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Résumé

Les problemes liés a Ulinteropérabilité sémantique des systemes
d’information furent jusqu’a présent résolus par le biais de solutions
centralisées, tant au niveau systémique qu’au niveau logique. Cette
approche, couronnée d’un certain succes pour les environnements
statiques, offre cependant une extensibilité et une flexibilité limitées. De
nouvelles architectures distribuées — tels les systémes Pair-a-Pair (P2P) —
ont récemment encouragé l'application des principes de décentralisation
et d’auto-organisation. Ces architectures ont ainsi offert des solutions
novatrices aux nombreux problemes liés a la dimension et a la dynamique
des systemes d’information actuels. Notre recherche propose de résoudre
les problemes d’interopérabilité en se basant sur des interactions
décentralisées et auto-organisationnelles.

La premiere partie de cette these présente les techniques d’intégration
de données traditionnelles se basant sur des schémas de données globaux,
des intégrations de données parfaites et des reformulations de requétes
bornées. L’écologie actuelle du Web est constituée de sources de données
autonomes et dynamiques. Dans un tel environnement, les données, les
schémas des données et les schémas d’intégration des données peuvent tous
étre générés de maniere indépendante et automatisée. Les architectures
d’intégration traditionnelles, centralisées, statiques et hiérarchiquement
descendantes, sont ainsi clairement inapplicables aux nouveaux systemes
d’informations répartis. Nous proposons une évolution de ces architec-
tures basée sur une intégration décentralisée et dynamique.

Dans la deuxiéme partie de cette these, nous proposons un ensem-
ble de principes favorisant 'interopérabilité des systemes d’information
répartis. Nous commencgons par introduire de nouvelles métriques en
vue de qualifier les schémas d’intégration, se basant a la fois sur les
pertes syntactiques et sémantiques liées aux reformulations itératives des
requétes. Nous détaillons des méthodes analytiques pour évaluer nos
métriques, et montrons comment tirer avantage de nos techniques pour
graduellement corriger les relations sémantiques inconsistantes a travers
un réseau. Nous décrivons un mécanisme d’inférence décentralisée por-
tant sur la transitivité des opérations d’intégration pour évaluer le degré
d’hétérogénéité sémantique entre paires de systemes d’information. Enfin,
nous proposons une analyse théorique du graphe sémantique sous-jacent
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au systeme d’information afin de quantifier la qualité de I'intégration glob-
ale pouvant étre ainsi constituée.

La troisieme et derniere partie de cette these est dédiée a la
présentation de deux systemes illustrant ’application pratique de nos
idées. Le premier systeme, GridVine, est un réseau sémantique logique
supportant une intégration de données décentralisée basée sur des
schémas d’intégration Pair-a-Pair et sur un héritage monotone des
schémas de données. GridVine est bati suivant le principe d’indépendance
des données et dissocie la couche logique, formée par le réseau sémantique
intégrant les données, de la couche physique constituée d’un réseau Pair-
a-Pair structuré utilisé pour un routage efficace des messages. Le second
systeme, appelé PicShark, tire avantage de données semi-structurées
pour partager des images annotées dans un environnement collaboratif.
PicShark utilise nos principes pour créer dynamiquement des annotations
et des schémas d’intégration sémantique, et pour graduellement limiter
I’entropie du systeme global — en terme de méta-données manquantes et
d’hétérogénéité schématique — afin de recontextualiser les données d’une
maniere décentralisée et auto-organisationnelle.

Tout au long de cette these, nous préconisons une définition
holistique de la sémantique liée aux systemes d’information répartis.
Nous modélisons la sémantique globale comme émergent d’'une multitude
d’interactions locales et répétées provenant de systemes hétérogenes.
Nous considérons tant la représentation de la sémantique que la
découverte de linterprétation des symboles du systeme comme le
produit d’un processus d’auto-organisation conduit par une collection
d’agents dont la fonction d’utilité dépend directement de l'interprétation
correcte des symboles. Notre vision contraste singulierement avec
les contributions précédentes analysant les sources d’informations de
maniere isolées ou se concentrant sur des schémas de données globaux et
statiques. Dans un monde ou l'information digitale est abondante mais
ou l'attention humaine reste limitée, nous pensons que des approches
dynamiques et décentralisées telles que celles proposées dans cette these
auront une part toujours plus importante dans la gestion des flots massifs
de données hétérogenes, dynamiques et distribuées traversant les réseaux
d’information globaux actuels.

Mots-clés: bases de données hétérogenes, interopérabilité sémantique,
gestion des données pair-a-pair.
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Abstract

In the past, the problem of semantic interoperability in information sys-
tems was mostly solved by means of centralization, both at a system and
at a logical level. This approach has been successful to a certain extent,
but offers limited scalability and flexibility. Peer-to-Peer systems as a new
brand of system architectures indicate that the principles of decentraliza-
tion and self-organization might offer new solutions to many problems
that scale well to very large numbers of users, or to systems where central
authorities do not prevail. Therefore, we suggest a new way of building
global agreements, i.e., semantic interoperability, based on decentralized,
self-organizing interactions only.

In the first part of this thesis, we discuss traditional data integra-
tion techniques relying on global schemas, perfect schema mappings and
contained query rewritings. We elaborate on the current ecology of the
World Wide Web, where autonomous information sources come and go
in dynamic and unpredictable ways. In the current environment, data,
schemas and schema mappings can all be generated without human inter-
vention and get encoded in syntactic structures with limited expressivity.
We argue that traditional top-down integration techniques are inapplica-
ble to that new context and propose a new integration architecture based
on decentralized mappings and dynamic self-organization.

In the second part of this thesis, we propose a set of principles to foster
semantic interoperability in very large scale information systems. We
start by introducing new metrics for the schema mappings, based on both
syntactic losses (completeness) and semantic mismatch (soundness) to
selectively reformulate queries in a decentralized network of heterogeneous
parties. We detail analytical methods to evaluate our metrics, and show
how to take advantage of those methods to gradually alleviate mapping
inconsistencies across the network. We describe a totally decentralized
message passing scheme using belief propagation on transitive closures of
schema mapping operations to efficiently evaluate the degree of semantic
mismatch between pairs of acquainted information systems. Finally, we
propose a graph-theoretic analysis of the network of mappings to quantify
the quality of the global agreement that can be achieved in that way.

The third and last part of this thesis is devoted to the presentation of
two systems illustrating the practical applicability of our ideas. The first



system we introduce, GridVine, is a Semantic Overlay Network supporting
decentralized data integration techniques through pairwise schema map-
pings and monotonic schema inheritance. GridVine follows the principle
of data independence by separating a logical layer, the semantic overlay
for managing and mapping data and schemas, from a physical layer con-
sisting of a self-organizing Peer-to-Peer overlay network for efficient rout-
ing of messages. The second system, called PicShark, takes advantage
of semi-structured metadata to meaningfully share pictures in collabo-
rative settings. PicShark builds on our principles to dynamically create
both annotations and mappings, and to gradually minimize information
entropy — in terms of missing metadata and schematic heterogeneity — in
a self-organizing and decentralized context.

Throughout this thesis, we advocate a holistic view on semantics in
large-scale information systems: we model semantics as bottom-up and
dynamic agreements among heterogeneous parties. We consider both the
representation of semantics and the discovery of the interpretation of sym-
bols as the result of a self-organizing process performed by distributed
agents whose utility functions depend on the proper interpretation of the
symbols. Our view sharply contrasts with previous top-down contribu-
tions analyzing data sources in isolation or focusing on global vocabu-
laries and rigid sets of interpretations curated off-line. In a world where
digital information is abundant but human attention remains scarce, we
believe that autonomous, best-effort processes such as the ones proposed
throughout this thesis will play an ever increasing role in complementing
traditional top-down integration approaches to handle massive amounts
of digitalized and heterogeneous information assets.

Keywords: heterogeneous databases, semantic interoperability, peer
data management.
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The three most important problems in Databases used to be
Performance, Performance and Performance; in the future,
the three most important problems will be Semantics, Seman-
tics, and Semantics... (paraphrase) Stefano Ceri, 1998.



When you and I speak or write to each other, the most we
can hope for is a sort of incremental approach toward agree-
ment, toward communication, toward common usage of terms.

Douglas Lenat, 1995.



Rose is a rose is a rose is a rose. Gertrude Stein, 1913.






Chapter 1

Introduction

The recent success of Peer-to-Peer (P2P) systems and the initiatives to
create a Semantic Web have emphasized once more a key problem in infor-
mation systems: the lack of semantic interoperability. Semantic interop-
erability is a crucial element for making distributed information systems
usable. It is a prerequisite for structured, distributed search and data ex-
change, and provides the foundations for higher level (Web) services and
processing.

For instance, the technologies that are currently in place for P2P file
sharing systems either impose a simple semantic structure a priori (e.g.,
on P2P systems such as Kazaa! or eMule?) and leave the burden of se-
mantic annotation to the user, or do not address the issue of semantics
at all (e.g., on the current Web or on systems like Freenet3). In the lat-
ter case, the systems only support unstructured data representation and
leave the burden of making sense to the skills of the user, e.g., by creating
pseudo-structured strings such as Report-222006-P2P-Project- Version-2.3
to encode very simple semantics in the identifiers of the shared files.

Classical attempts to make information resources interoperable,
in particular in the domain of database integration, were developed
for relatively small sets of curated, immutable and highly structured
data sources. The wrapper-mediator or ontology-based information
integration approaches rely on global vocabularies and contained
rewritings to provide certain answers to queries issued locally. Even
if those approaches are arguably quite appropriate in confined, static
environments, they require too much human attention and coordination
to be enforced in the large.

With the evolution of global networking infrastructures and the de-
mocratization of tools facilitating the elicitation of knowledge in machine-
processable formats, the problem of data integration reaches a whole new
dimension today. Computers manipulate data originating from very dis-

L nttp: / /www.kazaa.com/
2hitp:/ /www. emule-project.net/
3hitp://freenetproject.org/



6 Introduction

parate sources — e.g., on the Semantic Web, where all resources are glob-
ally accessible and identifiable by URIs. Both systems and end-users are
gradually gaining more autonomy: systems through automatic creation
and manipulation of data (e.g., in sensor networks or self-maintaining
community websites), and users through the availability of software allow-
ing the creation, transformation and individualization of personal data.
The result is an ocean of information — ranging from raw experimental
data to semi-structured text or tagged video sequences — available on the
Internet but mostly impossible to discover or manipulate at run-time due
to their lack of semantics.

Throughout this thesis, we propose a new way of conceptualizing se-
mantics. We consider global interoperability as emerging from collections
of dynamic agreements between heterogeneous parties. We introduce a
different view on the problem of semantic heterogeneity by taking a so-
cial, holistic perspective relying on self-organization and repeated local
interactions among communities of autonomous agents. We argue that
we can see independent and unsupervised interactions as an opportunity
to improve semantic interoperability rather than as a threat, in partic-
ular in revealing new possibilities on how semantic agreements can be
achieved. Folksonomies, i.e., collaborative labeling schemes used to clas-
sify resources on Web sites such as Flickr* or Del.icio.us®, are simple
examples of emergent semantics phenomena applied to unstructured and
centralized information settings. In this thesis, we focus on semantics
emerging from (semi) structured, large scale and decentralized settings.

1.1 On Syntax, Semantics and Syntactic Seman-
tics

Syntax is classically considered as the study of the rules of symbol forma-
tion and manipulation [Mor38]. In the context of this thesis, we mostly
associate syntax to the formalisms used to create, interrelate and query
concepts — such as relational attributes or ontological classes. Note that
a common syntax (e.g., XML) is often a prerequisite for establishing se-
mantic interoperability, but is in general insufficient by itself as semantic
equivalence (e.g., between book and livre) does not generally imply equiv-
alence on the syntactic level.

Despite its wide usage in many contexts, the notion of semantics of-
ten lacks a precise definition. As a least common denominator, we can
characterize semantics as a relationship or mapping established between
a syntactic structure and some domain. The syntactic structure is a set
of symbols that can be combined following syntactic rules. The pos-
sible domains relating the symbols through semantics can vary widely.

Lhittp:/ fwww. flickr.com/
Shittp://del.icio.us/



In linguistics, this domain is often considered as a domain of concep-
tual interpretations. In mathematical logic, a semantic interpretation for
a formal language is specified by defining mappings from the syntactic
constructs of the language to an appropriate mathematical model. Deno-
tational semantics applies this idea to programming languages. Natural
language semantics classically concerns a triadic structure comprising a
symbol (how some idea is expressed), an idea (what is abstracted from
reality) and a referent (the particular object in reality) [OR23].

By considering the union of the syntactic and semantic domains, how-
ever, semantics can be regarded as syntax, i.e., semantics can be turned
into a study of relations within a single domain among the symbols and
their interpretations [Rap03]. Dictionaries are simple examples of con-
structs based on that paradigm, where the interpretations of symbols
(i.e., words) are given by means of the same symbols, creating a closed
correspondence continuum. Syntactic semantics is the name given to the
study of semantics through the analysis of syntactic constructs.

Beyond its implication in linguistics — where it is conjectured that
human beings inevitably understand meaning in terms of some syntac-
tic domain — we consider syntactic semantics as mostly relevant to the
computer science domain. Programs, database schemas, models, or on-
tologies are unconscious artifacts and have no capacity (yet?) to refer to
reality. However, software agents have various mechanisms at their dis-
posal for establishing relationships between internal symbols and external
artifacts. In the setting where humans provide semantics, relationships
among symbols — such as constraints in relational databases — are means
to express semantics. In order to rectify some of the problems related to
the implicit representation of semantics relying on human cognition, some
have proposed the use of an explicit reference system for relating sets of
symbols in a software system. Ontologies serve this purpose: an ontology
vocabulary consists in principle of formal, explicit but partial definitions
of the intended meaning of a domain of discourse [Gru93, Gua98]. In
addition, formal constraints (e.g., on the mandatoriness or cardinality of
relationships between concepts) are added to reduce the fuzziness of the
informal definitions. Specific formal languages (e.g., OWL) allow to define
complex notions and support inferencing capabilities (generative capac-
ity). In that way, explicitly represented semantics of syntactic structures
in an information system consist of relationships between those syntactic
structures and some generally agreed-upon syntactic structure. Thus, the
semantics is itself represented by a syntactic structure.



8 Introduction

1.2 Emergent Semantics in Distributed Informa-
tion Systems

In a distributed environment of information agents, such as in the Seman-
tic Web or Peer-to-Peer systems, the aim is to have the agents interoperate
irrespective of the source of their initial semantics. To that aim, an agent
has to map its vocabulary (carrying the meaning as initially defined in its
base schema or ontology) to the vocabulary of other agents with which
it wants to interoperate. In that way, a relationship between local and
distant symbols is established. This relationship may be considered as
another form of semantics, independent of the initial semantics of the
symbols.

Assuming that autonomous software agents have acquired their seman-
tics through relationships to other agents and that agents interact without
human intervention, the original human assigned semantics would loose
its relevance; from an agent’s perspective, new semantics would then re-
sult from the relationships to its environment. We view this as a novel
way of providing semantics to symbols of autonomous agents relative to
the symbols of other agents they are interacting with. Typically, this
type of semantic representation is distributed such that no agent holds a
complete representation of a generally agreed-upon semantics.

With the classical notion of semantics in information systems, the
process of generating semantic interpretations, e.g., the generation of on-
tologies reflecting shared semantics, is somewhat left outside the operation
of the information system. The process is assumed to rely on social in-
teractions among humans, possibly supported in their collaborative effort
by some computational and communicational tools. Viewing semantics
of information agents as a relationship to other agents allows us to in-
ternalize the discovery process of those relationships to their operation.
We abandon the idea of a preexisting outside agency for forming semantic
agreements, but see those as a result of the interaction of autonomous,
self-interested agents. This is in line with the concept of expressing se-
mantics through internal relationships in a distributed system. By this
approach, we aim at consolidating the local semantics of autonomous in-
formation systems into global semantics that result from a continuous
interaction of the agents. The structures emerging from the continuous
interactions provide meaning to the local symbols. We consider semantics
constructed incrementally in that way as emergent semantics.

From a global perspective, considering a society of autonomous agents
as one system, we observe that the agents form a complex, self-referential,
dynamic system. It is well-accepted and known from many examples that
such systems (often) result in global states, which cannot be properly char-
acterized at the level of local components. This phenomenon is frequently
characterized by the notion of self-organization. Thus, emergent seman-
tics is not only a local phenomenon, where agents obtain interpretations



1.3. Scope of Research 9

locally through adaptive interactions with other agents, but also a global
phenomenon, where a society of agents agree on a common, global state
as a representation of the current semantic agreement among the agents.
This view of semantics as the emergence of a distributed structure from
a dynamic process — or more specifically as an equilibrium state of such
a process — is in-line with the generally accepted definitions of emergence
and emergent structures in the complex systems literature [BY97].

1.3 Scope of Research

In this thesis, we analyze and iteratively refine semantic agreements be-
tween information systems acquainted through local schema mappings.
We take an emergent, holistic view on the problems of semantics by ana-
lyzing transitive closures and composite operations on mapping networks.
We exploit interactions between the various agents in the system in or-
der to hypothesize meaning from context and to analyze the degree of
acceptance of conventionalized, global semantics.

Our study focuses on systems storing data according to structured
and declarative representations such as schemas or ontologies. Viewing
schematic elements (e.g., relational attributes, XML elements or RDF
classes) as internal or external referents used in schema mappings to re-
late pieces of information across heterogeneous domains allows us to treat
them on a uniform basis. The specific syntactic constructs used to define
the schematic elements in a given system are, however, of utmost impor-
tance, as they have a direct impact on the ways we can manipulate or
detect semantic agreements.

1.4 What the Thesis is not about

As we are interested in structured or semi-structured data stored accord-
ing to declarative schemas, we do not in the following consider agreements
on unstructured text, sets of keywords, or natural language sentences.
Also, we concentrate on some of the most basic and universal schematic
constructs, such as class definition, extension, equivalence or subsumption,
and do not consider more sophisticated declarations (e.g., constraints or
type restrictions).

Our analyses assume the existence of schema mappings relating el-
ements from one schema to elements from another schema. However,
we are not directly interested in the creation of those mappings (except
in Chapter 9, where we propose emergent semantics methods to create
the mappings), which might be created manually, semi-automatically or
in totally automated manners. Automatic mapping creation is a popu-
lar research topic and many approaches have already been proposed (see
Chapter 2) to create mappings in dynamic ways.
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We take advantage of mappings to reformulate queries iteratively.
However, we are not concerned with the complexity of query reformulation
or answering directly, as those topics have received significant attention
in various recent research efforts (see the following chapter). Finally, we
are not interested in the ways agents retrieve or make use of data gath-
ered from other agents, as we mainly focus on efficient ways to propagate
queries in order to locate relevant information.

1.5 Outline of the Thesis

This document is divided into three parts. The first part, Foundations,
introduces the main concepts used throughout the rest of the thesis. Meth-
ods, the second part, proposes new models and a set of algorithms to foster
and analyze semantic interoperability in decentralized settings. The third
and last part, Systems, describes two systems implementing our approach.

Part I: Foundations

We start with a discussion of traditional data integration techniques in
Chapter 2. We give a brief overview of federated databases and wrapper-
mediator architectures. We introduce the vision of the Semantic Web
and discuss the new interoperability challenges introduced by large-scale,
decentralized settings. We then give an overview of P2P architectures in
Chapter 3, and explain the reasons why such architectures are particu-
larly attractive to process information in the large. Finally, we introduce
the Peer Data Management paradigm and the Semantic Overlay Network
architecture to support information interoperability and query processing
capabilities in very large scale decentralized settings.

Part II: Methods

Chapter 4 starts with the description of a formal model for Peer Data
Management Systems. The rest of the chapter is devoted to Semantic Gos-
siping, a mechanism to selectively forward queries and iteratively analyze
semantic agreements in decentralized networks of heterogeneous parties.
We introduce two metrics to quantitatively measure the losses incurred
by approximate query reformulations: syntactic similarity based on the
notion of mapping completeness and semantic similarity based on the no-
tion of mapping soundness. The former similarity is derived by analyzing
syntactic losses in the reformulated queries, while the latter is obtained
by analyzing transitive closures of mapping operations and classification
of query results. Chapter 5 extends Semantic Gossiping to automatically
correct potentially erroneous mappings and discusses experimental results
pertaining to the performance of our approach. We introduce a totally de-
centralized message passing scheme to detect mapping inconsistencies in
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a decentralized but parallel manner in Chapter 6. Our scheme is based on
factor-graphs and loopy belief propagation to confront local beliefs on the
correctness of the mappings to evidences gathered around the network.
We develop our algorithms for both undirected mapping networks and
directed mapping networks with inclusive (i.e., subsumption) mappings.
Chapter 7, finally, proposes a graph-theoretic analysis of the network of
mappings. We derive a necessary condition for obtaining semantic in-
teroperability in the large based on statistical properties of the mapping
network. We expand our analysis to derive the extent to which a lo-
cal query can be propagated throughout the network taking into account
both the number and quality of the mappings. We test our heuristics on
randomly-generated topologies and on an existing bioinformatic database
system.

Part III: Systems

The third part of this thesis starts with a description of GridVine in
Chapter 8. GridVine is a Semantic Overlay Network based the P-Grid
P2P access structure. Built following the principle of data independence,
it separates a logical layer — where data, schemas and schema mappings
are managed — from a physical layer responsible for the organization of
the peers. GridVine is totally decentralized, yet fosters semantic interop-
erability through Semantic Gossiping and monotonic schema inheritance.
We discuss a reference implementation of GridVine and experiments fo-
cusing on various query resolution mechanisms. PicShark, our second
system presented in Chapter 9, builds on GridVine to meaningfully share
annotated pictures in decentralized settings. We highlight the two main
issues preventing structured annotations from being shared in large scale
settings: scarcity of annotations and semantic heterogeneity. We propose
a formal framework to capture both of those issues and detail mechanisms
to alleviate annotation entropy — in terms of missing and heterogeneous
annotations — in a community-based and self-organizing way. We describe
the architecture of the application and discuss experimental findings re-
lating annotation entropy to the correctness of the annotations generated
by the system.

1.6 Contributions

The main contribution of this work is the development of techniques and
systems promoting global interoperability in large scale, decentralized set-
tings through self-organizing and local processes. Specific contributions
include:

e the introduction of a decentralized, collaborative paradigm focus-
ing on transitive closures of mappings to foster interoperability in
decentralized settings
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the description of an architecture for Semantic Overlay Networks,
where the physical organization of the machines, the logical organi-
zation of the peers and the organization of the semantic mediation
layer are all uncorrelated

the presentation of a formal model for peers, schemas, mappings
and queries in a Peer Data Management System

the introduction of a syntactic similarity measure between itera-
tively reformulated queries based on the notion of mapping com-
pleteness

the introduction of two semantic similarity measures between itera-
tively reformulated queries based on the notion of mapping sound-
ness and related to the analyses of cyclic mappings and retrieved
results

the introduction of a tradeoff between the precision and recall of
the set of answers to a query in a Peer Data Management System
taking advantage of both syntactic and semantic analyses

the introduction of self-healing semantic networks autonomously re-
pairing potentially erroneous mappings detected through cyclic and
result analyses

the modeling of mapping networks as global and local factor-graphs
supporting efficient sum-product operations in a decentralized man-
ner

the description of a probabilistic message passing scheme to detect
mapping inconsistencies in a parallel manner based on loopy belief-
propagation

the modeling of Peer Data Management Systems as collections of
bipartite and directed weighted graphs

the derivation of a necessary condition for semantic interoperability
in the large and its extension to approximate the degree of diffusion
of a local query throughout a semantic network

the description of an architecture to manage data, schemas and
mappings in a scalable and totally decentralized way through a Dis-
tributed Hash Table

the presentation of two mechanisms to resolve queries in a Semantic
Overlay Network in an iterative or recursive fashion

the formalization of annotation scarcity and semantic heterogeneity
in a information entropic framework
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e the description of novels methods to generate and interrelate seman-
tic annotations in the context of a media sharing application based
on data indexing, data imputation and decentralized data integra-
tion techniques.
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Chapter 2

On Integrating Data in the
Internet Era

With the development of networking infrastructures came the need to
exchange digital information across distributed organizations. While var-
ious efforts focused on standardizing the computer-to-computer exchange
of structured messages, e.g., in the context of the Electronic Data Inter-
change EDI format!, others tackled the difficult problem of relating het-
erogeneous data sources designed independently. Data integration aims
at combining data residing at heterogeneous sources and providing the
user with a unified view over those data.

Various paradigms were developed to integrate heterogeneous
databases. The simplest approach — sometimes referred to as Global
Schema Integration [BHP92] — consists in imposing a single global
schema to all local databases. Imposing a global schema results in a
tightly coupled collection of data sources with only limited autonomy and
limited scalability, as designing the global schema requires an in-depth
knowledge of all local databases. At the other end of the spectrum,
Multidatabase Languages such as MSQL [LAZ"89] were designed to
query collections of totally decoupled databases at run-time. Though
preserving the autonomy of the data sources, this approach requires
the formulation of elaborated queries involving all schemas, which is
impractical in large-scale dynamic settings.

2.1 Federated Databases

Most research efforts in data integration focused on designing systems
and methods to interoperate multiple databases, allowing to query the
whole system as a single unit while requiring only loose coupling. In
the following, we use the notion of semantic interoperability in that con-
text, i.e., we say that two systems are semantically interoperable when

see http://www.z12.0rg/
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they can be queried using a uniform query interface. Federated Databases
were developed towards that goal and allow the retrieval of data from
multiple noncontiguous databases with a single query, even when the con-
stituent databases are heterogeneous. Thus, federated databases provide
a solution to integrate data coming from heterogeneous databases inter-
connected via a computer network. They come in different flavors (see
Sheth and Larson [SLI0] for a taxonomy) but today often revolve around
a wrapper-mediator architecture [Wie92] to reformulate a query posed
against a global schema into local queries processed by individual data
sources. Figure 2.1 gives an overview of this architecture: multiple data
sources (at the bottom of Figure 2.1) created independently but sharing
similar information agree on a common — typically relational — data model
to export their data. The databases are only loosely-coupled as they can
keep their original structured schema internally. The wrappers are respon-
sible to adapt local data such that they adhere to the common data model
once exported. The mediator stores a global integrated schema and its
relationships to the local schemas exported by the wrappers. Query res-
olution proceeds as follows: applications pose queries against the global
schema at the mediator, which reformulates the queries in terms of the
local schemas and sends subplans to be executed by the wrappers [Len02].
The wrappers process the queries sent by the mediator such that they are
understandable by the sources, query the sources and translate the re-
sults to the common data model. Finally, the mediator collect all results
from the wrappers and returns an integrated fused set of results to the
applications.

| Application 1 | | Application 2 | | Application 3 |

SQL SQL SQL

SQL

. Source
Mediator _‘\D_ews_l <& - - - Global Schema

SQL

;

SQL SQL SQL
| Wrapper | | Wrapper | | Wrapper |

—
. N Semi-
Relational Relational Structured < - - - Local Sources
Database 1 Database 2
Database

Figure 2.1: The Wrapper-Mediator Architecture. The Mediator offers an inte-
grated interface to query heterogeneous data sources. Local sources
retain some autonomy as their schema are only loosely coupled to
the global schema through the schemas exported by the Wrappers
and the source descriptions stored at the Mediator.
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The relationships between the local sources and the global schema
are stored at the mediator as source descriptions. Typically, sources are
described by means of logical formulae like those used to express queries
or views. Two main approaches have been proposed to relate the local
sources to the global schema using views: the Global-As-View (GAV)
approach, which describes the global schema in terms of the local sources,
and the Local-As-View (LAV) approach, which describes the contents of
a data source as a view over the global schema.

Reformulating a query posed against the global schema with GAV
source descriptions is easy: since attributes from the global schema are
given as views on the local sources, one simply has to replace the atoms of
the global query by their corresponding expressions in terms of the local
sources. This process in knows as query unfolding and was studied in the
context of several research efforts [ACPS96, GMPQ'97, FTS00] including
the Garlic project [HMN199] and OBSERVER [MKSIO0]. Figure 2.2
shows a simple example of query unfolding.

Source A Source B

Course(course,dept) Follows(stud,course)
Teaches(teacher,course)

Integrated Schema Definition } ;

StudGlobal(stud, dept, teacher) :-
Course(course,dept), Teaches(teacher,course), Follows(stud,course)

Query g
StudGlobal(stud?, 1&C, Aberer) |Query Expansion

Reformulated Query g' \

Course(course?,l&C), Teaches(Aberer,course?), Follows(stud?,course?)

Figure 2.2: GAV-style query reformulation: query unfolding or expansion.

LAV, on the other hand, is source-centric, as it describes the local
sources in terms of the global integrated schema. Query reformulation
requires in that case techniques borrowed from query answering using
views [Hal01], such as the Bucket [LRO96], the inverse-rules [DG97] or the
MiniCon [PL00] algorithms. LAV systems such as Infomaster [GKD97]
or the Information Manifold [OLR96] have received significant attention
as their schemas scale gracefully with the number of sources: with GAV,
adding a new source requires the redefinition of the global schema. With
LAV, one only has to add a new source description at the mediator. In this
context, sources are often considered as incomplete (open-world assump-
tion, i.e., the extensions of the views might be missing tuples). Figure 2.3
shows an example of query answering using incomplete LAV sources.
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Integrated Schema

Uni(stud,course,teacher)

Source A description ; Source B description }

Follows(stud,course) € Uni(stud,course,teacher) Teaches(course,teacher) < Uni(stud,course,teacher)

Query q

Query Answering
q(course) = Uni(Doe,course?,Aberer) Using Views

Reformulated Query g' \

q'(course) = Follows(Doe,course?), Teaches(course?,Aberer)
< Uni(Doe,course?,teacher1?),Uni(stud2?,course?,Aberer) = Uni(Doe,course?,Aberer)

Figure 2.3: LAV-style query reformulation: query answering using views.

Note that there also exists a generalization of both GAV and LAV
called Global-Local-As-View (GLAV) [FLM99]. In that model, the rela-
tionships between the global schema and the sources are established by
making use of both LAV and GAV assertions.

The various assertions composing the source descriptions can be seen
as schema mappings since they map attributes of local schemas onto at-
tributes of the global schema (or the other way around). Mappings are
typically created manually, though lots of recent research efforts [RB01]
propose to partially automate the process. The mappings considered in
this context typically produce equivalent or maximally-contained refor-
mulations of the queries. A reformulated query ¢’ is equivalent to the
original query ¢ if it always produces the same results as ¢, independent
of the state of the database or of the views. A reformulated query ¢ is
mazximally-contained if it only produces a subset of the answers of ¢ for a
given state of the database [Hal01]. The maximality of ¢’ is defined with
respect to the other possible rewritings in a particular query language
considered. The answers returned by equivalent or contained queries are
called certain answers in the sense that they are answers for any of the
possible database instances that are consistent with the given extensions
of the views. Finding all certain answers is co-NP-hard in general (in
terms of data complexity, i.e., complexity of the problem as a function of
the size of the instance data), but can be done in polynomial time in many
practical cases (e.g., when both the query and the mapping are defined
as conjunctive queries) [AD9S].

Finally, note that a slightly different notion of interoperability was re-
cently proposed in the context of data exchange settings. Data exchange is
the problem of taking data structured under a source schema and creating
an instance of a target schema that reflects the source data as accurately
as possible [FKMPO05]. This contrasts with the data integration scenario
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where data is retrieved and shared on-demand at query time.

