
LSH At Large – Distributed KNN Search
in High Dimensions∗

Parisa Haghani † , Sebastian Michel † , Philippe Cudré-Mauroux ‡ , Karl Aberer †

† EPFL ‡ MIT
Lausanne, Switzerland USA

firstname.lastname@epfl.ch pcm@csail.mit.edu

ABSTRACT
We consider K-Nearest Neighbor search for high dimen-
sional data in large-scale structured Peer-to-Peer networks.
We present an efficient mapping scheme based on p-stable
Locality Sensitive Hashing to assign hash buckets to peers in
a Chord-style overlay network. To minimize network traffic,
we process queries in an incremental top-K fashion lever-
aging on a locality preserving mapping to the peer space.
Furthermore, we consider load balancing by harnessing esti-
mates of the resulting data mapping, which follows a normal
distribution. We report on a comprehensive performance
evaluation using high dimensional real-world data, demon-
strating the suitability of our approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing—
Indexing methods; H.4.m [Information Systems]: Miscel-
laneous

General Terms
Distributed High Dimensional Search

Keywords
knn search, nearest neighbor, high dimensionality, p2p

1. INTRODUCTION
We are currently witnessing a rapid growth of online in-

formation, triggered by the popularity of the Internet and
the huge amounts of user-generated contents from Web 2.0
applications. As it becomes increasingly easy to create and
publish information on the Internet, the need for efficiently
managing user-generated data gets more and more pressing.
User-generated data today range from simple text snippets
to (semi-) structured documents and multimedia content.

∗The work presented in this paper was partially supported
by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS),
a center supported by the Swiss National Science Founda-
tion under grant number 5005-67322 and by the European
project NEPOMUK No FP6-027705.

Copyright is held by the author/owner.
Proceedings of the 11th International Workshop on Web and
Databases (WebDB 2008), June 13, 2008, Vancouver, Canada

The number of features that can be considered for indexing
those rich and heterogeneous pieces of data is growing dra-
matically. Furthermore, as the data sources are naturally
distributed in large-scale networks, traditional centralized
indexing technique become impractical. To address the de-
manding needs caused by this rapidly growing, large-scale,
and naturally distributed information ecology, we propose in
the following an efficient, distributed, and scalable index for
high-dimensional data enabling exact as well as similarity
search over this data.

Peer-to-Peer (P2P) overlay networks are well-known to
facilitate the sharing of large amounts of data in a decen-
tralized and self-organizing way. These networks offer enor-
mous benefits for distributed applications in terms of effi-
ciency, scalability, and resilience to node failures. Distrib-
uted Hash Tables (DHTs) [24, 22], for example, allow effi-
cient key lookups in logarithmic number of routing hops but
are typically limited to exact or range queries. K-Nearest
Neighbor (KNN) search in high dimensional data has been
a popular research topic in the last years [5, 12, 25, 4, 9].
Given a set of data points represented in high dimensional
space and a distance measure between them, the goal is to
efficiently return the K-Nearest neighbors of a query point.
Existing approaches to the problem either focus on central-
ized settings, as cited above, or rely on preprocessing data
centrally or assume data ownership by peers in a hierarchical
P2P setting [11, 23, 10].

In this paper we consider KNN search over high dimen-
sional data in structured overlay networks. Inspired by
the idea of Locality Sensitive Hashing (LSH) technique [12,
9] which probabilistically assigns similar data to the same
bucket in a hash table, we devise a locality preserving map-
ping to place buckets likely to hold similar data on the same
peer. We minimize the number of network hops required
to retrieve the neighbors to decrease both network traffic
and the overall response time. Furthermore, we consider
load balancing by harnessing estimates of the resulting data
(bucket) mapping, which follows a normal distribution.

1.1 Contribution and Outline
With this work we make the following contributions: (i)

We review existing LSH schemes, investigate the difficulties
in distributing them and devise new means to apply them
in distributed settings. (ii) We present a novel technique
to map LSH buckets to peers in a large-scale network, con-
sidering load balancing issues during the data placement.
(iii) We present a top-K algorithm to process distributed
KNN queries by harnessing our locality preserving mapping
of buckets to peers. (iv) We experimentally evaluate the ef-
ficiency and effectiveness of our approach using real-world
data.

