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Abstract

This paper describes a novel approach for obtaining semantic interoperability in
a bottom-up, semi-automatic manner without relying on pre-existing, global seman-
tic models. We assume that large amounts of data exist that have been organized and
annotated according to local schemas. Seeing semantics as aform of agreement, our
approach enables the participating data sources to incrementally develop global agree-
ments in an evolutionary and completely decentralized process that solely relies on
pair-wise, local interactions.

Keywords: Semantic integration, semantic agreements, self-organization

1 Introduction

The recent success of peer-to-peer (P2P) systems and the initiatives to create the Semantic
Web have emphasized again a key problem in information systems: the lack of seman-
tic interoperability. Semantic interoperability is a crucial element for making distributed
information systems usable. It is prerequisite for structured, distributed search and data
exchange and provides the foundations for higher level (web) services and processing.

For example, the technologies that are currently in place for P2P file sharing systems
either impose a simple semantic structure a-priori (e.g., Napster, Kazaa) and leave the bur-
den of semantic annotation to the user, or do not address the issue of semantics at all (e.g.,
the current web, Gnutella, Freenet) but simply support a semantically unstructured data
representation and leave the burden of “making sense” to theskills of the user, e.g., by pro-
viding pseudo-structured file names such asEnterprise-2x03-Mine-Fieldthat encapsulate
very simple semantics.

Also, classical attempts to make information resources semantically interoperable, in
particular in the domain of database integration, do not scale well to global information
systems, such as P2P systems. Despite a large number of approaches and concepts, such as
federated databases, the mediator concept [32], or ontology-based information integration
approaches [12, 24], practically engineered solutions arestill frequently hard-coded and
require substantial support from human experts. A typical example of such systems are
domain-specific portals such as CiteSeer (www.researchindex.com, publication data), SRS
(srs.ebi.ac.uk, biology) or streetprices.com (e-commerce). They integrate data sources on
the Internet and store them in a central warehouse. The data is converted to a common
schema which usually is of simple to medium complexity. Thisapproach adopts a sim-
ple form of wrapper-mediator architecture and typically requires substantial development
efforts for the automatic or semi-automatic generation of mappings from the data sources
into the global schema.

In the context of the Semantic Web, a major effort is devoted to the provision of ma-
chine processable semantics expressed in meta-models suchas RDF, OIL [7], OWL [5],
DAML+OIL [11] and TRIPLE [28] and based on shared ontologies. Still, these approaches
rely on common ontologies, to which existing information sources can be related by proper
annotation. This is an extremely important development, but its success will heavily rely
on the wide standardization and adoption of common ontologies or schemas.

The advent of P2P systems, however, introduces a different view on the problem of
semantic interoperability by taking a social perspective which relies on self-organization
heavily. We argue that we can see the emerging P2P paradigm asan opportunity to improve
semantic interoperability rather than as a threat, in particular in revealing new possibilities
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on how semantic agreements can be achieved. This motivated us to look at the problem
from a different perspective and has inspired the approach presented in this paper.

In the following, we abstract from the underlying infrastructure such as federated data-
bases, web sites or P2P systems and regard these systems as graphs of interconnected data
sources. For simplicity, but without constraining the general applicability of the presented
concepts, we denote these data sources aspeers. Each peer offers data which are orga-
nized according to some schema expressed in a data model, e.g., relational, XML, or RDF.
Among the peers, communication is supported via suitable protocols and architectures, for
example, HTTP, SOAP or JXTA.

The first issue to observe is that semantic interoperabilityis always based on some
form of agreement. Ontology-oriented approaches in the Semantic Web represent this
agreementexplicitly through a shared ontology. In our approach, no explicit representa-
tion of a globally shared agreement will be required, but agreements areimplicit and result
from the way our (social) mechanism works.

We impose a modest requirement on establishing agreements by assuming the exis-
tence of local agreements provided as partial translationsbetween different schemas, i.e.,
agreements established in a P2P manner. These agreements will have to be established in a
manual or semiautomatic way since in the near future we do notexpect to be able to fully
automate the process of establishing semantic translations even locally. However, a rich
set of tools is getting available to support this [18, 23, 27]. Establishing local agreements
is a less challenging task than establishing global agreements by means of global schemas
or shared ontologies. Once such agreements exist, we establish on-demand relationships
among schemas of different information systems that are sufficient to satisfy information
processing needs such as distributed search.

We briefly highlight two of the application scenarios that convinced us (besides the ob-
vious applicability for information exchange on the web) that enabling semantic interoper-
ability in a bottom-up way driven by the participants is valid and applicable: introduction of
meta-data support in P2P applications and support for federating existing, loosely-coupled
databases.

Imposing a global schema for describing data in P2P systems is almost impossible, due
to the decentralization properties of such systems. It would not work unless all users con-
scientiously follow the global schema. Here our approach would fit well: We let users in-
troduce their own schemas which best meet their requirements. By exchanging translations
between these schemas, the peers can incrementally come up with an implicit “consensus
schema” which gradually improves the global search capabilities of the P2P system. This
approach is orthogonal to the existing P2P systems and couldbe introduced basically into
all of them.

The situation is somewhat similar for federating existing loosely-coupled databases.
Such large collections of data exist, for example, for biological or genomic databases. Each
database has a predefined schema and possibly some translations may already be defined
between the schemas, for example data import/export facilities. However, global search,
i.e., propagation of queries among the set of databases, is usually not provided and if this
feature exists, it is usually done in an ad-hoc, non-systematic way, i.e., not reusable and
not automated. The more complex these database schemas get,the less likely it is that
the schemas partially overlap and the harder it gets to increasingly generate translations
automatically.

Adopting a P2P approach is (usually) motivated by solving scalability problems. Which
scalability problem are we looking at? Considering the two examples given, we observe
that in both cases we face a large number of different schemas, where the interoperable
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schemas themselves are of modest complexity. In the case of document sharing (e.g., music
files or images) the schemas are used to annotate the media content and are typically fairly
simple. This is even true for media annotation in more professional settings, such as with
MPEG-7 [19]. In the case of scientific data sharing the individual schemas may be fairly
complex, however, the shared views typically are much simpler as the databases are very
specialized on a specific problem and the “semantic intersection” among the databases is
fairly small. Thus our work aims at solutions that scale wellin large numbers of schemas
and participants. We believe this is a critical and very realistic problem in making today’s
Web semantically interoperable. Our work is orthogonal to efforts in ontology engineering
which are devoted to the management of one or a few large and complex ontologies, which
scale well in large numbers of concepts and rules and where social interaction occurs as
part of collaborative ontology engineering [30].

In our approach, we build on the principle of gossiping that has been successfully
applied for creating useful global behaviors in P2P systems. In any P2P system, search
requests are routed in a network of interconnected information systems. We extend the op-
eration of these systems as follows: When different schemasare involved, local mappings
are used to further distribute a search request into other semantic domains.

For simplicity but without constraining general applicability, we will limit the follow-
ing discussions to the processing of search requests. The quality of search results in a
gossiping-based approach depends clearly on the quality ofthe local translations in the
translation graph.Our fundamental assumption is that these translations may be incorrect.
Thus our agreement construction mechanisms try to determine which translations can be
trusted and which not and take this into account to guide the search process.

A main contribution of the paper is to identify different methods that can be applied to
estimate the quality of local translations from information obtained from the peer network.
We elaborate the details of each of these methods for a simpledata model, that is yet
expressive enough to cover many practical cases (Section 3). This model is similar to other
data models currently considered for semantic annotation in P2P architectures [15]. The
methods that will be introduced are:

1. A syntactic analysis of search queries after transformations have been applied in or-
der to determine the potential information-loss incurred through the transformation.
Here we analyze to which degree query constituents essential for obtaining useful
query results are preserved during transformation (Section 4).

2. A semantic analysis of composite translations along cycles in the translation graph,
in order to determine the level of agreement that peers achieve throughout the cycle.
Here we analyze whether cyclic translations preserve semantics. If concepts are not
preserved in a cyclic translation we assume semantic confusion has occurred (Section
5.1).

3. A semantic analysis of search results obtained through composite translation. We as-
sume that structured data is used to annotate media content and that peers can classify
their documents both using content analysis and metadata-based classification rules.
From that peers derive to which degree transformed metadataannotations match the
actual content and thus how reliable the translations were (Section 5.2).

The information obtained by applying these different analyses is then used to direct
searches in a network of semantically heterogeneous information sources (e.g, on top of a
P2P network).

Finally we give first results that take our approach one step further. Rather than only
guiding searches by the results obtained from analyzing thetransformations, we also mod-
ify the translations in an automatic manner using this information (Section 7). Thus we
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make a step towards a self-learning network of peers automatically establishing semantic
interoperability. We give experimental results that demonstrate how the different kinds of
semantic analyses of mappings interact with the modification of incorrect translations and
how this approach scales in different parameters.

