local factor—-graph;
add m.variable to m.factor;
for all feedbackMessage f containing m
add f.factor to m.variable;
if f.isPositive
add f.variable(+) to f.factor;
else if feedback.isNegative
add f.variable(-) to f.factor;
for all mapping m’ in feedback except m
add virtual peer m’ .peer to f.factor;

where feedbackM essage stands for all feedback messages received from neighboring
peers (resulting from probes flooded within a certain TTL throughout the neighborhood
or from analyzing standard forwarded queries). Figure 8 shows how p; from Figure 7
would store its local factor-graph.

Note that, depending on the PDMS, one can choose between two levels of granularity
for storing factor-graphs and computing related probabilistic value: coarse granularity —
where peers only store one factor-graph per mapping and where they derive only one
global value on the correctness of the mapping — and fine granularity — where peers store
one instance of the local factor-graph per attribute in the mapping, and where they derive
one probabilistic quality value per attribute. We suppose we are in the latter situation but
show derivations for one attribute only. Values for other attributes can be derived in a
similar fashion.

5.2. On Cycles in PDMS Factor-Graphs

Cycles appear in PDMS factor-graphs as soon as two mappings belong to two identical
cycles or parallel paths in the PDMS. See for example the PDMS in Figure 6, where m2

14 Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems

and my; both appear in cycles p; — ps — ps — p1 and p; — p2 — p3 — p4 — p1, hence
creating a cycle mis — factor(f1) — ma1 — factor(fa) — mi2 in the factor-graph. As
mentioned above, the results of the sum-product algorithm operating in a factor-graph
with cycles cannot (in general) be interpreted as exact function summaries.

One well-known approach to circumvent this problem is to transform the factor-
graph by regrouping nodes (clustering or stretching transformations) to produce a factor
tree. In our case, this would result in regrouping all mappings having more than one
cycle or parallel path in common,; this is obviously inapplicable in practice, as this would
imply introducing central components in the PDMS to regroup (potentially large) sets of
independent peers. Instead, we rely on iterative, decentralized message passing schedules
(see below) to estimate marginal functions in a concurrent and efficient way. We show in
Section 6 that those evaluations are sufficiently accurate to make sensible decisions on
the mappings in practice.

5.3. Embedded Message Passing Schedules

Given its local factor-graph and messages received from its neighborhood, a peer can
locally update its belief on the mappings by reformulating the sum-product algorithm
(Section 4.1) as follows:

local message from factor fa; to mapping variable m;:
ffay—m,(mi) =

Sy (P05 Ty et s 90 Tl o, 1y omi— s ()

local message from mapping m; to factor fa; € n(m;):
/’L"ni—’faj (ml) = Hfaen('rni)\{faj} ,Uffa—wni (ml)

remote message for factor fa; from peer p, to peer p; € n(fay):
fpo— far, (M) = Hfaen(mi)\{fak} M fa—m, (M)

Posterior correctness of local mapping m;:
Pmil{F) = o (M jacnms) fram, (m2)))

where alpha is a normalizing factor ensuring that the probabilities of all events sum to
one (i.e., making sure that P(m; = correct) + P(m; = incorrect) = 1).

In cycle-free PDMS factor-graphs (i.e., trees), exact messages can be propagated
from mapping variables to the rest of the network in at most two iterations (due to the
specific topology of our factor-graph). Thus, all inference results will be exact in two
iterations.

For the more general case of PDMS factor-graph with cycles, we are stuck at the
beginning of computation since every peer has to wait for messages from other peers.

Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems 15

We resolve this problem in a standard manner by considering that all peers virtually
received a unit message (i.e., a message representing the unit function) from all other
peers appearing in their local factor-graphs prior to starting the algorithm. From there on,
peers derive probabilities on the correctness of their local mappings and send messages to
other peers as described above. We show in Section 6 that for PDMS factor-graphs with
cycles, the algorithm converges to very good approximations of the exact values obtained
by a standard global inference process. Peers can decide to send messages according
to different schedules depending on the PDMS; we detail below two possible schedules
with quite different performance in terms of communication overhead and convergence
speed.