The rest of this paper is organized as follows. Section 2

discusses related work. In Section 3, we extend LSH tech-
niques to distributed settings by introducing a linear map-
ping between the buckets and the domain of the peers. Sec-
tion 4 concentrates on the creation of the distributed in-
dex. We present the query processing algorithm in Section
5. Section 6 is devoted to the experimental evaluation of
our approach. We conclude the paper in Section 7.

2. RELATED WORK
Similarity search in high dimensional spaces has been the

focus of many works in the database community in the re-
cent years. The problem has been intensively researched on
in the centralized setting, for which the approaches can be
divided into two main categories. Space partitioning meth-
ods form the first category consisting of all tree-base ap-
proaches such as the R-tree [13] and K-D trees [3], which
perform very well when data dimensionality is not high but
degrade to linear search for high enough dimensions [5]. The
Pyramid [4] and iDistance[25] techniques map the high di-
mensional data to one dimension and partition/cluster that
space to answer queries by translating them to the one di-
mensional space. The second category consists of hash-based
approaches which trade accuracy for efficiency, by return-
ing approximate closest neighbors of a query point. LSH
[12] is an approximate method, which uses several local-
ity preserving hash functions to hash the data, such that
with high probability close points are hashed to the same
bucket. While this method is very efficient in terms of time,
tuning such hash functions depends on the distance of the
query point to its closest neighbor. Several follow-ups of this
method exist which try to solve the problems associated with
it [2, 9, 17, 19].

With the emergence of the P2P paradigm [24, 22], there
has been a tendency to leverage the power of distributed
computing by sharing the costs incurred by such methods
over a set of machines. A number of P2P approaches, such
as [8, 6, 7] have been proposed for similarity search, but
they are either dedicated to one dimensional data or do not
consider very high dimensional data. MCAN [11] uses a
pivot-based technique to map the high dimensional metric
data to an N-dimensional vector space, and then uses CAN
[22] as its underlying structured P2P system. The pivots are
chosen based on the data, which is preprocessed in a cen-
tralized fashion and then distributed over the peers. SWAM
[1] is a family of Small World Access Methods, which aims
at building a network topology that groups together peers
with similar content. In this structure peers can hold a single
data item each, which is not well-suited for large data sets.
SkipIndex [26] and VBI-tree [15] both rely on tree-based ap-
proaches which do not scale well when data dimensions are
high. Recently, SimPeer [10] was proposed, which uses the
principle of iDistance [14] to provide range search capabil-
ities in a hierarchical unstructured P2P network for high
dimensional data. In this work also, the peers are assumed
to hold and maintain their own data. On the contrary, we
consider efficient similarity search over structured P2P net-
works, which guarantees logarithmic lookup time in terms
of network size, and leverage on LSH-based approaches to
provide approximate results to KNN search efficiently, even
in very high dimensional data.

3. DISTRIBUTING LSH
3.1 Locality Sensitive Hashing

The basic idea behind the LSH-based approaches is the ap-
plication of locality sensitive hashing functions. The salient
property of these functions is that they map, with high prob-
ability, similar objects (represented in the d-dimensional

vector space) to the same hash bucket, i.e., related objects
are more probable to have the same hash value than distant
ones. The actual indexing is done using LSH functions and
by building several hash tables to increase the probability
of collision for close points. At query time, the KNN search
is performed by hashing the query point to one bucket per
hash table and then to rank all discovered objects by their
distance to the query point. The closest K points are re-
turned as the final result.

In the last years, the development of locality sensitive hash
function has been well addressed in the literature. In this
work, we consider the family of LSH functions based on p-
stable distributions [9] which are most suitable for lp norms.
In this case, for each data point v, the hashing scheme con-
siders k independent hash functions of the form ha,b(v) =
"a·v+B

W # where a is a d-dimensional vector whose elements
are chosen independently from a p-stable distribution, W ∈
IR, and B is chosen uniformly from [0, W]. Each hash func-
tion maps a d-dimensional data point onto the set of inte-
gers. With k such hash functions, the final result is a vector
of length k of the form g(v) = (ha1,B1(v), ..., hak,Bk (v)).
We use the Normal distribution as our p-stable distribu-
tion, which is 2-stable and is appropriate for the Euclidean
distance function.