We believe that this radically new approach to semantic interoperability shifts the at-
tention from problems that are inherently difficult to solvein an automated manner at the
global level (“How do humans interpret information models in terms of real world con-
cepts?”), to a problem that leaves vast opportunities for automated processing and for in-
creasing the value of existing information sources, namelythe processing of existing local
semantic relationships in order to raise the level of their use from local to global semantic
interoperability. The remaining problem of establishing semantic interoperability at a local
level seems to be much easier to tackle once an approach such as ours is in place.

2 Overview

Before delving into the technical details, this section provides an informal overview of our
approach and of the paper.

We assume that there exists a communication facility among the participants that en-
ables sending and receiving of information, i.e., queries,data, and schema information.
This assumption does not constrain the approach, but emphasizes that it is independent
of the system it is applied to. The underlying system could bea P2P system, a federated
database system, the web, or any other system of informationsources communicating via
some communication protocol. We denote the participants aspeers abstracting from the
concrete underlying system.

In the system, groups of peers may have agreed on common semantics, i.e., a common
schema. We denote these groups assemantic neighborhoods. The size of a neighborhood
may range from a single individual peer up to any number. If two peers located in two
disjoint neighborhoods meet, they can exchange their schemas and provide translations
between them. How peers meet and how they exchange this information depends on the
underlying system but does not concern our approach. We assume that skilled experts
supported by appropriate translation tools provide the translations. Later, we will also
devise possibilities of how our approach might be used to automatically improve the quality
of pre-existing translations by modifying them. The direction of the translation and the peer
providing a translation are not necessarily correlated. For instance, peersp1 andp2 might
both provide a translation from schemaSp1

to schemaSp2
, and they may exchange this

translation upon discretion. During the life-time of the system, each peer has the possibility
to learn about existing translations and add new ones. This means that a directed graph
of translations as shown in Fig. 1 will be built between the peers along with the normal
operation of the system (e.g., query processing and forwarding in a P2P system).

This translation graph has two interesting properties: (1)based on the already existing
translations and the ability to learn about existing translations, queries can be propagated to
peers for which no direct translation link exists by means oftransitivity, for examplep4 →
p5 → p2 ⇒ p4 → p2 and (2) the graph has cycles, for examplep4 → p5 → p2 → p4.
We call (1)semantic gossiping. (2) gives us the possibility to assess the degree ofsemantic
agreementalong a cycle, i.e., to measure the quality of the translations and the degree of
semantic agreement in a community.

In such a system, we expect peers to perform several task: (1)upon receiving a query,
a peer has to decide where to forward the query to, based on a set of criteria that will
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Figure 1: Translation graph among peers

be introduced; (2) upon receiving results or feedback alongtranslation cycles, it has to
analyze the quality of the results at the schema and at the data level and adjust its criteria
accordingly; and (3) update its view of the overall semanticagreement by modifying its
query forwarding criteria or by adjusting the translation themselves.

The criteria to assess the quality of translations—which inturn is a measure of the
degree of semantic agreement—can be categorized ascontext-independentand context-
dependent. Context-independent criteria, discussed in Section 4, are syntactic in nature
and relate only to the transformed query and to the required translation. We introduce
the notion ofsyntactic similarityto analyze the extent to which a query is preserved after
transformation.

Context-dependent criteria, which are discussed in Section 5, relate to the degree of
agreement that can be achieved among different peers upon specific translations. Such de-
grees of agreement may be computed using feedback mechanisms. We will introduce two
such feedback mechanisms, namely cycles appearing in the translation graph and results
returned by different peers. This means that a peer will locally obtain both returned queries
and data through multiple feedback cycles. In case a disagreement is detected (e.g., a wrong
attribute mapping at the schema level or a concept mismatch at the content level), the peer
has to suspect that at least some of the translations involved in the cycle were incorrect,
including the translation it has used itself to propagate the query. Even if an agreement is
detected, it is not clear whether this is not accidentally the result of compensating mapping
errors along a cycle. Thus, analyses are required that assess which are the most probable
sources of errors along cycles, to what extent the own translation can be trusted and there-
fore of how to use these translations in future routing decisions. At a global level, we can
view the problem as follows: The translations between domains of semantic homogeneity
(same schemas) form a directed graph. Within that directed graph we find cycles. Each cy-
cle allows to return a query to its originator which in turn can make the analysis described
above.

Each of these criteria is applied to the transformed queriesand results in afeature
vector. The decision whether or not to forward a query using a translation link then is
based on evaluating these feature vectors. The details of the query forwarding process are
provided in Section 6.

Assuming all the peers implement this approach, we expect the network to converge to
a state where a query is only forwarded to the peers most-likely understanding it, where
the correct translations are increasingly reinforced by adapting the per-hop forwarding be-
haviors of the peers and where incorrect translations are rectified. Implicitly, this is a state
where a global agreement on the semantics of the different schemas has been reached. To
demonstrate this, we present experimental results where semantic agreement is reached in
a network of partially erroneous translations in Section 7.
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3 The Model

3.1 The Data Model

We assume that each peerp is maintaining its databaseDBp according to a schemaSp.
The peers are able to identify their schema, either by explicitly storing it or by keeping a
pseudo unique schema identifier, obtained for example by hashing. The schema consists
of a single relational tableR, i.e., the data that a peer stores consists of a set of tuples
t1, . . . , tr of the same type. The attributes have complex data types and NULL-values are
possible.

We do not consider more sophisticated data models to avoid diluting the discussion
of the main ideas through technicalities related to mastering complex data models. More-
over, many practical applications, in particular in P2P systems and scientific databases, use
exactly the type of simplistic data model we have introduced, at least at the meta-data level.

We use a query language for querying and transforming databases. The query language
consists of basic relational algebra operators since we do not care about the practical en-
coding, e.g., in SQL or XQuery. The relational operators that we require are:

• Selectionσpred(a)(R), wherea is a list of attribute namesA1, . . . , Ak, andpred is
any predicate on the attributesa using standard atomic predicates on the respective
datatypes, i.e.,pred = pred(A1, . . . , Ak).

• Projectionπa(R), wherea is a list of attribute namesA1, . . . , Ak.

• Mappingµf (R), wheref is a list of functions of the formA0 := F (A1, . . . , Ak)
andA1, . . . , Ak are attribute names occurring inR. The functionF is specific to the
datatypes of the attributesA1, . . . , Ak. A special case is renaming of an attribute:
A0 := A1.

We assume that queries can be evaluated against any databaseirrespective of its schema.
Predicates containing attributes not present in the evaluated schema are ignored.1 Projec-
tion attributes which are not present in the current schema return a NULL-value. Mappings
applied to non-existing attributes also return NULL-values.

3.2 The Network Model

Let us now consider a set of peersP . Each peerp ∈ P has a basic communication mecha-
nism that allows it to establish connection with other peers. Without loss of generality, we
assume in the following that it is based on the Gnutella protocol [4]. Thus peers can send
ping messages and receivepong messages in order to learn about the network structure.
In extension to the Gnutella protocol, peers also send theirschema identifier as part of the
pong message.

Every peerp maintains a neighborhoodN(p) selected from the peers that it identified
throughpong messages. The peers in this neighborhood are distinguishedinto those that
share the same schema,Ne(p), and those that have a different schema,Nd(p) as shown in
Fig. 2.

1We do not use the same conventions as XPath/XQuery here, but we will make use of additional mechanisms
for dropping queries.
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Figure 2: The network model

A peerp1 includes another peerp2 with a different schema into its neighborhood if it
knows a transformation for queries against its own schema toqueries against the foreign
schema. The query transformation operatorTp1→p2

is given as a queryqT that provides
a view of schemaSp2

according to schemaSp1
. In other words,qT takes data structured

according to schemaSp2
and transforms it into data structured according to schemaSp1

.
UsingqT the transformed form of a queryq against a database according to schemaSp1

is given byTp1→p2
(q), which is defined as

Tp1→p2
(q)(DBp2

) = q(qT (DBp2
)).

We assume that translations only use a mapping operator followed by a projection on
the attributes that are preserved. ThusqT will always be of the form

qT (DBp2
) = πa(µf (DBp2

)).

Furthermore, we assume that the transformation query is normalized as follows: If an
attributeA is preserved, it also occurs in the mapping operator as an identity mapping, i.e.,
A := A ∈ f . This simplifies our subsequent analysis.

Note that multiple transformations may be applied to a single queryq. The composi-
tion of multiple transformationsT1, . . . , Tn is given by using the associative composition
operator◦ as follows

(T1 ◦ . . . ◦ Tn)(q)(DB) = q(qT1
. . . (qTn

(DB))).