2.2 XML, RDF and the Semantic Web

Federated databases were conceived before the World Wide Web, when
information was typically created, curated and processed locally or at a
few distant sites known a priori. Today, the focus is on developing new
tools and standards for creating and processing data originating from
multiple, heterogeneous and dynamic sources. The Extensible Markup
Language (XML) [BPSM104] was a first important step towards this vi-
sion. XML provides a common syntax to share user-defined data across
distributed systems, to describe the schemas of those data (for example
through XML Schemas [FWO04]) and to query the data (for example using
XQuery [BCFT06]).

Recently, the Semantic Web? vision attracted much attention in a
similar context. The Semantic Web envisions an evolutionary stage of the
World Wide Web in which software agents create, exchange, and process
machine-readable information distributed throughout the Web. The Re-
source Description Framework (RDF) [MMO04] is one of the building blocks
of the Semantic Web (see Figure 2.4). RDF is a framework designed to cre-
ate statements about resources in the form of subject-predicate-object ex-
pressions called RDF triples. RDF vocabularies — classes of instances and
predicates — can be defined with the RDF-Schema language RDFS [BG04].
More expressive definitions of the vocabulary terms can be written as on-
tologies, for example with The Web Ontology Language (OWL) [Mv04].
Ontologies can be seen as explicit integrated schemas used by distributed
and potentially numerous information sources. However, ontologies are
not the panacea in data integration [OA99]: by statically fixing semantic
interpretations, ontologies do not always provide the flexibility necessary
to handle query dependent integration between autonomously and inde-
pendently designed information systems. Furthermore, standardization
efforts aiming at defining upper ontologies promoting data interoperabil-
ity in the large have failed so far?. In the Semantic Web context as well,
semantically related ontologies need to be integrated if one wants to be
able to interact with as many informations sources as possible. It is thus
unsurprising to witness today an intense research activity on specialized
integration techniques for the Semantic Web (also referred to as ontology
alignment [Euz04b] techniques).

Whether or not the vision of the Semantic Web will one day be realized
is still subject to discussion. The proliferation of machine-processable
and structured data — encoded in XML, RDF, or in proprietary formats

2see the W3C Semantic Web Activity at http://www.w3.org/2001/sw
3see http://www.ontologyportal.org/ for an example related to the Suggested Upper
Merged Ontology (SUMO)
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| Trusted SW |
Proof
[0) c
Rules / Query = S
RS
5 3]
| Ontology | (,9; iz
| RDF Model & Syntax |
| XML Query | | XML Schema |
| XML | | Namespaces |
| URI/IRI | | Unicode |

Figure 2.4: The Semantic Web stack: The Semantic Web builds on existing
standards such as XML or RDF to define and share data, but also
requires higher-layer standards related to logic or trust.

such as those promoted by Google*- is however already a reality on the
Internet. As all the aforementioned formats are extensible — in the sense
that end-users can define new schemas to organize their data according
to their own preferences — the research community is confronted with
a new grand challenge: integrating data originating from thousands of
heterogeneous, dynamic and potentially unknown data sources. This new
challenge sharply contrasts with previous challenges faced in the field of
data integration in several ways:

Scale: Federated databases were designed to integrate a limited number
of sources, typically a few dozens. Today, hundreds of heterogeneous
sources often have to be integrated for one particular application (see
Section 7.7 for an example related to the bioinformatic domain).
More general applications such as the Semantic Web — where all
resources are uniquely identified and globally shared — require the
integration of tens of thousands of disparate sources.

Uncertainty: Databases integrated via a wrapper-mediator architecture
were typically created and curated by database administrators.
With the new formats described above, end-users themselves
are supposed to create schemas and data. Also, more and more
applications attempt to create data and metadata automatically
(e.g., in the context of sensor networks), with all the associated

Ysee hitp://base.google.com/ or hitp://www.google.com,/coop
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problems in terms of data quality. Thus, on an open system
such as the World Wide Web, one cannot expect any level of
quality for the schemas, schema mappings or data provided by
a distant and potentially unknown source. Uncertainty on all
pieces of information has to be taken into account in all aspects
of data processing and retrieval to filter out potentially spurious
information.

Dynamicity: Federated databases used to integrate a relatively stable
set of sources. On a large-scale decentralized infrastructure such as
the Internet, on the other hand, information sources come and go
on a continuous basis. New sources have to be integrated on the
fly with minimum overhead. Also, systems have to be resilient to
all sorts of node failures, including the failure of central indexes or
centralized servers such as mediators.

Limited expressivity: Compared to relational data, data available on
the World Wide Web in XML or RDF often suffer from relatively
simplistic structures (schema and data models). Data are available
in very crude ways, often comparable to simple Web forms. Few
constraints other than foreign key relationships are supported, and
transactional support is typically nonexistent. Languages used to
map schemas or ontologies are equally limited and often revolve
around simple one-to-one matching of attributes or classes [Euz04a,
Mv04].

The emergence of this new information ecology requires new tech-
niques to process and integrate data in a consistent and scalable way. We
propose hereafter a new paradigm to integrate information in the large
based on self-organization and decentralization principles. The following
chapter starts with a discussion of several decentralized architectures in
the context of Peer-to-Peer systems.
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Chapter 3

Peer-to-Peer Information
Management

Peer-to-Peer (P2P) systems rely on machine-to-machine ad-hoc communi-
cations to offer services to a community. Contrary to the classical client-
server architecture, P2P systems consider all peers, i.e., all nodes par-
ticipating in the network, as being equal. Hence, peers can at the same
time act as clients consuming resources from the system, and as servers
providing resources to the community. Figure 3.1 shows a client-server
and a P2P system side by side.

B

i) Client-Server ii) Peer-to-Peer

Figure 3.1: Two architectures: i) the client-server paradigm where clients’ re-
quests all converge to a set of centralized servers and ii) the P2P
paradigm where peers collectively gossip a request originating from
the peer located on the extreme left.

The resources shared by the peers through the P2P infrastructure can
vary widely: USENET [HAS87] was an early P2P system for disseminating

25
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news articles. Napster! used to focus on the P2P streaming of MP3 songs.
Groove? is a desktop software designed to facilitate collaboration and
communication among small groups, where workspaces (e.g., calendars,
sketchpads) can be created and edited in a P2P way. Skype® is a P2P
Internet telephony network. A few distinct advantages nurture the use of
P2P technologies in those various domains:

Scalability: P2P systems tend to eliminate all central components. In-
stead of requesting services from centralized servers, the peers col-
laboratively contribute resources to support shared applications.
This ensures a graceful scalability of most P2P networks: new clients
requesting services have to connect to a few existing peers to join the
P2P network. Once they are part of the system, they in turn have
to provide resources and act as servers intermittently to support
shared services.

Autonomy: As P2P systems function without any central administra-
tion, peers have to proactively and autonomously ensure that the
P2P network is running correctly in their vicinity. This contrasts
with centralized applications where dedicated machines adminis-
tered by a central authority have to be monitored continuously to
ensure the continuity of the service. This of course comes at a price
in the P2P network, which has to implement self-examination and
self-stabilization mechanisms.

Robustness: As by-product of the first two points, P2P systems con-
tinue their operations in case of node failures. P2P networks do not
present any single point of failure, and can circumvent the failure of
any node by provisioning resources from other peers.

3.1 From unstructured to structured P2P Sys-
tems

P2P applications function on top of existing routing infrastructures — typ-
ically on top of the IP network — and organize peers into logical structures
called overlay networks. The structure of the overlay network can vary;
the right-hand side of Figure 3.1 presents an wunstructured overlay net-
work, similar to the structure used for example in Gnutella [Cli01]. In
unstructured overlays, peers establish connections to a fixed number of
other peers, creating a random graph of P2P connections.

Requests originating from one peer are forwarded by the other peers
in a cooperative manner. The propagation of the query is regulated by

Lhttp://www.napster.com
2http: / /www. groove.net/
3hitp:/ /www.skype.com/
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a Time-To-Live (TTL) value, which indicates the number of times the
query is to be iteratively forwarded before being discarded. This rela-
tively simple and robust mechanism is however network-intensive, as it
broadcasts all queries within a certain radius irrespective of their content.
To discover new nodes, peers can rely on similar mechanisms by send-
ing out special queries, e.g., ping descriptors in Gnutella, that trigger an
automatic response, e.g., pong messages in Gnutella, from all the other
peers receiving the query.

Structured overlay networks were introduced to alleviate network traf-
fic while maximizing the probability of a query locating a specific peer.
The left-hand side of Figure 3.2 shows how peers can be organized into a
structured virtual binary search tree, as promulgated by the P-Grid P2P
system [Abe01, ACMD™03]. Other well-known structured P2P systems
organize the peers on a multi-dimensional torus [RFH'01] or around a
circle [RD01, SMK"01]. Those systems provide hash-table functionalities
on an Internet-like scale, and are today known as Distributed Hash-Tables
(DHTSs). They typically find a data item in a totally decentralized way in
O(log(N)) messages, where N is the number of peers in the system.

Observing that some peers are more equal than others, i.e., that some
peers can provide more resources than others in a P2P system, several
systems — most notably Kazaa [LKR06] — adopted a two-layered P2P
structure called super-peer [YGMO3] architecture. Figure 3.2 ii) shows a
super-peer overlay network where peers are organized in a typical two-tier
hierarchy: simple peers connect to one of the four super-peers, which sup-
posedly enjoy greater stability, superior bandwidth or CPU capabilities.
The super-peers act as proxies for the simple peers: they take care of
indexing the data items of the simple peers, and forward their requests in
the super-peer network. The super-peer network of Figure 3.2 ii) is orga-
nized in a structured hyper-cube overlay, similar to the structure used in
Edutella [NWST03].

Note that the crude classification adopted above does not do justice
to the wealth of research directions currently explored in the P2P field.
Other overlay structures have been suggested (e.g., Butterfly networks, de
Bruijn graphs), and numerous mechanisms have been proposed to tackle
problems ranging from resilience to attacks to load balancing, reputation
or identity management. We refer the interested reader to recent surveys
of the field [RM04, Hel04] for further details.

3.2 Peer Data Management

P2P systems originally dealt with very simple data and query models:
only filenames were shared and queries were composed of a single hash
value or a keyword. Rapidly, several research efforts tried to enrich P2P
systems with more expressive data models. Edutella [NaCQD102] is a
P2P system for exchanging metadata in RDF. Originally built on top
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i) A Structured P2P Network ii) A Super-Peer P2P Network

Figure 3.2: Two P2P architecture: i) a structured P2P network d la P-Grid
where peers are organized in a virtual binary shared tree and ii) a
super-peer network a la Edutella where simple peers cluster around
four super-peers.

of JXTA%, it later evolved to support publish-subscribe functionalities
for RDF and RDF Schema data on a super-peer architecture [NWS*03].
RDFPeers [CF04a] indexes RDF and RDF Schema data in a DHT.
PeerDB [BOTO03] is based on the BestPeer [NOT02] P2P system and
allows the sharing of relational data through attribute-keyword matching.
PIER [HCHT'05] is a full-blown, distributed and relational database
system built on top of a DHT.

In early 2002, we proposed a radically different approach [ACMHO02]:
instead of augmenting P2P systems with richer query processing capabil-
ities, we decided to extend the wrapper-mediator architecture in a P2P
way. We introduced two fundamental concepts:

1. A decentralized mediator: the centralized mediator (see Figure 2.1)
represents a single point of failure for traditional federated
databases. Also, the definition and maintenance of a global schema
is impractical in large scale decentralized environments. As a
result, we decided to decentralize the mediator. Local data sources
continue to operate in total autonomy, but define a few mappings
to related databases. Disposing of a query reformulator locally,
individual databases can in that way query neighboring databases
by reformulating a query posed against their local schema thanks
to local schema mappings.

2. A query routing mechanism based on iterative reformulations: re-
quiring the definition of local mappings between all pairs of seman-

Ahittp:/ Swww.jzta. org/
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tically related data sources would be unrealistic in large scale set-
tings. Instead, we devised a query gossiping mechanism to prop-
agate queries in an iterative and collaborative manner throughout
the network as in an unstructured P2P system (Figure 3.1 ii): once
a database sends a reformulated query to its immediate neighbors,
its neighbors (after processing the query) can in turn propagate the
query to their own neighbors, and so on and so forth until the query
reaches all (or a predefined subset of) databases.

This architecture, explored in different ways in the context of the Pi-
azza project [HIMTO3], is today known as a Peer Data Management
System (PDMS). Figure 3.3 depicts a PDMS where all peers support
a SPARQL [PS06] query interface to retrieve RDF data from neighboring
peers.

RDF
Database

Wapping Query
 Mappin
SPARQL

Interface A

: /vé‘ e
i SPARQL
<« Interface
)~ - Query
SPARQI ; I_Mapplng
Interface T
Mapping Query Interface
Descri Reformulator
Mapping Query
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Figure 3.3: A Peer Data Management System: the peer on the left-hand side
reformulates a local query (1) thanks to local schema mappings and
sends it to its neighbors (2); its neighbors, in turn, can reformulate
the query and propagate it to their own neighbors (3).

Peer data management is a natural paradigm for integrating data in
the large. For a new peer wishing to join an existing PDMS, the cost
of entry is minimal as for most P2P systems: the new peer only has to
define a few schema mappings between its schema and the schemas of
other peers already connected to the system. The peers can continue to
handle their data the way they want, and only have to perform timely
local updates when their schema or the schema of their direct neighbors
evolve. In case of an intermediate node failure, peers can reroute their
queries through different schema mappings or create new mappings to
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circumvent the offline peer and continue to query distant sources.

Note that in practice, a single schema (or ontology) can be used simul-
taneously by many independent parties. Furthermore, some peers might
choose more than one schema to structure their data locally, as they real-
istically might have to handle very diverse pieces of information. Hence,
the organization of the schemas and mappings can often be uncorrelated
with the organization of the peers themselves. Figure 3.4 shows a Seman-
tic Overlay Network (SON), where physical machines form a P2P overlay
network, which is itself independent of the logical overlay handling data
integration. Chapter 8 discusses in more details this three layer architec-
ture in the context of the GridVine system. The following chapter starts
by examining query resolution in a simpler, unstructured PDMS setting.
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Figure 3.4: A Semantic Overlay Network: in many practical settings, the se-
mantic mediation layer is independent from the organization of the
peers, which is itself dissociated from the physical network struc-
ture of the machines.
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Chapter 4

Semantic Gossiping

This chapter introduces Semantic Gossiping [ACMHO03b], a new technique
to selectively forward queries from one peer database to the others in a
PDMS network. A main contribution of this chapter is the introduction
of a tradeoff between the precision and recall of the set of answers to a
query. Another contribution is the description of different methods that
can be applied to estimate the quality of local query reformulations in
large-scale, uncertain PDMS networks. We elaborate the details of each
of these methods for a simple data model, that is yet expressive enough
to cover many practical cases (see Section 4.2). The methods that we
introduce consist of:

1. A syntactic analysis of search queries after reformulations have been
applied in order to determine the potential information-loss incurred
through a reformulation. We analyze to which degree query con-
stituents are preserved during reformulation (Section 4.4).

2. A semantic analysis of composite reformulations along cycles in the
schema mapping graph, in order to determine the level of agreement
that the peers achieve throughout the cycle. We analyze whether
cyclic transformations preserve semantics. If the semantics of a
query are not preserved after a cyclic series of reformulations, we
assume that some semantic confusion has occurred (Section 4.5.1).

3. A semantic analysis of search results obtained through composite
mapping reformulations. We assume that structured data is used
to annotate content and that the peers can classify their documents
both using content analysis and metadata-based classification rules.
From that classification, peers derive to which degree transformed
metadata annotations match the actual content and thus how reli-
able the reformulations were. (Section 4.5.2).

The first analysis is related to the completeness of a mapping, i.e.,
to the extent to which a mapping can reformulate arbitrary query con-
stituents. The second and third analyses are related to the soundness of
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the mapping, i.e., to the degree of correctness of the reformulations. We
start below by discussing those two notions in the context of uncertain
schema mappings in large-scale decentralized settings, which emphasizes
the need for query-specific forwarding schemes. We propose a generic
model for PDMSs in Section 4.2. Our syntactic and semantic analyses
are described in Section 4.4 and Section 4.5 respectively. Section 4.6 is
dedicated to query forwarding. We describe experimental findings in Sec-
tion 4.7 and discuss related work in Section 4.8 before concluding.

4.1 On Uncertain Schema Mappings in Decen-
tralized Settings

Our focus is quite different from previous work in federated databases
query processing, which only considered certain schema mappings gen-
erating maximally contained query rewritings (see Chapter 2). In what
follows, we devise methods taking advantage of the incompleteness and
uncertainty of schema mappings to direct searches in a network of seman-
tically heterogeneous information sources. Our methods are purely local
and query-specific, offering a tradeoff between the recall of the set of an-
swers retrieved — related to the completeness of the mappings — and the
precision of the results — related to the notion of mapping soundness.

4.1.1 Mapping Completeness

Schema mappings can not always reformulate all the constituents of a
query. They can be incomplete for several reasons: for large schemas or
ontologies, some mappings can be specifically designed to handle the re-
formulation of some of the attributes only, while ignoring the rest of the
schema. As the information sources are considered as being autonomous
in our setting, they can structure their data according to their own pref-
erence and activities. Thus, we can expect irreconcilable differences on
conceptualizations (e.g., epistemic or metaphysical differences on a given
modeling problem [Bou04]) among the databases. Also, the limited ex-
pressivity of the mappings, usually defined as queries or using an ontology
definition language like OWL, precludes the creation of correct mappings
in many cases (e.g., mapping an attribute onto a relation). Depending on
the situation, the creator of the mapping might then either produce an ap-
proximate mapping (see below), or simply leave the mapping incomplete
by ignoring the attributes that are irreconcilable.

We introduce the notions of mapping completeness to characterize the
exhaustiveness of the mappings connecting semantically related schemas.
We say that a mapping between a source and a target database is complete
if it can reformulate all atoms of all queries from the source database.
Conversely, a mapping is incomplete when there exists a source query
that cannot be reformulated into a target query. Note that the notion of
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mapping completeness can also be given relative to a subclass of queries.
We say that a query reformulation is incomplete when there is at least one
atom of the query that cannot be reformulated. Incomplete reformulations
are typically discarded in federated database settings. In the following,
we introduce the notion of syntactic similarity to quantify the degree of
incompleteness of a reformulation. We proceed in a best-effort manner
and process incomplete query reformulations as long as they can still be
used to retrieve sensible results.

4.1.2 Mapping Soundness

Federated databases systems reformulate queries without any concern on
the validity or quality of the mappings used. This obviously represents a
severe limitation in a our setting, as one cannot expect any level of consis-
tency or quality on schema mappings in PDMSs: as PDMSs target large-
scale, decentralized and heterogeneous environments where autonomous
parties have full control on the design of the schemas, it is not always pos-
sible to create correct mappings between two given schemas (see above,
irreconcilable difference on conceptualizations and limited expressivity of
the mapping languages). In many situations, an approximate mapping
relating two similar but semantically slightly divergent concepts might be
more beneficial than no mapping at all. Also, given the vibrant activity
on (semi) automatic alignment techniques [Euz04b], we can expect some
(most?) of the mappings to be generated automatically in large-scale
settings, with all the associated issues in terms of quality.

We introduce the notion of mapping soundness to characterize the
correctness of the reformulations. We say that a mapping is sound if it
always produces equivalent rewritings (see Section 2.1) of all query atoms
it reformulates. Conversely, a mapping is unsound if there exists at least
one query atom it reformulates into a non-equivalent rewriting. A query
reformulation is sound when it only contains equivalent rewritings of the
atoms of the original query. Note that a reformulation can be sound but
incomplete, e.g., when one atom of the original query is dropped, or com-
plete but unsound, e.g., when all atoms are reformulated in semantically
incorrect ways. In the following, we introduce the notion of semantic sim-
ilarity to quantify the degree of soundness of the various rewritings. Note
that we extend the notion of mapping soundness in Chapter 6 to include
contained rewritings and subsumption hierarchies.

4.2 The Model

We start our discussion with a generic model for PDMSs that will be
used throughout the rest of this thesis. Our model consists of a data
model, describing the local databases of the peers, and a network model,
characterizing the schema mappings and the organization of the peers.
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4.2.1 The Data Model

We model each information system as a peer p € P. A peer stores data in
a database DB, according to a structured schema S}, taken from a global
set of schemas S. As we wish to present an approach as generic as possi-
ble, we do not make any assumption on the exact data model used by the
databases in the following but illustrate some of our claims with examples
in XML and RDF. We only require the schemas to store information with
respect to some concepts we call attributes A € S, (e.g., attributes in a
relational schema, elements or attributes in XML and classes or properties
in RDF). We only consider one relation per local database DB, for sim-
plicity in the following, but discuss extensions of our methods to support
multi-relations and local join operations in Section 4.9.

Each local attribute is assigned a set of fixed interpretations A’ from
an abstract and global domain of interpretations A! with AT ¢ A, Arbi-
trary peers are not aware of such assignments. We say that two attributes
A; and A; are equivalent, and write A; = A; if and only if AiI = AJI. . Even
if equivalent attributes theoretically have the same extensions, some tuples
might be missing in practice (open-world assumption), i.e., DBy, is not
always equivalent to DBy, even if p; and p; share identical or equivalent
schemas. Those sets of interpretations are used to ground the semantics of
the various attributes in the PDMS from an external and human-centered
point of view (see Chapter 1).

Attributes may have complex data types and NULL-values are possi-
ble. We do not consider more sophisticated data models to avoid diluting
the discussion of the main ideas through technicalities related to mas-
tering complex data models. Moreover, many practical applications, in
particular in P2P systems, digital libraries or scientific databases, use ex-
actly the type of data model we have introduced, at least at the meta-data
level.

We use a query language for querying and transforming databases.
The query language builds on basic relational algebra operators since
we do not care about the practical encoding, e.g., in SQL, XQuery or
SPARQL. For a peer p structuring its data according to a schema S, we
consider the following operators:

e Projection mpq, where pa is a list of attribute names (A, ..., A;) €
Sp.

e Selection  Opred(sa), Where sa is a list of attributes
(A1,...,Ar) € S, and pred are predicates on the at-
tributes sa using comparison predicates on the respective data

types, e.g., Opred(sa) = OA;<A;, A,='Doe’-

e Renaming pg(rq), where f € f are functions of the form Ay :=
f(A1, ..., Ag) with (Ay,...,A;) € Sp. The functions f are spe-
cific to the attributes and encompass string operations and simple
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arithmetic operations to syntactically align heterogeneous data val-
ues. A concatenation of two strings could for example be written
S P Aoncari=(A; cat Ap)- A special case is the renaming of a single

attribute A,q into a new attribute A,ew: PA,cwi=A,4-

We write ¢(S;) to denote a query formulated in terms of a particular
schema S;, and ¢(DB;) to pose a query against a database DB;.

4.2.2 The Network Model

Let us now consider a (potentially large) set of peers P with their related
schemas and data. We suppose that all peers and schemas can be identi-
fied by unique identifiers ID,, (e.g., an IP address or a peer ID in a P2P
network) and IDg. Each peer p € P has a basic communication mecha-
nism that allows it to establish connection to other peers. Without loss
of generality, we assume in the following that it is based on an unstruc-
tured P2P access structure a la Gnutella (we detail how to implement our
mechanisms on a structured DHT in Chapter 8). Thus, peers send ping
messages with a certain Time-To-Live value and receive pong messages in
order to learn about the network structure. In extension to the Gnutella
protocol, peers also send their schema identifier I Dg, as part of the pong
messages.

Schema Mappings

Peers can define schema mappings HS;—S; between a source schema S;
and a target schema S;. These mappings can be created manually, semi-
automatically or fully automatically depending on the peers and the set-
ting. A mapping ps;—s; allow to reformulate a query posed against the
source schema S; into a new query against the target schema S;. Map-
pings 148, —Sp, Can be created by a source peer p;, by a target peer p;, or
by a third-party peer that sends it to the source peer p;.

Schema mappings can be expressed in various ways (see Chapter 2);
in our case, we consider mappings pg, s, given as queries g;—; against
the target schema Sj:

HS;—5; = qi—U'(Sj) = Pf(ra) (Wpau (Upred(sau)(sj)))

where source attributes Ay € S; appear as new attribute names (Ag’s)
in the renamings of ¢;—.;. Target attributes are thus mapped onto source
attributes A, € S; in subparts of the query ¢;—.; we call attribute mappings
my(Ag). Source attributes cannot appear in more than one attribute
mapping in given schema mapping. An attribute mapping is sound if it
relates equivalent pieces of information at the intensional level, that is if
Al =ml(A4y).

In that way, a mapping defines a surjective operation from the set of
target attributes onto the set of source attributes, where source attributes
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that do not appear in the mappings are mapped by an implicit attribute
mapping onto a null value. Hence, we express definitional mappings for
the source attributes at the intensional level and can reformulate a source
query ¢;(5;) into a target queries g;(S;) using GAV-style query expansion:

qj(S;) = ws,—s;(qi) = qi(qi—;(S;))-

Figure 4.1 gives an example of query reformulation in an XML/XQuery
context. The attribute mapping for pi’s lenghth shows an example of
value conversion, as the length of the project is derived from the start and
end dates stored at p;. Additional data conversions could be handled in
that context using standard XML functions and operators, e.g., additions,
concatenations etc. [MMEOQG].

q; qj=HMp->pi(4i) = 4i (4i->j)
p
FOR $pl IN "academic_project.xml"/* FOR $p1 IN'Qi-j /* FOR $p2 IN "ETHUndergradProject"/*
WHERE "DHT" IN pl/name WHERE "DHT" IN pl/name | — | WHERE "DHT" IN p2/Title
RETURN RETURN | RETURN
$pl/length $pl/length op:substract-dates($p2/end,$p2/start)
\
dbp; u p;->Pp; dbp;
s - - \ 1 ] N
<2“Zd5";‘;£l;fgle““f ine<inames. | Qi FOR SpIN "ETHUnderGradProject/* <ETHUnderGradProject>
name P RETURN <Title> DHT load-balancing</Title>
<begin>2007-02-28</begin> <academic_project> - -
- <Description> ... </Description>
<length>120</length> <name>$p/Title</name>
. X . <start>2007-02-28</start>
<level>Undergrad</level> <begin>$p/Duration/Start</begin>
<supervisor>Jie Wu</supervisor> <length>op:subtract-dates($p/end,$p/start)</length> <end>2907-05-31 </end>
docation>EPF</location> <level>Undergrad</level> <Supervisor>
<lab>LSIR</lab> <supervisor>$p/Supervisor/Name</supervisor> <Name>John Doe</Name>
. arn <location>ETH</location> <Email>john@doe.com</Email>
<description> ... </description> o . . q
<report>Yes</report> <descnppun >$p/Descr|pt|(>n</descr| ption> </Supervisor>
</academic_project> </ETHUnderGradProject >

</academic_project>
\ /

Figure 4.1: A query reformulation: query ¢; gets reformulated into query g;
thanks to mapping fi,, ., composed of seven attribute mappings
m mapping target attributes onto source attributes.

The authors propose an efficient method to measure the structural
similarity of pairs of XML documents; the method starts by linearizing
the structure of the documents (e.g., by considering a flow of elements as
in SAX). Then, a compression method is used to encode the linearized
versions, using Ziv-Lempel (gzip) or Ziv-Merhav compression techniques.
The distance between the two documents is derived by comparing the
size of the two compressed versions of the documents and the compressed
version of the concatenation of the two documents. The time complexity
of the algorithm is O(n) where n is the number of tags in both docu-
ments. Experimental evaluations show that the algorithm is as efficient
as previous algorithms based on edit-distances of Fourier transforms.

Definitional mappings are expressive enough to handle most data in-
tegration cases on the Internet. Furthermore, they can be handled by
standard query processors and do not require any additional mechanism
to reformulate queries using views. However, the techniques described
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hereafter can easily be extended to other classes of mappings: we discuss
more general conjunctive mappings and GLAV mappings in Section 4.9,
and containment mappings in Chapter 6.

Semantic Neighborhoods

Every peer p maintains a neighborhood N (p) selected from the peers that
it identified through pong messages. The peers in this neighborhood are
distinguished into those that share the same schema, N.(p), and those
that have a different schema, N4(p). A peer p; includes another peer
p;j with a different schema into its neighborhood if it knows a schema
mapping 145, Sy, for reformulating queries against its own schema into
queries against the foreign schema. For simplicity, such mappings will be
written as fi,,—p; in the following. Figure 4.2 gives an example of both
neighborhoods for one peer.

Figure 4.2: The network model: py maintains a neighborhood of nearby
peers using its own schema (N.(po)) and using different schemas

(Na(po))-

Query Dissemination

Queries get disseminated in our PDMS network in an unstructured and
collaborative way (see Chapter 3). A peer receiving a reformulated query
may decide to reformulate it in turn. Thus, queries can be reformulated
several times iteratively:

qN(SN) = HSy_,—Sy ©---0 s —-5,(q1)
= qQ1 (QS1—>52(' .- (qSN71—>5N (SN)) . ))

In that way, queries might traverse several semantic domains through a
succession of schema mappings. Figure 4.3 shows an example of a logi-
cal semantic graph, where nodes stand for schemas, and edges represent
schema mappings created by individual peers and used to reformulate the
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queries. Note that a given pair of nodes can be related through more
than one edge, e.g., when two independent parties provide two different
mappings between a given pair of schemas.

PN

Figure 4.3: A logical semantic graph, where schemas are interlinked by schema
mappings provided by the peers.

Queries can get propagated through the semantic graph in various
ways, depending on the query forwarding paradigm in use. Forwarding a
query irrespective of its content within a certain radius with a constant
Time-To-Live (TTL) value is highly inefficient: for low TTL values, re-
call [Rij79] is low as the system cannot reach all databases relevant to the
query. A high TTL value, on the other hand, potentially forwards the
query through many incomplete or unsound mappings, which results in
retrieving many irrelevant results (low precision).

Adopting well-known optimization techniques for search in unstruc-
tured networks, such as distributed replication [LCC™02] or dynamic rout-
ing tables [CSWHO00], would largely fail as well: as queries targeting the
same pieces of information can consider very different selection predicates,
they may require very different reformulation paths in the semantic graph,
thus making it very difficult to optimize the network based on source /
destination records only. In the following, we introduce query-dependent
per-hop forwarding behaviors to selectively disseminate queries through-
out the semantic network.

4.3 Overview

Before delving into the technical details, this section provides an informal
overview of our approach and of the rest of the chapter.

The semantic graph (Figure 4.3) has two interesting properties: (1) as
already pointed out earlier, based on existing mappings and the ability to
learn about new mappings, queries can be propagated to peers for which
no direct mapping exists by means of transitivity, and (2) the graph has
cycles, for example Sy — S5 — S7 — Sy. We call (1) Semantic Gossiping.
(2) gives us the possibility to assess the degree of semantic agreement
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along a cycle, i.e., to measure the soundness of the mappings and the
degree of semantic agreement in a community in a decentralized way.

In the following, we expect peers to perform several tasks: (1) upon
receiving a query, a peer has to decide to where to forward the query based
on a set of criteria that will be introduced; (2) upon receiving results or
feedback along mapping cycles, it has to analyze the quality of the results
at the schema and at the data level and adjust its criteria accordingly
and (3) update its view of the overall semantic agreement by modifying
its query forwarding criteria or by adjusting the mappings themselves.