In order to achieve high search accuracy, multiple hash
tables need to be constructed. Experimental results [12]
show that the number of hash tables needed can reach up
to over a hundred. In centralized settings this causes space
efficiency issues. While this constraint is less visible in a
P2P setting, a high number of hash tables results in an-
other serious issue arising specifically in this environment,
that is, in order to visit all hash tables (which is needed
to answer the KNN query) a lot of peers may need to be
contacted. Solutions to this shortcoming in centralized set-
tings [17, 19] suggest investigating more than one bucket in
each hash table. The main idea is that we can guess which
other buckets are more likely to hold data that is similar
to the query point. In our envisioned P2P scenario, jump-
ing from one bucket to another can cause O(log n) network
hops. In the following subsection, we discuss and introduce
a mapping scheme, which allows us to significantly reduce
the number of incurred network hops during query time by
grouping those buckets which are likely to hold similar data
on the same peer, while nicely balancing the load in the
network.

3.2 Mapping LSH to the peer identifier space
We consider a network of n peers P1, ..., Pn connected by a

DHT that is organized in a cyclic ID space, such as in Chord
[24]. Every node is responsible for all keys with identifiers
between the ID of its predecessor node and its own ID.

Given the output of the p-stable LSH, which is a vector of
integers, we consider a mapping to the peer identifier space,
denoted as ξ : Ik → IN.

Different instances of the mapping function ξ come with
different characteristics w.r.t. to load balancing and the
ability to efficiently search the index. In terms of network
bandwidth consumption and number of network hops, clearly,
a mapping of all data to just one peer is optimal. Obvi-
ously, this mapping suffers from a huge load imbalance. The
other extreme is to assign each hash bucket to a peer using
a pseudo-uniform hash function that provides perfect load
balancing but steals any control on grouping similar buckets
on the same peer, therefore causing an excessive number of
DHT lookups. More formally, ξ should satisfy the following
two conditions:

• Condition 1: assign buckets likely to hold similar data
to the same peer.

• Condition 2: have a predictable output distribution
which fosters fair load balancing.

We choose ξsum(x) =
Pk

i=1 xi as ξ, and present how, re-
lying on p-stable LSH and its characteristics, it satisfies
both conditions above. Figure 1 shows an illustration of
the overall mapping from the d-dimensional space, to the k-
dimensional LSH buckets, to finally the peer identifier space.

We first investigate condition 1. As discussed in [17] for
p-stable LSH, buckets which are likely to hold similar data
have small l1 distance to each other. Given ξsum as our
mapping function this means: if buckets with labels b1 and
b2 are likely to hold similar data, ξsum(b1) and ξsum(b2)
will be close which given the assignment of data to peers in
Chord-style overlays, results in assigning them to the same
peer with high probability.

d-dimensional
Data

k-dimensional
p-stable LSH bucket space

...

...

...

...

sum!"
!

#$
%&
W
Bva Peer identifier space

Figure 1: Illustration of the two level mapping from
the d-dimensional space to the peer identifier space.

As for the second condition, assume d-dimensional points,
a and v1. If elements of a are chosen from a Normal dis-
tribution with mean 0 and standard deviation 1, denoted as
N(0,1), a · v1 is distributed according to the Normal distri-
bution N(0,||v1||), where ||v1|| is the Euclidean norm of v1.
For not too large W , ha,B(v1) = "a·v1+B

W # is distributed

according to the Normal distribution N(W
2W , ||v1||

W) where W
and B satisfy the conditions given in 3.1. Therefore g(v1)
will be a k -dimensional vector, whose elements follow the
Normal distribution N(1

2 , ||v1||
W). We can now benefit from a

nice property of the normal distributions under summation:
ξsum(g(v1)) is distributed according to the Normal distri-

bution N(k
2 ,

√
k||v1||

W). The global picture consisting of all
data points v1, . . . ,vM first projected using p-stable LSH
and then mapped to IR by ξsum, following the Normal dis-

tribution N(k
2 ,
√

k
P

i ||vi||2√
MW

). We can therefore predict the
distribution of the output of ξsum, having an estimate of
the mean of data points’ Euclidean norm. We assume that
we know the mean norm of available data, but as we will
later see, this assumption is only relevant for the start-up of
the system where gateway peers are inserted into the hash
tables. Calculating statistics, like in our case the mean,
over data distributed in large-scale systems has been well
addressed in the literature (cf., e.g., [16]). In the next sec-
tion we show how this can be used to balance the load in
the network.