Such query transformations may be implemented easily usingvarious mechanisms, for
example XQuery as explained below.

Queries can be issued to any peer through a query message. A query message contains
a query identifierid, the (potentially transformed) queryq, the query message originator
p, and the translation traceTT to keep track of the translations already performed. In the
subsequent sections we will extend the contents of the querymessage in order to implement
a more intelligent control of query forwarding. The basic query message format is

query(id, q, p, TT ).

The translation traceTT is a list of pairs{(pfrom, Spfrom
), (pto, Spto

)} keeping track
of the peers having sent the request through a translation link (pfrom) and of the peers hav-
ing received it after the translation link (pto), along with their respective schema identifiers
(Spfrom

andSpto
). We will call pfrom the sender, andpto the receiver. For any translation

link, we have to record both the sender and the recipient, as after a translation a query might
be forwarded without transformation to peers sharing the same schema.
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3.3 Case Study

To illustrate how to apply the abstract model detailed abovein a concrete setting, we will
now describe one of the experiments which were conducted in our group in order to realize
Semantic Gossiping in an XML/XQuery environment. Note thatthis example will also
be used in the following text to illustrate the techniques wewill apply to control query
propagation.

Seven people from our group were first asked to design a simpleXML document con-
taining some project meta-data. The outcome of this deliberately imprecise task definition
was a collection of structured documents lacking common semantics though overlapping
partially for a subset of the embraced meta-data (e.g.,name of the projector start date).
Viewing these documents as seven distinct semantic domainsin a decentralized setting, we
then produced a graph connecting the different domains together with series of translation
links. The resulting topology is depicted in Fig. 3. In this figure we provide also one exam-
ple of how an attribute gets transformed by the user-defined translations. All the domains
have some representation for the title of the project (usually referred to asnameor title,
see Fig. 3 where the translations for the attributetitle are represented on top of the links),
exceptp3 which only considers a mereID for identifying the projects.
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Figure 3: A semantic graph of translations

Translations were formulated as XQuery expressions in sucha way that they strictly
adhere to the principles stipulated above.

In the next step of the experiment, we asked the authors to write translations for every
link departing from their domain (for example,p1 was asked to provide us with the transla-
tion top2, p3 andp4). Finally, using the IPSI-XQ XQuery libraries [8] and the Xerces [26]
XML parser, we built a query translator capable of handling and forwarding the queries
following the gossiping algorithm. As an example for the outcome, Fig. 4 presents two dif-
ferent documents as well as a simple query transformation using queryT12for translation.

<zoran_project>
<title> My Project</title>
<acronym>MP</acronym>
<duration>

<start>10/1/01</start>

<team
<member>1</member>
<member>2</member>

</team
</zoran_project>

<end>13/10/05</end>
</duration>

Q1=
FOR $p IN “zoran_project.xml”/*
WHERE“Jie Project”IN p/title
RETURN
<start>$p/duration/start</start>

<jie_project>
<Name>JieProject</Name>
<Begin>02/05/02</Begin>
<Level>Diploma</Level>
<Location>EPF</Location>
<Lab>LSIR</Lab>
<Institute>IIF</Institute>
<Faculty>I&C</Faculty>
<Length>6months</Length>
<Benefits>...</Benefits>
<Report>Yes</Report>

</jie_project>

Q2=
FOR$pr IN
WHERE“Jie Project”IN p/title
RETURN

T12

<start>$p/duration/start</start>

T12 =

<zoran_project>
<title> $p/Name </title>
<acronym> </acronym>
<duration>

<start>$p/Begin</start>
…

FOR $p IN “jie_project.xml”/*
RETURN

Figure 4: An example of translation mechanism

4 Syntactic Similarity

During translation, parts of queries may be lost since the schema which the query is mapped
to may not have a representation for the information contained in certain attributes of the
original schema.Syntactic similarityprovides a measure which is related to this type of
information loss during translation. This measure is context-independent since its evalua-
tion relies exclusively on the inspection of the syntactic features of the translated queries.
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A high syntactic similarity will not ensure that forwardinga query is useful, but conversely
a low syntactic similarity implies that it might not be useful to further forward a query.

Let us suppose we have a queryq, originally applied to databaseDB1 with schemaS1,
which always has the generic form of a selection-projection-mapping query

q(DB1) = πap(σpred(as)(µfa(DB1))),

whereas is a list of attributes used in the selection predicates,ap is a list of attributes
used in the projection, andfa is a list of functions applied. Without loss of generality,
we assume that the query is normalized such that all attributes required inas andap are
computed by one of the functions infa.

Assume a transformationT of queryq is given, such thatq can be evaluated against
databaseDB2 with schemaS2. The transformation is specified by a queryqT defining a
view onDB2

qT (DB2) = πapT
(µfaT

(DB2)).

The transformed queryT (q) that can be evaluated against the schemaS2 is of the form

T (q)(DB2) = πap(σpred(as)(µfa(πapT
(µfaT

(DB2))))).

This form will also be achieved after multiple transformations after normalization.
It might occur that attributes used inq are no longer available after applying transfor-

mationT to q. This happens when an attribute fromS2 required for the derivation of an
attribute fromS1 by means of one of the functions infa and occurring inap or as is
missing, i.e., not occurring inapT , or is not computed by one of the functions fromfaT .

We now determine which attributes are needed in order to properly evaluate the queryq.
For an attributeA ∈ ap resp.A ∈ as we definesourceT (A) as the set of attributes required
in schemaS2 of databaseDB2 in order to deriveA by means of transformationT . If
attributeA cannot be derived we will setsourceT (A) = ⊥. For a composite transformation
T1 ◦ T2 we have the following criterion: ifsourceT1

(A) = {A1, . . . , Ak} and for all
i = 1, . . . , k there existsFi ∈ faT2

such thatAi = Fi(A
i
1, . . . , A

i
ki

) then

sourceT1◦T2
(A) =

⋃

i=1,...,k

{Ai
1, . . . , A

i
ki
}.

If sourceT1
(A) = ⊥ or for someAi no derivation of the attribute using a function

Fi ∈ faT2
is possible we have

sourceT1◦T2
(A) = ⊥.

In order to ground the definition we assume thatsourceǫ(A) = {A} andǫ ◦ T = T for
the empty sequence of transformationsǫ.

In order to determine the effects of multiple transformations T1, . . . , Tn we have to
evaluatesourceT1◦...◦Tn

(A). This allows to determine which of the required attributes for
evaluating a query containing attributeA are available after applying the transformations
T1, . . . , Tn. The definition ofsource is given such that it can be evaluated locally, i.e., for
each transformation step in an iterative manner. Using thisinformation we can now define
the syntactic similarity between a transformed query and its corresponding original query.

The decision on the importance of attributes is query dependent. We have two issues to
consider after applying a composite transformationT = T1 ◦ . . . ◦ Tn:
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1. Not all attributes inas are preserved. Therefore some of the atomic predicates
in p(as) will not be correctly evaluated, i.e., the atomic predicates will simply be
dropped in this case. Depending on the selectivity of the predicate this might be
harmful to different degrees. We capture this by calculating a valueFV σ

i for ev-
ery attributeAi ∈ as ∪ ap as follows: if Ai ∈ as andsourceT (Ai) 6= ⊥ then
FV σ

i = selAi
elseFV σ

i = 0, whereselAi
is the selectivity of an attributeAi.

The selectivity is ranging over the interval[0, 1], with high values indicating highly
selective attributes, i.e., attributes whose predicates select a small proportion of the
database. Thus dropping highly selective and thus more critical attributes will lead
to lower values ofFV σ

i

2. Not all attributes inap are preserved. Therefore, some of the results may be incom-
plete or even erroneous (due to the loss of key attributes, for example). Following
the method used above for the selection, we capture this by calculating a valueFV π

i

for every attributeAi ∈ as ∪ ap as follows: ifAi ∈ ap andsourceT (Ai) 6= ⊥ then
FV π

i = 1 elseFV π
i = 0.

Given the valuesFV σ
i for Ai ∈ as ∪ ap we introduce feature vectors

−−−→
FV σ capturing

the syntactic effects for the transformed query(T1 ◦ . . . ◦ Tn)(q).

−−−→
FV σ((T1 ◦ . . . ◦ Tn)(q)) = (FV σ

1 , . . . , FV σ
k ).