The criteria to assess the quality of the reformulations — which in turn
is a measure of the degree of semantic agreement — can be categorized
as context-independent and context-dependent. Context-independent cri-
teria, discussed in Section 4.4, are syntactic in nature and relate to the
completeness of the reformulations involving local mappings. We intro-
duce the notion of syntactic similarity to quantify the extent to which a
query reformulation is complete.

Context-dependent criteria, which are discussed in Section 4.5, re-
late to the degree of agreement that can be achieved among different
peers upon sets of attributes. Degrees of agreement can be evaluated us-
ing feedback mechanisms. We introduce two such feedback mechanisms
below, based on cycles appearing in the mapping graph and on results
returned by different peers. A peer might locally obtain both returning
queries and data through multiple feedback paths. In case a disagreement
is detected (e.g., a wrong attribute mapping at the schema level or a con-
cept mismatch at the content level), the peer has to suspect that at least
some of the mappings involved in the reformulation path were unsound,
including the mapping it has used itself to propagate the query. Even
if an agreement is detected, it is not clear whether it is not accidentally
the result of compensating mapping errors along the path. Thus, analy-
ses are required to assess the most probable sources of errors along the
paths and to determine the extent to which local mappings can be trusted
and therefore used in future routing decisions. At a global level, we can
view the problem as follows: the mappings between domains of semantic
homogeneity form a directed graph. Each mapping cycle or query result
allows to return feedback to the query originator, which in turn can make
an analysis to assess the degree of semantic agreement pertaining to the
mapping used. We introduce the notion of semantic similarity to quantify
the soundness of the query reformulations in that context.

Each of the similarity measures characterizing the query reformula-
tions results in a feature vector. The decision whether or not to forward a
query using a mapping is then based on the values of those feature vectors.
The details of the query forwarding process are provided in Section 4.6.

Assuming that all the peers implement this approach, we expect the
network to self-organize into a state where queries get disseminated to
the subset of the peers most likely able to process them in a sensible way,
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where the correct mappings are increasingly reinforced by adapting the
per-hop forwarding behaviors and where incorrect mappings are rectified
(see also Chapter 5). Implicitly, this is a state where a global agreement
on the semantics of the different schemas has been reached.

4.4 Syntactic Similarity

Parts of the queries might get lost during reformulation, due to incomplete
mappings or schemas missing a representation for some of the attributes
present in the original query. Syntactic similarity provides a measure
that is related to information loss during reformulation. This measure is
context-independent, since its evaluation relies exclusively on the inspec-
tion of the syntactic features of the reformulated queries. A high syntactic
similarity does not ensure that forwarding a query is useful, but conversely
a low syntactic similarity implies that it might not be useful to forward a
query any further.

Let us suppose we have a query q1, originally posed against a database
DB with schema S7, which has the generic form of a selection-projection
query

01(51) = Tpa(Opred(sa) (51)),

where pa is the list of attributes used in the projection and sa is the list
of attributes used in the selection predicates.

Let us assume that a mapping pg,—s, is given, such that ¢; can be
reformulated into a second query ¢o in terms of a second database DBy
according to schema S;. The transformation is specified by a query g,
defining a view on S

HS1—S, = qM(SQ) = pf(ra”)(ﬂ-pap (O'pred(sa”)(SQ)))'

The reformulated query go is given in terms of schema So and takes
the following form

q2(S2) = 7Tpa(apred(sa) (pf('rau) (Wpau (Upred(sau) (S2))))-

This form will also be achieved after multiple transformations after nor-
malization.

It might occur that attributes appearing in ¢q; are no longer available
after applying mapping ps, s, onto ¢;. This happens when an attribute
from S9 required for the derivation of an attribute from S; and occurring
in pa or sa is missing, or is not computed by one of the functions from
f(ray).

We now determine which attributes are needed in order to properly
evaluate the query ¢;. For an attribute A € sa resp. A € pa we define
target, (A) as the set of attributes required in schema S5 of database DB,
in order to derive A by means of a mapping u. If attribute A cannot be
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derived we set target,(A) = L. For a composite reformulation pug o juy
we have the following criterion: if target,, (A) = {Ai,..., Ay} and for
all i = 1,...,k there exists f; € f(rau2) such that 4; = fi(A},... ,Azi)
then
target,ou, (A) = U {AL,.. . AL
k

i=1,...,

If target,, (A) = L or if for some attribute A; no derivation of the at-
tribute using a function f; € f(rayz2) is possible we have

target,ou, (A) = L.

In order to ground the definition we assume that target.(A) = {A} and
o e = u for the empty sequence of reformulation e.

To determine the effects of multiple transformations p, o ... o0 u; we
have to evaluate target,,o. ou (A). This allows to determine which of
the attributes required for evaluating a query containing attribute A are
available after applying the reformulations p, o ... o u;. The definition
of target is given such that it can be evaluated locally, i.e., for each re-
formulation step in an iterative manner. Using this information we can
now define the syntactic similarity between a transformed query and its
corresponding original query.

The decision on the importance of the attributes is query dependent.
We have two issues to consider after applying a composite transformation

b= fbn O ...0 l:

1. Not all attributes in sa are preserved. Therefore, some of the atomic
predicates in msq will not be correctly evaluated, i.e., the atomic
predicates will simply be dropped in that case. Depending on the
selectivity of the predicate, this might be harmful to different de-
grees. We capture this by calculating a value FV,? for every at-
tribute A; € sa as follows: if A; € sa and target,(A;) # L then
FV? =1 else FV = sely,, where sely, is the selectivity of the
predicated predy,;. The selectivity is ranging over the interval [0, 1],
with low values indicating highly selective predicates, i.e., predicates
selecting a small proportion of the database. In that way, dropping
highly selective, critical attributes leads to lower values of F'V,7.

2. Not all attributes in pa are preserved. Therefore, some of the re-
sults may be incomplete or even erroneous (due to the loss of key
attributes, for example). Following the method used above for the
selection, we capture this by calculating a value F'V;" for every at-
tribute A; € pa as follows: if A; € pa and target,(A;) # L then
FVT =1else F'V" =0.

Given the values FVy ... FV? for Ag... A, € sa, we introduce a
feature vector F'V 7 capturing the syntactic effects for the reformulated
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query (pn o ... o p1)(q).

FV (0.0 m)() = (VY ..., FV).

Using this feature vector, we define a syntactic similarity measure with
respect to the selection including a user-defined weight vector W =
(W1, ..., W) pondering the importance of the attributes as:

W .FVe°
SIM,(q,(ttpo0...0 = —
(q (N Ml)(Q)) ‘W‘ llk‘
where
W .FV° =W\FV’ +...+ Wi,FV
and

X | =X, =+/21+... + 2}

and 1; is a k-dimensional unit vector. This value is normalized on the
interval [0,1]. Originally, the similarity will be one, and it will decrease
proportionally to the relative weight and selectivity of every attribute lost
in the selection predicates.

For projections, analogous similarity measures SIM, are derived
based on feature vectors FV™. As for the selection similarity, the
projection similarity decreases with the number of mappings applied to
the query, until it reaches 0 when all the projection attributes are lost.

We illustrate the concepts introduced for the syntactic similarity by
means of a small example. Assume a peer p; is connected to peers py and
p3 as illustrated in Figure 4.4. Mappings in Figure 4.4 are given as simple
attribute renamings, e.g.,

Hp1—p3 (Sp:a) = PA3:=C1,B3:=B1,C3:=A1 T A3,B3,C3 (Sps)‘

p1 considers a query

q = TAy,B;,Cq (DBI)
and reformulates it for its two neighbors. It evaluates FV™ (1, —p,(q))
as follows:

targety, ., (A1) = {A2}

targety, ., (B1) = 11
targety,, ., (C1) = Lo.
Therefore,
FV7™(pip,—py (4)(Sp,)) = (1,0,0)
and

SIM?I’((L Hp1—po (Q)) = 1/33
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’uPI ->D3 'uPI ->P
Cl:=A3, B1:=B3, A1:=C3 Al:=A2

’uP3 ->Pg 'ul’z ->PDj
A3:=A1, B3:=B1, C3:=CI1 A2:=A1, B2:=Bl

Figure 4.4: An example for syntactic similarity.

assuming all user-defined weights are equal to one. If py sends the query
back to p1 through p,,—p,, the similarity still equals to

SIM“'(q’ (/’LP2HPI © Mpwpz)(q» = 1/37

since only attribute A; remains intact after the two composite mappings.
On the other hand,

target“pﬁpg(z‘lﬁ = {Cs}
targety,, _,.(B1) = {Bs}
target,, _,. (C1) = {43}

Thus,
FVT‘-(MMHPS(Q)(S?))) = (L 1, 1)

and
STMz(q, pipy—ps(9)) = 1.

If p3 decides to send the query back to p;, one would still obtain

SIMW((]’ (JLLPS"I)I © :uplﬁps)(Q)) =1

The fact that an obvious mistake occurs, i.e., that attribute C3 is wrongly
mapped onto Al in mapping py,, —p,, is not detected by the syntactic sim-
ilarity measure, but will be handled by the semantic similarity measures
introduced in the following section.

4.5 Semantic Similarity

The context-independent measure of syntactic similarity is based on the
assumption that the query reformulations are semantically correct, i.e.,
sound, which might not be the case for various reasons (see Section 4.1).
As introduced earlier, we consider semantics as an agreement among peers.
If two peers agree on the meaning of their schemas, then they will gen-
erate compatible mappings. From that basic observation, we now derive
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Figure 4.5: A semantic cycle: a query, sent out of N.(p1) by peer p;, returns
to Ne(p1) through peer p,.

context-dependent measures of semantic similarity related to the sound-
ness of the reformulations for the attributes that are preserved in the
mappings.

To that end, we introduce two mechanisms for deriving the soundness
of a mapping. One mechanism is based on analyzing the fidelity of map-
pings at the schema level, the other one is based on analyzing the quality
of the correspondences in the query results obtained at the data level.

4.5.1 Cycle Analysis

For the first mechanism, we exploit cycles in the semantic graph. Fig-
ure 4.5 shows an example of a semantic cycle. It starts with a peer p;
transmitting a query g1 to a peer pa through a mapping jip, —p,-

In the example, after a few hops, the query is finally sent to a peer p,,,
which, sharing the same schema as p;, detects a cycle and informs p; (see
Section 4.6 for more details on cycle detections). The returning query ¢,
is of the form

dn = (/’Lpn—l"pn O...0 lps—ps © .Umﬂpz)(‘h) =T(q1).

p1 may now analyze what happened to the attributes A; ... Ay origi-
nally present in ¢;:

e Case 1: targetp(A;) = {A;}, this means that A; has been main-
tained throughout the cycle. It usually indicates that all the peers
along the cycle agree on the meaning of the attribute. Such an ob-
servation increases the confidence in the soundness of the attribute
mappings used.
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q; q = HMpi->p,(qi) q'i = (Mp>pio Hpi->p)(q;)
FOR $p1 IN "academic_project.xml"/* FOR $p2 IN "ETHUnderGradProject.xml"/* FOR $p1 IN "academic_project.xml"/*
RETURN RETURN RETURN
<academic_project> <academic_project> <academic_project>
<name>$p1/name</name> <name>$p2/Title</name> <name>$p1/name</name>
<begin>$p1/begin</begin> <begin>$p2/Duration/Start</begin> <begin>$p1/begin</begin>
<length>$p1/length</length> <length>op:subtract-dates($p2/start, <length>op:subtract-dates(
$p2/end)</length> op:add-dayTimeDuration-to-date($p1/begin,
<level>$pl/level</level> ; <level>Undergrad</level> ; $pl/length),$pl/begin)</length>
<supervisor>$p1/supervisor</supervisor>, <supervisor>$p2/Supervisor/Name</supervisor> <supervisor>$p1/supervisor</supervisor>
<location>$p1/location</location> <ocation>ETH</location> Vs \
<lab>$p1/lab</lab> 7 y;
<dcscriplion>$p1/dcscriplion</d9criplion> <descajption>$p2/Description</description> <dcscriﬁtion>$p1/dcscriplion</dcscriplion>
<report>$p1/report</report> ’ \ , \
</academic_project> , </academic. {)rojecb </academic_preject>
J Va J J
4 /
z Qj-i : FOR $p IN "academic_project"/*
Qi-j : FOR $p IN "ETHUnderGradProject"/* RETURN
RETURN

<ETHUnderGradProject>
<Title>$p/name</Title>
<Description>$p/description</Description>
<start>$p/begin</start>
<end>op:add-day TimeDuration-to-date($p/begin,

$p/length)</end>
<Supervisor>
<Name>$p/supervisor</Name>

</Supervisor>

</ETHUnderGradProject >

<academic_project>
<name>$p/Title</name>
<begin>$p/Duration/Start</begin>
<length>op:subtract-dates($p/end,$p/start)</length>
<level>Undergrad</level>
<supervisor>$p/Supervisor/Name</supervisor>
<location>ETH</location>
<description>$p/Description</description>

</academic_project>

'up,' ->Pp; 'upj ->P;

Figure 4.6: Cycle analysis: comparing a query to a reformulated query coming
back to the same semantic domain.

e Case 2: targetr(A;) = L, this means that someone along the cy-
cle had no representation for A;. A; is not part of the common
semantics. This leaves the confidence in the mappings unchanged.

e Case 3: Otherwise, if none of the two previous cases occurs, e.g.,
targetr(A;) = {A;},7 # i, this indicates some semantic confusion
along the cycle. Subcases can occur depending on what happens to
Aj. This lowers the confidence in the mappings.

In the following, we consider simple equality checks on the attributes
and test whether targetr(A;) = {A4;} but note that these tests can be
more elaborated in general (see for example Chapter 6 where we consider
tests relative to subsumption relations). Checking whether or not the
composed mapping transformation is identity might be difficult in general
when considering syntactic transformations in the renamings: Figure 4.6
depicts a cycle of reformulations for the two schemas already described
in Figure 4.1; the identity checks are simple, except for the attribute
mapping Myength, where op:subtract-dates(op:add-dayTimeDuration-
to-date($p1/begin, $p1/length),$p1/begin) is actually equivalent to
$p1/length. Many of these test are however easy to handle at the
syntactic level (e.g., checking that 26 days is equal to 26 days, see also
Section 4.6).

We now derive heuristics for p; to assess the soundness of each at-
tribute mappings m; in i, —p,, based on the different cycle messages it
receives. Let us consider some feedback fry corresponding to the analysis
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of a cycle composed of || fo)|| schema mappings and starting with 11, —p,.
On an attribute basis, fry may result in positive feedback fgg (case 1
above), neutral feedback (case 2, not used for the rest of this analysis but
taken into account by the syntactic similarity), or negative feedback fr
(case 3). We model individual attribute mappings m; in iy, —p, as inde-
pendent Bernoulli variables; we write P(m; = 1) for the probability of a
given attribute mapping to be sound and P(m; = 0) for the probability
of an attribute mapping to be unsound. We denote by €.y the proba-
bility of a foreign mapping (i.e., non-local as in pp,—ps - .. fp, 1 —p, fOr
p1 in Figure 4.5) along a cycle being wrong for the attribute in question.
Considering those error probabilities as being independent and identically
distributed random variables, the probability of not having a foreign map-
ping error along the cycle is

(1—e )Hfoll 1 (4.1)

Moreover, compensating errors, i.e., series of independent unsound
mappings resulting in a sound reformulation, may occur along the cycle
of foreign links without being noticed by pj, which only has the final com-
pound result g, at its disposal. Thus, assuming a local attribute mapping
m to be sound and denoting by d.,. the probability of errors being com-
pensated somehow, the probability of getting some positive feedback from
a given cycle is

P(flm=1) = (1 = eI+ (1= (1= €)1 50 (42)

while, under the same assumptions, the probability of getting some neg-
ative feedback is

P(f5lm=1) = (1= (1 = ege) "I (1 = beye). (4.3)

Similarly, if we assume m to be unsound, the probability of getting
respectively negative and positive feedback for the attribute in question
are

P(f5lm =0) = (1 = eeye) o171 4 (1 = (1 = ecye) VoI (1 = 60ye) (4.4)
and

P(fFIm = 0) = (1= (1 = ece) 1) by (4.5)

Let us assume that a peer p; obtains a set of positive and negative
feedback values fry = {fr1,..., fon} for a given attribute A and n cycles.
Some of the cycles may be positive, i.e., sourcer(A) = {A}, other nega-
tive. We denote by fr,© C f the set of positive cycles and by fr,” C f
the set of negative cycles and have fr, = fr,© U fr,~.

Assuming that all cycles are independent (which is actually an over-
simplification for a real mapping graph, as erroneous mappings often have
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an impact on several cycles; see Chapter 6 for a discussion on cycle corre-
lations in PDMSs), p; can now calculate the likelihood on the soundness
of its local attribute mapping m by combining Equations 4.2 to 4.5 using
Bayes’ rule:

P(m =1|fo) = K P(m=1)
[T PUHPutim=1 [] PUs) "PUlm=1) (46)

fheft N

and

P(m =0|fr) = K P(m=0)
I P 'Ptdim=0) J[ P(f5) 'P(folm=0) (4.7)

fhest foefs
where K is a normalizing constant ensuring that
P(m =1|fo) + P(m =0[fo) = 1.

Assuming that we have no prior knowledge on m and f, we set (principle
of maximum entropy) P(m = 0) = P(m = 1) = P(f}) = P(f;) = 1/2.
Those assumptions will be revisited in Chapter 6, where we take into
account prior distributions on the soundness of the mappings and compute
P(f#) and P(f5) by marginalization.

Since we have no knowledge about €.y and d.y., we assume these prob-
abilities to be uniformly distributed (we give methods to get more accurate
estimates for both values in Chapter 5). We integrate over €y, and deye
in order to obtain the expected posterior probability on the soundness of
the attribute mappings. We can take into account density functions here
if we have any a priori knowledge about those two random variables. The
resulting expectation value for the soundness of the mapping is derived
from Equation 4.6:

1 1
,YOmi:/O /0 P(m; = 1[fr) decye ddeye.

If no relevant feedback is obtained for a particular attribute mapping m;,
we set by default yO™ = 1.

This analysis can be performed by any peer p; for every outgoing map-
ping fip, —p, to a peer py and every attribute mapping m,; independently,
resulting in values ’V;%Tim indicating the probability of the attribute map-
ping m; in mapping p,, —p, being sound given the feedback received from
various mapping cycles.

As for the preceding section, we define a feature vector and a similarity
measure to capture the semantic losses along a sequence of mappings
M1, -, ln, Where p1; connects peer p; to peer pjq via a mapping.
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Let us suppose that peer p; reformulates a query

q1 (Spl ) = 7-‘-PG(O-p'red(sa) (Sl))

for pa through a mapping p1 = pip, —p,. p1 computes a feature vector for
q1 based on the cycle messages it has received as follows:

FVO(u(q) = (FVP(AL), ..., FVO(Ar))

where feature values F'V;(A;) correspond to the posterior probability O™
of an attribute A; € paUsa to be mapped correctly through 1 = pp, —p,:

FVO(u(q)) =2

In the following reformulations, these values are updated by iteratively
multiplying the values obtained for the degree of soundness for each map-
ping. We consider here that the soundness of the various mappings are
independent, i.e., if two mappings p; and po have degrees of soundness
of ’yfjlmi and fy,%mj for attribute A; and A; with target,, (4;) = A, the
degree of soundness of the composite mapping (u2 o p1) is ’yﬁmi’yl%mj.
Note that other ways of combining the soundness values could be used
(e.g., never use a mapping whose soundness probability is smaller than
a given value, see Section 7.6). When forwarding a reformulated query
using a mapping f;, peer p; updates each value FVZ.O((Mj_l o...ou1)(q))
it has received along with the transformed query (pj—10...0u1)(q) in the
following way:

FVO(ugo..0 i) (@) =
FVP((pj-10...01)(q)) 11 AN

Aketargetwjilo,,.oul )(As)

The associated semantic similarity between the original query ¢ and the
reformulated query (p; o ... 0 p1)(q) is then

W .FVO

SIMe(q, (pjo-- -0 pm)(q) = W

This value starts at one (in the semantic domain which the query origi-
nates from) and decreases as the query traverses more and more seman-
tically heterogeneous domains.

We illustrate the cycle analysis by means of the example given in
Figure 4.4. Assume a query ¢ = ma, B, ,c,(51) is forwarded iteratively
through mappings fip,—p, © fip,—p, a0 fip,—p, © Lip, —ps Tespectively. pp
analyzes the two returning queries:

q2—1 = (MPQHPI o le*’pQ)(Q) =TA (Sl)
q3—1 = (Hp3—>p1 o NP1—>IJ3)(Q) = TC1,B1,A1 (Sl)'
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p1 receives o1 from ps. Aj is correctly mapped again onto A; in the
returning query. Based on this unique positive feedback, p; computes the

Oma
degree of soundness for 7y, *, :

3y,

Hpy—po
Since no feedback is obtained for the other attributes, p; sets

OmBl _ Omcl
7#171 —po — IHpy—py

=1

p1 computes similar values for the second returning query gs_.1 for map-
ping fip,—p;. For Bi, the feedback conveyed by the returning query is
positive, whereas it is negative for Ay and Cy:

Omp
7#p1—>1173 = 3/4

Oma Omg
'Yuplﬂ;:g = ’Y,uplﬂi)g = 1/4-

Imagine now that p; decides to send a new query ¢’ to py and p3, with

¢ =7cy0a,—EPrL(S1).

p1 first reformulates the query into two transformed queries:

qlla2 = Mp1—>p2(ql) = O'AQ:’EPFL’(SQ)

Q13 = tpy—ps(q') = Ta3005— EPFL/(S3).

Based on the analyses performed previously for ¢, p; can now compute
the feature vectors and the semantic similarity values for the newly refor-
mulated queries:

FV O (i, —py (') = (1,3/4)
SIMO(QI7MP1—>P2 (q/)) =0.875

and
FVO(MZH—KD:& (q,)) = (1/47 1/4)

SIMO(q/7 Hp1—>p3 (q/)) = 025

assuming that all user weights are equal to one. The semantic analysis has
thus correctly identified some semantic mismatch in the way A; and C7 get
mapped through /i, —p, (low value for STMy (¢, p1p, —ps(q'))). Depending
on the situation, p; then decides whether to send this poorly reformulated
query to ps.
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4.5.2 Result Analysis

The second mechanism for analyzing the semantic quality of the transla-
tions is based on the analysis of the results returned. In [ACMHO03b], we
introduced a method using functional dependencies at the data level in
order to assess the quality of the mappings. The method was based on
analyzing to which extent integrity constraints are preserved after refor-
mulation.

We present below an alternative approach based on classification
mechanisms. We assume that peers annotate documents D using
meta-data expressed according to our data model. Thus, each document
d € D owned by peer p is associated with an annotation annot(d)
according to the schema .S), of the peer. Having sent a query, peers start
to receive result documents with semantically rich content, e.g., images
or full text. Based on this content, they attempt to assess to which extent
the queries expressed at the meta-data level were properly reformulated
and thus led other peers to return the correct result documents.

Queries in our meta-data model are thus an intensional way of express-
ing semantic concepts, whereas extensionally the concepts are related to
sets of documents. The problem that we address is of how to arrive at
annotation schemes and schema mappings at the intensional level that re-
sult in concept definitions that are compatible with the extensional notion
of the concepts.

In the following, we assume that a peer has a finite set of classes C to
classify documents. The extensional notion of a class is based on methods
of content analysis. Here, we do not make any assumption about the meth-
ods (e.g., layout analysis, lexicographical analysis, contour-detection, etc.,
or even simple manual classification) used to extract meaningful features
out of the documents; we simply treat them as high-level abstractions
used to unambiguously classify any possible retrieved documents d € D
into classes ¢ € C using a decision rule Reontent:

Reontent : D — C.

In a more general setting, Reontent could be a probabilistic rule (see
Chapter 9). Using their local classification based on content analysis,
peers can thus determine for every received document the concept to
which it belongs.

The intensional notion of classes is based on classification rules applied
to the metadata annotations of the documents:

Rannot : annot(D) — C.

Again, we do not make assumptions on the specific form of the clas-
sification rules, except that they apply predicates to the metadata an-
notations and derive from those predicates the class associated to the
document. Examples of classification rules are extensively discussed in
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the data mining literature. The document classifications obtained from
content analysis and by classification rules are presumed to be consis-
tent up to a mean classification error €,.s, i.e., we assume that with a
probability 1 — €.

Rcontent (d) = Rannot (cmnot(d)) .

By analyzing its own document collection, a peer can locally estimate the
value of €,¢s.

Imagine now a peer p; classifying documents according to rules

D tent and REL . Peer p; issues a query ¢ against its own schema for

retrieving documents. Upon reception of a document d from a foreign

peer p2 € Ny(p1), p1 performs the classification operation according to

. pl pl . . . .
its own rules Regpien: and Ry, o Different situations can then occur:

e Casel: RP! . .(d) =R .(d): this is the result p; was expecting;
it is an indication that the outgoing mapping used to forward ¢ to
p2 was semantically correct for query q. We treat this as positive

feedback (f21.).

e Case 2: RE . .(d) # RP. .(d): pi receives a document whose

content analysis does not match the classification obtained from the
metadata annotation obtained by reformulation. Since the docu-
ment content is not changed during transmission of the query result,
this implies that some semantic confusion occurred in the metadata
query reformulation along the path from p; to ps. In that case, we
consider this as negative feedback (fZ).

If p; and po are directly connected through a mapping, this gives us a
clear indication about the semantic (un)soundness of the mapping iy, —p,:
given the mean classification error probability €,.s, the probability of an
attribute mapping being sound in case of positive feedback is 1 — €,.s.

If the two peers are separated by one or more semantic domains, the
situation is somewhat more complicated since we have to take into account
all the successive mapping links used to forward the query from peer p;
to a peer p,. Let us suppose that a peer receives some feedback f after
the query has gone through | f|| different mappings; analogously to the
derivation of the probabilities for the cycle analysis (see Equation 4.2), the
probability of receiving a positive feedback assuming the mapping being
analyzed is sound is:

P( £|m =1) = (1 — €res)((1 — ecyC)Hfﬁ”_l +(1-(1- EcyC)Hf‘:H_l)‘scyC)
+ fres(sres(l - (1 - 6cyc)HfﬁH_lxl - 5cyc)-
The first term covers the case where the peer performs a proper classifi-

cation on a result obtained from a proper query reformulation (see Equa-
tion 4.2). The situation where the transitive closure of the mappings is
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erroneous (see Equation 4.3) and the peer still believes it has obtained
a positive feedback is more intricate and is covered by the second term.
Receiving an erroneously annotated result, a peer can still perform a mis-
classification with probability €,..s. However, only in exceptional cases
with probability d,..s will this misclassification correct the improper refor-
mulation of the query, namely when the “wrong” classification matches
exactly the content of the improper reformulation (third term). A peer
can estimate the probability d,.s by (||C|| —1)~!, where ||C|| is the number
of different classes used by the peer. The probability of receiving negative
feedback is then calculated analogously.

Performing an analysis analogous to the one given in Section 4.5.1,
we compute the posterior probability of a local attribute mapping being
sound given some positive f; and negative f_ feedback results

Pim=1|f=z)=K P(m=1)
T PUL'P(sEim=1) T[] P(f2) 'P(flm=1)

FANSY an foefz

and the expected value for the soundness of the attribute mapping

1 1
,}/Zmi — / / P(m = 1|f;>) decyc d(scyc.
0 JO

If no relevant feedback result is obtained for a particular attribute map-
ping m;, we set by default v~ = 1. The corresponding feature values
are

FV;= (u(q)) = 75 ™.

Analogous to the cycle analysis, these values are forwarded and updated
iteratively along with the query by multiplying the values obtained for
each mapping, such that a measure for the semantic similarity between an
original query and a reformulated query based on results analyses follows
similarly

W .FV*=

SIM=(q, (ujo ... opm)q) = WL

Some illustrating examples of the result analysis are given in Chapter 5.

4.6 Gossiping Algorithm

We now devise an algorithm to route queries throughout the P2P network
based on syntactic and semantic criteria. At this point, we have four
measures (SIM,, SIM;, SIM; and SIM) for evaluating the losses
incurred through the reformulations. We take advantage of those values
to decide whether or not it is worth forwarding a specific query to a
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foreign semantic domain. Queries can be issued to any peer through a
query message. The basic query message format is

query(Qm P05 Glast, Plast, RT7 targetqo ,qlast)‘

A query message contains the original query ¢q issued by the query
originator pg, the latest reformulation g, of the query forwarded by peer
Diast, & reformulation trace RT to keep track of the reformulations already
performed, and the source-to-target dependencies between the attributes
in go in and in g4 The reformulation trace RT is a list of triples {(p,
Sp,.» 1) keeping track of the peers p, with schema S, having already
reformulated the query through a schema mapping p.

Furthermore, we require the query originator pg to attach a few user-
defined or generated values to the query it issues:

e the weights W pondering the importance of the attributes in the
query

e the respective selectivity sel of the selection attributes sa

e the minimal threshold values SIM,;,, = (SIMM™", SIM™n,
SIM@™, SIMM™™) for the similarity measures under which a
transformed query is so deteriorated that it can no longer be
considered as being equivalent to the original query.

Those values can be used to introduce a tradeoff between the precision
and recall of the result set: peers can ask for precise answers by setting
the similarity thresholds to high values. In that way, they ensure that
their queries get only propagated to the peers that most probably can
process them correctly. Setting STM™™ and STMM™" to one ensures
that only complete reformulations get forwarded through the PDMS. Set-
ting STM™" and SIM™" to high values ensures that only the most
probably sound reformulations get disseminated. Under different circum-
stances, some peers might prefer low similarity thresholds to favor recall
and eliminate all inappropriate results locally a posteriori. Local filtering
of improper results can be facilitated by ranking the results according to
the similarity values of the query through which they were obtained. We
extend the format of a query message to include the values we have just
discussed as well as the iteratively updated feature vectors:

query(qo, Do, Glasts Plasts RT? ta'TQtho,qLast s
W, sel, ST Mypin, FV,, FVa, FVi,, FV).

Now, upon reception of a query message, we require a peer p to perform
a series of tasks:
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1. detect any semantic cycles by searching for the local schema S, in
the list of schemas Sp, in the reformulation trace. If a cycle is
detected, p forwards the current query message query() to p, for
inspection.

2. check whether or not the query has already been received; discard
the query if it has already been processed

3. forward the query to the local neighborhood N.(p)

4. process the query and return potential results to the query originator
Po

and, for each of its outgoing mappings:

5. apply the reformulation to the query and update the similarity mea-
sures for the reformulated query

6. forward the query using the mapping if all similarity values are
greater or equal to the thresholds given by ST M s,.

Additionally, peers are expected to perform semantic analyses when they
receive results or cycle messages. The full gossiping algorithm is given in
Algorithm 4.1.

Note that the gossiping algorithm presented above piggybacks on
query forwarding to detect cycles. Alternatively, peers can send special
probe queries with a certain TTL periodically to detect semantic cycles.
Probe queries can be created as selection-free queries projecting on all
attributes of a give schema (see Figure 4.6, where ¢; is a probe query for
the left-hand side schema of Figure 4.1).