4. INDEX CREATION
To map a particular domain of integer values to a (subset

of) peers, it is important to know the size and distribution
of the domain. For instance, mapping integers from the
possible span of 32bit values to peers fails in our case, since
the values generated by ξsum are not spread across the whole
domain. However, the values generated by ξsum follow a
normal distribution as discussed above. Thus we can benefit
from a nice property of this distribution known as the 68-
95-99.7 rule. This rule says that 68% of the data lies within

one standard deviation from the mean. 95% of the data lies
within two standard deviations, and 99.7% of the data lies
within three standard deviations.

Consider a linear bucket space of M buckets in which we
want to distribute the values generated by the ξsum map-
ping. Let µsum, σsum be the mean and the standard devia-
tion of the values generated by ξsum (cf. Section 3.2). We
choose the first bucket (at position 1) to be responsible for
µsum − 2 ∗ σsum and the last bucket (at position M) to be
responsible for µsum +2∗σsum. We restrict ourselves to the
span of two standard deviation to avoid overly broad do-
mains and map the remaining data to the considered range
via a simple modulo operation:

ψ(value) := (
value− (µsum − 2 ∗ σsum)

4 ∗ σsum
∗M) mod M

We want to maintain one particular hash table by a sub-
set of peers that is usually some orders of magnitude lower
than the global number of peers. To limit the responsibility
of maintaining one hash table to that subset of peers, we dy-
namically form separate distributed hash tables as follows
(cf. Algorithm 1): At system startup, we place γ peers at
predefined positions (known by all peers) based on the nor-
mal distribution N(µsum, σsum) by sampling γ values from
N(µsum, σsum) and mapping them to buckets in the range
of {1, .., M} using ψ.

For a particular number of initial peers and the sampled
values, we consider

ρ(value, l) := (ψ(value) + hash(l)) mod |G|
as the mapping of a (value, l)-pair to the global set of peers
G, where l is a hash table id. ρ consists of two components,
the previously described ψ function and hash(l) as an offset
for global load balancing. The peers resonsible for these ρ
values are invited to join (create) the particular DHTs.

Input: Global DHT G, number of gateways γ
init(N(µsum, σsum));
for (tableId=0; tableId<l;tableId++) do

sampleSet = ∅;
for i=0; i<γ; i++ do

sample = N(µsum, σsum).nextRandom();
sampleSet.add(sample);
P = G.lookup(ρ(sample, tableId));
if tableId==0 then

P.createDHT();
else

P ′ = G.lookup(ρ(sampleSet.getRandom(),
tableId));
P.join(P ′);

end
end

end

Algorithm 1: Initial Algorithm to build up the l hash
tables that contain the gateway peers, drawn from the
global peer population

Algorithm 1 shows the initial algorithm to build up the
distributed LSH index. The most important property is the
usage of so called gateway peers (similar to the ones used in
[18]) that are initially placed in each of the LSH hash tables.
These peers can be determined using the lookup method
of the global DHT. If a lookup on one of the predefined
positions fails, i.e., leads to a peer that is not currently in
the LSH hash table, that peer issues a lookup on one of
the other entry points and joins the particular hash table

it belongs to. In case of a successful access to one of the
gateway peers, the query initiator (or data indexing peer)
gains access to the LSH hash table.

The number of peers dynamically grows inside each LSH
hash table by overloaded peers issuing requests on the global
DHT to find peers joining the hash table on a particular
position (bucket). In case of access load problems, the gate-
way peers can call for a global increment of the number of
gateway peers, i.e., increase the number of possible gateway
peers that will subsequently be hit by requests and hence in-
vited to join the LSH hash tables. We can benefit from the
rich related work on load balancing techniques over DHT,
such as the work by Pitoura et al [20], that replicates “hot”
ranges inside a Chord style DHT and then let peers ran-
domly choose among the replicated arcs.