5.3.1. Periodic Message Passing Schedule

In highly dynamic environments where databases, schemas and schema mappings are
constantly evolving, appearing or disappearing, peers might wish to act proactively in
order to get results on the correctness of their mappings in a timely fashion. In a Periodic
Message Passing Schedule, peers send remote messages to all peers p; appearing in
their local factor-graph every time period 7. This corresponds to a new round of the
iterative sum-product algorithm. This periodic schedule induces some communication
overhead (a maximum of) | o (I, — 1) messages per peer every 7, where ¢; represent all
mapping cycles passing through the peer and /.., the length of the cycles) but guarantees
our methods to converge within a given time-frame dependent on the topology of the
network (see also Section 6). Note that 7 should be chosen according to the network
churn in order to guarantee convergence in highly dynamic networks. Its exact value may
range from a couple of seconds to weeks or months depending on the exact situation.

5.3.2. Lazy Message Passing Schedule

A very nice property of the iterative message passing algorithm is that it is tolerant to
delayed or lost messages. Hence, we do not actually require any kind of synchronization
for the message passing schedule; Peers can decide to send a remote message whenever
they want without endangering the global convergence of the algorithm (the algorithm
will still converge to the same point, simply slower, see next section). We may thus
take advantage of this property to totally eliminate any communication overhead (i.e.,
number of additional messages sent) induced by our method by piggybacking on query
messages. The idea is as follows: every time a query message is sent from one peer
to another through a mapping link m;, we append to this query message all messages
w(m;) pertaining to the mapping being used. In this case, the convergence speed or our
algorithm is proportional to the query load of the system. This may be the ideal schedule
for query-intensive or relatively static systems.

5.4. Prior Belief Updates

Our computations always take into account the mapping factors (top layer of a PDMS
factor-graph). These factors represent any local, prior knowledge the peers might possess
on their mappings. For example, if the mappings were carefully checked and validated
by a domain expert, the peer might want to set all prior probabilities on the correctness
of the mappings to one to ensure that these mappings will always be treated as correct.

16 Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems

In most cases, however, the peers only have a vague idea (e.g., presupposed quality
of the alignment technique used to create the mappings) on the priors related to their
surrounding mappings initially. As the network of mappings evolves and time passes,
however, the peers start to accumulate various posterior probabilities on the correctness
of their mappings thanks to the iterative message passing techniques described above.
Actually, the peers get new posterior probabilities on the correctness of the mappings
as long as the network of mappings continues to evolve (e.g., as mappings get created,
modified or deleted). Thus, peers can decide to modify their prior belief by taking into
account the evidences accumulated in order to get more accurate results in the future.
This corresponds to learning parameters in a probabilistic graphical model when some of
the observations are missing. Several techniques might be applied to this type of problem
(e.g., Monte Carlo methods, Gaussian approximations). We propose in the following a
simple Expectation-Maximization [20] process which looks as follows:

- Initialize the prior probability on the correctness of the mapping taking into ac-
count any prior information on the mapping. If no information is available for a
given mapping, start with P(m = correct) = P(m = incorrect) = 0.5 (maxi-
mum entropy principle).

- Gather posterior evidences Py(m = correct|{F}) on the correctness of the
mapping thanks to cycle analyses and message passing techniques. Treat these
evidences as new observations for every change of the local factor-graphs (i.e.,
new feedback information, new, modified or lost cycle or parallel path)

- After each change of the local factor-graph, update the prior belief on the correct-
ness of the mapping m given previous evidences Py, (m = correct|{Fy}) in the
following way:

k
P(m = correct) = Z P;(m = correct|{F;})k™*

i=1

Hence, we can make the prior values slowly converge to a local maximum likelihood
to reflect the fact that more and more evidences are being gathered about the mappings
as the mapping network evolves.