4.7 Case Study

To illustrate how to apply the abstract model detailed above in a concrete
setting, we now describe one of the experiments we conducted in order to
realize Semantic Gossiping in an XML/XQuery environment. Seven peo-
ple were first asked to design a simple XML document containing some
project meta-data. The outcome of this deliberately imprecise task defini-
tion was a collection of structured documents lacking common semantics
though overlapping partially for a subset of the embraced meta-data (e.g.,
name of the project or start date). Figure 4.1 shows two of those docu-
ments. Viewing the documents as seven distinct semantic domains in a
decentralized setting, we then randomly produced a graph connecting the
different domains.

In the next step of the experiment, we asked the authors to create
mappings in XQuery for every link departing from their domain. Finally,
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Algorithm 4.1 Semantic Gossiping

if ¢.piast == q.RT.p,.last then
[*newly reformulated query; search for semantic cycles*/
for all p in q.RT.p, such that ¢q.RT.S,, == mySchema do
send cycleMesssage(q) to p;
end for
end if
if ¢ in ProcessedQueries then
/*this query has already been processed™/
break;
end if
for all p in SemanticN eighborhood do
/*forward the query throughout the neighborhood* /
send queryM essage(q) to p;
end for
for all yip, —p, in Local Mappings do
/*reformulate the query™*/
q = ppy—p2(a);
if all ¢/.SIM > ¢'.SIM,,;, then
send queryMessage(q') to pa;
end if
end for
/*process the query™®/
results = process(q);
send results to py
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title->name

name->description/name

name->title

title->description/name

name->name

Figure 4.7: A semantic graph of reformulations, where attribute mappings are
depicted for the attribute T'itle.

using the IPSI-XQ! XQuery libraries and the Xerces? XML parser, we
built a query reformulator capable of handling and forwarding the queries
following the Gossiping Algorithm. The resulting topology is depicted in
Figure 4.7. In this figure, we also provide an example of how a particular
attribute gets mapped: all the domains have some representation for the
title of the project (usually referred to as name or title, see Figure 4.7
where the reformulations for the attribute title are represented on top of
the links), except ps, which only considers a simple I D for identifying the
projects.

Let us assume that a single-attribute query ¢ = my.(51) is issued by
p1 to obtain all the titles of the different projects. In XQuery, ¢ can be
written in the following way:

Query =
FOR $project
IN "project_P1.xml"/*
RETURN <title>$project/title</title>

Let us now determine how the query gets propagated from p; with all
thresholds STM ,;, set to 1/2. Note that the weights attached to the
query do not matter here, as the query contains a single projection at-
tribute. Moreover, we do not need to consider STM, as it always evaluates
to one for this projection query.

Following the gossiping algorithm, p; first attempts to transmit the
query to its direct neighbors, i.e., pa, ps and py. p2 and p4 in turn forward

Yhttp://ipsi.fhg.de/oasys/projects /ipsi-zq/
2hitp://xml.apache.org/zerces2-j/index. html
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the query to the other nodes, but p3 will in fact never receive the query:
As p3 has no representation for the title, the only projection attribute
would be lost in the translation process from p; to ps, lowering SITM, to
Zero.

Let us now examine the semantic similarity SIM;,. For the topology
considered, thirty-one semantic cycles could be detected by p; in the best
case. As the query never traverses p3, only eight cycles remain relevant
to our analysis (see Table 4.1, which lists those cycles). For its first
outgoing mapping link (i.e., the link going from p; to p2), p1 receives five
positive cycles, raising the semantic similarity measure for this link and
the attribute considered to 0.79.% p; does not receive any semantically
significant feedback for its second outgoing link 7}, _.,,, which is anyway
handled by the syntactic analysis. Yet, it receives three negative cycle
messages for its last outgoing link 1, —,,. This link is clearly semantically
erroneous, mapping title onto acronym. This results in p; excluding the
link for forwarding the query, since the semantic similarity drops to 0.27
in that case.

Table 4.1: Cycles resulting in positive (+) or negative
(-) feedback for the graph of Figure 4.7.

Cycle Hpr—py WTONG  fhpy—sp, WTONG
Pb1,P2, P4, P5,P1
P1,DP2, P4, P5,P6,P1
P1,P2,DPs5, D1
b1,DP2,Ps5, P65 D1
P1,P2,D6, D1
P1,P4,P5,P1 -
P1,P4, D5, D2, D6, D1 -
P1,P4,Ps5, D6, P1 -

++ 4+ +

++ 4+t

The situation may be summarized as follows: p; restrains from sending
the query through ps because of the syntactic analysis (too much informa-
tion is lost in the translation process) and excludes pa because of the high
semantic dissimilarity. The situation somewhat changes if we correct the
erroneous link i, —.p, and introduce a faulty mapping for the link 1, —p, -
For the attribute considered, the semantic similarity drops to 0.69 for the
outgoing link g, —p, (two long cycles are negative, see third column in
Table 4.1). Even though it is not directly connected to an erroneous link,
p1 senses the semantic incompatibilities affecting some of the messages

3Remember that we did not make any assumption regarding the distribution of
erroneous links. In this case, the positive feedback received may as well come from a
series of compensating errors.
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traversing pa.

4.8 Related Work

GLAV query reformulation in PDMS was studied in the context of the
Piazza [HIMTO3] project. Piazza defines a PDMS as a collection of peer
and stored relations interlinked with GLAV mappings. Peer mappings
can take the form of inclusion (containment) or equivalence mappings
and provide semantic glue between the schemas of different peers. Stor-
age descriptions link the stored relations to the peer relations, typically
through containment mappings to indicate that the local databases are
actually incomplete (open-world semantics). The problem of finding all
certain answers to a conjunctive query in a PDMS with GLAV map-
pings is undecidable in general. However, it can become polynomial or
co — NP complete when inclusion mappings are acyclic (see the Piazza
papers [HIST03, HISTO05] for details). The problem of composing GLAV
mappings in a PDMS is decidable [MHO03a] for a large class of conjunctive
queries (i.e., for CQy queries defined as non-recursive datalog programs
with at most k variables in each rule and containing a single definition for
each predicate).

Hyperion [AKK103] is a project inspired by the Local Relational
Model [BGK™02] using mapping tables and coordination rules to share
data in decentralized environments. Mapping table [MHO03b] are instance-
level mappings defining how data from different sources can be associ-
ated. Specific algorithms [KA04] can be used to compute both sound and
complete reformulations of a local query using mapping tables. Some-
Where [ACG106] is a distributed inference systems for RDF/S data.
It implements a decentralized algorithm for consequence finding of a
clause with respect to a set of distributed propositional theories. Seman-
tic mappings based on epistemic logic were proposed by Calvanese et.
al. [CGLRO4] to preserve decidability of query reformulation with GLAV
mappings.

Semantic routing was recently discussed in various contexts: Loeser
et al. [LSTO5] direct semantic searches based on peers that have an-
swered or issued similar queries in the past. SQPeer [KC04] proposes
a publish-subscribe mechanism d la Edutella and an algorithm relying
on query/view subsumption techniques to produce routing information
in decentralized Semantic Web environments. Zhuge et al. [ZLFT05] use
structural similarity between pairs of schemas to route queries in P2P
semantic networks.
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4.9 Conclusions

Semantic gossiping introduces a radically new way of querying data in a
decentralized setting, by considering both incomplete and unsound query
reformulations. Incomplete query reformulations originate from mappings
that only consider partial translations of a given schema, and are handled
by an iterative analysis of the transformed query at a syntactic level.
Unsound query reformulations stem from inaccurate or erroneous schema
mappings relating semantically divergent attributes. Viewing semantics
as an agreement, we detect semantic mismatch by analyzing transitive
closures of mapping operations and by examining low-level attributes of
results received from distant peers. Taking advantage of both syntactic
and semantic analyses, we introduce a tradeoff between the precision and
recall of the set of possible answers to a query.

Our framework is based on a decentralized version of the mediator
architecture, where arbitrary peers autonomously provide mappings be-
tween pairs of semantically related schemas. We model schema map-
pings as GAV-like queries and reformulate and route queries in a totally
decentralized fashion. One can easily extend our techniques to handle
conjunctive queries and peers with multiple local relations or schemas:
local joins can be supported by introducing a natural join operator >
that can be handled like the renamings in the reformulations. As for
the renamings, the join operations can incur a higher number of atoms
that have to be handled in the subsequent reformulations. The refor-
mulations will however always remain finite as we still only consider se-
ries of GAV mappings [MHO03a]. Extending our framework to more gen-
eral GLAV mappings is also possible, though slightly more complex; the
composition of GLAV mappings can in general be infinite, but can be
precisely computed for conjunctive queries in which nested expressions
have at most k variables (C'Qy queries, see the work by Madhavan and
Halevy [MHO03a]). Also, query reformulation would in that case require a
non-standard query processor to reformulate LAV queries. Moreover, we
believe that LAV loses quite a bit of its attractiveness in a PDMS setting;:
LAV was primarily conceived to offer greater scalability to the mediator,
which disappears in our setting. In a PDMS, LAV mappings would only
be useful when one has to define a surjection from the source attributes to
the target attributes (i.e., when mapping a function of two or more source
attributes onto one target attribute), which is pretty uncommon in the
setting we consider (see Section 2.2 or concrete examples of mappings in
Section 6.5.3).
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Chapter 5

Self-Repairing Semantic
Networks

In the preceding chapter, we presented a model for PDMSs and several
methods to analyze syntactic and semantic losses when reformulating a
query through a mapping. Those methods were used to forward queries in
a self-organizing way, where peers collaborate to disseminate a query in a
network of loosely-coupled and heterogeneous information parties. In this
chapter, we take our approach one step further: rather than only guiding
searches by the results obtained from analyzing the reformulations, we
also take advantage of the network feedback to modify the mappings in
an automatic manner. Thus, we make a step towards self-learning net-
works of peers collaboratively establishing semantic interoperability in an
automated way [ACMHO03a]. We give experimental results that demon-
strate how the different kinds of semantic analyses of reformulations in-
teract with the modification of potentially unsound mappings. The initial
results interpreted below provide promising evidence that Semantic Gos-
siping can be used to automatically reach semantic agreement in large
networks of computer-generated and dynamic mapping links. In partic-
ular, they indicate in which cases each of the two semantic similarity
measures derived from cycle and result analysis are more suitable, and
how our approach scales with different parameters.

5.1 Experimental setup

The setup we used in the experiments is as follows: we assume a network
of heterogeneous peers representing each an individual semantic domain.
Peers share a finite set of semantically similar concepts, i.e., operate in
a certain semantic domain (for example, biological databases) inside the
network. They share annotated documents (or data) related to those
concepts, but refer to concepts using different attributes (they denominate
the concepts differently). From this basic setup, we attempt to create

63
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global interoperability by applying Semantic Gossiping techniques using
purely pair-wise, local schema mappings.

The exact description of the process is as follows: first, we create a
topology of n peers p; ...pn, each of them connected through mappings
links to [ other peers. The peers share [|C|| concepts ci...c|c|, but use
distinct attributes (i.e., names) to refer to them. Thus, we study the
problem of peers sharing the same concepts but lacking knowledge of how
to refer to them by names. Without loss of generality, we assume that the
same set of attributes Ay ... Aj¢| is used by all peers (this simplifies the
subsequent presentation). We write (A; —, ¢i) if peer p uses attribute A;
to refer to concept ¢i. In that way, we can use a single attribute A to store
the name the peer associates to a concept. Also, peers can verify whether
a document belongs to a concept or not and thus annotate documents
they store with attributes A; .

We then generate mappings pi,, —p, for every mapping link between
two peers p; and ps. The mapping function p relates attributes from the
first peer to attributes from the second peer, with every attribute used by
the first peer mapped onto some attribute used by the second peer by a
renaming p. Hence, p is a permutation of the domain of the attributes.
We write every attribute mapping mp, —p, € fip,—ps aS Mp,—py (Ai) = A;
to indicate that m maps attribute A; used by p; onto attribute A; used
by po. For every attribute mapping m, the mapping is sound if and only
if the two attributes bounded by the attribute mapping actually refer to
the same concept, that is if

Mpy—po (Al) = Aj N A; —p1 Ck A Aj Fp2 Ck.

Thus, random schema mappings only have a probability of ﬁ of be-
ing sound in our setting. In the following experiments, we generate a
fraction eRate of erroneous attribute mappings initially. In the end, the
mappings generated in that way are quite similar to the real mappings
generated by state-of-the-art automatic schema matchers: they correctly
map most attributes from po onto semantically similar attributes from pq,
while producing a fraction of unsound attribute mappings for a subset of
the attributes they misinterpret (see the following chapter for concrete
examples).

Unless specified otherwise, we use small-world graphs [WS98] to in-
terconnect peers with mapping links since small-world topologies have
been extensively applied to model computer networks or social behaviors.
They are typically characterized by high clustering coefficients (average
fraction of pairs of neighbors of a node that are also neighbors of each
other) and relatively small path length (average minimal distance be-
tween two nodes). In the following, we generate graphs with an average
clustering coefficient of 0.1 and with 10% of shortcuts (i.e., links rewired
to a random peer in the network).
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Starting from that original setting, we apply Semantic Gossiping tech-
niques in order to detect and rectify erroneous mappings iteratively. At
every experimental step, each peer issues a generic probe query (i.e., the
query consists of a projection on all its local attributes, see Section 4.6)
through its mapping links. The query is propagated to the other peers
(semantic domains) in a Gnutella-like fashion with a low TTL value.

For detecting and repairing potentially erroneous mappings, we
slightly modify the semantic analyses; we forward the probe queries
irrespectively of their similarity values in order to get as many evidences
as possible, and use the network feedback to reach semantic agreements
by gradually modifying the mappings.

Before taking a closer look at the final results, we evaluate in the
following sections each of the semantic analyses (cycle and result analysis)
separately to emphasize their specificities.

5.2 Cycle Analysis

For every iteration step, each peer randomly selects one of its local at-
tributes, sends a probe query and analyzes the cycle messages it gets in
return. Here, we do not only estimate the soundness of the actual at-
tribute mappings as explained in Section 4.5.1, but also determine which
of the potential attribute mappings is most likely correct and adopt it as
a new mapping. Therefore, peers view mappings resulting from returned
queries as new mapping candidates. Consider for example Figure 5.1,
where peer p; systematically receives Ay mapped onto A, in returning
queries (negative feedback). In addition to evaluating the correctness of
the current mapping, p; considers other potential mappings as well, by
permuting the target attribute of individual attribute mappings in the
schema mapping. It adopts the most probably sound mapping candidate
if its probability of being sound is above 50%. In the example of Fig-
ure 5.1, p; evaluates the soundness of the attribute mapping m; mapping
A onto Ay, and might consider to modify it into a new candidate mapping
m’ mapping A; onto Aj.

As noted in Section 4.5.1, preexisting knowledge on the distribution
of error probabilities d.y. and €.y may be used in the computation of the
semantic similarity. We give below a method to get estimates for both
values.

We approximate d.y. — the probability of a series of different errors
being compensated along a cycle — to (||C|| — 1)~!; it corresponds to the
probability of the last erroneous mapping in the cycle to map by accident
to the original attribute and thus to correct previous errors. This value
decreases with the size of the schemas.

We estimate €.y with standard maximum-likelihood techniques ap-
plied to the feedback information we receive. From the probability of
receiving positive feedback from a cycle of length || f|| knowing that the
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Figure 5.1: New mapping candidates: peer p; always receive negative feed-
back when reformulating queries through attribute mapping mg;
it might instead consider a new mapping m/ mapping its own A;
onto peer po’s A; and resulting in positive feedback.

mean error probability on the mapping links is €.ye,

P(fgkqw) - (1 - 6Cy0>”fH + (1 - (1 - 6cyc)||f||)663,107

and from its negative counterpart, we derive the density function for the
likelihood of €.y.:

+ +
L(ecyelfo) = K H (1 - ecyC)Hfo F+a-a- EcyC)HfoH)‘;cyC)
f5ess

H (1-(1- €cy0)”f6H)(1 — deye)

foefs

where K encompasses the prior distributions on €.y and fr. The local
maximum of this function over [0, 1] gives a good approximation of ey,
supposing we have sufficient feedback information.

What is the result of this process in the long run? It depends of
course on the initial setting but in the end, this method attempts to
obtain a mapping consensus based on the different feedback cycles de-
tected in the network. Considering a high density of links and relatively
few unsound mappings, the method converges (i.e., repairs all unsound
mappings) rapidly, since peers can base their decisions on numerous and
meaningful feedback cycles. For settings where links are scarce, peers do
not have sufficient information for making sensible choices, and results
may diverge.

Several parameters are of particular interest: the number of peers n,
the fraction of attribute mappings initially unsound eRate, the number of
concepts [|C||, the initial time-to-live TT'L of the probe queries, and the
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Figure 5.2: Sensitivity to the number of outgoing edges, with 25 semantic do-
mains, eRate = 0.1, |C|| =4 and TTL = 5.

number of outgoing translation links [ per peer. The figures below show
experimental results for topologies where n = 25, eRate = 0.1, ||C|| = 4,
TTL =5 and I = 5 and where one of those parameters varies. All the
curves are averaged over ten consecutive runs. At every step, the peers
start by issuing a couple of queries with a high TTL for estimating the
error rate as explained in the preceding section. Then, each peer sends a
query picking a random concept for every outgoing edge and modifies the
attribute mapping corresponding to that concept depending on the results
of the analysis explained above. Steps are represented on the z-axis. The
graph shows the evolution of the percentage of unsound attribute map-
pings, starting at a rate eRate initially. Clearly, the outcome depends on
the density of links, which has a direct impact on the number of cycles
we have at our disposal for taking mapping decisions. For [ = 4 and the
topology considered, we get on average only one feedback message per
mapping candidate, which is obviously insufficient to take sensible deci-
sions. For [ = 5 and [ = 6, the value raises to 1.8 and 2.9 respectively,
and most of the unsound attribute mappings get corrected after ten it-
erations. Finally, for [ = 7, we get enough evidences (4.5 per mapping
candidate on average) for correcting all the erroneous attribute mappings,
thus reaching a perfect semantic agreement in eight steps.

Similar results may be observed for variable TTLs. Figure 5.3 shows
results using the same parameters as before, but this time for a fixed
number of outgoing edges (I = 4) and TTLs ranging from 3 to 6. Again,
for low values, peers do not get sufficient feedback information to correct
the mappings. Starting with TTL = 4 (1.8 positive feedbacks per deci-
sion), peers receive sufficient information to correct more than 75%of the
unsound mappings after nine iterations. Low-connectivity networks may
thus benefit from increasing the TTL value of their queries in order to get
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Figure 5.3: Sensitivity to the TTL, with 25 semantic domains, eRate = 0.1,
IC]| =4, and I = 5.

sufficient feedback information for the peers.

Our approach is rather insensitive to variations of the initial error rate
(see Figure 5.4) until a certain threshold, where too few sound mappings
are present initially to reach a correct consensus based on the feedback
cycles. When too many unsound mappings coexist initially, a common
semantic agreement can still emerge (see for example eRate = 0.4 in Fig-
ure 5.4), without necessary corresponding to human assigned semantics
(see Section 1.1). In that case, some additional information — introduced
by human agents or collected through some additional analysis (see Sec-
tion 5.4) — is necessary to rectify the semantic agreement.

Finally, it is worth mentioning that our approach scales very well with
the number of nodes. This is not surprising, considering that our methods
rely solely on local interactions (no central component or computation).
In Figure 5.5, we consider networks ranging from 50 to 800 peers, without
any fundamental variation related to the results of our analyses. The
small deviations are due to the shortcuts in the small world topology,
which connect two random peers in the network. The bigger the graph,
the less likely it is that those links can be used to form cycles within a
certain neighborhood.

5.3 Result Analysis

Let us now consider the second part of the analysis, in which peers analyze
and categorize documents they receive. The process is as follows: at
every step, the peers first issue a couple of queries with a high TTL for
estimating the error rate as explained in the preceding section. Then, for
each of their outgoing links, the peers pick a concept randomly and issue a
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Figure 5.6: Sensitivity to the initial error rate, with 50 semantic domains, 100
documents, eRate = 0.1, €,.s = 0.1, ||C|| =4, TTL =3 and | = 2.

query asking for documents related to that concept. In return, they receive
documents they analyze following the method described in Section 4.5.2.
They modify the attribute mapping they have used to forward the query
with the most probable mapping candidate if its likelihood of being sound
is greater or equal to 0.5.

For our experiments, we used a fixed set of documents scattered ran-
domly among the peers. Each documents correspond to one concept. The
owner of a document has a probability (e,.s) of misclassifying the docu-
ment by relating it to a wrong concept. The peers approximate €,.s to a
fixed, low value €..s = 5% in the following experiments. For our setting,
we set &.es to (||C]| — 1)L

Unless specified otherwise, we used a network of 50 peers sharing in
total 100 documents, 2 outgoing mappings per peer, 4 concepts, a TTL of
3, an initial error rate of 10%, and a probability of 10% of misclassifying
a document returned by another peers.

First, it is interesting to observe that this approach is very robust
against the initial error rate, mainly because of the short feedback loop
(one mapping link suffices here to return documents) compared to the
relatively long cycles used previously. Figure 5.6 shows the results for a
varying initial proportion of unsound mappings.

Nevertheless, the approach is rather sensitive to the rate of misclas-
sification of documents, as shown in Figure 5.7. This is especially true
since we do not try to evaluate this parameter but consider a mere fixed
value.

The approach taken here is completely local as it does not take into
consideration any global behavior, and scales well with the number of
peers (see Figure 5.8). Note that we increase the number of documents
linearly with the number of peers to keep the average number of docu-
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Figure 5.7: Sensitivity to misclassification rate, with 50 semantic domains, 100
documents, eRate = 0.1, ||C|| =4, TTL =3 and [ = 2.

ments per peer constant. This number is essential to our analysis, since
it is directly proportional to the number of evidences a peer gathers for
every probe query. This effect is depicted in Figure 5.9: peers start hav-
ing trouble correcting the mappings as they get less and less documents
returned for their queries (documents scarcity).

5.4 Combined Analysis

Many possibilities exist for combining the two analyses. We chose a simple
one: at each step, every peer first performs a result analysis step (modi-
fying the attribute mapping depending on the results returned) and then
performs a cycle analysis step (trying to reach some local agreement on
mappings based on cycle feedback). The results for topologies with 25
peers, 50 documents, €..s = 0.1, 4 concepts, 2 outgoing edges, TTLs of
3 (results) or 6 (cycles) and varying error rates on initial mappings are
depicted in Figure 5.10.

This method takes more time to converge than the two analyses ap-
plied separately, as the analyses keep interfering with each other until
some state is reached that is consistent from both a cycle and a feedback
analyses point of view. Note that the combined method in the end out-
performs the two individual methods applied separately (e.g., more than
98% of unsound mappings corrected after 50 steps with 50% erroneous
mappings initially).
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Figure 5.10: Combined analyses, with 25 semantic domains, 50 documents,
€res = 0.1, ||C|| =4, TTL = 3 (results) or 6 (cycles), I =2, and a
varying initial error rate.

5.5 Related Work

Our research is related to the newly emerging field of evolutionary lin-
guistics [SHO6], which investigates the self-organization of languages and
the co-evolution of vocabularies and meaning. Evolutionary linguistics
research is based on the hypothesis that language is a complex adaptive
system that emerges through adaptive interactions between agents and
continues to evolve in order to remain adapted to the needs and capabil-
ities of the agents. Self-organizing vocabularies [Ste96], for example, are
based on sets of agents, which communicate by randomly associating a
fixed set of words to a fixed set of meanings and repeatedly evaluate how
successful their communicative acts have been. Depending on the success,
the binding between a word and a concept is maintained or replaced by
a new random coupling. Contrary to evolutionary vocabularies, however,
our approach requires an additional level of indirection, i.e., mappings,
as the sets of heterogeneous vocabulary terms (the attributes used by the
individual information sources) are fixed in our context. Thus, we do not
aim at obtaining universally agreed upon names but focus on ways to
relate and adapt schema mappings between fixed terms.

The approach presented above is also related to methods to iteratively
refine schema or ontology mappings. Clio [MHHT01] features a semi-
automatic schema matcher using manual intervention to revise mappings.
LSD [DDHO01]| exploits domain constraints and user feedback to itera-
tively adapt mappings. QOM [ES04] provides a series of matching steps
based on similarity metrics to iteratively produce mappings with increas-
ing quality. COMA [DRO02] is a framework to combine several schema
matchers; it introduces an approach aiming at reusing results from previ-
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ous match operations, and several mechanisms to combine the results of
various matcher executions. Avigdor Gal recently proposed [Gal06] the
simultaneous generation and examination of K best schema mappings to
identify useful mappings. Our method radically differs from all those ap-
proaches in the sense that we see semantics as an agreement and propose
a method that solely relies on collaborative, decentralized computations
while all the aforementioned method are local.

5.6 Conclusions

In this chapter, we have proposed an approach facilitating interoperabil-
ity of autonomous parties by deriving global semantics (agreements) from
a set of initial and partial agreements and series of local interactions.
We take advantage of explicit local mappings to derive an implicit global
agreement by iteratively modifying some of the mappings. We have de-
veloped our approach in the formal model presented in Chapter 4, which
is built around a set of instruments that enable us to assess the rela-
tive soundness of the query reformulations. We showed in a series of
experiments that the quality of the agreements that can be obtained with
our methods depends on the initial implicit agreement (soundness of the
mappings) and of the amount of information that can be obtained from
the network (e.g., feedback cycles). We see our approach as a comple-
mentary effort to the on-going standardization in the area of semantics,
which may help to improve their acceptance and application by augment-
ing the top-down approach towards creating standard semantics with a
dual bottom-up strategy.



Chapter 6

Probabilistic Message
Passing

6.1 Introduction

Semantic Gossiping (Chapter 4) introduced novel methods relying on the
analysis of mapping closures to detect semantic disagreement and selec-
tively forward queries in a network of heterogeneous parties. Those meth-
ods suffer however from a few issues that limit their applicability and
performance in practice:

1. In Semantic Gossiping, peers perform their analyses autonomously
and independently of the other peers. Peers forming a semantic cycle
all examine the cycle in isolation without exchanging or reusing the
computations of the other peers on the cycle.

2. Schema mapping cycles are considered to be independent in Seman-
tic Gossiping. This, however, is a gross approximation as an incor-
rect mapping has a simultaneous effect on all the cycles it belongs
to. Thus, taking into account the correlation of the various cycles
would inherently lead to better results in the detection of mappings
diverging in their semantics with the rest of the network.

3. While Semantic Gossiping only considers equality of attributes or
concepts, subsumption of concepts plays an ever increasing role on
the Internet. XML and other semi-structured representations often
organize their attributes in subsumption hierarchies, either implic-
itly through nested structures, or explicitly through type extensions
(e.g., types derived by extension or restriction in XML Schemas).
The situation is even more radical for new formats such as RDF/S
and OWL, which base most of their language constructs on sub-
sumption relations.

75
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In the following, we develop a new framework based on sum-product
message passing (i.e., belief propagation) that tackle those three
issues [CMAFO06]. This new approach pushes Semantic Gossiping to the
next level, as we do not limit our analyses to a few cycles, but take into
account the full correlation of the mapping operations throughout the
network in a decentralized and parallel analysis.

We concentrate below on two distinct settings for elaborating our ap-
proach: Section 6.3.2 focuses on a simple setting where mappings are
composed of renamings relating pairs of attribute. Section 6.3.3 extends
our approach to analyze directed cycles and parallel paths of reformula-
tions on hierarchies of subsumed attributes and inclusion mappings. For
clarity, we focus below on the semantic mediation layer (upper layer of
Figure 3.4) and consider each peer as a distinct semantic domain. The
methods presented in this chapter can easily be extended to more ex-
pressive mappings (see Chapter 4) or more complex network models (see
Chapters 4 and 8).

We start below with a brief problem definition extending the PDMS
model introduced in Chapter 4 and an illustrating example of a PDMS
with subsumption relations. We then present our probabilistic techniques
to determine the soundness of schema mappings in PDMS settings in
a totally automated way and without any form of central coordination.
Our methods are based on the analysis of cycles and parallels paths in
the graph of schema mappings: after detecting mapping inconsistencies
by comparing transitive closures of mapping operations, we build a global
probabilistic inference model spanning the entire PDMS system. We show
how to construct this model in a totally decentralized way by involving lo-
cal information only. We describe a decentralized and efficient method to
derive mapping quality measures from our model. We show how to embed
our approach in PDMSs with a very modest communication overhead by
piggybacking on normal query processing operations. Finally, we present
an evaluation of our technique applied on both generated and real-world
data.

6.2 Problem Definition

We start with an extension of the PDMS model of Chapter 4 to include
subsumption relations and inclusive mappings. We model PDMSs as col-
lections of peers; each individual peer p € P represents a database DB,
storing data according to a distinct structured schema S,. Note that a
peer could in practice represent a (potentially large) cluster of databases
all adhering to the same schema. The basis of the data model is similar to
the one presented in Section 4.2.1: peers store information with respect
to some concepts we call attributes A € S, (e.g., attributes in a relational
schema, elements or attributes in XML and classes or properties in RDF).
Each local attribute is assigned a set of fixed interpretations A’ from an



6.2. Problem Definition 77

abstract and global domain of interpretations A with AT C Al. Arbi-
trary peers are not aware of such assignments. We say that two attributes
A; and Aj are equivalent, and write A; = A; if and only if AfF = A]I- . Local
attributes can be organized in hierarchies by relating a sub-attribute Ag,
to a super attribute Asuperz we say that a super-attribute AsupeT subsumes
a sub-attribute Agyp, and write Agyp & Agyper if and only if Agub - Aguper.

Peers are connected one another through (un)directed edges represent-
ing (un)directed pairwise schema mappings. A schema mapping fi, —p,
allows a query posed against a local schema at peer p; to be evaluated
against another schema at peer p;. Schema mappings are similar to the
ones introduced in Section 4.2.2 and are made of attribute mappings my.
The mapping operations can be uni or bi-directional depending on the
setting. For clarity, we limit below the renamings appearing in the at-
tribute mappings to one-to-one renamings; thus, each attribute mapping
my € pip;—p; connects a pair of semantically related attribute through a
renaming f(4;) := Ay, with Aj, € S, and A; € S),. Note that the renam-
ings can also be used for syntactic transformations (e.g., transforming a
date from one format to another, see Chapter 4). Each renaming can
either take the form of an equivalence renaming as described above, or
of a containment renaming f(A4;) :C Ax. We call the attribute mappings
with containment renamings containment attribute mappings. Contain-
ment attribute mappings can be used as any other attribute mappings to
reformulate query atoms (see Section 4.2.2) from the source to the target
peer, but produce contained rewritings of the atoms. Containment at-
tribute mappings are directed in essence but can also express undirected
equivalence mappings, e.g., A1 C As A Ay C A; entails Ay = As. In that
context, we say that a mapping is sound if it always produces contained
rewritings of all the query atoms it reformulates through containment
mappings, and equivalent rewritings of all the query atoms it reformu-
lates through equivalence mappings. A reformulation is contained if it is
obtained by one or more containment mappings.

Peers can reformulate queries locally on their subsumption hierar-
chies: they can substitute sub-attributes for super-attributes in local
queries ¢ to create local, contained and sound reformulations: replac-
ing (some of) the attributes appearing in a local query ¢ by their corre-
sponding sub-attributes creates a contained rewriting of the query ¢’ C ¢
returning a subset of the set of results ¢(DB),) of the original query:
¢ (DBy) C q(DB,). Those local reformulations might in turn be reformu-
lated through schema mappings and explicitly appear in the reformulation
history (e.g., reformulation trace in Section 4.6) of a given query.