5. QUERY PROCESSING
Given a query object q = (q1, ..., qd), the object is mapped

to a bucket g(q), i.e., a vector of length k as described above,
using the p-stable LSH method. The query initiator uses one
randomly selected gateway peer per LSH hash table as an
entry point to the LSH hash buckets. Subsequently, the
responsible peer P for maintaining the share of the global
index that contains g(q) is determined by mapping g(q) to
the peer identifier space using ξsum(g(q)), as defined above.
The query is passed on to P that executes the KNN query
locally using a full scan and passes the query on. We restrict
the local query execution to a simple full-scan query process-
ing since we do not want to intermingle local performance
with global performance. The local query execution strategy
is orthogonal to our work. For the query forwarding (i.e.,
routing), we consider two possible options: (i) incremental
forwarding to neighboring peers or (ii) forwarding based on
the multi probe technique [17].

5.1 Linear Forwarding
Let τ denote the distance of the K-th object w.r.t. the

query object q, obtained by the full scan KNN search. Peer
P will pass the query and the current rank-K distance τ
to its neighboring peers Ppred and Psucc, causing each one
single network hop. Upon receiving the query, Ppred and
Psucc will issue a local full scan KNN search and compare
their best result to τ (cf. Algorithm 2). If the distance
dbest of the best document is bigger than τ , the peer will
not return any results and will stop forwarding the query
to its neighbor (depending on the direction, successor or
predecessor). That stopping condition can be relaxed by
introducing a parameter α and stop the processing if dbest >
τ/α. α allows for either a more aggressive querying (α > 1)
of neighboring peers or for an early stopping (α < 1).

5.2 Multi-Probe Based Forwarding
Due to the way we are mapping hash buckets to peers, P

maintains all data points that map to a sum that falls into its
responsibility, i.e., all values that are in]P.pred().id, P.id].
The multi-probe LSH method [17] slightly varies the integers
in g(q) and produces bucket ID’s which are likely to hold
close elements to q. For each of these modifications, the
method then probes the resulting bucket for new answerers.
We adapt this technique as an alternative to the succes-
sor/predecessor based forwarding as follows: after the full
scan, the peer generates a list of buckets to probe next, con-
sidering the maximum number of extra buckets. It is very
likely that some of these buckets have already been visited,
thus they are removed from the list. For a generated bucket
g(q) with ξsum(g(q)) /∈]P.pred().id, P.id], the peer issues a
lookup in the local DHT and forwards the query and bucket
list the to the peer responsible for ξsum(g(q)). The peer

Input: query o, threshold τ , Pinit, direction
result[] = localIndex.executeLocalKnn(o);
if result[0].distance> τ/α then

done;
else

resultSet = ∅;
for (index=0; index<K; index++) do

if results[index].distance< τ/α then
resultSet.add(results[index]);

else
τ ′ = resultSet.rankKDistance();
sendResults(resultSet, Pinit);
forwardQuery(this.predecessor() or/and
this.successor(), τ ′, o, Pinit, pred or/and
succ);

end
end

end

Algorithm 2: Top-K Style Query Execution based on
the locality sensitive mapping to the linear peer space by
passing the query on to succeeding or preceding peers.

that receives the query, issues a full scan, removes visited
buckets from the list and forwards the query (cf. Algorithm
3).

Input: Local DHT L, query o, bucketlist, Pinit

result[] = localIndex.executeLocalKnn(o);
while (bucketlist.hasElement() do

b =bucketlist.removeBucket();
bucketId =ξsum(b);
if bucketId ∈]P.pred().id, P.id] then

nothing to do;
else

Pnew = L.lookup(bucketId);
sendResults(Pinit, results); forwardQuery(Pnew,
,bucketlist, Pinit);
break;

end
end

Algorithm 3: Multi Probe based Variant of the KNN
query processing.

The multi probe algorithm relies on the parameter that
specifies the maximum number of probes, whereas the linear
forwarding algorithm has a clear defined stopping condition.
The relaxation parameter α is optional.