Using this feature vector we define a syntactic similarity measure with respect to selec-
tion including a user-defined weight vector

−→
W = (W1, . . . , Wk) pondering the importance

of the attributes as:

SIMσ(q, (T1 ◦ . . . ◦ Tn)(q)) =

−→
W ·

−−−→
FV σ

∣

∣

−→
W

∣

∣

∣

∣

−−−→
FV σ

∣

∣

where

−→
W ·

−−−→
FV σ = W1FV σ

1 + . . . + WkFV σ
k

and

∣

∣

−→
X

∣

∣ =
∥

∥

−→
X

∥

∥

2
=

√

x2
1 + . . . + x2

k.

This value is normalized on the interval[0, 1]. Originally, the similarity will be one,
and it will decrease proportionally to the relative weight and selectivity of every attribute
lost in the selection operator, until it reaches 0 when all attributes are lost.

For projection using the valuesFV π
i the analogous feature vectors

−−−→
FV π and similarity

measuresSIMπ are derived. Again, this similarity decreases with the number of transla-
tions applied to the query, until it reaches 0 when all the projection attributes are lost.

We illustrate the concepts introduced for syntactic similarity by means of a small ex-
ample. Assume a peerp1 is connected to peersp2 andp3 through translations as illustrated
in Fig. 5.
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p1 p2p3

T
p1->p3

A3:=A1, B3:=B1, C3:=A1

T
p3->p1

A1:=A3, B1:=B3, C1:=C3

T
p1->p2

A2:=A1

T
p2->p1

A1:=A2

Figure 5: An example for syntactic similarity

A translation, such asTp1→p3
can be specified as a query, e.g.,

qTp1→p3
(DB3) = µA3:=A1,B3:=B1,C3:=A1

(DB3).

p1 sends a queryq = πA1,B1,C1
(DB1) to the two other peers. Peerp2 would evaluate

−−−→
FV π(Tp1→p2

(q)) as follows: sourceTp1→p2
(A2) = {A1} and

sourceTp1→p2
(B2) = sourceTp1→p2

(C2) = ⊥. Therefore
−−−→
FV π(Tp1→p2

(q)(DB2)) =

(1, 0, 0) andSIMπ(q, Tp1→p2
(q)) = 1√

3
, assuming all user-defined weights are 1. Ifp2

sendsq back top1, p1 would obtainSIMπ(q, (Tp1→p2
◦ Tp2→p1

)(q)) = 1√
3
, since only

attributeA1 remains intact after the two translations.
On the other hand,p3 determinessourceTp1→p3

(A3) = {A1}, sourceTp1→p3
(B3) =

{B1}, and sourceT1
(C3) = {A1}. Thus,

−−−→
FV π(Tp1→p3

(q)(DB3)) = (1, 1, 1) and
SIMπ(q, Tp1→p3

(q)) = 1. If p3 sends the query back top1, p1 would as well obtain
SIMπ(q, (Tp1→p3

◦ Tp3→p1
)(q)) = 1. The fact that an obvious mistake occurs, i.e., that

attributeC3 is wrongly mapped ontoA1 in the translation, is not detected by the syntactic
similarity measure, and will be dealt with by the semantic similarity measures introduced
in the next section.

5 Semantic Similarity

The context-independent measure of syntactic similarity is based on the assumption that
the query transformations are semantically correct, whichin general might not be the case.
A better way to view semantics is to consider it as an agreement among peers. If two peers
agree on the meaning of their schemas, then they will generate compatible translations.
From that basic observation, we will now derive context-dependent measures of semantic
similarity. These measures will allow us to assess the quality of attributes that are preserved
in the translation.

To that end, we introduce two mechanisms for deriving the quality of a translation. One
mechanism will be based on analyzing the fidelity of translations at the schema level, the
other one will be based on analyzing the quality of the correspondences in the query results
obtained at the data level.

5.1 Cycle Analysis

For the first mechanism, we exploit the protocol property that detects cycles as soon as a
query reenters a semantic domain it has already traversed (see Section 6.1 for more details).
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A cycle starts with a peerp1 transmitting a queryq1 to a peerp2 through a translation link
Tp1→p2

(see Fig. 6).

p
1

n-1
p

N (p )
e 1

p
2

p1->p2
T

p
3

N (p )
e 2

p3->p5
T

p
n

C
y
c
le

()

pn-1->pn
T

Tp0->p1

p
4

pn-2->pn-1
T

Figure 6: The feedback mechanism

In the example, after a few hops, the query is finally sent to a peerpn which, sharing
the same schema asp1, detects a cycle and informsp1. The returning queryqn is of the
form

qn = (Tp1→p2
◦ Tp3→p5

◦ . . . ◦ Tpn−1→pn
)(q1) = T (q1).

p1 may now analyze what happened to the attributesA1 . . . Ak originally present inq1.
It could attempt to check whether the composed transformation is identity, but the approach
we propose here appears more practical. We differentiate three cases:

– Case 1:sourceT (Ai) = {Ai}, this means thatAi has been maintained throughout
the cycle. It usually indicates that all the peers along the cycle agree on the meaning
of the attribute. Such an observation increases the confidence in the correctness of
the translations used.

– Case 2:sourceT (Ai) = ⊥, this means that someone along the cycle had no repre-
sentation forAi. Ai is not part of the common semantics. This leaves the confidence
in the translations unchanged.

– Case 3: Otherwise, if none of the two previous cases occurs, e.g., sourceT (Ai) =
{Aj}, j 6= i, this indicates some semantic confusion along the cycle. Subcases
can occur depending on what happens toAj . This lowers the confidence in the
translations.

We now derive heuristics forp1 to assess the correctness of the translationTp1→p2
it

has used, based on the different cycle messages it received.Let us consider a translation
cyclef composed of‖f‖ translation links. On an attribute basis,f may result inpositive
feedback (case 1 above),neutralfeedback (case 2, not used for the rest of this analysis but
taken into account by the syntactic similarity), ornegativefeedback (case 3). We denote
by ǫcyc the probability of a foreign translation (i.e.,Tp3→p5

. . . Tpn−1→pn
) along a cycle

being wrong for the attribute in question. Considering these error probabilities as being
independent and identically distributed random variables, the probability of not having a
foreign translation error along the cycle is

(1 − ǫcyc)
‖f‖−1.
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Moreover,compensating errors, i.e., series of independent translation errors resulting
in a correct translation, may occur along the cycle of foreign links without being noticed
by p1, which only has the final resultqn at its disposal. Thus, assumingTp1→p2

correct and
denoting byδcyc the probability of errors being compensated somehow, the probability of
a cycle being positive is

(1 − ǫcyc)
‖f‖−1 + (1 − (1 − ǫcyc)

‖f‖−1)δcyc = prob+(‖f‖, ǫcyc, δcyc) (1)

while, under the same assumptions, the probability of a cycle being negative is

(1 − (1 − ǫcyc)
‖f‖−1)(1 − δcyc) = 1 − prob+(‖f‖, ǫcyc, δcyc). (2)

Similarly, if we assumeTp1→p2
to be incorrect, the probability of a cycle being respec-

tively negative and positive are

(1 − ǫcyc)
‖f‖−1 + (1 − (1 − ǫcyc)

‖f‖−1)(1 − δcyc) = prob−(‖f‖, ǫcyc, δcyc) (3)

and

(1 − (1 − ǫcyc)
‖f‖−1)δcyc = (1 − prob−(‖f‖, ǫcyc, δcyc)). (4)

Assume a peerp1 obtains a set of positive and negative feedbacks along cycles F =
{f1, . . . , fm} of lengths‖f1‖, . . . , ‖fm‖ for a given attributeA. Some of these may be
positive, i.e.,sourceT (A) = {A}, other negative. We denote byF+ ⊆ F the set of
positive and byF− ⊆ F the set of negative feedbacks and haveF = F+ ∪ F−.

If p1 assumes that its own outgoing translation link at the start of the cycle iscorrect,
then the probability of obtaining exactly such a combination of positive and negative feed-
backs for the set of cyclesF can be calculated as

l+c (F ) =
∏

f∈F+

prob+(‖f‖, ǫcyc, δcyc)
∏

f∈F−

(1 − prob+(‖f‖, ǫcyc, δcyc)).

This probability is the product of all individual probabilities for positive and negative
feedback cycles of the given lengths, as the they have been previously derived in equations
1 and 2, to occur.

Similarly, if p1 assumes that its own outgoing translation link at the start of the cycle is
incorrect, then the probability of obtaining such a combination of feedbacks for the setF
can be calculated as

l−c (F ) =
∏

f∈F−

prob−(‖f‖, ǫcyc, δcyc)
∏

f∈F+

(1 − prob−(‖f‖, ǫcyc, δcyc)).