5.5. Introductory Example Revisited

Let us now come back to our introductory example and describe in more detail what
happened. Imagine that the network of databases was just created and that the peers
have no prior information on their mappings. By sending probe queries with TT'L > 4
through its two mapping links, py detects two cycles and one parallel path, and gets all
related feedback information. For the attribute Creator:

1
ATt ma — mag — mas — ma
2—
fo T2 — Magq — My
3—
.f:; : m24||m23 — M3q

p2 constructs a local factor-graph based on this information and starts sending re-
mote messages and calculating posterior probabilities on its mappings according to the

Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems 17

095 — T T T T T T T T

09 | i
ves L W
08 - 4
0.75 Iterative Message-Passing ——+— -

Exact Inference
07 + -

P(m12 = correct | {F})

0.65 L I I I I I I I I
2 4 6 8 10 12 14 16 18 20

#lterations

Figure 9. Convergence of the iterative message passing algorithm compared to exact inference (example
graph, priors at 0.7, A = 0.1, f1+, fa s f3)

schedule in place in the PDMS. A, the probability that two or more mapping errors get
compensated along a cycle, is here approximated to 1/10: if we consider that the schema
of py contains eleven attributes, and that mapping errors map to a randomly chosen at-
tribute (but obviously not the correct one), the probability of the last mapping error com-
pensating any previous error is 1/10, thus explaining our choice. After a handful of it-
erations, the posterior probabilities on the correctness of ps’s mappings towards p3 and
p4 converge to 0.59 and 0.3 respectively. The second mapping has been successfully
detected as faulty for the given attribute, and will thus not be used to forward query ¢;
(0; = 0.5). The query will however reach all other databases by being correctly for-
warded through ps — ps, p3 — p4 and finally p; — p;. As the PDMS network evolves,
p2 will update its prior probabilities on the mapping toward ps and p4 to 0.55 and 0.4
respectively to reflect the knowledge gathered on the mappings so far.

6. Performance Evaluation

We present below series of results related to the performance of our approach. We start by
giving a couple of results pertaining to simple PDMS networks before analyzing larger
sets of automatically generated networks.

6.1. Performance Evaluation on the Example Graph

6.1.1. Convergence

As previously mentioned, our inference method is exact for cycle-free PDMS factor-
graphs. For PDMS factor-graphs with cycles, our embedded message passing scheme
converges to approximate results in ten iterations usually. Figure 9 illustrates a typical
convergence process for the example PDMS factor-graph of Figure 6 for schemas of
about ten attributes (i.e., A set to 0.1), prior beliefs at 0.7 and cycle feedback as follows:

[t fs

18 Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems

6.1.2. Fault-Tolerance

As mentioned earlier for the lazy message passing schedule, our scheme does not re-
quires peers to be synchronized to send their messages. To simulate this property, we
randomly discard messages during the iterative message passing schedule and observe
the resulting effects. Figure 10 shows the results if we consider, for every message to be
sent, a probability P(send) to send it only (example network, A = 0.1, priors at 0.8,
f1+ , fa, f5). We observe that our method always converges, even for cases where 90%
of the messages get discarded, and that the number of iterations required in order for our
algorithm to converge grows linearly with the rate of discarded messages.

=~ .
)
=
2
5 P(send) = 0.1 ——— N
I . -
J P(send) =0.2
E P(send) =04 —x—
A 0.8 P(send) =08 —&— 1
P(send) =1.0
0.75 - -
07 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

#Iterations

Figure 10. Robustness against faulty links, with probabilities of correctly sending a message ranging from
10% to 100% (example graph, priors at 0.8, A = 0.1, ffL7 fasf3)

6.2. Performance Evaluation on Random PDMS Networks

To test our heuristics on larger networks, we create schema nodes and add edges by ran-
domly choosing a distinct pair of nodes for each undirected mapping we wish to include.
We obtain irreflexive, non redundant and undirected Poisson-distributed graphs in this
manner. We randomly pick a certain proportion of mappings and create erroneous links.
Also, we randomly select a given percentage of cycle feedback for which two or more
errors get compensated. Finally, we run our iterative message passing heuristics on the
resulting graphs and determine for each mapping whether it is correct or not (most prob-
able value of P(m; = correct|{F}). The results are given in terms of precision values,
where precision is defined as the ratio of the number of correctly evaluated mappings
over the total number of mappings evaluated. Each result is given as an average value
calculated over twenty consecutive rounds, with a confidence interval corresponding to
a confidence level of 95%.

Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems 19

09 | B
S 08 | -
=
8
& 0.7 |- —
A=0 —x—
06 L A=005 |
05 | | | | |
0 0.2 04 0.6 0.8 1

Proportion of Erroneous Mappings [%]

Figure 11. Precision of erroneous mapping detection on random networks of 50 schemas and 200 mappings,
with a varying proportion of erroneous mappings, two values of A, TTL =5 to detect cycles and without any
a priori information

6.2.1. Performance with an Increasing Proportion of Erroneous Mappings

Figure 11 provides results corresponding to networks of 50 schemas and 200 mappings,
with an increasing percentage of erroneous mappings and for relatively small schemas
(A = 5%). Our methods work surprisingly well for low densities of incorrect mappings,
with 98% or more of correct decisions for networks with less than 30% of erroneous
mappings. For networks with a larger proportions of incorrect mappings, the results are
less spectacular but still satisfying with precision values above 60%. Note that these val-
ues are obtained automatically, via a totally decentralized process and without any prior
information on the mappings. Compensating errors make it difficult to detect all errors in
networks with many erroneous mappings (cycles which should be treated as negative are
in fact seen as positive). This fact is highlighted by a second curve in Figure 11 (A = 0),
corresponding to very large schemas, where compensating errors can be neglected and
where it is much easier to make sensible decisions on networks with very high propor-
tions of incorrect mappings.

6.2.2. Precision with an Increasing Number of Mappings

Figure 12 provides results corresponding to networks of 50 schemas and an increasing
number of mappings between the schemas. For sparse networks (e.g., 50 mapping links,
corresponding to one mapping per schema on average), few cycles can be detected and
thus little feedback information is available. As more and more mappings are created,
more feedback information gets available thus making it easier to take sensible decisions
on the correctness of the mappings. Dense networks have a very high number of long
cycles (e.g., in scale-free networks, where the number of large loops grows exponentially
with the size of the loops considered [18]); the longer the cycle, however, the less inter-
esting it is from an inference point of view as it is related to a higher number of mapping
variables (and hence represents less precise information). Thus, peers should always be
cautious to analyze the most pertinent feedback information only, pertaining to cycles or
parallel paths as small as possible, and to keep their TTL for detecting cycles and parallel

20 Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems

095 -

09 |
085 H i
08 H 1

0.75 -

Precision [%]

0.7 1 u

0.65 H Adaptive TTL (6,6,5,5,4 and 4) —— -

TTL=5
06 - -

055 Lt 1 1 1 1 1
50 100 150 200 250 300

#Mappings

Figure 12. Precision of erroneous mapping detection on random networks of 50 schemas and a varying number
of mappings, with a proportion of 20% of erroneous mappings, A = 0.05, without any a priori information
but with different TTL values for detecting the cycles

paths relatively small; to highlight this fact, Figure 12 shows two curves: one for a fixed
TTL of 5 and one with an adaptive TTL (6 for 50 to 100 mappings, 5 for 150 to 200 map-
pings and 4 from 250 mappings). Adapting the TTL value is important in two situations:
first, in sparse networks where peers should try to detect longer cycles in order to get
more feedback information (e.g. for 100 mappings in Figure 12, where a TTL of 6 leads
to better results than a TTL of 5). In very sparse networks, however, there are simply too
few mappings to detect a sufficient number of cycles, even for large TTL values (e.g.,
for 50 mappings in Figure 12). Second, in dense networks, where precious information
given by short cycles can rapidly be diluted by taking into account longer cycles (e.g., for
300 mappings in Figure 12, where more than 20000 cycles of length 5 can be discovered,
leading to poorer results if all taken into account). From a local perspective, peers should
thus start with low TTL values and increase their TTL only when very few cycles are
discovered. This also ensures the scalability of our approach: peers can concentrate on
their direct vicinity and do not need to analyze the network as a whole.