Given this setting, our goal is to provide probabilistic guarantees on
the soundness of the mappings, i.e., to determine P(m; = sound), where
m; is a local attribute mapping for attribute A; taking the form of an
equality or containment mapping. As any process in a PDMS, we want
our method to operate without any global coordination, in a purely decen-
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tralized manner. Also, we would like our methods to be totally automated,
as precise as possible and fast enough to be applied on large schemas or
ontologies.

6.2.1 An Introductory Example

Before delving into technicalities, we start with a high-level, introduc-
tory example of our approach. Let us consider the simple PDMS net-
work depicted in Figure 6.1. This network is composed of four databases
p1,...,p4. All databases store a collection of XML documents related to
pieces of art, but structured according to four different schemas (one per
database). Each database supports XQuery as query language. Various
pairwise XQuery schema mappings have been created (both manually and
automatically) to link the databases.

/Painter T /Creator

art/creatDate — /Item/DoC
art/painter — /Painter

@ /Creator — = /Painting/CreatedOn @

/Painting/CreatedOn — = /art/creatDate /Author/DisplayName — 5 /Painting/Painter
/Painting/Painter — = /art/painter

Figure 6.1: A simple directed PDMS network of four peers and five schema
mappings, here depicted for the attribute Creator.

/Creator == /Author/DisplayName

Let us suppose that a user in p, wishes to retrieve the names of all
artists having created a piece of work related to some river. The user
could locally pose an XQuery like the following:

q-1 =

FOR $c IN distinct-values (ArtDatabank//Creator)
WHERE $c//Item LIKE "Yriver%"

RETURN <myArtist> $c </myArtist>

This query basically boils down to a selection on the title or;e=%river
followed by a projection on the attribute Creator woreator- The user issues
the query and patiently awaits for answers, both from his local database
and the rest of the network.
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In a standard PDMS, the query would be forwarded through both
outgoing mappings of po, generating a fair proportion of false positives
as one of these two mappings (the one between py and p4) is unsound
for the attribute Creator (the mapping erroneously maps Creator in py
onto CreatedOn in py, see Figure 6.1). Luckily for our user, the PDMS
system he is using implements our message passing techniques. Without
any prior information on the mappings, the system detects inconsistencies
for the mappings on Creator by analyzing the cycles p1 — ps — pg4 — p1
and p;1 — ps — p3 — ps — p1, as well as the parallel paths po — py
and py — p3 — p4 in the mapping network. In a decentralized process,
the PDMS constructs a probabilistic network and determines that the
semantics of the attribute Creator will most likely be preserved by all
mappings, except by the mapping between ps and p4 which is more likely
to be faulty. Thus, this specific query will be routed through mapping
p2 — p3, and then iteratively to ps and p;. In the end, the user will
retrieve all artist names as specified, without any false-positive since the
mapping pe — p4 was ignored in the query resolution process.

6.3 Modeling PDMSs as Factor-Graphs

We take advantage of query messages being forwarded from one peer to
another to detect inconsistencies in the network of mappings. We rep-
resent individual mappings and network information as related random
variables in a probabilistic graphical model. We will then efficiently eval-
uate marginal probabilities, i.e., mapping soundness, using those models.

6.3.1 A Quick Reminder on Factor-Graphs and Message
Passing Schemes

We give below a brief overview of message passing techniques. For a
more in-depth coverage, we refer the interested reader to one of the many
overviews of this domain [KFLO1]. Probabilistic graphical models are a
marriage between probability theory and graph theory. In many situa-
tions, one can deal with a complicated global problem by viewing it as
a factorization of several local functions, each depending on a subset of
the variables appearing in the global problem. As an example, suppose
that a global function g(x1,x2, 3, x4) factors into a product of two local
functions f4 and fp: g(x1,m2,23,24) = fa(x1,z2)fB(x2,x3,24). This
factorization can be represented in a graphical form by the factor-graph
depicted in Figure 6.2, where variables (circles) are linked to their re-
spective factors (black squares). Often, one is interested in computing a
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J40 /B0

Figure 6.2: A simple factor-graph of four variables and two factors.

marginal of this global function, e.g.,

g(r2) = D DN glwr, we, w5, w4)
= ) gl w2, 3,24)
~{w2}

where we introduce the summary operator » {z;} tO sum over all vari-
ables but z;. Such marginals can be derived in an efficient way by a series
of sum-product operations on the local function, such as:

92(x2) = (Z fA($1an2)> (ZZfB(ﬂfz,l’saM)) :

T3 T4

Interestingly, the above computation can be seen as the product of two
messages My, (g, (72) and My, 4, (72) sent respectively by fa()
and fp() to za (see Figure 6.2). The sum-product algorithm exploits
this observation to compute all marginal functions of a factor-graph
in a concurrent and efficient manner. Message passing algorithms
traditionally compute marginals by sending two messages — one in each
direction — for every edge in the factor-graph:

message from variable z to local factor f():

M,_po(x)= ] Mol
hen()\{f(}

message from local factor f() to variable z

Myy—p() = Z f0 H M.z (y)
~{x} yen(f()\{=}

where n(-) stands for the neighbors of a variable / function node in the
graph. The above computations are known to be exact for cycle-free
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factor-graphs; in contrast, applications of the sum-product algorithm
in a factor-graph with cycles only result in approximations of the
marginals [MWJ99]. However, some of the most exciting applications
of the sum-product algorithms (e.g., decoding of turbo or LDPC codes)
arise precisely in such situations. We show below that this is also the case
for factor-graphs modelling Peer Data Management Systems. Finally,
note that Belief Propagation as introduced by Judea Pearl [Pea88] is
actually a specialized case of a standard message passing sum-product
algorithm.

6.3.2 On Factor-Graphs in Undirected PDMSs

We start with the modeling of a network of undirected equivalence map-
pings as a factor-graph. That factor-graph will in turn be used in Sec-
tion 6.4 to derive quality measures on the soundness of the mappings in
the network. Note that, depending on the PDMS, one can choose be-
tween two levels of granularity for storing factor-graphs and computing
related probabilistic values: coarse granularity — where peers only store
one factor-graph per schema mapping and where they derive only one
global value on the soundness of the mapping — and fine granularity —
where peers store one instance of the local factor-graph per attribute
mapping and where they derive one probabilistic soundness value per at-
tribute. We suppose we are in the latter situation but show derivations
for only one attribute in the following. Values for the other attributes can
be derived in a similar fashion.

Cyclic Mappings

Semantic overlay network topologies are not generated at random. On
the contrary, they are constructed by (computerized or human) agents
aiming at interconnecting semantically overlapping information sources.
We can expect very high clustering coefficients in those networks, since
similar sources tend to bond together and create clusters of sources. As an
example, a study of an online network of related bioinformatic schemas —
all available through an SRS repository, see the following chapter — shows
an exponential degree distribution and an unusually high clustering coef-
ficient. Consequently, we can expect semantic schema graphs to exhibit
scale-free properties and an unusually high number of loops [BMO05].

Let us assume we have detected a cycle of mappings mg, mi,...,Mp—1
connecting n distinct peers pg, p1,--.,Pn—1,Po in a circle through equiva-
lence mappings. Cycles of mappings can easily be discovered by the peers
in the PDMS network, either by proactively flooding their neighborhood
with probe messages with a certain Time-To-Live (TTL) or by examining
the trace of queries routed through the network as explained in Chap-
ter 4. We take advantage of transitive closures of mapping operations in
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the cycle to compare a query ¢ posed against the schema of pg to the cor-
responding query ¢’ reformulated through all the n mappings along the
cycle: ¢ = mu_10myu_90...0mp(q). q and ¢ can be compared on an
equal basis since they are both expressed in terms of the schema of pg.
In an ideal world, ¢’ = ¢ since the transformed query ¢’ is the result of
n equivalence mappings applied on the original query ¢. In a distributed
setting, however, this might not always be the case, both because of the
lack of expressiveness of the mappings and of the fact that mappings can
be created in (semi) automatic ways.

As discussed in Section 4.5.1, three subcases can occur when compar-
ing attribute A; in an operation op(A;) appearing in the original query
q to the attribute A; from the corresponding operation op/(A;) in the
transformed query ¢':

A; = Aj;: this occurs when the attribute, after having been reformulated
n times through the mappings, still maps to the original attribute
when returning to the semantic domain of pg. Since this indicates a
high level of semantic agreement along the cycle for this particular
attribute, we say that this represents positive feedback f on the
soundness of the mappings in the cycle.

Aj # Aj;: this occurs when the attribute, after having been transformed
n times through the mappings, maps to a different attribute when
returning to the semantic domain of py. As this indicates some
disagreement on the semantics of A; along the cycle of mappings,
we say that this represents negative feedback f~ on the soundness
of the mappings in the cycle.

Aj; = L: this occurs when some intermediary schema does not have
any representation for the attribute in question, i.e., cannot map
the attribute onto one of its own attributes. This does not give
us any additional (feedback) information on the level of semantic
agreement along the cycle, but can still represent some valuable
information in other contexts, for example when analyzing query
forwarding on a syntactic level (see Section 4.4).

Also to be taken into account, the fact that series of erroneous map-
pings on A; can accidentally compensate their respective errors and ac-
tually create a correct composite mapping m,_1 © my_2 0 ... 0 mg in
the end. Assuming a probability § of two or more mapping errors being
compensated along a cycle in this way, we can determine the conditional
probability of a cycle producing positive feedback fg given the soundness
of its constituting mappings mg, ..., My_1:

1 if all mappings sound
P(f$|m0, ceeyMp—1) =« 0 if one mapping unsound
¢ if two or more mappings unsound.



6.3. Modeling PDMSs as Factor-Graphs 83

This conditional probability function allows us to create a factor-graph
from a network of interconnected mappings. We create a global factor-
graph by linking local variables representing the soundness of the map-
pings to conditional probability functions. The algorithm to derive the
factor-graph is given in Algorithm 6.1.

Algorithm 6.1 Deriving a global factor-graph from a PDMS network

/*create a variable and a factor for each mapping™/
for all mapping m in PDMS do
add m.factor to global-factor-graph;
add m.variable to global-factor-graph;
connect m.factor to m.variable;
end for
for all mapping-cycle ¢ in PDMS do
/*create a variable and a factor for each cycle®/
add c.feedback.factor to global-factor-graph;
add c.feedback.variable to global-factor-graph;
connect c.feedback.factor to c.feedback.variable;
for all mapping m in mapping-cycle ¢ do
/*connect the mappings to the corresponding cycles*/
connect c.feedback.factor to m.variable;
end for
end for

Figure 6.3 illustrates the derivation of a factor-graph from a simple se-
mantic network of four peers py,...,ps (left-hand side of Figure 6.3). The
peers are interconnected through five mappings mqo, mes, msq, mq; and
ma4. One may attempt to obtain feedback from three different mapping
cycles in this network:

1.

fO M2 — M3 — 134 — 141
2.

fO S MM12 — Mog — My

3.
I 1 mag — magq — mag.

The right-hand side of Figure 6.3 depicts the resulting factor-graph,
containing from top to bottom: five one-variable factors for the prior
probability functions on the mappings, five mapping variables m;;, three
factors linking feedback variables to mapping variables through condi-
tional probability functions (defined as explained above), and finally three
feedback variables fi. Note that feedback variables are usually not inde-
pendent: two feedback variables are correlated as soon as the two mapping
cycles they represent have at least one mapping in common (e.g., in Fig-
ure 6.3, where all three feedbacks are correlated).
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Figure 6.3: Modeling an undirected network of mappings (left-hand side) as a
factor-graph (right-hand side); the nodes of the factor-graph rep-
resent, from top to bottom, probability functions encapsulating
a priori information on the mappings, variables for the attribute
mappings, probability functions relating attribute mapping vari-
ables to feedback variables, and finally variables for the feedback
that can be gathered from the network.

6.3.3 On Factor-Graphs in Directed PDMSs with Contain-
ment Mappings

One may derive similar factor-graphs in directed PDMSs with subsump-
tion, focusing this time on directed mapping cycles and parallel mapping
paths. Factors from directed mapping cycles pg — p1 —, ... — pn—1 — Po
are defined in exactly the same way as explained above for the undirected
case. Those cycles can contain zero, one or several containment map-
pings. When comparing attribute A; in an operation op(A4;) appearing in
the original query ¢ to the attribute A; from the corresponding operation
op'(A;) in the transformed query ¢, four cases can occur:

Aj; = Aj;: this occurs when the attribute, after having been transformed
n times through the mappings, still maps to the original attribute
when returning to the semantic domain of py. This represents pos-
itive feedback f+.

A; T Aj;: this occurs when the attribute, after having been transformed
n times through the mappings, maps to a sub-attribute of the orig-
inal attribute A;. This is also considered as positive feedback f7.

Aj; # A; and Aj [Z A;: this occurs when the attribute, after having
been transformed n times through the mappings, maps to an an
attribute that is neither subsumed by the original attribute nor
identical to the original attribute when returning to the semantic
domain of pg. This indicates some disagreement on the semantics
of A; and is treated as negative feedback f~.
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Aj; = 1: this occurs when some intermediary schema does not have
any representation for the attribute in question, i.e., cannot map
the attribute onto one of its own attributes. This does not give
us any additional (feedback) information on the level of semantic
agreement along the cycle, but can still represent some valuable
information in other contexts, for example when analyzing query
forwarding on a syntactic level (see Section 4.4).

Note that we consider the feedback as negative only when we are certain
that an unsound reformulation has occurred. Also, note that in settings
with strict subsumption relations (i.e., A; C A; instead of A; T A;), one
may actually introduce stricter tests on the feedbacks (e.g., A; = A; yields
negative feedback as soon as a strict contained mapping is used along the
cycle).

Containment mappings introduce a new type of compensating errors,
when an incorrect subsumption gets compensated in subsequent subsump-
tions, e.g., if A, —3 B,,, By, —3a Cp, with A, 2 B,,, By, 23 Cp, and
Ap, 3 Cp,. The probability of correcting an erroneous cycle in that way
can be estimated locally (see for example Section 6.4). Taking into account
those compensations dc, the conditional probability of a cycle containing
subsumption mappings producing positive feedback is:

1 if all mappings sound
P(ffImo,...,my_1) =1 dC if one mapping unsound
0 4 o6 if two or more mappings unsound.

Parallel mapping paths occur when two different series of mappings
m’ and m” share the same source and destination, e.g., m{ — m} —
. — m,, and mg — m{ — ... — m/,, with m{ and mg departing
from the same peer and m/, and m!/, arriving at the same peer, without
any other common peer in-between. Those two parallel paths would be
considered as forming an undirected cycle in an undirected network, but
cannot be considered as such here due to the restriction on the direction
of the mapping operations in a network of directed mappings.

If a query g is forwarded through both parallel paths, the
destination peer pgess can compare both ¢ = m/,(...(m{(qg))) and
¢ = ml (... (ml(a))-

In this setting, four cases can occur when comparing attribute A’
appearing in operation op'(4;) in ¢’ to attribute A} appearing in the
corresponding operation op”(AY) in ¢":

A = Aj: this occurs when the original attribute, after having been
transformed through both mapping paths, map to the same at-
tribute at the destination. This is treated as positive feedback f+.
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A;.’ C Alor A, C A;-’ : this occurs when the target attribute obtained
by one of the series of mappings m’ subsumes the attribute obtained

by the other series of mappings m//. This is treated as positive

feedback fT.

Al # A} and AY L A} and A} [Z AY: this occurs when the attribute,
after having been transformed through both series of mappings,
maps to two different attributes that are not related by any sub-
sumption relation at the destination. This indicates some disagree-

ment on the semantics of the attribute and is treated as negative
feedback f~.

A% = 1 or A} = L: this occurs when some intermediary schema does
not have a representation for the attribute in question, i.e., cannot
map the attribute onto one of its own attributes. This does not give
us any additional (feedback) information on the level of semantic
agreement along the paths.

The conditional probability function for receiving positive feedback f;
through parallel paths knowing the soundness of the sets of mappings
m’ ={my,...,m,,} and m” = {mg,...,m”,} with at least one contain-
ment mapping along one of the paths is:

1 if all mappings sound
P(f5lm’,m") =< o if one mapping unsound
0 4+ 6 if two or more mappings unsound.

Figure 6.4 shows an example of a directed mapping network with four
peers and six mappings. Feedback from three directed cycles and three
pairs of parallel paths might be gathered from the network:

fql) FM12 — M23 — M34 — M41
f3:miz — mas — ma
£2mia — ma

FL mar|may — may

I3, maalmas — may

fi; : Mot ||mas — mag — mar.

As for the undirected case, the right-hand side of Figure 6.4 represents the
factor-graph derived from the directed mapping network of the left-hand
side. Since undirected mapping networks and directed mapping networks
result in structurally similar factor-graphs in the end, we treat them on
the same basis in the following.
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Figure 6.4: Modeling a directed network of mappings (left-hand side) as a
factor-graph (right-hand side); the nodes of the factor-graph rep-
resent, from top to bottom, probability functions encapsulating
a priori information on the mappings, variables for the attribute
mappings, probability functions relating attribute mapping vari-
ables to feedback variables, and finally variables for the feedback
that can be gathered from the network.

6.4 Embedded Message Passing

So far, we have developed graphical probabilistic models capturing the re-
lations between schema mappings and network feedback in a PDMS. To
take advantage of these models, one would have to gather all information
pertaining to all mappings, cycles and parallel paths in a system. How-
ever, adopting this centralized approach makes no sense in our context,
as PDMSs were precisely invented to avoid such centralization. Instead,
we devise below a method to embed message passing into normal oper-
ations of a Peer Data Management System. Thus, we are able to get
globally consistent mapping quality measures in a scalable, decentralized
and parallel manner while respecting the autonomy of the peers.
Looking back at the factor-graphs introduced in Section 6.3.2
and 6.3.3, we make two observations: i) some (but not all) nodes
appearing in the factor-graphs can be mapped back onto the original
elements of the PDMS graph, and ii) the factor-graphs contain cycles.

6.4.1 On Feedback Variables in PDMS Factor-Graphs

Going through one of the figures representing a PDMS factor-graph from
top to bottom, one may identify four different kinds of nodes: factors for
the prior probability functions on the mappings, variable nodes for the
soundness of the attribute mappings, factors for the probability functions
linking mapping and feedback variables, and finally variable nodes for the
feedback information. Going one step further, one can make a distinc-
tion between nodes representing local information, i.e., mapping factors
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and mapping variables, and nodes pertaining to global information, i.e.,
feedback factors and feedback variables.

Mapping back local information nodes onto the PDMS is easy, as only
the node from which a mapping is departing needs to store information
about that mapping (see Semantic Gossiping algorithm in Section 4.6).
Luckily, we can also map the other nodes rather easily, as they either
contain global but static information (a function for feedback factors), or
information gathered around the local neighborhood of a node (d, observed
values for fé) and fjj, see preceding section). Hence, each peer p only
needs to store a fraction of the global factor-graph, fraction composed of
the factors and variables for its outgoing mappings and their correspond-
ing feedback factors and variables. The algorithm for constructing a local
factor-graph is given in Algorithm 6.2. A local factor-graph contains the
factor and variable for all local mappings, the related feedback factors and
feedback variables, and virtual peers p; representing the other peers re-
lated to mappings appearing in the local feedback cycles or parallel paths.
Figure 6.5 shows how p; from Figure 6.4 would store its local factor-graph.

Algorithm 6.2 Constructing a local factor-graph for a peer

/*create a variable and a factor for each outgoing mapping™*/
for all outgoing mapping m do
add m.factor to local-factor-graph;
add m.variable to local-factor-graph;
connect m.factor to m.variable;
/*add a variable and a factor for each feedback™/
for all feedback f pertaining to m do
add f.factor to local-factor-graph;
add f.variable to local-factor-graph;
connect f.factor to f.variable;
connect m.variable to f.factor;
/*create a virtual node for all foreign peers*/
for all mapping m’ in feedback f except m do
add virtual-peer m’.peer to local-factor-graph;
connect m’.peer to f.factor;
end for
end for
end for

6.4.2 On Cycles in PDMS Factor-Graphs

Cycles appear in PDMS factor-graphs as soon as two mappings belong
to two identical cycles or parallel paths in the PDMS. See for example
the PDMS in Figure 6.3, where mis and my4; both appear in cycles p; —
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e e == = = =

Figure 6.5: Creating a local factor-graph in the PDMS (here for peer p;); the
local factor-graph contains variables and factors for the local map-
pings departing from a peer, variables and factors for the feedback
information related to those mappings, and virtual peers represent-
ing the other nodes involved in the cycles and parallel paths taken
into consideration locally.

po — ps — p1 and p; — p2 — p3 — P4 — p1, hence creating a cycle mis —
factor(fi1) — ma1 — factor(f2) — mi2 in the factor-graph. As mentioned
above, the results of the sum-product algorithm operating in a factor-
graph with cycles cannot (in general) be interpreted as exact function
summaries.

One well-known approach to circumvent this problem is to transform
the factor-graph by regrouping nodes (clustering or stretching transforma-
tions) to produce a factor tree. In our case, this would result in regroup-
ing all mappings having more than one cycle or parallel path in common;
this is obviously inapplicable in practice, as this would imply introducing
central components in the PDMS to regroup (potentially large) sets of
independent peers (see also Section 6.6 for a discussion on this topic).
Instead, we rely on iterative, decentralized message passing schedules (see
below) to estimate marginal functions in a concurrent and efficient way.
We show in Section 6.5 that those evaluations are sufficiently accurate to
make sensible decisions on the mappings in practice.

6.4.3 Embedded Message Passing Schedules

Given its local factor-graph, a peer can locally update its belief on the
mappings by reformulating the sum-product algorithm (Section 6.3.1);
messages from variables to factors can now be divided into two types:
local messages sent to local factors, and remote messages sent to distant
peers appearing as virtual peers in the local factor-graph:
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local message from mapping m; to factor f;() € n(m;):
Mgy (mi) = I My (ma)
FOen(m\{£;0}
remote message for factor fi() from peer py to peer p; € n(f;()):

Mpq— p (i) = T Mg (ma).
FOEn(m\{x0}

Messages for the mapping variables can then simply be computed by
combining both local messages and remote messages received from
distant peers:

local message from factor f;() to mapping variable m;:

My, (—m, (ma) =
Y060 I Mp—potee)  II Mupo(m)
~{m;} prEN(f5()) mien(f;())\{mi}

posterior soundness of local mapping m;:

P(mi|f) =« H M), (M)
fOen(m;)

where « is a normalizing constant ensuring that the probabilities of all
events sum to one (i.e., making sure that P(m; = sound) + P(m; =
unsound) = 1).

In cycle-free PDMS factor-graphs (i.e., trees), exact messages can be
propagated from mapping variables to the rest of the network in at most
two iterations (due to the specific topology of our factor-graph). Thus,
all inference results will be exact in two iterations.

For the more general case of PDMS factor-graphs with cycles, we are
stuck at the beginning of the computation since every peer has to wait for
messages from other peers. We resolve this problem in a standard manner
by considering that all peers virtually received a unit message (i.e., a
message representing the unit function) from all other peers appearing in
their local factor-graphs prior to starting the algorithm. From there on,
peers derive probabilities on the soundness of their local mappings and
send messages to other peers as described above. We show in Section 6.5
that for PDMS factor-graphs with cycles, the algorithm converges to very
good approximations of the exact values obtained by a standard global
inference process. Peers can decide to send messages according to different
schedules depending on the PDMS; we detail below two possible schedules
with quite different performance in terms of communication overhead and
convergence speed.
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Periodic Message Passing Schedule

In highly dynamic environments where databases, schemas and schema
mappings are constantly evolving, appearing or disappearing, peers might
wish to act proactively in order to get results on the semantic correctness
of their mappings in a timely fashion. In a Periodic Message Passing
Schedule, peers send remote messages to all peers p; appearing in their
local factor-graph every time period T'. This corresponds to a new round
of the iterative sum-product algorithm. This periodic schedule induces
some communication overhead (a maximum of » . (I, — 1) messages per
peer every T', where ¢; represent all mapping cycles passing through the
peer and [, the length of the cycles) but guarantees our methods to
converge within a given time-frame dependent on the topology of the
network (see also Section 6.5). Note that 7" should be chosen according to
the network churn in order to guarantee convergence in highly dynamic
networks. Its exact value may range from a couple of seconds to weeks or
months depending on the setting.

Lazy Message Passing Schedule

A very nice property of the iterative message passing algorithm is that it
is tolerant to delayed or lost messages. Hence, we do not actually require
any kind of synchronization for the message passing schedule; peers can
decide to send a remote message whenever they want without endangering
the global convergence of the algorithm (the algorithm will still converge
to the same point, simply slower, see also Section 6.5). We may thus
take advantage of this property to totally eliminate any communication
overhead (i.e., number of additional messages sent) induced by our method
by piggybacking on query messages. The idea is as follows: every time a
query message is sent from one peer to another through a mapping, we
append to that query message all sum-product messages pertaining to the
mapping being used. In that case, the convergence speed of our algorithm
is directly related to the query load of the system. This may be the ideal
schedule for query-intensive or relatively static systems.

6.4.4 Prior Belief Updates

Our computations always take into account the mapping factors (top layer
of a PDMS factor-graph). These factors represent any local, prior knowl-
edge the peers might possess on their mappings. For example, if the
mappings were carefully checked and validated by a domain expert, the
peer might want to set all prior probabilities on the soundness of the
mappings to one to ensure that these mappings will always be treated as
semantically correct.

In most cases, however, the peers only have a vague idea (e.g., presup-
posed quality of the alignment technique used to create the mappings) on
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the priors related to their mappings initially. As the network of mappings
evolves and time passes, however, the peers start to accumulate various
posterior probabilities on the soundness of their mappings thanks to the
iterative message passing techniques described above. Actually, the peers
get new posterior probabilities on the soundness of the mappings as long
as the network of mappings continues to evolve (e.g., as cycles and parallel
mapping paths get created, modified or deleted). Thus, peers can decide
to modify their prior belief taking into account the evidences accumulated
in order to get more accurate results in the future. This corresponds to
learning parameters in a probabilistic graphical model when some of the
observations are missing. Several techniques might be applied to that
type of problem (e.g., Monte Carlo methods, Gaussian approximations).
We propose in the following a simple Expectation-Maximization [DLR77]
process, which works as follows:

- Initialize the prior probability on the soundness of the mapping
taking into account any prior information on the mapping. If no
information is available for a given mapping, start with P(m =
sound) = P(m = unsound) = 0.5 (maximum entropy principle).

- Gather posterior evidences Pi(m = sound|fi) on the soundness of
the mapping thanks to cycle analyses and message passing tech-
niques. Treat those evidences as new observations for every change
on the local factor-graphs (i.e., new, modified or lost cycle or parallel
path)

- After each change affecting the local factor-graph, update the prior
belief on the soundness of the mapping m given previous evidences
P.(m = sound| fx) in the following way:

k
P(m = sound) = Z Pi(m = sound| f;)k ™"
1=1

Hence, we make the prior values slowly converge to a local maximum
likelihood to reflect the fact that more and more evidences are being
gathered about the mappings as the mapping network evolves.

6.4.5 Introductory Example Revisited

Let us now come back to our introductory example and describe in more
detail what happened. Imagine that the network of databases was just
created and that the peers have no prior information on their mappings
or the network. By sending probe queries with T"I'L > 4 through its two
mapping links, po detects two cycles and one parallel path, and gets all
related feedback information. For the attribute Creator:
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0, the probability that two or more mapping errors get compensated
along a cycle, is here estimated to 1/50; if we consider that the schema
of ps contains fifty-one attributes, and that mapping errors map to a
randomly chosen attribute (but obviously not the correct one), the prob-
ability of the last mapping error compensating any previous error is 1/50,
thus explaining our choice.

Let us suppose that po’s schema is made of seven subsumption hierar-
chies organized as binary trees of seven attributes each (the two remaining
attributes are not part of any hierarchy). ps estimates o, the proba-
bility of an erroneous subsumption mapping on a super attribute being
compensated along the cycle by another subsumption, to 10/343. This
corresponds to the probability of a random mapping relating an attribute
to one of its super attributes in the hierarchies. Note that both of the
aforementioned estimations should take into account the (semi) automatic
algorithms used to create the mappings if they are known. Also, note that
the exact values of those estimated parameters have little influence on the
performance of our approach (see Section 6.5.2).

po constructs a local factor-graph based on the feedback information it
has gathered and starts sending remote messages and calculating posterior
probabilities for its local mappings according to the schedule in place in
the PDMS. After a handful of iterations, the posterior probabilities on
the soundness of ps’s mappings towards ps and pg converge to 0.62 and
0.14 respectively. The second mapping has been successfully detected as
unsound for the given attribute, and will thus not be used to forward query
q1- The query will however reach all the databases by being correctly
forwarded through po — p3, p3 — ps4 and finally py — p1. As the PDMS
network evolves, po will update its prior probabilities on the mapping
toward p3 and pg to 0.56 and 0.32 respectively to reflect the knowledge
gathered on the mappings so far.

6.5 Performance Evaluation

We present below series of results pertaining to the performance of our
approach. We proceed in two phases: We first report on sets of simulations
to highlight some of the specificities of our approach before presenting
results obtained on a set of real-world schemas.
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Figure 6.6: Convergence of iterative message passing algorithm (example
graph, priors at 0.7).

6.5.1 Performance Analyses
Convergence

As previously mentioned, our approach is exact for cycle-free PDMS
factor-graphs. For PDMS factor-graphs with cycles, our embedded mes-
sage passing scheme converges to approximate results in a handful of
iterations. Figure 6.6 below illustrates a typical convergence process for
the example PDMS factor-graph of Figure 6.3 for small schemas of about
ten attributes (i.e., ¢ set to 0.1), prior beliefs at 0.7 and cycle feedback as

follows: ffr, fa s f5-

Note that the accuracy does not suffer from longer cycles: Figure 6.8
shows the relative error between our iterative and decentralized scheme
and a global inference process. The relative error is computed for our
example graph (6 = 0.1, priors at 0.8, ffr, fs, f3, 10 iterations), and by
successively adding a new peer as depicted in Figure 6.7. The relative
error is bigger for very short cycles but never reaches 6% (those results
are quite typical of iterative message passing schemes).

Cycle Length Impact

As cycles in the PDMS get bigger, so does the number of variables appear-
ing in the feedback factors. Shorter cycles provide more precise evidences
on the soundness (or unsoundness) of a mapping than longer cycles due
to the inherent uncertainty pertaining to each mapping variable. Fig-
ure 6.9 demonstrates this claim for simple cyclic PDMS networks of two
to twenty nodes (priors at 0.5, positive feedback, 2 iterations [cycle-free
factor-graph]). The results are quite naturally influenced by the value of
4, but in the end, cycles greater than ten mappings always end up by
providing very little evidence on the soundness of the mappings, even for
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Figure 6.7: Adding nodes iteratively to increase the cycle length.
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Figure 6.8: Relative error of iterative message passing algorithm for various
cycle lengths (10 iterations, example graph, priors at 0.8).

bigger schemas for which compensating errors are statistically infrequent
(e.g., Figure 6.9 for §=0.01).