6. EXPERIMENTS
6.1 Experimental Setup

We have implemented a simulation of the proposed sys-
tem and algorithms using Java 1.6. The simulation run on
a 2x2.33 GHz Quad-Core Intel Xeon CPU with 8GB RAM.
The data is stored in Oracle 11g. As data set, we used a flickr
collection consisting of 200, 000 MPEG7 visual descriptors
with 282 dimensions per image such as the Edge Histogram
or Homogeneous Texture Types. We uses the Euclidean dis-
tance to measure the distances between images, treating all
dimensions equally and without preprocessing the data. We
chose 100 points randomly from the above as query points.
K = 20 in all experiments. For the global DHT we consid-
ered a population of 100, 000 peers and we considered 100
peers to maintain each LSH hash table.

We implemented and tested the following four methods:
SimpleRand: This is the baseline algorithm that uses

a pseudo-random mapping as ξ. At query time, the whole
local index of the peer which is responsible for the mapped
LSH bucket is scanned without further forwarding.

SimpleSum: This is when the p-stable LSH buckets are
distributed among peers using ξsum. Query processing is
done like the previous method.

MultiProbeSum: In this method also the distribution
is done with ξsum, while at query time we use the multi-
probing based algorithm as described in Section 5.2.

LinearSum: Here also we use ξsum to distribute the
buckets among peers while at query time the linear forward-
ing algorithm, Section 5.1, is used.

We report on the following measures:

Gini Coefficient: As for a measure of load imbalances
we consider the Gini coefficient of the load distribution, that
is defined as G = 1− 2

R 1

0
L(x)dx where L(x) is the Lorenz

curve of the underlying distribution. Pitoura et al [21] show
that the Gini coefficient is most appropriate statistical met-
ric for measuring load distribution fairness. The Gini coef-
ficient, other than the other three measures, is query inde-
pendent and measured once for each benchmark to report
on the storage load distribution.

Number of Network Hops: We count the number of
network hops during the query execution. Network hops are
one of the most critical parameters in making distributed
algorithms work in large-scale wide-area networks.

Relative Recall: For the effectiveness metric, we report
on the relative recall, i.e., the number of relevant documents
among returned documents. The relevance is defined by the
full-scan run over all data points to determine the K highest
ranked points for a given query, where similarity is measured
based on l2. It should be noted that since we are ranking
the all candidate objects and returning only the top K, we
do not need to consider precision here.

Error Ratio: Given that LSH is an approximate algo-
rithm, we also measured the Error Ratio which measures
the quality of approximate nearest neighbor search as de-

fined in [12]. 1
K

PK
i=1

dLSHi
dtruei

where dLSHi is the distance of

query point to its i-th nearest neighbor found by LSH and
dtruei is its distance to its true i-th nearest neighbor. Since
this measure does not add new insight over relative recall
and due to space constraints we do not report it here.

All performance measures are averaged over 100 queries.
The cost for local query execution is considered to be neg-

ligible in our scenario, as the network cost is clearly the dom-
inating factor. One single network hop in a wide-area costs
in average around 100ms, which overrules the I/O cost, in-
duced by a standard hard disk, with approximately 8ms for
disk seek time plus rotation latency and 100MB/s transfer
rate for sequential accesses, in case of local disk access.

6.2 Experimental Results
We first investigate the effect of ξsum on the load distri-

bution, which is shown in Figure 2 for different parameter
settings. As seen in Table 1 the Gini coefficients of all four
load distributions fall in the range of [0.4,0.6] which is a
strong indicator for a fair load distribution [20].

k=20,W=10 k=20,W=1 k=100,W=10 k=100,W=1
0.47 0.52 0.53 0.57

Table 1: Gini Coefficient when distributing 10 hash
tables using ξsum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

lo
ad

% peers

Lorenz curve of the load distribution

Perfect Distribution
SUM k=20,W=10

SUM k=20,W=1
SUM k=100,W=10

SUM k=100,W=1

Figure 2: The load distribution under different pa-
rameters in the case of 10 LSH hash tables.