Since we have no knowledge aboutǫcyc andδcyc we assume these probabilities to be
uniformly distributed. We integrate overǫcyc andδcyc in order to obtain the expected prob-
ability for the distribution of positive and negative feedbacks in the observed setF to occur.
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We could take into account density functions here if we have any a priori knowledge about
those two random variables. The resulting expectation valuese+

c ande−c when assuming
that the known translationTp1→p2

is either correct or wrong, are then

e+
c =

∫ 1

0

∫ 1

0

l+c (F ) dǫcyc dδcyc

e−c =

∫ 1

0

∫ 1

0

l−c (F ) dǫcyc dδcyc

which are used to evaluate the relative degree of correctness γcyc of the mappingTp1→p2

given the observation setF .

γcyc =
e+

c

e+
c + e−c

.

If no relevant feedback is obtained for an attribute relative to a translation link we set
by defaultγcyc = 1.

This analysis may be performed by any peerp1 for every outgoing link to a peerpj

and every attributeAi ∈ as ∪ ap independently, resulting in valuesγp2

cyc,j indicating the
likelihood of the translationTp1→pj

being correct for the attributeAi.
As for the preceding section, we define now a feature vector and a similarity measure

to capture the semantic losses along a sequence translationlinks T1, . . . , Tn, whereTj

connects peerpj with pj+1 via a translation link. For simplicity of presentation we assume
each peer corresponds to a different semantic domain.

Let us suppose that peerp1 issues a queryq = πap(σpred(as)(µfa(DB))) to p2 through
a translation linkT1 = Tp1→p2

. p1 computes a feature vector forq based on the cycle
messages it has received as follows:

−−−→
FV �(T1(q)) = (FV �

1 (T1(q)), . . . , FV �

k (T1(q)))

where

FV �

i (T1(q)) = γ
p2

cyc,i.

In the following translations these values are updated by iteratively multiplying the
values obtained for the degree of correctness for each translation link. We consider here
that if two translationsTj−1 andTj have degrees of correctness ofγ

pj

cyc,i andγ
pj+1

cyc,i for
attributeAi and are independent, the degree of correctness of the composite translation
(Tj−1 ◦ Tj) is γ

pj

cyc,iγ
pj+1

cyc,i. Thus, when forwarding a transformed query using a linkTj−1,
peerpj updates each valueFV �

i ((T1 ◦ . . . ◦ Tj−1)(q)) it has received along with the
transformed query(T1 ◦ . . . ◦ Tj−1)(q) in this way:

FV �

i ((T1 ◦ . . . ◦ Tj)(q)) = FV �

i ((T1 ◦ . . . ◦ Tj−1)(q))γ
pj+1

cyc,i.

The semantic similarity for transformationsT1, . . . , Tn associated with the vector
−−→
FV

is then

SIM�(q, (T1 ◦ . . . ◦ Tn)(q)) =

−→
W ·

−−−→
FV �

∣

∣

−→
W

∣

∣

∣

∣

−−−→
FV �

∣

∣

.
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This value starts from 1 (in the semantic domain which the query originates from) and
decreases as the query traverses more and more semanticallyheterogeneous domains.

We illustrate the cycle analysis by means of the example given in Fig. 5. Assumep1

forwards queryq = πA1,B1,C1
(DB1) through translation linksTp1→p2

andTp2→p1
and

obtains as a result of this cyclef the positive feedbacksourceTp1→p2
◦Tp2→p1

(A1) = {A1}
for attributeA1. It calculatesl+c (c) = prob+(2, ǫcyc, δcyc) = (1 − ǫcyc) + ǫcycδcyc. After
integration it obtains a degree of correctness ofγ

p2

cyc,1 = 3
4 . Since no feedback is obtained

for the other attributes,p1 sets
−−−→
FV �(Tp1→p2

(q)) = (3
4 , 1, 1), for the attributes occurring

in q and calculatesSIM�(q, Tp1→p2
(q)) ∼= 0.957. For the translation linkTp1→p3

to
peerp3 peerp1 obtains feedback through translation linksTp1→p3

andTp3→p1
. For A1

andB1 this feedback is positive, whereas forC1 it is negative. Doing the corresponding

calculations this results in a feature vector
−−−→
FV �(Tp1→p3

(q)) = (3
4 , 3

4 , 1
4 ). p1 calculates

SIM�(q, Tp1→p3
(q)) ∼= 0.763.

When deciding to forward the query, assume that a peer requires all similarity measures
(syntactic and semantic) to be above a threshold of 0.9 (see Section 6). Then it would not
forward queryq to peerp2 for syntactic reasons (SIMπ is below the threshold), whereas it
would not forward queryq to p3 for semantic reasons (SIM� is below the threshold).

A more detailed example of cycle analysis is presented in Section 6.2.

5.2 Results Analysis

The second mechanism for analyzing the semantic quality of the translations is based on
the analysis of the results returned. In [1] we have introduced a method using functional
dependencies at the data level in order to assess the qualityof translations. This method
was based on analyzing to which extent integrity constraints are preserved after translation.

Here we present an alternative, more general, approach. We assume that peers annotate
documentsD using meta-data expressed according to our data model. Thuseach document
d ∈ D owned by peerp is associated with an annotationannot(d) according to the schema
Sp of the peer. Having sent a query, peers start to receive result documents with semanti-
cally rich content, e.g., images or full text. Based on this content they attempt to assess to
which extent the queries expressed at the meta-data level were properly translated and thus
led other peers to return the correct result documents.

Queries in our meta-data model are thus an intensional way ofexpressing semantic
concepts, whereas extensionally the concepts are related to sets of documents. The problem
that we address is of how to arrive at agreed annotation schemes at the intensional level that
result in concept definitions that are compatible with the extensional notion of concepts that
peers have.

In the following we assume that a peer has a finite set of concepts C to classify doc-
uments. The extensional notion of a concept that each peer has is based on methods of
content analysis. Here, we do not make any assumption about the methods (e.g., layout
analysis, lexicographical analysis, contour-detection,etc., or even simple manual classifi-
cation) used to extract meaningful features out of the documents; we simply treat them as
high-level abstractions used to unambiguously classify any possible retrieved documents
d ∈ D into conceptsc ∈ C using a decision ruleRcontent:

Rcontent : D → C.

In a more general setting,Rcontent could be a probabilistic rule. Using their local clas-
sification based on content analysis, peers can thus determine for every received document
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the concept it belongs to.
The intensional notion of concept each peer has is based on classification rules applied

to metadata annotations of documents.

Rannot : annot(D) → C.

Again, we do not make assumptions on the specific form of the classification rules,
except that they apply some predicates to the metadata annotations and derive from these
predicates the concept to which the document corresponds to. Examples of classification
rules are extensively discussed in the data mining literature. The document classification
obtained from content analysis and by classification rules are presumed to be consistent up
to a mean classification errorǫres, i.e., we assume that with a probability1 − ǫres

Rcontent(d) = Rannot(annot(d)).

By analyzing its own document collection a peer can estimatethe value ofǫres.
Imagine now a peerp1 classifying documents according to rulesRp1

content andRp1

annot.
Peerp1 issues a queryq against the metadata annotation for retrieving documents.Upon
reception of a documentd from a foreign peerp2 ∈ Ne(p1), p1 performs the classification
operation according to its own rulesRp1

content andRp1

annot. Different situations may then
occur:

– Rp1

content(d) = Rp1

annot(d): this is the resultp1 was expecting; it is an indication that
the outgoing translation link used to forwardq to p2 was semantically correct for
queryq. We treat this as positive feedback (F+).

– Rp1

content(d) 6= Rp1

annot(d): p1 receives a document, such that the content analysis
does not match the classification obtained from the metadataannotation obtained
by translation. Since the document content is not changed during transmission of
the query result, this implies that some semantic confusionoccurred in the metadata
query translation along the path fromp1 to p2. In this case, we consider this as
negative feedback (F−).

If p1 andp2 are directly connected, this gives us a clear indication about the semantic
(in)correctness of the translation linkTp1→p2

. Given the mean classification error proba-
bility ǫres, the probability of the link being correct or incorrect in case of positive feedback
are1 − ǫres and ǫres respectively. In case of negative feedback, they becomeǫres and
1 − ǫres.

If two peers are separated by one or more semantic domains, the situation is somewhat
more complicated since we have to take into account all the successive links used to forward
the query fromp1 to a peerpn. Let us suppose that a peer receives some feedbackf after
the query has gone through‖f‖ different translation links; analogous to the derivation of
the probabilities from the cycle analysis, the probabilityof receiving a positive feedback
assuming the link we are analyzing is correct is

(1 − ǫres)prob+(‖f‖ − 1, ǫcyc, δcyc) + ǫresδres(1 − prob+(‖f‖ − 1, ǫcyc, δcyc)),

whereprob+ is defined as in equation (1). The first term covers the case where the transla-
tions are all correct and the peer performs a proper classification, and thus obtains positive
feedback. The situation where the intermediate translations are wrong and the peer still
believes to have obtained a positive feedback is more intricate and is covered by the second
term. Receiving a wrongly annotated result a peer can still perform a misclassification itself
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with probability ǫres. However, only in exceptional cases with probabilityδres this mis-
classification will correct the problem, namely when the “wrong concept” matches exactly
the expected concept. A peer can estimate the probabilityδres by (‖C‖− 1)−1, where‖C‖
is the number of different concepts a peer knows at a given instant of time. The probability
of receiving negative feedback is then calculated analogously.