Scale-free networks are known to have a number of large loops growing
exponentially with the size of the loops considered [BMO05]. Generally
speaking, this would imply exponentially growing PDMS factor-graphs as
well for large-scale networks. However, as we have just seen, the impact
of cycles on the posterior probabilities diminishes rapidly with the size of
the cycles (see also below Section 6.5.2).

Fault-Tolerance

As mentioned earlier for the lazy message passing schedule, our scheme
does not requires peers to be synchronized to send their messages. To
simulate this property, we randomly discard messages during the iterative
message passing schedule and observe the resulting effects. Figure 6.10
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Figure 6.9: Impact of the cycle length on the posterior probability, here for a
simple positive cycle graph of a varying number of mappings and
for three values of 6.
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Figure 6.10: Robustness against faulty links (lost messages).

shows the results if we consider, for every message to be sent, a proba-
bility P(send) to send it only (example network, 6 = 0.1, priors at 0.8,
ffr . J5 , f3 ). We observe that our method always converges, even for cases
where 90% of the messages get discarded, and that the number of itera-
tions required in order for our algorithm to converge grows linearly with
the rate of discarded messages.

6.5.2 Performance Evaluation on Random PDMS
Networks

To test our heuristics on larger networks, we create individual nodes
(schemas) interlinked with edges (schema mappings) by randomly choos-
ing a distinct pair of nodes for each undirected mapping we wish to
include. We obtain irreflexive, non redundant and undirected Poisson-
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distributed graphs in this manner. We randomly pick a certain propor-
tion of mappings and create erroneous links. Also, we randomly select a
given percentage of cycle feedback for which two or more errors get com-
pensated. Finally, we run our iterative message passing heuristics on the
resulting graphs and determine for each mapping whether it is sound or
not (most probable value of P(m;|f)). The results are given in terms of
precision values, where precision is defined as the ratio of the number of
correctly evaluated mappings over the total number of mappings evalu-
ated. As our analysis takes into account the correlation of the cycles in a
graph, the results can vary substantially between two random graphs gen-
erated using the same parameters. In the following, each result is given
as an average calculated over twenty consecutive runs, with a confidence
interval corresponding to a confidence level of 95%.

Performance with an Increasing Proportion of Unsound Map-
pings

Figure 6.11 provides results corresponding to networks of 50 schemas and
200 mappings, with an increasing percentage of unsound mappings and for
relatively small schemas (§ = 5%). Our methods work surprisingly well for
low densities of unsound mappings, with 98% or more of correct decisions
for networks with less than 30% of erroneous mappings. For networks with
a larger proportions of unsound mappings, the results are less spectacular
but still satisfying with precision values above 60%. Note that those
values are obtained automatically, via a totally decentralized process and
without any prior information on the mappings. Compensating errors
make it difficult to detect all errors in networks with many erroneous
mappings (cycles which should be treated as negative are in fact seen
as positive). This fact is highlighted by a second curve in Figure 6.11
(0 = 0), corresponding to very large schemas, where compensating errors
can be neglected and where it is much easier to make sensible decisions
on networks with very high proportions of unsound mappings.

Precision with an Increasing Number of Mappings

Figure 6.12 provides results corresponding to networks of 50 schemas and
an increasing number of mappings between the schemas. For sparse net-
works (e.g., 50 mapping links, corresponding to one mapping per schema
on average), few cycles can be detected and thus little feedback informa-
tion is available. As more and more mappings are created, more feedback
information gets available, thus making it easier to take sensible deci-
sions on the soundness of the mappings (which corroborates the results
obtained in Section 5.2). Social networks have a very high number of long
cycles (e.g., in scale-free networks, where the number of large loops grows
exponentially with the size of the loops considered [BM05]); the longer
the cycle, however, the less interesting it is from an inference point of
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Figure 6.11: Precision of mapping evaluation on random networks of 50
schemas and 200 mappings, with a varying proportion of erro-
neous mappings, two values of §, TTL = 5 to detect cycles and
without any a priori information

view as it is related to a higher number of mapping variables (and hence
represents less precise information, see above Figure 6.9).

Thus, peers should always be cautious to analyze the most pertinent
feedback information only, pertaining to cycles or parallel paths as small
as possible, and to keep their TTL for detecting cycles and parallel paths
relatively small; to highlight this fact, Figure 6.12 shows two curves: one
for a fixed TTL of 5 and one with an adaptive TTL (6 for 50 to 100 map-
pings, 5 for 150 to 200 mappings and 4 from 250 mappings). Adapting the
TTL value is important in two respects: first, in sparse networks where
peers should try to detect longer cycles in order to get more feedback in-
formation (e.g. for 100 mappings in Figure 6.12, where a TTL of 6 leads
to better results than a TTL of 5). In very sparse networks, however,
there are simply too few mappings to detect a sufficient number of cycles,
even for large TTL values (e.g., for 50 mappings in Figure 6.12). Second,
in dense networks, where precious information given by short cycles can
rapidly be diluted by taking into account longer cycles (e.g., for 300 map-
pings in Figure 6.12, where more than 20000 cycles of length 5 can be
discovered, leading to poorer results if all taken into account). From a lo-
cal perspective, peers should thus start with low TTL values and increase
their TTL only when very few cycles are discovered. This also ensures the
scalability of our approach: peers can concentrate on their direct vicinity
and do not need to analyze the network as a whole.

Performance with an Increasing Proportion of Verified Map-
pings

We expect a fraction of the peers to have some a priori information on
their mappings in practice. As we take into account the correlation of the
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Figure 6.12: Precision of mapping evaluation on random networks of 50
schemas and a varying number of mappings, with a proportion
of 20% of erroneous mappings, 6 = 0.05, without any a priori in-
formation but with different TTL values for detecting the cycles

various cycles, prior information on a few mappings can have quite some
influence on the performance of the whole decision process. Figure 6.13
shows the evolution of the precision of our approach for a random network
of 50 nodes and 150 mappings (6 = 0.05), and for a varying proportion
of verified mappings. All verified mappings have their prior probability
set to one if they are sound, or to zero if they are unsound. We produce
two curves for the figure: one with 20% and on with 40% of unsound
mappings on average. As shown in the figure, even a small proportion
of verified mappings can have a substantial impact on the performance
of our algorithm, e.g., for a proportion of 40% of unsound mappings and
10% of verified mappings reducing the number of wrong decisions by more
than 50%.

Sensitivity to Estimated Parameter

Finally, note that our approach is rather insensitive to the estimation of
6, the probability of having multiple errors to compensate each other in
a series of mappings. Generally speaking, it is important to consider a
small and positive value of § to take into account all possible combina-
tions of sound/unsound mappings in the cycles. The exact value of ¢ is
however of little significance for relatively large schemas, as shown in Fig-
ure 6.14. The figure shows the evolution of the precision of our approach
in a network of 50 schemas and 150 mappings, for various estimations of
0. The figure was generated with a real § of 0.05, and for two proportions
of erroneous mappings. As shown in the figure, considering a § of zero
leads to suboptimal results. On the other hand, approximated values of
0 lead to similar results up to errors of 100% on the real value.
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6.5.3 Applying Message Passing on Real-World Schemas

We have developed a tool to test our methods on real-world schemas and
mappings. This tool can import OWL schemas (serialized in RDF/XML)
and simple RDF mappings (following the format introduced in the con-
text of the Knowledge Web project [Bou04]). Our tool can also auto-
matically create new mappings using some generic alignment techniques
based on object and attribute names, edit/substring distances and aggre-
gation [Euz04a]. Once schemas and alignments have been defined, the
tool creates peers, automatically detects cycles, transforms the setting
into a PDMS factor-graph and starts sending messages in order to get
posterior quality values on the mappings as described above.

We report on controlled experiments based on a set of standard
schemas taken from the EON Ontology Alignment Contest!. The setting
is as follows: we first several schemas related to bibliographic data: the
so-called reference schema (called 101 in the EON contest), a similar
schema but translated into French (221), the Bibtex schema from M.I.T.,
the Bibtex schema from UMBC, and another bibliographic schemas from
INRIA. Each of those schemas is composed of about thirty concepts
(attributes). We then start our automatic alignment techniques to create
mappings between this set of schemas. We create series of mappings
as follows: 101 — 221 — MIT — UMBC — Karlsruhe — 101,
101 — Karlsruhe — UMBC — MIT — 221 — 101, 221 — UM BC,
UMBC — 101 and finally Karlsruhe — MIT. We launch the iterative
message passing algorithm on the resulting PDMS factor-graph and try
to detect erroneous mappings automatically.

The resulting PDMS contains 396 generated attribute mappings. The
attribute mappings each map one attribute of the target schema onto one
attribute of the source schemas. We have at our disposal correct (i.e.,
sound and complete) mappings between the so-called reference schema
and the other schemas?. Furthermore, we manually created correct map-
pings for the other pairs of schemas related in our setting. Comparing our
reference mappings with the results of our message-passing process, we ob-
serve that our message passing algorithm evaluates 82% of the mappings
correctly. Figure 6.15 shows the precision of our approach for various
thresholds 7 used to determine whether a mapping is sound or not (i.e.,
m; is considered as being sound if P(m; = sound > 7)). We had no
prior information on the mappings and set ¢ to 1/10. For all threshold
values, our method is significantly better than random guesses. Those
preliminary results are quite encouraging, considering that no prior in-
formation was provided on the mappings, and that only one complete
round of the algorithm could be completed on this static network (i.e.,

Yttp://co4.inrialpes. fr/align/Contest/
2see hitp://oaei.ontologymatching.org/2004 /Contest /301 /refalign.html for an exam-
ple of mapping



102 Chapter 6: Probabilistic Message Passing

09 —

08 %

0.7 | —

Precision

06 |- 4

—— lterative

05 Message Passing

—-——- Random Guess

04 L L L L L I I
0.1 02 03 04 05 0.6 0.7 038 09

Threshold ©

Figure 6.15: Precision results of the Message Passing approach on a real set
of schemas with 396 automatically generated mappings, with a
varying threshold 7 to determine the set of sound mappings.

no update on prior beliefs to iteratively differentiate the sound from the
unsound mappings).

6.6 Conclusions

As distributed database systems move from static, controlled environ-
ments to highly dynamic, decentralized settings, we are convinced that
correctly handling uncertainty and erroneous information is becoming
a key challenge for improving the overall quality of query answering
schemes. The vast majority of approaches are today centered around
local and deductive methods which seem quite inappropriate to maximize
the performance of systems that operate without any form of central
coordination. Contrary to these approaches, we considered in this
chapter an abductive, non-monotonic reasoning scheme which reacts to
observations or inconsistencies by propagating belief in a decentralized
way. Our approach is computationally efficient as it is solely based on
sum-product operations.

As future work involving probabilistic message passing, we are par-
ticularly interested in understanding the relation between exact inference
and our approximate results. We are currently analyzing the computa-
tional overhead and scalability properties of other inference techniques
(e.g., generalized belief propagation [YFWO00], or techniques constructing
a junction tree in a distributed way [PGO04al). Also, as global interoper-
ability is always challenged by the dynamics of the mapping network, we
plan to analyze the tradeoff between the efforts required to maintain the
probabilistic network in a coherent state and the potential gain in terms
of relevance of results. Probabilistic message passing is currently being
implemented in our semantic overlay network (GridVine, see Chapter 8).
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As part of this implementation effort, we are also extending our method
to handle result analysis (see Chapter 4) in a similar manner, by attaching
additional feedback variables to the factor-graphs.
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Chapter 7

Analyzing Semantic
Interoperability in the Large

In previous chapters, we introduced series of methods to capture and fos-
ter interoperability by analyzing transitive closures of mapping operations
and modeling semantics as dynamic agreements between sets of hetero-
geneous parties. In this chapter, we take a step back and analyze the
semantic mediation layer in a holistic way using graph theoretic tools.
We model PDMSs as graphs, derive a necessary condition to foster se-
mantic interoperability in the large [CMAO4] and test our heuristics in
the context of an existing bioinformatic portal with hundreds of schemas.

7.1 Introduction

Information systems are undergoing profound changes with the wide adop-
tion of semi-structured data standards like XML or RDF. Those speci-
fications aim at providing machine-processable information and should
underpin the creation of systems where data are given well-defined se-
mantics. In Chapter 3 and 4, we introduced the Peer Data Management
System architecture and Semantic Gossiping as new ways of reconciling
semantically heterogeneous domains in an evolutionary and completely
decentralized manner. We have shown (Chapters 5 and 6 ) that sets of
uncertain, pair-wise, and local schema mappings can be sufficient for cre-
ating a global self-healing semantic network where semantically correct
translations get reinforced.

Even if much effort has recently been devoted to the creation of so-
phisticated schemes to relate pairs of schemas or ontologies through map-
pings [RB01], it is however still far from being clear how such large-scale
semantic systems evolve or how they can be characterized. For exam-
ple, even if a lack of schema mappings clearly limits the quality of the
overall semantic consensus in a given system, the exact relationships be-
tween the former and the latter are unknown. Is there a minimum number

105
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of mappings required to foster semantic interoperability in a network of
information sharing parties? Given a large set of schemas and schema
mappings, can we somehow predict the impact of a query issued locally?

This chapter represents a first attempt to look at the problem from a
macroscopic point of view. Our contribution is two-fold: first, we develop
a model capturing the problem of semantic interoperability in large scale
decentralized environments. Second, we identify recent graph theoretic
results and show how they can be extended to be applicable to our prob-
lem. More specifically, we derive a necessary condition to foster semantic
interoperability in the large and present a method for evaluating the de-
gree of propagation of a query issued locally. Also, we give an evaluation
of our methods applied on a real graph representing several hundreds of
interconnected bioinformatic schemas. The rest of this chapter is orga-
nized as follows: we start by introducing a general layered representation
for distributed semantic systems. Section 7.3 is devoted to the formal
model with which we analyze semantic interoperability in the large. The
main theoretical results related to semantic interoperability and semantic
component sizes are detailed in Section 7.4 and Section 7.5. Section 7.6 ex-
plores weighted graphs, while Section 7.7 describes our findings related to
the analysis of a real bioinformatic semantic network. Finally, we discuss
practical applications of our main results from a decentralized perspective
before concluding.

7.2 The Model

Large-scale networks are traditionally represented by a graph. In our case,
however, a single graph is insufficient to accurately model the relation-
ships between both the systems and their schemas. In Section 3.2, we
introduced a three-layer model for semantic overlay networks. Below, we
present a set of graphs capturing the organization of the two upper layers
of that model.

As for the previous chapters, we model information parties as peers
that are related to each other physically (denoted as the Overlay Layer
in Figure 3.4). The Peer-to-Peer model described hereafter captures the
organization of the peers. Peers use various schemas or ontologies to struc-
ture their data. We define a Peer-to-Schema model to represent the rela-
tion between the peers and the schemas. Finally, schemas themselves can
be related through schema mappings captured by the Schema-to-Schema
model (also called Semantic Mediation Layer in Chapter 3). Each of those
models represents a distinct facet of the overall Peer Data Management
System and can be decorrelated from the other two (as, for example, in
the GridVine system described in Chapter 8).



7.2. The Model 107

Figure 7.1: The Peer-to-Schema model is a bipartite graph representing the
various schemas used by the peers to structure their data.

7.2.1 The Peer-to-Peer Model

Peers represent autonomous parties producing and consuming informa-
tion in a system. Each peer p € P has a basic communication mechanism
that allows it to establish connections with other peers. The Peer-to-Peer
model captures the organization of the peers through that communication
mechanism. The communication mechanism is such that it should allow
any peer to contact any other peer in the system — either by broadcasting
(Gnutella) or by using a central (Napster), hierarchical (DNS) or decen-
tralized (P-Grid) registry. Furthermore, we assume that the information
and meta-information (i.e., metadata, schemas and schema mappings)
available in the system are all indexed in a similar way, allowing a peer
to retrieve any resource independently of its exact nature.

7.2.2 The Peer-to-Schema Model

We assume that peers store annotations (or metadata) related to the
resources available on their system. Each peer p € P organizes its local
database DB, according to a set of schemas §, € S. When a peer p
organizes (part of) its database following a schema S;, we say that p is
in the semantic domain of S;: p < ;. Individual schemas are uniquely
identified throughout the network and may be used by different peers.
We represent the relation between the peers and the schemas through
a bipartite graph where the vertices are divided into two disjoints sets
V1 =P and V5 = S representing respectively the set of peers and the set
of schemas. An edge in that graph denotes the fact that a peer uses a
certain schema to structure (part of) its data. Figure 7.1 represents such
a bipartite Peer-to-Schema graph where p3 annotates data according to
schemas S4 and Sc.

We do not make any assumption on the languages used to express the
meta-data or schemas. Peers can for example use different mechanisms
(e.g., XML Schema elements or RDFS/OWL classes) for categorizing re-
sources. However, all peers should be able to locally issue queries ¢; € Q
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against their databases using standard query operators in order to retrieve
sets of specific resources.

7.2.3 The Schema-to-Schema Model

Finally, we allow peers to create mapping links between schemas. We
do not put any constraint on the origin of the mappings: they might
be automatically generated, written by domain experts, partially wrong,
and may be provided by any peer, regardless of the schemas it uses for its
own database. As for the previous chapters, we use ug, g, to denote a
mapping p relating two schemas S; and S2. Using a mapping ps,—s,, a
peer p; < S1 may reformulate a local query ¢ on its database DB, into
a transformed query ¢’ applicable to a second semantic domain Ss:

15185 (q(S1)) = ¢'(S2),p1 < S1 Ap2 — Ss

Note that multiple transformations may be applied to a single query gq.
The composition of multiple transformations pq, ..., p, is given by using
the associative composition operator (specific to a given approach) o as
follows:

pn o ... 0 p1(g)(S).

From a graph modeling perspective, schema mappings may be viewed
as edges interconnecting schema nodes. Figure 7.2 depicts a Schema-to-
Schema graph. Note that the edges have to be directed in order to capture
the peculiarities of the mapping operations, since mapping functions may
not be invertible and since the properties of even the most basic trans-
lations can be dependent on the direction with which they are applied
(e.g., relations between subclasses and super-classes, see the preceding
chapter). Also, note that a growing number of schemes use a metric to
characterize the quality of the various mapping operations encapsulated
by the translation links [CFMRO04, ZLFHO04] (see also Chapters 4 and 6).
The resulting graph is therefore a weighted directed multigraph, i.e., a
directed graph with (possibly) multiple, weighted edges (mapping links)
between two vertices (schemas).

7.3 Semantic Interoperability In the Large

The rest of this chapter is devoted to the study of interoperability in our
PDMS setting, mainly through the analysis of a derived version of the
Schema-to-Schema graph. A peer p; <+ S; may send a query to any peer
in its own semantic domain, i.e., to any peer p;, € P | py < S; in the Peer-
to-Schema model (supposing, again, that the Peer-to-Peer model allows
peers to contact any other peer in the network). The query may also be
forwarded to peers in foreign semantic domains S; # S; as long as there
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Figure 7.2: The Schema-to-Schema model is a weighted directed multigraph
connecting nodes (schemas) through edges (schema mappings).

exists a mapping 5,5, (q) or a series of mappings s, _; s, 0. .05, s,
to reformulate the query adequately. Generalizing that statement, we
introduce the notion of semantic interoperability for our context:

Definition (Semantic Interoperability) Two peers are said to be se-
mantically interoperable if they can forward queries to each other, poten-
tially through series of schema mappings.

Note that the aforementioned definition does not characterize the qual-
ity of the semantic interoperability in any way; it simply acknowledges the
existence of some semantic relationship between two peers on the basis of
a mapping path. If no semantic path exists to forward the query, we say
that the two peers in question are semantically unreconcilable.

7.3.1 Semantic Connectivity

Analogously to physical network analysis, we define an intermediary layer
accounting for the semantic connectivity of the system. Indeed, consider-
ing the definition given above, we can slightly relax our Schema-to-Schema
model when analyzing semantic interoperability:

Unweighted model: Since our definition of semantic interoperability is
based on the presence or absence of mapping links, we ignore the
weights in the Schema-to-Schema model.

No duplicate edges: From a vertex strong connectivity point of view,
duplicate edges between two vertices play no role. Thus, directed
multigraphs may be replaced by their corresponding digraphs.

However, when analyzing semantic connectivity graphs, one has to
account for two important specificities of large-scale semantic systems:
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High clustering: Sets of schemas related to a given domain of exper-
tise tend to organize themselves tightly and thus share many map-
ping links, while being largely disconnected from schemas describing
other domains. The clustering coefficient measures the degree to
which the neighbors of a vertex are neighbors of each other. Hence,
we expect clustering coefficients in large-scale semantic graphs to be
particularly high.

Bidirectional edges: Even if mappings used in the translation links are
essentially unidirectional, we can expect domain experts to create
translations in both directions (to and from a given schema) in or-
der to foster semantic interoperability. Thus, a (potentially high)
fraction of the mappings can be considered as bidirectional in our
connectivity analysis.

Taking into account the points exposed above, we can finally propose
our formal model for the study of semantic interoperability:

Definition (Semantic Connectivity Graph) A Semantic Connectiv-
ity Graph is a pair (S, M) where

e S is the set of schemas in a large-scale semantic system

e M is a non-redundant, irreflexive set of ordered pairs (S;, S;) | i #
JNS;,S; €S, each denoting a mapping between two schemas.

Using this formalism, semantic systems can be represented by digraphs
where S is a set of vertices and M a set of directed edges. A couple of
statistical properties derived from the semantic connectivity graphs will
be of particular interest in our upcoming analysis:

e The probabilities p;; that a randomly chosen vertex has in-degree j
and out-degree k.

e The clustering coefficient cc defined as the average number of edges
of a node’s neighbors connecting to other neighbors of the same
node.

e The bidirectional coefficient bc defined as the average fraction of
edges that can be considered as bidirectional, i.e., the fraction of
mappings (Sl,S]) eEM | 3(5]', Sz) eM.

Remembering that a directed graph is strongly connected if it has a
path from each vertex to every other vertex, one can easily determine
wether or not a set of peers is semantically interoperable by inspecting
the semantic connectivity graph:

Theorem 7.1. Peers in a set Py C P cannot be semantically interopera-
ble if Ss C S is not strongly connected, with Sg = {S | Ip € Ps,p < S}.
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Proof If S, is not strongly connected, there exists at least one vertex
S; € S5, which cannot be reached from another vertex S; € S,. This
means that a peer p; € Py, p; «+» S5 is semantically unreconcilable with a
second peer pi € Py, pr < S;, and thus the set of peers is not semantically
interoperable.

As a corollary, a network of peers is globally semantically interopera-
ble if its semantic connectivity graph is strongly connected. This property
may be satisfied in a wide variety of topologies. Introducing |S| and | M 4|
as (respectively) the number of vertices and edges in the semantic con-
nectivity subgraph related to a set of peers Py C P, we can immediately
derive two bounds on the number of mapping links affecting the semantic
interoperability:

Observation 7.1. A set of peers Py C P cannot be semantically inter-
operable if | M| < |S].

Observation 7.2. A set of peers Py C P is semantically interoperable if
‘Ms’ > ’Ss’(|ss| - 1) - (’Ss’ - 1)'

The proofs of those two observations are immediate.

7.4 A Necessary Condition for Semantic Inter-
operability

7.4.1 TUndirected Model

Real world graphs usually develop by following preferential attachment
laws and exhibit properties (e.g., small-world, scale-free) specific to their
statistical distribution. Thanks to recent advances in graph theory, it
is now possible to study arbitrary large graphs based on their degree
distribution. However, there exists no model taking into account all the
specificities of our semantic connectivity graph. In the following, we derive
new results from the framework introduced by Mark Newman [NSWO01]
to account for those specificities. Since we do not assume readers to be
generally familiar with generatingfunctionologic graph theory, we start by
introducing a simpler, undirected model before presenting the directed
one. Note that this undirected setting can be applied in many practical
settings where mappings are bidirectional (see for example Section 6.3.2
or Chapter 8).

Our approach is based on generating functions [Wil94]; first, we in-
troduce a generating function for the degree distribution of a semantic
connectivity graph:
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Go(x) = ppat (7.1)
k=0

where pg is the probability that a randomly chosen vertex has degree
k. This function encapsulates all the information related to the degree
distribution of the graph, since

1 d*Gy

= —— 2
k! daxk (7.2)

Pk

Theorem 7.2. Peers in a set Ps C P cannot be semantically interoper-
able if Y, k(k — 2 — cc)pr, < 0, with py the probability that a node has
degree k in the undirected semantic connectivity graph of the set and cc
the clustering coefficient.

Proof The average number of neighbors of a node is
21 =<k >= Zk‘pk = Gg(l)
k

If we follow a randomly chosen edge, we arrive at a vertex with prob-
ability proportional to the degree of that vertex, i.e., proportional to kpy.
The correctly normalized degree distribution of the node we arrive at is

>k kpra® _ xGﬁ(fﬁ)
21 ki Go(1)
If we start at a randomly chosen vertex and follow all the edges from
that vertex to get to the set of direct neighbors, each of those first-order
neighbors will have a degree distribution given by Equation 7.3. Now, if
we want to count the number of second-order neighbors from the original
node we started at, we can consider the first-order neighbors as being
one degree lower, since we do not want to take into account the edge
connecting our original node to the first-order neighbor. Similarly, we
can subtract on average cc degrees of the first-order neighbors to account
for those links which connect first-order neighbors together. In the end,
the distribution of the number of second-order neighbors we get from a
first-order neighbor is

(7.3)

1 Gy(x) 11 ,

The probability distribution of the number of second-order neighbors
is then obtained by multiplying Equation 7.4 by the probability of the
original node having k first-order neighbors and by summing over those
k neighbors. Remembering that the distribution of a generating func-
tion summed over m realizations is generated by the m!® power of that
generating function [Wil94], we get

Gl(.%') =
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> pklGi(@))F = Go(Gh ().
k

The average number of second order neighbors is

o= | L 6Gaa)]| = GGG
r=1
= Go(1)G(1) =D k(k — 1 - cc)px
k

since G1(1) = 1.

A necessary condition for a graph to be strongly connected is the emer-
gence of a giant component connecting most of its vertices. It has been
shown [NSWO01] that such a component can only appear if the number of
second-order neighbors of a graph is on average greater or equal than the
number of first-order neighbors. Presently, if

20 > 21 @Zk(k’—l—cc)pk > kak®2k(k—2—cc)pk >0. (7.5)
k k k

If the condition in Equation 7.5 is not satisfied, the undirected semantic
connectivity graph cannot be strongly connected, and thus the set of peers
cannot be semantically interoperable.

We term ), k(k — 2 — cc)py, connectivity indicator ci. Figure 7.3 be-
low compares this indicator (a) with the size of the biggest connected
component in a random, undirected semantic connectivity graph of 10000
vertices with a variable number of edges (b). Edges are generated ran-
domly (each pair of distinct vertices has the same probability of being
connected). We notice that ci is a very good indicator of the overall con-
nectivity of a semantic graph, i.e., the indicator reaches zero precisely at
the percolation threshold: the graph is in a sub-critical phase when ci < 0
(no giant connected component) while it is in a super-critical phase when
ci > 0 (when a giant connected component suddenly starts to appear).

7.4.2 Directed Model

We now turn to the full-fledged, directed model based on the semantic
connectivity graph. Our methodology is similar to the one used above
for the undirected case. Remember that p;, is the probability that a
randomly chosen vertex has in-degree j and out-degree k in our semantic
connectivity graph. We introduce G(z,y), a generating function for the
joint probability distribution of in and out-degrees:
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Figure 7.3: Connectivity Indicator (a) and maximal connected cluster size (b)
for a random network of 10000 vertices and a varying number of
edges.

Gx,y) =Y ppaly
j.k
which has to satisfy

> G —kpr =0

ik
since every edge leaving some vertex has to enter another. This also
implies that the average degree (both in and out) z; of vertices in the
graph is

66

=3 . (7.6)

. oG
a=> jpir= kpjr= 5o
ik ik

The joint probability p;) is given by

x,y=1 z,y=1

1 5j+kg

Pik = Gk 67 oy

z=0,y=0
Again, the generating function encapsulates all the information contained
in the discrete probability distribution pjy.

Theorem 7.3. [Necessary condition for semantic interoperability]
Peers in a set Py C P cannot be semantically interoperable if ZM(jk —
j(be+ cc) — k)pji, < 0, with pji, the probability that a node has in-degree
j and out-degree k in the semantic connectivity graph of the set, bc the
bidirectional coefficient and cc the clustering coefficient.

Proof The function generating the number of outgoing edges leaving a
randomly chosen vertex is
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Go(y) = G(1,y).

If we follow an edge chosen randomly, we arrive at a vertex with a
probability proportional to the in-degree of that vertex. Normalizing on
the degree distribution of that vertex, we obtain:

ij jpjk:yk B 0Gg

-1
G
- =r— — . 7.7
ijjpjk ox =1 <(5.73 :c,y:l) ( )

If we start at a randomly chosen vertex and follow each of the edges at that
vertex to reach the k nearest, first-order neighbors, then the vertices we
arrive at have a distribution of outgoing edges generated by 7.7, less one
power of z to account for the edge that we followed. Thus, the distribution
of outgoing edges after having followed a random edge is generated by the

~1
i 1%
w1 \ OT =1 oz 0z

where 27 is, as above, the average vertex degree. We can now determine
the distribution of second-order neighbors by summing this expression
over the probabilities of a node to have k£ outgoing edges, but we have to
be careful of two facts:

function

g

Gi(y) = 3z

rx=1

1. Some of the edges leaving a first-order neighbor connect to other
first-order neighbors (clustering effect). In our model, this occurs
on average cc times for a given vertex. We should not to take these
nodes into account when counting the number of second-order neigh-
bors.

2. The edge going from our initial node to a first-order neighbor might
be bidirectional. This happens with a probability bc in our model.
We must subtract this edge from the number of outgoing edge of a
first-order neighbor when it occurs.

Consequently, the distribution of outgoing edges from first to second-
order neighbors is

Gi(y) = (1— bc)ylngy) oGy (1),

ycc—i—l

As for the undirected case, the average number of second-order neighbors
is

22 = Go(1)Gi(1).

Finally, the condition z5 > z; yields to
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Figure 7.4: The “bow-tie” diagram representing the giant component of a di-
rected graph.

> (jk — j(be + cc) — k)pjx > 0. (7.8)
J,k

Equation 7.8 marks the phase transition at which a giant component
appears in a semantic connectivity graph. By neglecting the bidirectional
and the clustering coefficient (be, cc = 0) and reorganizing the terms using
Equation 7.6 we fall back on the equation for the appearance of a giant
component in a directed graph derived by Mark Newman [NSWO01]. Ne-
glecting these two terms has of course a negative influence on the precision
of our method (e.g., in highly clustered settings, where links connecting
first-order neighbors should not be taken into account for deriving the
phase transition).

In a directed graph, the giant component can be represented using
a “bow-tie” diagram [BKMT™] as in Figure 7.4: The strongly connected
component represents the portion of the graph in which every vertex can
be reached from each other, while the links-in and links-out respectively
stand for those vertices which can reach the strongly connected component
but cannot be reached from it and those which can be reached from the
strongly connected component but cannot reach it. We call the union of
the links-in and of the strongly connected component the in-component
and the union of the links-out and of the strongly connected component
the out-component.