Figure 3 shows the results obtained by varying the num-
ber of hash tables from 2 to 20. SimpleSum is obtaining up
to twice better recall compared to SimpleRand when using
the same number of hash tables or having the same num-
ber of network hops. The number of network hops in these
two cases clearly reflects the number of hash tables used; as
queries are not forwarded we have one lookup in the global
DHT per hash table. This confirms that ξsum preserve the
locality, i.e., it groups buckets with similar content to the
same peer. The results are shown for different values of W
and k and show the robustness of the method against para-
meter changes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350

re
ca

ll

network hops

recall versus number of network hops

SimpleSum W=1k=20
SimpleSum W=10k=20
SimpleRand W=1k=20

SimpleRand W=10k=20

Figure 3: Recall versus number of DHT lookups.

We report in Table 2 the recall and number of network
hops for the four different methods under comparison. All
methods using ξsum are superior to SimpleRand in terms
of recall and number of network hops. MultiProbeSum and
LinearSum achieve better recall compared to SimpleSum at
the expense of a small increase in the number of network
hops. To better compare SimpleSum and LinearSum, we use
information from Figure 3. Observing the curve for k = 20
and W = 1, for SimpleSum to achieve a recall of 61%, 265
network hops are necessary, while for the same parameters
LinearSum needs 193 network hops (cf. 8th row in Table 2).
This also reflects the number of required hash tables which
is in this case 16 for SimpleSum and 10 for LinearSum, i.e.,
60% more redundancy in the network.

The comparison between MultiProbeSum and LinearSum
shows that when they have equal recall (cf. 3rd row of Ta-
ble 2) LinearSum needs less network hops. In other cases
LinearSum achieves up to 18% more recall at the expense of
around 15% more network hops.

Relative Recall in % (#Network Hops)
#tables W k Simple MProbe Linear Simple

Sum Sum Sum Rand

2 10 20 14% (33) 17% (43) 18% (38) 8% (33)
10 10 20 47% (166) 56% (218) 58% (194) 19% (166)
20 10 20 69% (332) 79% (438) 79% (338) 28% (332)

2 10 100 14% (33) 16% (38) 19% (38) 9% (33)
10 10 100 47% (166) 52% (189) 58% (194) 20% (166)
20 10 100 69% (332) 75% (438) 80% (388) 31% (332)

2 1 20 16% (33) 16% (34) 20% (38) 8% (33)
10 1 20 47% (166) 48% (171) 61% (193) 21% (166)
20 1 20 71% (332) 72% (341) 82% (387) 38% (332)

2 1 100 15% (33) 16% (33) 22% (38) 8% (33)
10 1 100 49% (166) 50% (168) 63% (193) 20% (166)
20 1 100 70% (332) 70% (336) 82% (386) 36% (332)

Table 2: Measuring recall and number of network
hops for different configurations of W , k and num-
ber of hashtables for different methods under com-
parison. Number of probes for MultiProbeSum is
100.

7. CONCLUSIONS
We have presented a robust and scalable solution to the

distributed K-Nearest Neighbor search problem over high
dimensional data. Having investigated the characteristics of
the existing centralized LSH based methods, we have de-
vised an algorithm to distribute the p-stable LSH method
considering the requirements that arise in distributed set-
tings. Our proposed locality preserving mapping, brings
together two contradictory conditions of efficient and high
quality KNN search in distributed settings: Enabling prob-
abilistic placement of similar data on the same peer, while
achieving a fair load balancing. We have presented how
to create the index, leveraging our proposed mapping and
its characteristics. We have devised two algorithms, con-
sidering an incremental top-K processing over neighboring
peers and as an alternative approach, an algorithm that uses
multi-probe LSH to find peers that need to be included in
the query processing. The presented experimental results
indicate that the proposed algorithms are stable w.r.t. para-
meter choices and provide high search quality. Preparatory
experiments with LSH based methods showed that exist-
ing centralized algorithms are very sensitive to the tunable
parameters. Suboptimal parameters can be expected in dy-
namic, large-scale distributed systems and we believe that
our approach is thus well-positioned to become a fundamen-
tal building block towards applying LSH based methods in
real world, distributed applications.

8. REFERENCES
[1] Farnoush Banaei-Kashani and Cyrus Shahabi. Swam:

a family of access methods for similarity-search in
peer-to-peer data networks. CIKM, 2004.

[2] Mayank Bawa, Tyson Condie, and Prasanna Ganesan.
Lsh forest: self-tuning indexes for similarity search.
WWW, 2005.