Performing an analysis analogous to the one given in Section5.1 and introducingl+r
andl−r as the probability of receiving a certain combination of responses for a given error
model under the assumption that the outgoing translation link is correct resp. incorrect,
we obtain again two expectation valuese+

r ande−r used to estimate the degree of semantic
correctness:

e+
r =

∫ 1

0

∫ 1

0

l+r (F ) dǫcyc dδcyc

e−r =

∫ 1

0

∫ 1

0

l−r (F ) dǫcyc dδcyc.

Definingγp2
res =

e+
r

e
+
r +e

−

r

as the likelihood of the translationTp1→p2
being correct for a

peerp2 ∈ Ne(p1) we obtain a scalar feature for each translation linkTp1→p2

FV ⇄(Tp1→p2
(q)) = γp2

res

measuring the degree of correctness of the translation link. If no value can be computed it
is again set to 1 by default. Analogous to the cycle analysis these values are forwarded and
updated iteratively by multiplying the values obtained foreach translation link, such that a
measure for the semantic similarity

SIM⇄(q, (T1 ◦ . . . ◦ Tn)(q)) = γp2

res . . . γpn+1

res

for a chain of translations is defined.
Some illustrating examples for this approach are given in Section 7.

6 Gossiping Algorithm

6.1 Query Forwarding

At this point, we have four measures (SIMσ, SIMπ, SIM� andSIM⇄) for evaluating
the losses due to the translations. We will now make use of these values to decide whether
or not it is worth forwarding a specific query to a foreign semantic domain.

First, we require the creator of a query to attach a few user-defined or generated values
to the query it issues:

- The weights
−→
W pondering the importance of the attributes in the query.

- The respective selectivity of the selection attributes
−→
sel.

- The minimal values
−−−→
SIMmin = (SIMmin

σ , SIMmin
π , SIMmin

� , SIMmin
⇄

) for the
similarity measures under which a transformed query is so deteriorated that it can no
longer be considered as equivalent to the original query.
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We extend the format of a query message to include these values as well as the iteratively
updated feature vectors:

query(id, q, p, TT,
−→
W,

−→
sel,

−−−−−→
SIMmin,

−−→
FVσ,

−−→
FVπ ,

−−→
FV�, FV⇄).

Now, upon reception of a query message, we require a peer to perform a series of tasks:

1. detect any semantic cycles
2. check whether or not this query has already been received
3. in case the local neighborhood has not received the query,forward it to the local

neighborhood
4. return potential results

and, for each of its outgoing translation links:

5. apply the translation to the query
6. update the similarity measures for the transformed query
7. perform a test for each of the similarity measures whetherthe current similarity of

the transformed query with the original query exceeds the required minimal threshold
given by

−−−−−→
SIMmin.

8. forward the query using the link if all similarity measuretests succeed.

This algorithm ensures that queries are forwarded to a sufficiently large set of peers capable
of rendering meaningful feedback without flooding the entire network.

6.2 Case Study Revisited - Use of Syntactic and Semantic Similarities

Let us come back to the case study introduced in Section 3.3. We assume that a single
attribute query is issued byp1 to obtain all the titles of the different projects. This query
may be written in the following way:

�

�

�

�

Query = FOR $project IN "project_A.xml"/* RETURN
<title>$project/title</title>

Let us now determine how the query will be propagated fromp1. Note that the weight
and selectivity values attached to the query do not matter here, as a single attribute is con-
cerned. Moreover we will not considerSIMσ here (SIMσ always evaluates to 1 because
there is no selection attribute). The other thresholds are set to0.5.

Following the gossiping algorithm,p1 first attempts to transmit the query to its direct
neighbors, i.e.,p2, p3 andp4. p2 andp4 in turn forward the query to the other nodes, but
p3 will in fact never receive the query: Asp3 has no representation for thetitle, the only
projection attribute would be lost in the translation process fromp1 to p3, loweringSIMπ

to 0.
Let us now examine the semantic similaritySIM�. For the topology considered, thirty-

one semantic cycles could be detected byp1 in the best case. As the query never traverses
p3, only eight cycles remain (Table 1 lists those cycles). Now we use the formulas from
Section 5: For its first outgoing link (i.e., the link going from p1 to p2), p1 receives five
positive cycles, raising the semantic similarity measure for this link and the attribute con-
sidered to 0.79.2 p1 does not receive any semantically significant feedback for its second
outgoing linkTp1→p3

, which is anyway handled by the syntactic analysis. Yet, it receives

2Remember that we did not make any assumption regarding the distribution of erroneous links. In this case,
the positive feedback received may as well come from a seriesof compensating errors.
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three negative cycles for its last outgoing linkTp1→p4
. This link is clearly semantically

erroneous, mappingtitle ontoacronym. This results inp1 excluding the link for forwarding
the query, since the semantic similarity drops to 0.26 in this case.
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Cycle Tp1→p4
erroneous Tp2→p4

erroneous
p1, p2, p4, p5, p1 + -
p1, p2, p4, p5, p6, p1 + -
p1, p2, p5, p1 + +
p1, p2, p5, p6, p1 + +
p1, p2, p6, p1 + +
p1, p4, p5, p1 - +
p1, p4, p5, p2, p6, p1 - +
p1, p4, p5, p6, p1 - +

Table 1: Cycles resulting in positive (+) or negative (-) feedback
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The situation may be summarized in this way:p1 restrains from sending the query
throughp3 because of the syntactic analysis (too much information is lost in the translation
process) and excludesp2 because of the high semantic dissimilarity.

The situation somewhat changes if we correct the erroneous link Tp1 → p4 and add a
mistake for the linkTp2 → p4. For the attribute considered, the semantic similarity drops
to 0.69 for the outgoing linkTp1 → p2 (two long cycles are negative, see third column
in Table 1). Even though it is not directly connected to an erroneous link,p1 senses the
semantic incompatibilities affecting some of the messagestraversingp2. It will continue to
send queries through this link, as long as it receives positive feedback at least.

7 Experimental evaluation

In the preceding section, we have evaluated the Chatty Web approach by examining query
forwarding in a small network of static translations generated by a group of users. In con-
trast to this, we now use semantic gossiping and the semanticsimilarity measures not only
to decide on query forwarding but also to correct existing mappings. Thus semantic gos-
siping is used to automatically reach semantic agreement inlarge networks of computer-
generated and dynamic translation links. This approach in place could for example be used
to derive basic, common ontologies from a dynamic system with heterogeneous schemas,
or to gradually refine existing networks of translations. The initial simulation results inter-
preted below provide promising evidence that it is worth pursuing further research along
these lines and highlight some of the issues to be addressed.In particular, they clearly
indicate in which settings each of the two semantic similarity measures derived from cycle
and result analysis are more suitable.

7.1 Experimental setup

The setup we used in the experiments is as follows: We assume anetwork of peers repre-
senting individual semantic domains. Peers share a finite set of similar concepts, i.e., op-
erate in a certain semantic domain (for example, biologicaldatabases) inside the network.
They share annotated documents (or data) related to those concepts, but refer to concepts
using different names (they denominate the concepts differently). From this basic setup, we
attempt to create global interoperability by applying semantic gossiping techniques using
purely pair-wise, local translations.

The exact description of the process is as follows: First, wecreate a topology ofn peers
p1 . . . pn, each of them connected through translation links tol other peers. The peers
share‖C‖ conceptsc1 . . . c‖C‖, but use distinct names to refer to them. Thus we study
the problem of peers sharing the same concepts but lacking knowledge of how to refer to
them by names. This is somewhat similar to the approach takenin [29], without aiming at
universally agreed upon names. Without loss of generality we may assume that the same
set of namesn1 . . . n‖C‖ is used by all peers (this simplifies the subsequent presentation).
We write (ni 7→p ck) if peerp uses nameni to refer to conceptck. Thus, we can use a
single attributeA to store the name the peer associates with a concept. Also, peers can
verify whether a document belongs to a concept or not and thusannotate documents they
store with a name using attributeA .