Figure 7.5 compares the evolution of the size of the biggest out-
component in a random network of 10000 vertices with the value of our
new Connectivity Indicator i’ = 7., (jk — j(bc + cc) — k)pjx as the
number of directed edges varies. The directed edges are added succes-
sively by choosing ordered pairs of vertices. At each step, we make sure
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Figure 7.5: Connectivity Indicator (a) and maximal out-component (b) for a
random network of 10000 vertices and a varying number of edges.

that the graph remains non-redundant and irreflexive. As expected, the
Connectivity Indicator becomes positive at the phase transition when a
giant-component emerges and grows then with the size of that component.

7.5 Semantic Component Size

Even in a network where parties are not all semantically interoperable,
a given peer can be tempted to send a query and observe how it gets
propagated through the different semantic domains. We can get a very
good approximation of the degree of semantic diffusion of a query from
our model.

Using a similar approach as described in recent graph theoretic
works [NSWO01] and taking advantage of our specific generating functions,
we can calculate the relative size s of the subgraph that can be reached
from the strongly connected component of the semantic connectivity
graph (out-component):

s=1-Go(u), (7.9)

where u is the smallest non-negative real solution of

u= G (u). (7.10)

Figure 7.6 shows the size of the out-component in a randomly gener-
ated digraph of 10000 vertices with a varying number of edges. The two
curves represent the relative size of the component (i) as measured in the
graph and (ii) as evaluated using the degree distribution, the clustering
coefficient and the bidirectional coefficient of the graph with the method
described above. As the figure shows, the theory and practice are in good
agreement (less than one percent of difference in the super-critical phase).
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Figure 7.6: Size Comparison of the out-component in a random network of
10000 vertices.

7.6 Weighted Graphs

So far, we only analyzed the presence and size of a giant connected com-
ponent in order to determine which portion of a semantic network could
potentially be semantically interoperable. In large-scale decentralized net-
works, however, one should not only look into the giant semantic compo-
nent itself, but also analyze the quality of the mappings used to propagate
queries from one schema to the other (see Chapters 4 and 6 for a discus-
sion on that topic). Indeed, in any large, decentralized network, it is very
unlikely that all schema mappings could correctly map queries from one
schema to the other, because of the lack of expressivity of the mapping
languages, and of the fact that some (most?) of the mappings might be
generated automatically.

Thus, as considered by more and more semantic query routing algo-
rithms, we introduce weights for the schema mappings to capture the
quality of a given mapping. Weights range from zero (indicating a really
poor mapping unable to semantically keep any information while translat-
ing the query) to one (for perfect mappings, keeping the semantics of the
query intact from one schema to the other). We then iteratively forward
a query posed against a specific schema to other schemas through schema
mappings if and only if a given mapping has a weight (i.e., quality) greater
than a predefined threshold 7. 7 = 0 corresponds to sending the query
through any schema mapping, irrespective of its quality. On the contrary,
when we set 7 to one, the query only gets propagated through semanti-
cally perfect mappings, while even slightly faulty mappings are ignored.
Previous works in statistical physics and graph theory have looked into
percolation for weighted graphs. We present hereafter an extension of
our heuristics for weighted semantic networks inspired by recent works in
graph theory [CNSWO00].
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7.6.1 Connectivity Indicator

As before, we consider a generating function for the degree distribution

Go(z) =Y pra*
k=0

where pg is the probability that a randomly chosen vertex has degree k
in the network. We then define ¢, as the probability that an edge has a
weight above 7 given that it binds vertices of degree j and k. Thus, wy =
Z;io tj1, is the probability that an edge transmits, given that it is attached
to a vertex of degree k. The generating function for the probability that
a vertex we arrive at by following a randomly chosen edge is of degree k
and transmits is

1

00 k—
—o Wekpr
G () = 2=
T e ki

where cc is the clustering coefficient. We know [CNSWO00] that the gener-

ating function for the probability that one end of a randomly chosen edge

on the graph leads to a percolation cluster of a given number of vertices
is

Hi(z)=1-G1(1) + Gy [Hi(z)]. (7.11)

Similarly, the generating function for the probability that a randomly

chosen vertex belongs to a percolation cluster of a given number of vertices
is

Ho(z) = 1 — Go(1) + 2Go [Hy(2)] (7.12)

such that the mean component size corresponding to a randomly chosen
vertex is
Go()Gi(1)
= H)(1) = Go(1) + =1——~
which diverges for G (1) > 1. However,

_ Y reo wrpkk(k — 1 — cc)
Zzozo kpy,

such that a giant connected component appears if

Gi(1)

ci:kak [wg(k—1—cc)—1] > 0.
k=0
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Figure 7.7: Giant component size and connectivity indicator for undirected
weighted random graphs of 1000 vertices, with various thresholds
7 limiting the propagation of the query.

7.6.2 Giant Component Size

As seen above, Hy(x) represents the distribution for the cluster size which
a randomly chosen vertex belongs to, ercluding the giant component.
Thus, Hy(1) is equal to the fraction of the nodes which are not in the giant
component. The fraction of the nodes which are in the giant component
is hence S =1 — Hy(1). Using Equation 7.12 we can write

S'=1-Ho(1) = Go(1) — Go [H1(1)] .

with H1(1) = 1 — G1(1) + G1 [H1(1)]. Thus Hi(1) = u where u is the
smallest non-negative solution of

u=1-— Gl(l) + Gl(u)

The relative size of the giant component reached by the query in a
weighted semantic graph follows as

S =Go(1) — Go(u).

Equations for the directed case can be derived in a similar manner.
Figure 7.7 compares the connectivity indicator and the relative size of the
giant component as derived using our heuristics and as measured in the
random graphs. We consider purely random graphs, and edge weights —
representing the mapping qualities — as realizations of a continuous ran-
dom variable uniformly distributed on [0, 1]. All the results are averaged
over 20 consecutive runs and are given for different thresholds 7 limiting
the propagation of a query.
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7.7 Semantic Interoperability in a Bioinformatic
Database Network

Even if Semantic Web technologies and semi-structured representations
have recently gained momentum, their deployment on the wide-scale,
structured Internet is still in its infancy. Only a very small portion of web-
sites have so far been enriched with machine-processable and queryable
data encoded in RDF or XML. Thus, the difficulty to analyze semantic
networks due to the very lack of realistic data one can gather about them.
We gave a couple of results pertaining to our approach above by generat-
ing large-scale, random topologies. Below, we test our heuristics on a real
semantic network, namely on a collection of schemas registered within the
proprietary Sequence Retrieval System (SRS)!.

We start below by giving a short introduction to SRS. We then present
our approach, which boils down to an analysis of the component sizes in
a graph of schemas interconnected through schema mappings. We report
on the statistical properties of the SRS network we consider and on the
performance of our heuristics applied to that network. Finally, we report
on the performance of our approach on larger and weighted networks
mimicking the statistical properties of the SRS network.

7.7.1 The Sequence Retrieval System (SRS)

The Sequence Retrieval System SRS is a commercial indexing and re-
trieval system designed for bioinformatic libraries such as the EMBL nu-
cleotide sequence databank, the SwissProt protein sequence databank or
the Prosite library of protein subsequence consensus patterns. It started
as a data management system initially developed by the European Molec-
ular Biology Laboratory in Heidelberg. As such, it allows the querying
of one or several databases simultaneously, regardless of their format.
SRS repositories typically contain a central index for one hundred or
more databases, whose data are saved as unstructured (so-called flat)
files mainly.

Administrators wishing to register new databases within an SRS repos-
itory first have to define structure files, which detail on a syntactic level
the schema according to which data has been organized in the flat files.
Once their schemas have been defined, administrators can export schema
instances (i.e., flat text files) whose data will be centrally parsed, indexed
and processed thanks to the corresponding schema definitions. Entries
in bioinformatic databases often contain explicit or implicit references to
each other; for example, information about elements related to a nucleic
acid segment can be available in a protein databank. Taking advantage of
this fact, SRS lets administrators manually define relationships between
their database schema and similar schemas using a proprietary language.

L http: / /www.lionbioscience.com,/
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7.7.2 Graph analysis of an SRS repository

Conceptually, the model described above is very close to the semantic
networks we have been discussing throughout this chapter, i.e., a collection
of related schemas (or ontologies) linked one to another through pairwise
mappings. The graph that can be extracted from an SRS repository has
two main advantages over those which can be built from current RDFS
/ XML repositories: i) it is based on a real-world collection of schemas,
which are being used on a daily basis by numerous independent parties
and ii) it is of a reasonable size (several hundreds of semantically related
complex schemas). Thus, after having been rather unsuccessful at finding
reasonable semantic networks from the Web itself, we decided to build a
specialized crawler to analyze the semantic graph of an SRS repository
and to test our heuristics on the resulting network.

We chose to analyze the semantic network from the European Bioin-
formatics Institute SRS repository?. We built a custom crawler, which
traverses the entire network of databases and extracts schema mapping
links stored in the schema definition files. The discussion below is based
on the state of the SRS repository as of May 2005.

The graph resulting from our crawling process is an undirected graph
of 388 nodes (database schemas) and 518 edges (pairwise schema map-
pings). We chose to represent links as undirected edges since they are
used in both directions in SRS (they basically represent cross-references
between two entries of two database schemas). We identified all connected
components in the graph (two nodes are in the same connected component
if there is a path from one to the other following a series of edges). The
analysis revealed one giant connected component, i.e., a relatively large
set of interconnected schemas, of 187 nodes, which represents roughly half
of the nodes and 498 edges. Besides the giant connected component, the
graph also has two smaller components, each consisting of two vertices.
The rest of the nodes are isolated, representing mostly result databases
or databases for which no link to other databases was defined.

The average degree of the nodes is 2.2 for the whole graph and 4.6 for
the giant component. Real networks differ from random graphs in that
often their degree distribution follows a power law, or has a power law
tail, while random graphs have a Poisson distribution of degrees [AB02].
Unsurprisingly, our semantic network is no exception as can be seen in
Figure 7.8, which depicts an accurate approximation of the degree dis-
tribution of our network by a power-law distribution y(z) = az™" with
o =0.21 and v = 1.51.

Another interesting property we explored was the tendency of the
schemas to form clusters, quantified by our clustering coefficient. The
network we considered has a high average clustering coefficient of 0.32
for the whole graph and of 0.54 for the giant component. The diameter

2publicly available at http://srs.ebi.ac.uk/
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Figure 7.8: An approximation of the degree distribution of our semantic net-
work by a power-law distribution y(z) = az™" with o = 0.21 and
v =1.51.

(maximum shortest paths between any two vertices) of the giant connected
component is 9. Those data indicate that our network can be character-
ized as scale-free (power-law distribution of degrees) or small-world (small
diameter, high clustering coefficient).

7.7.3 Applying our Heuristics to the SRS Graph

We applied our heuristics to the SRS graph we obtained from the crawling
process. The results are as follows: we get a connectivity indicator c¢i of
25.4, indicating that the semantic network is clearly in a super-critical
phase and that a giant component interlinking most of the databases has
appeared. The size of this giant component as estimated by our heuristics
(see above) is of 0.47, meaning that 47% of the schemas are part of the
giant connected component. This is surprisingly close to the real value of
0.48 as observed in the graph.

7.7.4 Generating a Graph with a given Power-Law Degree
Distribution

Going slightly further, we want to analyze the dynamics of semantic
graphs with varying numbers of edges. Our aim is to generate graphs
with the same statistical properties as the SRS graphs, that is, graphs
following a power-law degree distribution:

P(k) = ak™ (7.13)

but with a varying number of edges. We take an existing [CCRMO02]
graph-building algorithm yielding a power-law degree distribution with a
given exponent 7. It goes as follows: (1) create a (large) number N of
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vertices, (2) to each vertex i, assign an importance x;, which is a real
number taken from a distribution p(z), and (3) for each pair of vertices,
draw a link with probability f(z;,;), which is function of the importance
of both vertices.

Now if f(x;,x;) = (wx;/23;) (where zp is the largest value of z in
the graph), we know [CCRMO02] that the degree distribution of the graph
is

o TR (7.14)
T N@"\NG) |
where () is the expected value of the importance x, such that P(k) follows

a power-law if p(x) does so.
We then choose a power-law distribution

-1
) = G i)

x 7 (7.15)

defined over the interval [m, Q]. However, we still have to find values for
m and @ such that the scale of the resulting degree distribution equals to
a. Using Equation 7.15, we find the expected importance value as

< > (’Y — 1)(m2Q’Y - m’YQQ)
x) = .
(Y = 2)(mQ" —m7Q)
Replacing p(x) in Equation 7.14, the degree distribution of the resulting
graph becomes

x2 ~v—1 22 7
P(k) = X4 Mk 7.16
B =g (") (710
such that, equating with Equation 7.13, we get
2 _ 2 N\ 7
o= M v -1 “M_ (7.17)
N{z) (m'=7 = Q7)) \ N(z)

We can then arbitrarily choose m > 0 and find (Q by numerical ap-
proximation, since the right-hand side of Equation 7.17 is defined and
continue for values of Q) > m.

Figures 7.9 and 7.10 show the results of our heuristics on networks
of respectively 388 (i.e., mimicking the original SRS graph) and 3880
edges (i.e., 10 times bigger than the original SRS graph but with the
same statistical properties) constructed in the way presented above with
a varying number of edges. The curves are averaged over 50 consecutive
runs. As for the original SRS network, we see that we can accurately
predict the size of the giant semantic component, even for very dense
graphs.

Figures 7.11 and 7.12 show the results of our heuristics on weighted
networks of respectively 388 and 3880 nodes, for a varying number of edges
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Figure 7.9: Estimation of the giant component size of a scale-free semantic
network of 388 nodes with a varying number of edges.
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Figure 7.11: Fraction of the graph a local query gets forwarded to, for a
weighted network of 388 nodes with a varying number of edges
and various forwarding thresholds 7.

and various values of 7. The curves are averaged over 50 consecutive runs,
and the weights of individual schema mappings are randomly generated
using a uniform distribution ranging from zero to one. We see that our
heuristics can quite adequately predict the relative size of the graph which
a given query gets forwarded to. Also, as for the unweighted analysis, we
observe similar behaviors for the two graphs; this is rather unsurprising
as we are dealing with scale-free networks whose properties are basically
independent of their size.

7.8 Use Case Scenarios

The methods described so far can readily be applied to study semantic in-
teroperability of large-scale semantic systems in a global manner. Besides,
we also believe in their high utility when used locally, e.g., by individual
peers in the system. Peers can determine the statistical properties (de-
gree distribution, clustering and bidirectional coefficients) of a semantic
network in several ways:

e In a structured P2P system, they can lookup the different values in
the common registry of the system (see for example the following
chapter). This of course requires the different peers to insert their
own local values in the repository beforehand.

e They can query a third-party tool (e.g., a semantic search engine)
that regularly crawls the semantic graph to gather its statistical
properties.
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Figure 7.12: Fraction of the graph a local query gets forwarded to, for a
weighted network of 3880 nodes with a varying number of edges
and various forwarding thresholds 7.

e They can approximate the statistical properties themselves, by gath-
ering information from queries routed randomly through the seman-
tic network.

In an unstructured P2P network, the approximation of the statistical
properties of the semantic connectivity graph can for example be made
locally, using ping queries flooding the neighborhood with a certain TTL
and analyzing pong answers containing the degree of each node respond-
ing. Figure 7.13 gives the approximated degree distribution of a graph
using flooding with a TTL of 5 for a directed random graph of 1000
vertices. As the degree distribution is a two-dimensional variable in a di-
rected, graph, we decided to focus on the out-degree distribution for ease
of presentation. If D(z,y) = > pjrriyF is the generating function for
the in-out degree distribution — with p;; the probability that a vertex has
in-degree 5 and out-degree k — then the out-degree distribution is simply

Dout(y) = ZD(lay) = ijkyk-
J Jk

The experiment was conducted for 50 consecutive randomly generated
graphs; for each graph, we randomly select initially a reference vertex we
name root vertex and always estimate the degree distribution from that
vertex as the graph grows. It might happen that the root vertex is not
initially part of the giant component of the graph; in that case, the size of
the giant connected component is naturally underestimated. Figure 7.13
compares the resulting evaluation of the degree distribution with the real
degree distribution as measured in the graphs. Notice that the more
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Figure 7.13: Estimation of the out-degree distribution with a flooding of TTL
5 for different number of edges in a directed graph of 1000 vertices.

edges, the better the estimation: with few edges, it is more likely that
the root vertex, taken as the origin for the flooding, is part of a small
isolated component or even not connected at all. Figure 7.14 gives results
pertaining to the estimation of the out-component size using a degree
distribution estimated with flooding and various semantic thresholds 7.

The precision of the estimation is related to the amount of degree
information gathered throughout the graph. Figure 7.15 shows the (Pear-
son’s product-moment) correlation coefficient between the measured and
estimated degree distributions of the graphs, averaged over 50 directed
graphs of 1000 vertices and 4000 edges. The estimations are based on
flooding with varying TTLs and on semantic random walkers, which rep-
resent queries routed randomly in the semantic network from a root vertex
with a given TTL and gathering the degree distributions along its path.
Floodings with large TTLs lead to the best results, but also impose a
higher network load (Z;‘[;‘qL outdegree’ messages for the flooding versus
#Hwalkers x TTL messages for the random walkers). For the setting of
Figure 7.15, flooding is more expensive than random walkers for TTLs
greater of equal to three (84 messages for flooding with a mean out-degree
of four versus 60 messages for the random walkers). Figure 7.16 shows
the relative error on the estimation of the out-component of the graphs,
using our methods and the estimated degree distributions with flooding
and random walkers.

Once gathered, the relevant data can be exploited in order to foster
semantic interoperability in the large: when joining a semantic network,
peers can determine wether the semantic network in question is seman-
tically interoperable. If it is not, they can trigger the (automated or
manual) creation of new mapping links until the semantic connectivity
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tions were performed on directed random graphs of 1000 vertices
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subgraph moves to a super-critical phase (¢i > 0). Such heuristics may
have to be used periodically in environments where schemas and map-
pings appear or disappear dynamically. Moreover, peers can evaluate the
potential impact of a query based on a given schema: once a network is
semantically interoperable, peers can predict the degree to which a query
will be forwarded through the Schema-to-Schema graph, thanks to the
component size analysis. Finally, note that our heuristics have been ap-
plied on schema mappings above, but could in a similar manner be applied
at a finer granularity on attribute mappings to determine to which extent
a given attributes A; is known — in some form or another — throughout
the network.

7.9 Conclusions

So far, there exists little research on semantic interoperability in the large.
Current approaches typically analyze a handful of schemas or ontologies
at a time only, and from a purely local perspective. Research on large-
scale systems (e.g., works on Web dynamics or social networks) cannot
be directly applied to our problem because of its specificities. We believe
that new frameworks have to be developed in order to rightfully model
the upcoming large-scale semantic systems. This chapter pointed to one
possible, and in our opinion promising, avenue by taking advantage of a
recent graph-theoretic framework to analyze and (potentially) iteratively
realize semantic interoperability in a large network of information-sharing
parties. We evaluated our approach on a real semantic network, with
results confirming the validity of our heuristics beyond our initial hopes.
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Also, we extended our analysis to apply our heuristics on larger networks
enjoying similar statistical properties and on weighted semantic networks.
It was for us quite important to test our heuristics using real-world data, as
semantic network analyses mostly consider artificial networks today, due
to the current lack of semantically enriched websites or deployed semantic
infrastructures.

Our techniques can readily be used in real networks to determine
whether or not the system is interoperable from a decentralized perspec-
tive. Also, they can be used to locally predict the degree of diffusion of
a query in the network given a semantic threshold. This first work opens
a whole range of extensions and improvements. In the future, we plan
to extend our analyses to take into account the dynamicity (churn) of
the network of schema mappings, and to consider more accurate query
forwarding schemes based on transitive closures of mapping operations.
Also, we plan to integrate some of the heuristics presented above in our
own semantic P2P system, GridVine, presented in the following chapter.
Finally, note that Jiang, Cybenko and Hendler [JCHO6] recently devel-
oped an interesting and related framework to analyze semantic interop-
erability in the large — called information fluidity in their context. Their
framework, however, is much more limited than ours as it only deals with
undirected, unweighed networks analyzed from a global perspective.
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Chapter 8

GridVine: Building
Internet-Scale Semantic
Overlay Networks

We present hereafter two systems designed following some of the principles
we have proposed in the preceding chapters. The first system, GridVine,
is a DHT-based Semantic Overlay Network fostering semantic interoper-
ability through Semantic Gossiping. The second system, called PicShark
and described in Chapter 9, builds on GridVine to offer picture sharing
functionalities in environments where picture annotations are scarce and
heterogeneous.

8.1 Introduction

In the preceding chapters, we focused on analyzing schemas and schema
mappings to foster semantic interoperability in large scale structured set-
tings. In this chapter, we come back to the vision of a three-layered Se-
mantic Overlay Network we originally depicted in Figure 3.4. We present
a system called GridVine [ACMHvP04] fostering semantic interoperabil-
ity at the semantic mediation layer while organizing peers in structured
manner thanks to a DHT at the overlay layer.

Structured overlay networks like Chord [SMK*01] or P-Grid [Abe01]
have been developed as new infrastructures to route requests for resources
that are distributed over large populations of peers using application-
specific keys in an efficient manner. Those networks can be employed in
order to efficiently respond to simple keyword-based queries. Structured
overlay networks clearly also have the potential to support the efficient
operation of a semantic overlay network. In the following, we introduce an
architecture and implementation leveraging on the potential for scalability
offered by structured overlay networks in the realization of interoperable,
large-scale semantic overlay networks. We propose a semantic P2P system

135
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where end-users can freely annotate the data items they want to share us-
ing semi-structured schemas, and search for data items using expressive
queries. A key aspect of the approach we take is to apply the principle of
data independence [Hel03] by separating a logical from a physical layer.
This principle is well-known from the database area and has largely con-
tributed to the success of modern database systems. At the logical layer,
we support various operations to maintain the semantic overlay network
and to support semantic interoperability, including attribute-based search,
schema management, schema inheritance and schema mapping. We also
provide support for specific schema reconciliation techniques, including
Semantic Gossiping, which we have introduced earlier in Chatper 4. We
provide those mechanisms within the standard syntactic framework of
RDF/OWL. At the physical layer, we provide efficient realizations of the
operations exploiting a structured overlay network, namely P-Grid. This
requires mappings of semantic data and operations to the physical layer.
Important aspects of this mapping are:

e The mapping of data and metadata to routable keys.

e The introduction of a specific namespace for resources present in
the peer space, such that the infrastructure can resolve resource
requests.

e The implementation of traversals of the semantic mediation layer
taking advantage of intermediate schema mappings. An interest-
ing aspect is the possibility to use different strategies to implement
such traversals at the structured overlay network layer, in ways that
are substantially different from naive solutions. We analyze two
types of processing strategies, iterative and recursive. As in stan-
dard database query processing, the data independence principle
thus opens up the possibility of optimization using different query
processing strategies.

The rest of this chapter is structured as follows: we start with an
overview of our approach in Section 8.2. Our architecture and imple-
mentation use P-Grid as a physical layer, which is briefly described in
Section 8.3. Section 8.4 presents the mechanisms used to index meta-
data or schemas and to resolve queries. Section 8.6 describes semantic
interoperability while Section 8.7 is dedicated the implementation of our
approach. Finally, we discuss related work in Section 8.8 and conclude.

8.2 Overview of our Approach

8.2.1 Data Independence

Following the principle of data independence introduced above, our ap-
proach revolves around a two-layer model: a physical layer based on the
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Figure 8.1: The principle of data independence: the GridVine Semantic Over-
lay Network is built on top of the P-Grid P2P access structure.

P-Grid access structure underpinning GridVine, and a logical semantic
overlay layer (see Figure 8.1). P-Grid (Section 8.3) is an efficient, self-
organizing and fully decentralized access structure based on a Distributed
Hash Table (DHT). GridVine uses two of P-Grid’s basic functionalities:
the Insert(key,value) primitive for storing data items based on a key
identifier and the Retrieve(key) primitive for retrieving data items given
their key. o

Taking advantage of those two rather limited primitives, we build a
full-fledged semantic overlay network on top of P-Grid. The system ex-
poses a new set of primitives (depicted on top of Figure 8.1) allowing
end-users to insert metadata, schemas and schema mappings as well as
retrieve semantic information using expressive query languages. Capi-
talizing on recent developments, we chose the RDF / RDFS pair as lan-
guages to encode metadata and vocabulary definitions in GridVine. Those
two languages represent the fundamental building blocks of the emerging
Semantic Web (see Figure 2.4) and are predestined to become de facto
standards for encoding metadata as well as their corresponding schematic
information.

The exact mechanisms we choose for inserting metadata into the P-
Grid are naturally of utmost importance, since they directly influence the
query resolution capabilities of the overall system, and are extensively dis-
cussed in the following (Section 8.4). In order to support the processing of
schema-specific information, we introduce a meta-schema specifying com-
mon characteristics for all custom schemas derived by the users. Also,
we introduce new addressing spaces, i.e., URI schemes, to identify re-
sources both in the physical (P-Grid data items) and logical (semantic
information) layers.
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8.2.2 Decentralized Semantics

Classification of resources and definition of vocabularies are essential
for leveraging metadata creation and fostering semantic interoperability
through reuse of conceptualizations. Legacy information sharing
systems typically support static sets of centrally imposed, predefined
schemas. We consider such a monolithic approach as far too rigid for
adequately capturing information sources in a network of autonomous
and heterogeneous parties. Not only is this not desirable from an
ideological perspective, it also misses out on the power of P2P. Seeing
users as experts in the information they share, they themselves are most
competent in coming up with a proper schema to describe their data.
However desirable it may be to let users come up with their own schemas
in a bottom-up manner, it also severely endangers global semantic
interoperability and search capabilities: how could one ensure optimal
precision and recall when searching for data items that might be referred
to by a large variety of terms? In the context of GridVine, our answer to
this question if twofold, including both schema inheritance and Semantic
Gossiping mechanisms.

Schema inheritance provides GridVine with basic schema reusability
and interoperability capabilities. As for other social networks [AB02], we
expect the popularity of schemas in GridVine to follow scale-free prefer-
ential attachment laws, such that a small subset of schemas gain unparal-
leled popularity while the others remain mainly confidential. By allowing
users to derive new schemas from well-known base schemas, we implicitly
foster interoperability by reusing sets of conceptualizations belonging to
the base schemas.

Semantic Gossiping (see Chapter 4) is a semantic reconciliation
method that can be applied to foster semantic interoperability in
decentralized settings. The method aims at establishing global forms
of agreement starting from a graph of purely local mappings among
schemas. Following this approach, we allow peers in GridVine to create,
and possibly index, schema mappings linking schemas one to another.
Those mappings can be used to propagate queries in such a way that
relevant data items annotated according to different schemas can also
be retrieved. Query forwarding can be implemented using several
approaches. In the following, we identify two radically different strategies
for forwarding queries: iterative forwarding, where peers process series
of mapping links repeatedly, and recursive forwarding, where peers
delegate the forwarding to other peers. Schema inheritance and Semantic
Gossiping are further described in Section 8.6.
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8.3 The P-Grid P2P system

GridVine takes advantage of the P-Grid P2P access structure at the phys-
ical layer. P-Grid is based on a DHT [PRR97]|. As any DHT approach,
P-Grid associates peers with data keys from a key space, i.e., partitions
of the underlying distributed data structure. Each peer is responsible
for some part of the overall key space and maintains additional (routing)
information to forward queries and requests. Without constraining its
general applicability, we use binary keys in the following. P-Grid peers
refer to a common underlying tree structure in order to organize their
routing tables. In the following, we assume that the tree is binary. This
is not a fundamental limitation as a generalization of P-Grid to k-ary
structures has been introduced [AP03], but will simplify the following
presentation.

Each peer p € P is associated with a leaf of the binary tree. Each leaf
corresponds to a binary string 7w € II. Thus, each peer p is associated with
a path m(p). For search, the peer stores for each prefix 7(p,!) of 7(p) of
length [ a set of references p(p, ) to peers ¢ with property m(p,l) = w(q,1),
where 7 is the binary string m with the last bit inverted. This means that
for each level of the tree, the peer has references to some other peers
that do not pertain to the peer’s subtree at that level, which enables the
implementation of prefix routing for efficient search. The cost for storing
the references (in routing tables) and the associated maintenance cost are
scalable as they are proportional to the depth of the underlying binary
tree.

Each peer stores a set of data items d(p). For d € d(p) the binary
key key(d) is generated using an order-preserving hash function Hash().
key(d) has m(p) as prefix but we do not exclude that temporarily also
other data items are stored at a peer, that is, the set 6(p, m(p)) of data
items whose key matches 7(p) can be a proper subset of d(p). In addition,
peers also maintain references o(p) to peers having the same path, i.e.,
their replicas.

P-Grid supports two basic operations: Retrieve(key) for searching a
certain key and retrieving the associated data item ancmwert(@, value)
for storing new data items. Since P-Grid uses a binary tree, Retrieve(key)
intuitively is efficient, i.e., O(log(|II|)), measured in terms of messages re-
quired for resolving a search request, in a balanced tree. For skewed
data distributions, it has been shown [Abe02] that due to the probabilis-
tic nature of the P-Grid approach, the expected search cost measured
by the number of messages required to perform the search remains log-
arithmic, independently of how the P-Grid is structured. This is impor-
tant as it allows us to apply simple order-preserving hashing functions
to metadata annotations, which may lead to non-uniformly distributed
key distributions in practice. As P-Grid uses an order-preserving hash
function to compute keys and define their association with peers, it pro-
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cesses prefix and range queries of arbitrary granularity efficiently, i.e., in
O(log(|TT]) + {p | k C 7(p)}| messages, where x denotes the common pre-
fix of the borders of the range query [DHST05]. Prefix queries will be an
important constituent in the generic implementation of metadata queries.
Insert(key,value) is based on P-Grid’s more general update functional-
ity [DHAi()Z%] which provides probabilistic guarantees for consistency and
is efficient even in highly unreliable, replicated environments.

8.4 Semantic Support

In the following, we elaborate on how GridVine handles the creation and
management of RDF triples (Section 8.4.1) and schemas (Section 8.4.2).
We then discuss query resolution mechanismss in Section 8.5.

8.4.1 Metadata Storage

In GridVine, end-users and generated annotations are stored as RDF
triples and refer to the data items shared in the P-Grid infrastructure.
RDF stores meta-data statements as triples t € 7; they always take the
form of

ti = {tsubjectv tpredicatea tobject}

where tsypject(the subject) is the resource about which the statement is
made, tpredicate (the predicate) represents a specific property in the state-
ment and topject (the object) is the value (resource or literal) of the pred-
icate in the statement.

In the present case, we make statements about files shared in the
underlying P-Grid infrastructure. A structured overlay network allows
to implement an application specific addressing space. In our case, we
introduce the specific URI schemes pgrid : for resources, and pgrids :, for
schema-elements. This does not exclude the use of other URI schemes in
conjunction with P-Grid’s specific ones.

In the case were all resources are identified by P-Grid URIs, a typical
situation would be a statement where the subject is identified by a P-Grid
key, i.e., a binary string such as 711110101, whereas the predicate and ob-
ject refer to P-Grid’s specific RDF schemas (or literals). This allows us
to constrain the applicability of the schema constructs. An example of
such a statement could be the P-Grid resource 11110101 (subject) is enti-
tled (predicate) Rain, Steam and Speed (object), which, encoded using the
XML serialization of RDF, would result in a file like the one transcribed
in Figure 8.2.