7. Conclusions and Future Work

As distributed database systems move from static, controlled environments to highly dy-
namic, decentralized settings, we are convinced that correctly handling uncertainty and
erroneous information will become a key challenge for improving the overall quality of
query answering schemes. The vast majority of approaches are today centered around
global and deductive methods, which seem quite inappropriate to maximize the perfor-
mance of systems that operate without any form of central coordination. Contrary to
these approaches, we consider an abductive, non-monotonic reasoning scheme, which
reacts to observations and inconsistencies by propagating belief in a decentralized way.
Our approach is computationally efficient as it is solely based on sum-products opera-
tions. Also, we have shown its high effectiveness by evaluating it on sets of randomly

Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems 21

generated database networks. We are currently implementing our approach in our Se-
mantic Overlay Network called GridVine [14] and plan to analyze the computational
overhead and scalability properties of our iterative message passing approach in dynamic
environments. Furthermore, we are currently interested in testing other inference tech-
niques (e.g., generalized belief propagation [21], or techniques constructing a junction
tree in a distributed way [22]) in order to determine the most efficient way of performing
inference in our decentralized database setting.

References

[1] K. Aberer and P. Cudré-Mauroux. Semantic Overlay Networks. In International Conference
on Very Large Data Bases (VLDB), 2005.

[2] K. Aberer (ed.). Special issue on peer to peer data management. ACM SIGMOD Record,
32(3), 2003.

[3] P. Bouquet et al. Specification of a common framework for characterizing alignment. In
KnowledgeWeb Deliverable 2.2.1, http://knowledgeweb.semanticweb.org.

[4] D. L. McGuinness and F. van Harmelen (eds). Owl web ontology language overview. W3C
Recommendation, 2004.

[5] J. Euzenat et al. State of the art on current alignment techniques. In KnowledgeWeb Deliver-
able 2.2.3, hitp://knowledgeweb.semanticweb.org.

[6] K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. Start making sense: The Chatty Web ap-
proach for global semantic agreements. Journal of Web Semantics, 1(1), 2003.

[7]1 K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. The Chatty Web: Emergent Semantics
Through Gossiping. In International World Wide Web Conference (WWW), 2003.

[8] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and 1. Za-
ihrayeu. Data management for peer-to-peer computing: A vision. In Workshop on the Web
and Databases (WebDB), 2002.

[9] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér, and
T. Risch. EDUTELLA: a P2P networking infrastructure based on RDF. In International
World Wide Web Conference (WWW), 2002.

[10] L. Tatarinov and A. Halevy. Efficient Query Reformulation in Peer-Data Management Sys-
tems. In SIGMOD Conference, 2004.

[11] L Tatarinov, Z. Ives, J. Madhavan amd A. Halevy, D. Suciu, N. Dalvi, X. Dong, Y. Kadiyaska,
G. Miklau, and P. Mork. The Piazza Peer Data Management Project. ACM SIGMOD Record,
32(3), 2003.

[12] M. Arenas, V. Kantere, A. Kementsietsidis, 1. Kiringa, R. J. Miller, and J. Mylopoulos. The
Hyperion Project: From Data Integration to Data Coordination. SIGMOD Record, 32(3),
2003.

[13] B. C. Ooi, Y. Shu, and K.-L. Tan. Relational Data Sharing in Peer-based Data Management
Systems. ACM SIGMOD Record, 32(3), 2003.

[14] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. van Pelt. Gridvine: Building internet-
scale semantic overlay networks. In International Semantic Web Conference, 2004.

[15] ER. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algo-
rithm. IEEE Transactions on Information Theory, 47(2), 2001.

[16] J. Pearl. Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Inference.
Morgan Kaufmann, 1988.

[17] K. M. Murphy, Y. Weiss, and M. I Jordan. Loopy belief propagation for approximate infer-
ence: An empirical study. In Uncertainty in Artificial Intelligence (UAI), 1999.

[18] G. Bianconi and M. Marsili. Loops of any size and hamilton cycles in random scale-free
networks. In cond-mat/0502552 v2, 2005.

22 Ph. Cudré-Mauroux et al. / Belief Propagation in Peer Data Management Systems

[19] P. Cudré-Mauroux, K. Aberer, and Andras Feher. Probabilistic message passing in peer data
managemen systems. In International Conference on Data Engineering (ICDE), 2006.

[20] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society, 39, 1977.

[21] J.S. Yedidia, W.T. Freeman, and Y Weiss. Generalized belief propagation. Advances in
Neural Information Processing Systems (NIPS), 13, 2000.

[22] M.A. Paskin and C.E. Guestrin. A robust architecture for distributed inference in sensor
networks. In Intel Research Technical Report IRB-TR-03-039, 2004.