We then generate mappingsµ(DB) for every translation link. The mapping functionµ

relates names from the first peer to names from the second peer, with every name used by
the first peer mapped onto the name used by the second peer. Thus µ is a permutation of
the domain of names used for attributeA which we denote asµ(ni) = nj to indicate thatµ
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maps nameni to namenj . For every mappingµp1→p2
in every translation linkTp1→p2

, we
say that the mapping is correct if and only if the two names bound by the mapping actually
refer to the same concept, that is if

µp1→p2
(ni) = nj ∧ ni 7→p1 ck ∧ nj 7→p2 ck.

Thus, random mappings would only have a probability of1
‖C‖! of being correct in this

setting. In the experiments, we generate a fractioneRate of erroneous mapping initially.
Unless specified otherwise, we use small-world graphs [31] to interconnect peers with

translation links since small-world topologies have been extensively applied to model com-
puter networks or social behaviors. They are typically characterized by high clustering co-
efficients (average fraction of pairs of neighbors of a node that are also neighbors of each
other) and relatively small path length (average minimal distance between two nodes). In
the following, we generate graphs with an average clustering coefficient of0.1 and with
10% shortcuts (i.e., links rewired to a random peer in the network).

Starting from the original topology, we apply semantic gossiping techniques iteratively
in order to detect and rectify erroneous translations. At every simulation step, each peer se-
lects one of its names randomly and issues a query about this name (i.e., the query consists
of a projection on one attribute: the name selected). The query is propagated to the other
peers (semantic domains) in a Gnutella-like fashion with a low time-to-live (TTL) value.

The syntactic analysis for this simplistic type of query is straightforward: peers for-
ward the query through an outgoing translation link if thereexists a translation mapping
the local name used in the query (projection attribute) intoanother name for the foreign
peer. Now, for detecting and repairing erroneous translation links, we slightly modify the
semantic analysis; we forward queries irrespectively of the results of previous query for-
warding strategy in order to get as many evidences as possible, and use these results to
reach semantic agreements by gradually modifying translations.

Before taking a closer look at the final results, we will evaluate in the following sections
each of the semantic analyses (cycle and result analysis) separately to emphasize their
specificities.

7.2 Cycle Analysis

For every iteration step, peers randomly choose a name, senda query for this name and an-
alyze the cycle messages they get in return. Here, we do not only estimate the correctness
of the actual mapping as explained in Section 5.1, but also determine which of the possi-
ble mappings is most likely correct and adopt it as a new mapping. Therefore, peers view
mappings resulting from returned queries as new mapping candidates. Consider for exam-
ple Fig. 7, where peerp1 systematically receivesn1 mapped onton2 in returned queries
(negative feedback). In addition to evaluating the correctness of the current mapping,p1

considers other mappings as well. It adopts the most probably correct mapping candidate if
its probability of being correct is above 50%. In this example,p1 evaluates the correctness
of mappingn1 onton2, and might consider to modify it to a mappingn1 onton1.
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Figure 7: New mapping candidates

As indicated in Section 5.1, preexisting knowledge on the distribution of error prob-
abilities δcyc andǫcyc may be used in the computation of semantic similarity.δcyc, the
probability of a series of different errors to compensate along a cycle, is approximated to
(‖C‖ − 1)−1, which is the probability of the last erroneous link in the cycle to map to the
original name and thus to correct previous errors.

We estimateǫcyc with standard maximum-likelihood techniques applied to the feedback
information we receive. From the probability of receiving apositive cycle of length‖f‖
knowing that the error probability of a translation link isǫcyc,

(1 − ǫcyc)
‖f‖ + (1 − (1 − ǫcyc)

‖f‖)δcyc,

and from its negative counterpart, we derive the density function for the likelihood ofǫcyc:

L(ǫcyc

∣

∣F ) =

K
∏

f+∈F+

((1− ǫcyc)
‖f+‖+(1− (1− ǫcyc)

‖f+‖)δcyc)
∏

f−∈F−

(1− (1− ǫcyc)
‖f−‖)(1−δcyc)

where K is a normalizing constant. The local maximum of this function over[0, 1] gives a
good approximation ofǫcyc, supposing we have sufficient feedback information.

What is the result of this process in the long run? It depends of course on the initial
setting but in the end, this method attempts to obtain a mapping consensus based on the
different feedback cycles detected in the network. Considering a high density of links and
relatively few erroneous links, the method converges (i.e., repairs all erroneous mappings)
rapidly, since peers can base their decisions on numerous and meaningful feedback cycles.
For settings where links are scarce, peers do not have sufficient information for making
sensible choices, and results may diverge.

Several parameters are of particular interest: The number of peersn, the fraction of
translations initially erroneouseRate, the number of concepts‖C‖, the initial time-to-live
TTL of the messages and the number of outgoing translation linksl per peer. The figures
below show experimental results for topologies wheren = 25, eRate = 0.1, ‖C‖ = 4,
TTL = 5 andl = 5 and where one of those parameters varies. All the curves are averaged
over ten consecutive runs. At every step, each peer sends a query picking a random concept
for every outgoing edge and modifies its mappings depending on the results of the analysis
explained above. Steps are represented on thex-axis. The graph shows the evolution of the
percentage of erroneous mappings, starting at a rateeRate initially. Clearly, the outcome
depends on the density of links, which directly impacts on the number of cycles we have
at our disposal for taking mapping decisions (see Fig. 8). For l = 4 and the topology
considered, we get on average only one positive feedback permapping candidate, which is
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obviously insufficient to take sensible decisions. Forl = 5 andl = 6, the value raises to 1.8
and 2.9 respectively and most of the erroneous mappings get corrected after ten iterations.
Finally, for l = 7, we get enough evidences (4.5 per mapping candidate on average) for
correcting all the erroneous links, thus reaching a perfectsemantic agreement, in eight
steps.
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Figure 8: Sensitivity to the number of outgoing edges

Similar results may be observed for variable TTLs. Fig. 9 shows results using the same
parameters as before, but this time for a fixed number of outgoing edges (l = 4) and TTLs
ranging from 3 to 6. Again, for low values, peers do not gain sufficient feedback informa-
tion to correct mappings. Starting withTTL = 4 (1.8 positive feedbacks per decision),
peers receive sufficient information to correct more than 75% of the erroneous mappings
after nine iterations. Low-connectivity networks may thusbenefit from increasing the TTL
value of their queries in order to get sufficient feedback information for the peers.
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Figure 9: Sensitivity to the TTL

Our approach is rather insensitive to variations of the initial error rate (see Fig. 10)
until a certain threshold, where too many bad links are present initially to reach a correct
consensus based on the feedback cycles. Finally, it is worthmentioning that the approach
scales very well with the number of nodes. This is not surprising, considering that the
method relies solely on local interactions (no central component or computation) and that
the clustering coefficient of the network is relatively high. Fig. 11 shows experiments for
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networks ranging from 50 to 800 peers without fundamental results variations. The small
deviations are due to theshortcutsin the small world topology which connect two random
peers in the network. The bigger the graph, the less likely itis that these links can be used
to form cycles within a certain neighborhood.
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Figure 10: Sensitivity to the initial error rate
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Figure 11: Scalability

7.3 Results Analysis

Let us now consider the second part of the analysis, in which peers analyze and categorize
documents they receive. The process is as follows: At every step, peers first issue a couple
of queries with a high TTL for estimating the error rate as explained in the preceding
section. Then, for each of their outgoing links, the peers pick a concept randomly and issue
a query asking for documents related to that concept. In return, they receive documents
they analyze following the method described in Section 5.2.They modify the mapping
they have used to forward the query with the most probable mapping if it has a correctness
likelihood of at least 0.5.

For the simulations, we used a fixed set of documents scattered randomly among the
peers. All documents are assigned to concepts. Each document owner has a probability
(ǫres) of misclassifying a document by relating it to a wrong concept. We use a fixed,

27



low value of ǫres = 5% in the following experiments. For our setting,δres is equal to
(‖C‖ − 1)−1.

Unless specified otherwise, we used a network of 50 peers sharing in total 100 docu-
ments, 2 outgoing translation links per peer, 4 concepts, a TTL of 3, an initial error rate of
10%, and a probability of 10% of misclassifying documents.