[3] Jon Louis Bentley. K-d trees for semidynamic point
sets. Symposium on Computational Geometry, 1990.

[4] Stefan Berchtold, Christian Böhm, and Hans-Peter
Kriegel. The pyramid-technique: towards breaking the
curse of dimensionality. SIGMOD Rec., 27(2), 1998.

[5] Kevin S. Beyer, Jonathan Goldstein, Raghu
Ramakrishnan, and Uri Shaft. When is ”nearest
neighbor” meaningful? ICDT, 1999.

[6] Ashwin R. Bharambe, Mukesh Agrawal, and
Srinivasan Seshan. Mercury: supporting scalable
multi-attribute range queries. SIGCOMM, 2004.

[7] Erik Buchmann and Klemens Böhm. Efficient
evaluation of nearest-neighbor queries in

content-addressable networks. From Integrated
Publication and Information Systems to Virtual
Information and Knowledge Environments, 2005.

[8] Adina Crainiceanu, Prakash Linga, Ashwin
Machanavajjhala, Johannes Gehrke, and Jayavel
Shanmugasundaram. P-ring: an efficient and robust
p2p range index structure. SIGMOD, 2007.

[9] Mayur Datar, Nicole Immorlica, Piotr Indyk, and
Vahab S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. Symposium on
Computational Geometry, 2004.

[10] Christos Doulkeridis, Akrivi Vlachou, Yannis Kotidis,
and Michalis Vazirgiannis. Peer-to-peer similarity
search in metric spaces. VLDB, 2007.

[11] Fabrizio Falchi, Claudio Gennaro, and Pavel Zezula. A
content-addressable network for similarity search in
metric spaces. DBISP2P, 2005.

[12] Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
Similarity search in high dimensions via hashing.
VLDB, 1999.

[13] Antonin Guttman. R-trees: A dynamic index
structure for spatial searching. SIGMOD Conference,
1984.

[14] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui
Yu, and Rui Zhang 0003. idistance: An adaptive
b+-tree based indexing method for nearest neighbor
search. ACM Trans. Database Syst., 30(2), 2005.

[15] H. V. Jagadish, Beng Chin Ooi, Quang Hieu Vu, Rong
Zhang, and Aoying Zhou. Vbi-tree: A peer-to-peer
framework for supporting multi-dimensional indexing
schemes. ICDE, 2006.

[16] Márk Jelasity, Alberto Montresor, and Özalp
Babaoglu. Gossip-based aggregation in large dynamic
networks. ACM Trans. Comput. Syst., 23(3), 2005.

[17] Qin Lv, William Josephson, Zhe Wang, Moses
Charikar, and Kai Li. Multi-probe lsh: Efficient
indexing for high-dimensional similarity search.
VLDB, 2007.

[18] Sebastian Michel, Peter Triantafillou, and Gerhard
Weikum. Minervainfinity: A scalable efficient

peer-to-peer search engine. Middleware, 2005.
[19] Rina Panigrahy. Entropy based nearest neighbor

search in high dimensions. SODA, 2006.
[20] Theoni Pitoura, Nikos Ntarmos, and Peter

Triantafillou. Replication, load balancing and efficient
range query processing in dhts. EDBT, 2006.

[21] Theoni Pitoura and Peter Triantafillou. Load
distribution fairness in p2p data management systems.
ICDE, 2007.

[22] Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard M. Karp, and Scott Shenker. A scalable
content-addressable network. SIGCOMM, 2001.

[23] Ozgur D. Sahin, Fatih Emeki, Divyakant Agrawal,
and Amr El Abbadi: Content-Based Similarity Search
over Peer-to-Peer Systems. DBISP2P, 2004.

[24] Ion Stoica, Robert Morris, David R. Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications.
SIGCOMM, 2001.

[25] Cui Yu, Beng Chin Ooi, Kian-Lee Tan, and H. V.
Jagadish. Indexing the distance: An efficient method
to knn processing. VLDB, 2001.

[26] Chi Zhang, Arvind Krishnamurthy, and Randolph Y.
Wang. Skipindex: Towards a scalable peer-to-peer
index service for high dimensional data. TR, Dept of
CS, Princeton University, 2004.