First, it is interesting to see that this approach is very robust against the initial error
rate, mainly because of the short feedback loop (one translation link suffices here to return
documents) compared to the relatively long cycles used previously. Fig. 12 shows the
results for a varying initial percentage of wrong mappings.
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Figure 12: Sensitivity to initial error rate

Nevertheless, the approach is rather sensitive to the rate of misclassification of docu-
ments, as shown in Fig. 13. This is especially true since we donot try to evaluate this
parameter but consider a mere fixed value.
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Figure 13: Sensitivity to misclassification rate

The approach taken here is completely local, and does not take into consideration any
global behavior, and scales well with the number of peers (see Fig. 14). Here, we increase
the number of documents linearly with the number of peers, tokeep the average number of
documents per peer constant. This number is essential to this analysis, since it is directly
proportional to the number of evidences a peer gets for everyquery. This effect is depicted
in Fig. 15: Peers start having trouble correcting the mappings as they get less and less
documents returned for their queries (documents scarcity).
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7.4 Combined Results

Many possibilities exist for combining the two analyses. Wechose a very simple one:
at each step, every peer first performs a result analysis step(modifying a few mappings
depending on the results returned) and then performs a cycleanalysis step (trying to reach
some local agreement on mappings based on cycle feedback). The results for topologies
with 25 peers, 4 concepts, 2 outgoing edges, TTLs of 3 (results) or 6 (cycles) and varying
error rates on initial mappings are depicted in Fig. 16.
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Figure 16: Combined results, varying initial error rate

This method takes more time to converge than the two analysesapplied separately; This
is because the analyses keep interfering with each other until some state is reached that is
consistent from both a cycle and a feedback analyses point ofview. Note that the combined
method in the end outperforms the two individual methods applied separately (e.g., more
than 95% of erroneous mappings corrected after 50 steps with50% erroneous mappings
initially).

8 Implementation framework

All the tasks of the Chatty Web approach have been been mappedonto an implementation
architecture which uses a meta-data model expressed in XML and XQuery as the language
to translate among schemas. The framework assumes the availability of a communication
infrastructure, for example, simple web access via HTTP or aP2P infrastructure such as
JXTA [9]. However, we are not bound to any specific communication infrastructure. All
we require is access to the relevant schema data and the ability to query information and
results. This can easily be achieved by a standard abstraction layer that maps a specific
communication infrastructure’s interface to the one we require. Since this is a fairly stan-
dard software engineering task we omit it in the following discussion. Based on these
assumptions, Fig. 17 shows the standard architecture used for semantic gossiping in the
Chatty Web.
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Figure 17: Architecture for semantic gossiping

Incoming queries are registered at and handled by theIncoming Query and Result Han-
dler whose task is to communicate with other peers, to forward thequery for further pro-
cessing and to gather partial results which it uses to assemble the final result of a specific
query. The next step then is to detect whether a cycle has occurred. If so, semantic analy-
sis of the cycle is triggered. Otherwise, the query is processed, first by querying the local
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database and then by handing it over to theQuery Router and Translatorto collect results
from other peers.

For this purpose theQuery Router and Translatorinquires for possible translations,
evaluates the quality of the resulting queries, and if it is above a defined threshold, forwards
the query to the respective peer in a different semantic domain. Queries are forwarded by
the Outgoing Query and Result Handlerwhich is also in charge of collecting the results
and forwarding the results to theIncoming Query and Result Handlerwhich returns them
to the original requester. Additionally, it provides inputdata for semantic result analysis.

This is the main data processing flow of the architecture. In parallel, partly triggered by
the ongoing data processing, there is also semantic processing as depicted in the left half of
Fig 17. Its main tasks are semantic analyses of results basedon the existing knowledge of
schemas and their relationships and the semantic analyses of detected cycles. The results of
these analyses are integrated again into the system’s knowledge base and provide the basic
decision criteria for query routing.

Additionally, the knowledge base is updated and improved byexploring the peer’s
neighborhood and detecting new schemas and translations. The meta-data repository will
try to infer further translations and present new ones for human analysis or apply them for
actively detecting semantic agreements in an automatic way.

9 Related Work

A number of approaches for making heterogeneous information sources interoperable are
based on mappings between distributed schemas or ontologies without making the canoni-
cal assumption on the existence of a global schema.

For example, in OBSERVER [17] each information source maintains an ontology, ex-
pressed in description logics, to associate semantics withthe information stored and to pro-
cess distributed queries. In query processing, OBSERVER uses local measures for the loss
of information when propagating queries and receiving results. Similarly to OBSERVER,
KRAFT [25] proposes an agent-based architecture to manage ontological relationships in
a distributed information system. Relationships among ontologies are expressed in a con-
straint language. [2] proposes a model and architecture formanaging distributed relational
databases in a P2P environment. The authors use local relational database schemas and
represent the relations between those with domain relations and coordination formulas.
These are used to propagate queries and updates. The relationships given between the
local database schemas are always considered as being correct. In [24] a probabilistic
framework for reasoning with assertions on schema relationships is introduced. Thus the
approach deals with the problem of having possibly contradictory knowledge on schema
relationships. [20] proposes an architecture for the use ofXML-based annotations in P2P
systems to establish semantic interoperability.

An approach to self-organizing vocabularies is described in [29]. A set of agents com-
municate by randomly associating a fixed set of words to a fixedset of meanings (which is
called a vocabulary but in fact is an ontology) and repeatedly evaluate how successful their
communicative acts have been. Depending on the success, thebinding between a word and
a concept is maintained or replaced by a new random coupling.The decision is based on
sigmoid functions so that the probability of change quicklydecreases if the majority of of
agents uses the same coupling. This approach is related to the method of cycle analysis
we use and simulate in Section 7. However, it does not employ result analysis. Neverthe-
less [29] shows that semantic agreements are reached ratherquickly. The additional result
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analysis we perform may help to speed up convergence speed and increase the scalability
and robustness of the self-organization process. It is interesting to note that [29] shows
that an increased numbers of agents, words, and meanings does not lead to combinatorial
explosion but implosion. This is due to the fact that the increasing number of words with
consistent meaning narrows the selection space drastically. This phenomenon is similar to
the combinatorial implosions described by Kauffman [13] for the clustering and intercon-
nection of autocatalytic networks.

Edutella [21] is a recent approach to apply the P2P architectural principle to build a
semantically interoperable information system for the educational domain. The P2P prin-
ciple is applied at the technical implementation level whereas logically a commonly shared
ontology is used. The original design of Edutella which is based on Gnutella is changed to
a super-peer network approach in [22] which offers better scalability and provides sophis-
ticated routing and clustering strategies based on the meta-data schemas attributes and on-
tologies used. This approach includes a methodology for mediation between local schemas
at super peers which enables super-peers to route queries and combine results from differ-
ent semantic domains into one result. It employs transformation rules, so-called correspon-
dences, which have already been used in mediator-based information systems [32].Query
Response Assertions[16] andModel Correspondences[3] are used to express correspon-
dences between heterogeneous schemas.

The Piazza system [10] defines a mapping language to specify mappings between sets
of XML or RDF data sources that tries to take into account bothdomain and document
structure in the mediation process. The transitive closureof these mappings is used to
provide a query answering algorithm over the graph of data source defined by the mappings.
Piazza’s approach is complementary to our approach since itassumes the existence of pair-
wise mappings between data sources and uses these mappings for answering queries while
we try to detect the quality of mappings in terms of an overallagreement among nodes
(which can also be seen as a form of transitive closure). However, the mapping language of
Piazza together with its query rewriting and query answering methods could also be used
in the Chatty Web approach for more expressive mappings and improved query routing.

Approaches for automatic schema matching—see [27] for an overview—would ideally
support the approach we pursue in order to generate mappingsin a semi-automated manner.
In fact, we may understand our proposal as extending approaches for matching two schemas
to an approach matching multiple schemas in a networked environment. One example
illustrating how the schema matching process could be further automated at the local level
is introduced in GLUE [6] which employs machine learning techniques to assist in the
ontology mapping process. GLUE is based on a probabilistic model, employs similarity
measures and uses a set of learning strategies to exploit ontologies in multiple ways to
improve the resulting mappings.

Finally, we see our proposal also as an application of principles used in Web link analy-
sis, such as [14], in which local relationships of information sources are exploited to derive
global assessments on their quality (and eventually their meaning).

10 Conclusions

Semantic interoperability is a key issue on the way to the Semantic Web which can push
the usability of the web considerably beyond its current state. The success of the Semantic
Web, however, depends heavily on the degree of global agreement that can be achieved,
i.e., global semantics. In this paper we have presented an approach facilitating the ful-
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fillment of this requirement by deriving global semantics (agreements) from purely local
interactions/agreements. This means that explicit local mappings are used to derive an im-
plicit global agreement. We see our approach as a complementary effort to the on-going
standardization in the area of semantics which may help to improve their acceptance and
application by augmenting their top-down approach with a dual bottom-up strategy. We
have developed our approach in a formal model that is built around a set of instruments
which enable us to assess the quality of the inferred semantics. To demonstrate its validity
and practical usability, the model is applied in a simple yetpractically relevant case study.
Also, series of experimental results legitimate our claimsand illustrate our interests in
pursuing research aiming at a better understanding of network-related properties fostering
semantic interoperability.
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