We now exploit the underlying P-Grid infrastructure in order to en-
able sharing of data items in a large-scale distributed environment. The
granularity of triple storage as well as the exact mechanism we use for
inserting meta-data into the P-Grid are naturally of utmost importance
since they both directly influence the query processing capabilities of the
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<?xml version="1.0"7>
<rdf:RDF xmlns:rdf="http://wuw.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf :Description rdf:about="pgrid://11110101">
<Title xmlns="pgrids://01001101:Image#">Rain, Steam and Speed</Title>
</rdf :Description>
</rdf :RDF>

Figure 8.2: A statement encoded using the XML serialization of RDF.

overall system. Since we want to support search capabilities of individ-
ual statements, we index each triple separately. Since most RDF query
languages [PG04b] are based on constraint searches on the triples’ sub-
ject, predicate or object, we have to reference each individual triple three
times, generating separate keys based on their subject, predicate and ob-
ject values. Thus, the insertion operation of a triple ¢ is performed as
follows:

Insert(t) = Insert(tsubject,t), Insert(Hash(tpredicate),t), Insert(Hash(topject)st)-

Each peer p maintains a local database DB, to store the triples
it is responsible for.  Since all RDF and RDFS statements can
be written as ternary relations, the physical schemas of the lo-
cal databases can all be identical and consist of three attributes
Spp = (subject, predicate, object). The local databases support three
standard relational algebra operators: projection 7, selection o and (self)
join <.

In that way, each triple triggers three Insert() operations in Grid-
Vine. Prefix searches, e.g., on the beginning of a string representing an
object value, are inherently supported by P-Grid’s routing mechanisms.
Supporting substring searches — for example on the literal objects of the
triples — imposes to index all the suffixes of a generated key as well. Thus,
if we introduce [ as the average length of the strings representing subjects,
objects or predicates, 3l Insert() operations are required to support sub-
string searches on the triples.

8.4.2 Schema Definition And Storage

Classification of resources and definition of vocabularies are essential for
leveraging meta-data creation and fostering semantic interoperability
through reuse of conceptualizations. Modern information sharing systems
usually support static sets of predefined schemas (e.g., taxonomies based
on ID3! or EXIF?). We consider such monolithic approaches as far
too rigid for adequately capturing contemporary information sources.

Yhttp:/ /www.id3.org/
*http://www.exif.org/
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i ( P-Grid Data ltem

rdfs:subClassOf rdfs:subPropertyOf

P-Grid Data Iltem
Property

rdfs:domain

Figure 8.3: A user-defined schema, a second user-defined schema deriving from
the first user-defined schema and their respective relation to the P-
Grid meta schema.

Instead, we detail below an approach supporting on-the-fly schema
creation, redefinition and extension by the end-user.

Schema information in GridVine is encoded using the most elementary
schematic layer from the Semantic Web, i.e., RDF Schema (RDFS). Note
that this does not preclude the use of more advanced ontological layers like
OWL. RDFS is an extension of RDF providing mechanisms for describing
groups of resources and their relationships. Among other capabilities, it
allows to define classes of resources (classes) and predicates (properties)
and to specify constraints on the subject (domain) or the object (range)
of a given class of predicates.

GridVine schemas allow to declare new categories to describe
application-specific resources. A meta-schema defines the base class
and property from which all user-defined schemas are then derived.
User-defined categories are all defined by a class subclassing a generic
RDF super-class called P-Grid Data Item representing any P-Grid
addressable resource. Properties referring to that class as domain allow
to declare application-specific vocabularies (i.e., metadata attributes)
with arbitrary values as ranges. In GridVine, all properties derive from
the P-Grid Data Item Property super-property. A category class and its
related properties are linked by the domain definition of the property.
Multi-level inheritance is supported and follows the standard semantics
of RDFS: instances of a subclass can act as subject whenever the domain
of the property references the parent class.

We create distinct RDF'S files for every category, regrouping the def-
initions of a subclass as well as all its affiliated properties. We create a
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unique identifier for the category by concatenating the path 7(p) of the
peer creating a category to the category itself. We then insert it into
P-Grid as any other file:

Insert(RDF_Schema) = Insert(n(p) : Hash(Class_Name), RDF _Schema).

We give an example of a category definition in Figure 8.4. Note that since
we can support substring searches, schemas can also be searched using the
name of their representative class.

-

<?xml version="1.0" encoding="IS0-8859-1" 7>

<rdf :RDF
xmlns:rdf="http://www.w3.0org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#">
<rdfs:Class rdf:ID="Image" rdfs:comment="Image category">

<rdfs:subClass0f rdf:resource=
"http://wuw.p-grid.org/p-grid.rdfs#PGridDataltem"/>

</rdfs:Class>

<rdf :Property rdf:ID="Title">
<rdfs:domain rdf:resource="#Image"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:subProperty0f rdf:resource=
"http://wuw.p-grid.org/p-grid.rdfs#PGridDataltemProperty">
</rdf :Property>

<rdf :Property rdf:ID="Width">
<rdfs:domain rdf:resource="#Image"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>
<rdfs:subProperty0f rdf:resource=
"http://www.p-grid.org/p-grid.rdfs#PGridDataltemProperty">
</rdf :Property>
</rdf :RDF>

Figure 8.4: A user-defined category defined as an RDF Schema class with a se-
ries of RDF Schema properties representing the category attributes.

8.5 Resolving Queries in GridVine

We detail below how structured queries can be resolved taking advan-
tage of both the metadata and the schematic information that have been
indexed. We start by presenting how simple triple pattern queries are
handled before providing a mapping to resolve more complex conjunctive
queries.

8.5.1 Resolving Atomic Queries

A triple pattern [Sea04] is an expression of the form (s, p, o) where s
and p are URIs or variables, and o is a URI, a literal or a variable. In
GridVine, a native query is a conjunctive triple pattern query taking the
following form:
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17, ., xm? 0 (S1, p1, 01) A A (Sny Py On)

where 217, ..., z,,7 are distinguished variables appearing in the triple pat-
terns (s;, pi, 0;). Note that joins can be expressed by multiple occurrences
of the same variable in that notation. A triple pattern query retrieves
(parts of) RDF triples based on the value of their subject, predicate or
object.

Let us define T'gy C 7 the set of all triples indexed in the system,
and D the set of all URIs and RDF literals. A valuation v over a set of
variables v is a total function from v to D. We extend the valuations
to map triple patterns (s, p, o) to triples t € Ty, and conjunction of
triple patterns to conjunction of triples. The answer to a triple pattern
consists of all m-tuples v(z17?),...,v(x,,7) where v is a valuation over the
conjunction of triple patterns in the query. For instance, the following
triple pattern query

xo? ¢ (x1?, pgrids : //01001101 : Image#Title, x27)

retrieves the T'itle of all the instances of the pgrids : //01001101 : Image
class. We call such a query an atomic query since it only contains one
triple pattern.

In GridVine, atomic queries can be resolved by look-ups using a
slightly modified version of the Retrieve(key) primitive of P-Grid. A
peer issuing an atomic query ¢ first has to determine the address space
key where it can find the answers. Once discovered, it simply forwards
the query to the peer(s) responsible for that space using Retrieve(key, q).
The resolution is dependent on the number of unbound variables in the

query:

Three unbound variables atomic queries retrieve all triples t € T' gy,
implying O(|II|log(|I1])) messages and are not allowed in GridVine.

Two unbound variables atomic queries contain only one constant
term cg. We define pos(term) as the position of a term (variable
or constant) in a triple pattern, i.e., pos(term) either takes
subject, predicate or object as value. As all triples are indexed
on their subject, predicate and object in GridVine, these queries
can be resolved by sending the query to the corresponding address
space: Retrieve(co,q) if pos(cy) = subject, Retrieve(Hash(co),q)
otherwise. The query resolution boils down to a standard P-Grid
look-up generating O(log(|I1])) messages. Once arrived at its final
destination(s) pgest, the query is resolved with a local relational
query on the local database D B geg::

Results = Tpos(distinguished-variables) 9 pos(co)=co (DBdest>-
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One unbound variable atomic queries can be resolved in a similar
manner. Since they contain two constant terms c¢; and ca, the peer
issuing the query has the choice of resolving the query by retrieving
values based on either ¢; or ¢z (or even both). The most selective
predicate should always be preferred. The corresponding local
query used to retrieve the results is:

Results = Tpos(distinguished_variables) Opos(c1)=c1Apos(c2)=ca (DBdest)-

Zero unbound variable triple patterns are constant terms and require
no further resolution.

Once retrieved by the destination peer, the results are sent back to the
original issuer of the query.

8.5.2 Resolving Conjunctive Queries

Conjunctive queries are resolved in a similar manner, by iteratively resolv-
ing each triple pattern contained in the query. Algorithm 8.1 gives the
complete algorithm for conjunctive query resolution in GridVine. The
peer issuing the query starts by resolving the first triple pattern. As
the successive triple patterns are resolved, a set of intermediary results
resultSet, containing the valuations of the variables in the query, is main-
tained. New results are combined with the set of intermediary results
using a join operation on the existing valuations of the variables. Note
that the algorithm proposed here can be optimized in several ways: by
joining the result sets locally at the destination peers, by parallelizing the
algorithm using multiple peers to answer parts of the query simultane-
ously [LIKO06], or by selecting the most effective order of processing for
the triple patterns.

8.6 Semantic Interoperability

As previously mentioned, supporting the extensions of existing schemas
and the introduction of new schemas by end-users is essential to maximize
the utility of information sharing systems. Introducing new vocabulary
terms poses however a severe threat to the interoperability of the overall
system. We detail below the mechanisms we take advantage of in order
to foster semantic interoperability in GridVine.

8.6.1 Schema Inheritance

We let users derive new categories from the existing ones. However, we
impose that the new class representing the subcategory subclasses the
base category class. RDFS enforces monotonic inheritance of properties
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Algorithm 8.1 Conjunctive Query Resolution

/*create a empty set of answers initially™*/

resultSet = null;

/*resolve each triple pattern iteratively™/

for all triple-pattern t in query q do
constants = getConstantTerms(t);
key = getMostSelectiveConstant(constants);
valuations = Retrieve(key, t);

if answerSet == null then
answerSet = valuations;
else

/*only keep the valuations compatible with the other valuations re-
trieved so far*/
answerSet = answerSet b valuations;
end if
end for
answerSet = Tpos(distinguished_variables) (answerSet);

through category hierarchies; in our case, the subcategory automatically
inherits the properties defined in the base category through the domain
definitions. Additionally, subcategories may introduce sets of new prop-
erties specific to the subclass. The process can of course be applied re-
cursively in the sense that a subcategory may in turn serve as a super-
category for a new derivation, creating complex hierarchies of categories
and classes from the most popular base schemas.

Figure 8.3 provided an example where a category for annotating JPEG
files is derived from a more generic category of image files. All searches
on a property of the base class I'mage (such as (z17, ImageTitle, x27))
propagate naturally to all subclasses (e.g., JPEG) through the monotonic
inheritance of the base properties. Thus, we create sets of semantically
interoperable schemas through properties inherited by all descendants of
a (potentially very popular) base schema.

Additionally, when inserting an instance of a derived class, we mate-
rialize the subsumption hierarchies in the system by inserting type asser-
tions on the superclass: inserting (x, rdf : type, z), triggers the insertion
of (z, rdf : type, 2') V2’ | 2/ 3 z. Thus, all the searches on instances of
a base class (e.g., (x1?, rdf : type, Image)) retrieves all instances of the
subclasses as well (e.g., instances of the JPEG class).

8.6.2 Semantic Gossiping

In Chapter 4, we introduced Semantic Gossiping to foster semantic inter-
operability in decentralized settings. Semantic gossiping aims at estab-
lishing global forms of agreement starting from a graph of purely local
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-
<?xml version="1.0"7> <7xml version="1.0" encoding="IS0-8859-1" 7>

<rdf:RDF xmlns:owl ="http://www.w3.org/2002/07/owl#"
xmlns:rdf ="http://wuw.w3.org/1999/02/22-rdf-syntax-ns#">

<Image_Description xmlns="pgrids://10000101:exif#">
<owl:equivalentProperty rdf:ID="mappingl"
rdf :resource="pgrids://01001101 : bmp#Title"/>
</Image_Description>
<#mappingl>
<pgrids://owl#CycleAnalysis "1.0"/>
</#mappingil>

<Exif_Image_Width xmlns="pgrids://10000101:exif#">
<owl:equivalentProperty rdf:ID="mapping2"
rdf :resource="pgrids://01001101 : bmp#Width" />
</Exif_Image_Width>
<#mapping2>
<pgrids://owl#ResultAnalysis "0.9"/>
</#mapping2>

</rdf :RDF>

Figure 8.5: An example of schema mapping in GridVine, where the two at-
tribute mappings are reified in order to introduce semantic similar-
ity values.

schema mappings. Peers that have annotated their data according to the
same schema are said to belong to the same semantic neighborhood. Each
peer has the possibility to create (either manually or automatically) a
mapping between two schemas, in effect creating a link between two se-
mantic neighborhoods. The network as such can be seen as a directed
graph of translations.

Following this approach, we allow peers in GridVine to create schema
mappings mapping one schema onto another. A mapping pg, .5, can be
used to propagate a query from a source semantic domain S; to a tar-
get semantic domain Sy (see Section 4.6). Since RDFS does not support
schema mapping, we encode schema mappings using OWL [Mv04]. Our
mappings consist of series of owl:equivalentProperty statements, which
characterize the correspondences between the two categories at the prop-
erty level. Figure 8.5 gives an example of schema mapping in GridVine.
Individual property equivalence statements are reified (i.e., equivalence
statements are treated as resources) in order to account for partially-
overlapping properties and subsumption mappings: peers can thus refer
to the various equivalence statements and qualify the attribute mappings
with semantic similarity values as introduced in Chapter 4. Both cycle
and result analyses are implemented in GridVine. Result analysis is han-
dled directly by the end-user, who can tag each result received to express
whether or not the result was relevant.

Schema mappings are inserted at the address space corresponding of the
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Mapping Link

<rdf:Description rdf:about="pgrids://00100110.NewY earPic.rdfs#Location">
< quivalentProperty rdf:ID="map!"
"perids://11011001. EoYearJPEG.rdfs#Place” />

Query

SELECT ?picture

WHERE (?picture <rdfitype> <NewYearPic:NewYearPicClass>) @
(?picture <NewYearPic:Location> ?loc)

AND ?loc =~ /Laus

<rdfs:Class rdf:ID="NewYearPicClass">
bClassOf rdf:resource=""http://www.p-grid.org/p-grid.rdfs#Photo” @

fon">

f:Description rdf:about="#map1" />
<pgrids://owl/CycleAnalysis> 0.7 </pgrids://owl/CycleAnalysis>
</rdf: [)qulpuun

ne

in nl) resource="#NewY earPicClass"/>

s rdf:resource="http:/www.w3.0rg/2001/XMLSchema#string"/> '
</rdf:Property> — r J

NewYearPic category
DSC000045.JPG @ K

DSC000045.JPG Annotations

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02, errdl'—.\ynmx—m/l”“
rJPEG="pgrids://00100110.E0Y earCelebration.rdfs#"

rdf:about="pgrid://00000101/DSC00045.JPG">
n Lausanne</EoY earJPEG:Place>

Figure 8.6: A simple example of Semantic Gossiping in GridVine.

source schema S; (or both schemas if the mapping is bidirectional):

Insert(Schema_-Mapping) = Insert(n(p) : Hash(Source_Class_-Name), Schema_Mapping).

Thus, we can reformulate queries iteratively by looking-up all schemas
mapped to the current schema of the query. Forwarding a query is then
logically handled using gossiping as described in Section 4.6: starting
from a given semantic domain, the query gets reformulated and itera-
tively traverses other semantic domains following mapping links until it
is considered as being too different (either from a syntactic or a semantic
point of view) from the original query. A new query is issued after each
reformulation. Figure 8.6 shows a simplified example of Semantic Gossip-
ing in GridVine. In the following section, we show that different physical
implementations of Semantic Gossiping can be realized using the P-Grid
overlay network.

8.7 Implementation

8.7.1 Architectural Overview

GridVine was implemented by extending our existing Java-based P-Grid
library?. Figure 8.7 shows the architecture of the implementation as a
UML class diagram.

The left hand-side shows the P-Grid library with the Gridella GUI,
while the right hand-side shows GridVine’s semantic extensions. The ar-

Savailable at hittp://www.p-grid.org/
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Figure 8.7: The GridVine component model

rows in the figure denote uses relationships. The Gridella component
provides a GUI and uses the P-Grid component to issue queries; the
Semantics component uses the P-Grid component to issue and receive
queries and uses the RDF, RDFS, and OWL components to handle in-
coming requests. The RDF component is responsible for creating and
managing RDF metadata and provides the gossiping functionalities. The
Ezxtractors subcomponent facilitates automatic metadata extraction to
leverage the burden of manual annotation (e.g., automatic extraction of
EXIF information from images). Functionalities related to schemas are
provided by the RDFS component, while the OWL component handles all
issues regarding schema mappings. The P-Grid, Semantics, RDF, RDFS,
and OWL components are implemented as Singletons, i.e., only a single
instance of each of these classes exists at runtime and handles all the
requests.

8.7.2 Querying

Figure 8.8 shows the initiator’s side of a query in GridVine. The user
initiates a query via the Gridella GUI, which hands it over to the P-Grid
component to perform the actual search. The parameter type defines
the type of data to search for (GUID, File, RDF, RDFS, OWL), and is
implicitly assigned by the system as the user interacts with the front-end.
The query is then routed to other peers storing (some of) the results as
described in Section 8.5. If a peer receives a query, it checks whether it
can answer the query, i.e., wether it is responsible for the partition of the
key space corresponding to one of the patterns in the query, otherwise the
query gets forwarded as shown in Figure 8.8.

Once arrived at its destination, the query is processed locally by the
destination peer as shown in Figure 8.9. The peer checks the type of
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Figure 8.8: Initiating a query.

Network PGrid DataTypeH
andler
T T
newMessage(query) _L : Checks if this peer is
[t —— | responsible for this

/

/ newQuery(host, query)

|
|

|

query |

search(host, query) :
|

I

|

Anew query is

received. checkResponsibility(key)
: Looks for

type handler for
this query type

[responsible]
localSearch(query)

getTypeHandler(queryType)

Find local

matches for
the query

[handler found]
localSearch(query)

localSearch(query)

|
newLocalResult(result)

Figure 8.9: Handling an incoming query.
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Figure 8.10: Flow of the Gossiping mechanism.

the query (GUID, File, RDF, RDFS, OWL) and hands it over to the
corresponding datatype handler, which processes the query according to
its type. Datatype handlers are defined and registered within the P-
Grid library by the users of the library, i.e., the Gridella and Semantics
components.

8.7.3 Query Reformulation

The introduction of RDF type queries enables Semantic Gossiping, which
is explicitly activated by the issuer of a query through a special flag in
the query. The degree of propagation of a given query can be set by
the user, by defining similarity thresholds as explained in Section 4.6.
Figure 8.10 sketches how gossiping is implemented. In the figure, we just
show the flow relevant to the forwarding itself and omit the preceding flow
of control (incoming message — P-Grid — Datatype handler [Semantics])
for simplicity.

When reformulating queries through schema mappings, we support
two approaches: iterative and recursive. In iterative resolution, the peer
issuing the RDF query tries to find and process all the mapping links by
itself; it first issues a query to retrieve the mappings capable of transform-
ing the category used in the original query; upon finding a translation, it
reformulates the original query into a transformed query (Query’) and is-
sues a search for the reformulated query. Furthermore, the gossiping peer
issues a query for a translation of the reformulated query (Predicate’).



152 Chapter 8: GridVine

This continues until no more translation is available or the transformed
query is considered as being too different from the original query following
syntactic and semantic similarity measures.

In recursive resolution, the issuing peer tries to reformulate the query
by delegating it rather than doing it itself: first, it looks for mappings for
the predicates used in the query and reformulates the query upon finding
an appropriate translation. The transformed query is issued and results
for the query are returned to the issuer of the query. The receiver of the
transformed query follow the same procedure recursively. In case of a
conjunctive query, each receivers only reformulates the triple patterns it
is currently considering.

8.7.4 Experimental Evaluation

We briefly discuss below an initial performance evaluation of the two Se-
mantic Gossiping techniques GridVine implements. The tests were per-
formed using the current implementation on a Fast Ethernet network of
60 SUN Ultral0 stations (Solaris 8). We first created 15 different seman-
tic domains (i.e., 15 different categories Cy to Ci5) related to each other
through 15 mappings as depicted in Figure 8.11 a). We chose to organize
the mappings in a very regular way (i.e., a tree) in order to get a better
grasp on the results obtained; note however that our approach and imple-
mentation work equally well on arbitrarily complex mapping graphs (see
the preceding chapters).

We launched 15 peers, each on a separate computer and each locally
storing a annotated document related to a different category. By issuing
a query from the peer using Cj, we can retrieve results from all the 15
semantic domains by forwarding the query through the mapping hierarchy.
A second setting was created by replicating this first setting four times,
running 60 peers using the same category setting (i.e., we then had 4 peers
for each category).

The results, time elapsed versus quantity of results (up to 15/60 re-
sults) received by the peer issuing the query, for both settings and for
iterative and recursive forwarding are displayed in Figure 8.11 b). As
expected, iterative forwarding works in a fairly linear manner. Also, note
the initial delay incurred by letting one peer process and send all the
queries for iterative forwarding with 60 peers. Our recursive approach
proceeds in a succession of stages, as it delegates the whole process of
query forwarding to intermediary peers. This second approach proves to
be particularly scalable with the number of peers: results are rather inde-
pendent of the number of peers or results returned, since the number of
peers processing and forwarding the query increases with the network size.
Note that the evaluation performed above was based an initial version of
the P-Grid library; we are currently redeploying GridVine using a new,
more efficient version of the P-Grid access structure (see Section 8.9).
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Figure 8.11: Semantic gossiping evaluation on a semantic hierarchy (a) of 15
semantic categories (Cy,...,C14) and for 15/60 peers using (b)
iterative and recursive forwarding.

8.8 Related Work

Several systems [ACMO5] were recently developed to enrich P2P systems
with structured or semi-structured data. SWAP [EHS103] is an approach
combining P2P and Semantic Web techniques. It relies on an RDF(S)
model and on structure extraction for handling queries in a P2P setting.
Edutella [NaCQD™"02] employs a super-peer topology and facilitates the
clustering of data based on ontology, rule, or query. In PeerDB [OST03],
each peer holds a set of locally available metadata (Local Dictionary) and
a set of metadata that can be accessed by other nodes in the network (Ez-
port Dictionary). Metadata can be added through an SQL query facility.
The system if based on BestPeer [NOT03] which employs mobile agents to
satisfy queries. No global schema is imposed but the process is not fully
automated, as the user has to decide which mappings are actually mean-
ingful. The Piazza peer data management project [TTaAHT 03] takes an
approach to semantic heterogeneity that is similar to Semantic Gossiping.
Unlike our approach, Piazza does not provide any measures to judge the
(in)correctness of mappings. The indexing and query reformulations are
centralized in Piazza. OntoBuilder [GMJ04] is a centralized system focus-
ing on the automatic integration of semi-structured information extracted
from the Web. It enables fully-automatic ontology matching on ontolo-
gies extracted from Web forms, and query reformulation mechanisms to
propagate search from one form to the others.

All the above approaches address semantic interoperability but of-
fer limited scalability. Other approaches address scalability but do not
deal with semantic interoperability. For example, Peer-to-Peer Informa-
tion Exchange Retrieval (PIER) [HHL"03] is a database-style query en-
gine built on top of a DHT. Its main focus is to provide database query
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processing facilities to widely distributed environments. One of PIER’s
restrictions is that it imposes global, standard schemas following the ra-
tional that some schemas become de facto standards. RDFPeers [CF04b)]
builds on the Multi-Attribute Addressable Network (MAAN), which ex-
tends Chord, to efficiently answer multi-attribute and range queries on
RDF triples. RDFPeers is a scalable RDF store, but does not provide
any schematic support (e.g., to handle user-defined schemas or to address
semantic interoperability issues).

8.9 Conclusions

To the best of our knowledge, GridVine is the first semantic overlay
network based on an scalable, efficient and totally decentralized access
structure supporting the creation of local schemas while fostering global
semantic interoperability. Following the principle of data independence,
our approach separates the logical and physical aspects such that it can
be generalized to any physical infrastructure that provides functionalities
similar to our P-Grid P2P system. GridVine continues to evolve today:
we are currently working on an improved version of the application in
the context of the Social Semantic Desktop project?. The new version is
based on the latest P-Grid library supporting faster indexing, dynamic
load-balancing, identity management and more efficient query handling.

Ysee hittp://nepomuk.semanticdesktop.org



Chapter 9

PicShark: Sharing
Semi-Structured
Annotations in the Large

With the ubiquitous availability of communication devices, personal infor-
mation and media sharing is becoming a killer application on the pervasive
Web. In such a context, publishing and searching media content heavily
relies on the availability of meaningful metadata. Metadata scarcity and
heterogeneity are among the key obstacles preventing meaningful media
sharing in large communities. However, participating in a community also
opens new perspectives for addressing metadata scarcity and heterogene-
ity through sharing of metadata and semantic knowledge.

Taking advantage of that opportunity, we extend in this chapter some
of the result developed in the context of this thesis to tackle the lack of
metadata in large-scale collaborative systems. We develop a community-
based and self-organizing system call PicShark, in which information en-
tropy — in terms of missing metadata — is gradually alleviated through
decentralized instance and schema matching. Our information recon-
textualization process focuses on semi-structured metadata and confines
computationally expensive operations to the edge of the network, while
keeping distributed operations as simple as possible to ensure scalability.
PicShark builds on GridVine (see previous chapter) for distributed look-
up operations, but extends the application of self-organization principles
to the bootstrapping of schema mappings and the creation of annotations.
We demonstrate the practical applicability of our heuristics in an image
sharing scenario and provide experimental evidences illustrating the va-
lidity of our approach.

155
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9.1 Introduction

With the explosion of digital communications, the sheer size of infor-
mation individuals have to cope with is rapidly becoming overwhelming.
Metadata have long been recognized as an efficient way to help manage
resources and are today widely used by operating systems, personal infor-
mation managers or media libraries. The general idea is simple: adding
a set of keywords or series of attributes to resources in order to facilitate
information categorization and retrieval.

While the use of unstructured metadata drew considerable attention
in the recent years — e.g., through keyword annotation of images or HTML
pages — the focus recently shifted back to more structured metadata for-
mats. Unstructured metadata such as tags are ambiguous by nature
and lack precise semantics, making it very difficult to support structured
searches a la SQL. Structured representations such as relational tables
are much easier to process automatically, as they constrain the represen-
tation of data through complex data structures and schemas. However,
creating those schemas is typically a a complex task left to expert users
such as database administrators. As for the preceding chapters, we focus
here on novel formats that let end-users freely define and extend their own
schemas according to their needs (e.g., XML, RDF/S). We qualify those
formats as semi-structured formats since they tend to blur the separation
between the data and schemas and to impose looser constraints than the
relational model to the data.

Semi-structured formats are today gaining momentum; they are flex-
ible enough to allow easy definition and extension of schemas, while
structured enough to support automated processing and complex searches
(e.g., through languages such as XQuery [BCFT06] or SPARQL [PS06]).
More and more applications (see below) take advantage of semi-structured
metadata to organize pieces of information locally, and the picture anno-
tation domain is a relevant example of that trend. The problem we want
to tackle lies in the fact that those applications do not allow to meaning-
fully share the semi-structured metadata in order to enable global search
capabilities in large scale distributed settings. Exploiting semi-structured
metadata in distributed environments is intrinsically difficult, as the meta-
data have to be extracted from their original context and integrated, i.e.,
recontextualized, into the distributed infrastructure.

The two problems we tackle through our recontextualization process
are metadata scarcity, i.e., lack of annotations, and semantic heterogene-
ity, i.e., lack of interoperability. We show in the following that the resolu-
tion of each of those two problems influences the other, and thus propose a
bottom-up process to solve both of them by iteratively propagating infor-
mation. Following our approach, global semantics incrementally emerge
from the system as a consequence of multiple local interactions. As a
result, we show how we can gradually foster global searches on heteroge-



9.2. Collaboratively Sharing Semi-Structured Metadata 157

neous metadata in decentralized network, even when most of the metadata
are missing initially.

The rest of this chapter presents an approach and an architecture to
minimize metadata scarcity and semantic heterogeneity in very large scale,
collaborative media sharing environments. Our approach confines com-
putationally expensive operations to the edge of the network and keeps
distributed operations as simple as possible to ensure scalability. The
contributions of this chapter include:

e the formalization of the problem of sharing semi-structured meta-
data in distributed settings, in terms of lack of metadata (metadata
scarcity) and semantic heterogeneity

e the introduction of metadata entropy to capture uncertainty related
to semi-structured metadata

e a bottom-up, emergent semantics recontextualization process to en-
able global searches in distributed settings through the minimization
of both metadata scarcity and semantic heterogeneity

e a system architecture supporting the recontextualization process
through a Peer-to-Peer architecture

e an experimental evaluation of our recontextualization process on a
large sample set of 300 images.

We start with a general description of the problem in Section 9.2. We give
a formalization of the problem in Section 9.3. Our recontextualization
approach is presented in Section 9.4. We describe the architecture of
our prototype, called PicShark, and experimental findings in Section 9.5.
Finally, we give a survey of related work is in Section 9.6 before presenting
our conclusions.

9.2 Collaboratively Sharing Semi-Structured
Metadata

9.2.1 On the Difficulty of Sharing Semi-Structured Meta-
data

We focus on semi-structured metadata formats that take advantage of
simple schemas to define and organize the metadata. Such formats are
today sprouting from various contexts and encompass quite a variety of
data models; some of them, such as the Extensible Markup Language
(XML), rely on hierarchies of elements to organize metadata. Ontological
metadata tie metadata to formal descriptions where classes of resources
(and properties) are defined and interrelated. This class of metadata
standards is currently drawing a lot of attention with the advent of the
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Semantic Web and its associated languages (e.g., RDF /S, XMP! or OWL,
see Chapter 2). Type-based metadata are rooted in object-oriented tech-
nologies, where data (e.g., named attributes, relationships) are bound to
strongly-typed class instances. The next generation of the Windows File
System (WinFS) is a singular representative of this recent trend.

In the following, we adopt some of the terminology and syntax de-
fined in the context of the RDF/S family of languages. However, we do
not constraint the applicability of our approach to those languages and
always consider the broader class of semi-structured metadata formats
discussed above, which are used by many popular tools today (see also
Section 9.5 for concrete examples). We call resources the various dig-
ital assets that might be shared by the end-users, and semi-structured
metadata the statements providing semi-structured information on those
resources. Users organize themselves in communities of interest, which
define vocabulary terms used in the semi-structured metadata. We de-
fine a schema as the collection of vocabulary terms defined in a given
community of interest.

Our goal is to enable global searches on the resources based on semi-
structured metadata shared in large-scale, heterogeneous and decentral-
ized settings. Semi-structured metadata are intrinsically difficult to share,
since their values only make sense in a given community of interest — as
opposed to keyword metadata or textual tags, which supposedly convey
predefined, global semantics. Although semi-structured metadata formats
are getting increasingly used, no support is yet provided when it comes
to sharing the semi-structured metadata outside of their original commu-
nity of interest and users are often compelled to export semi-structured
metadata as simple unstructured keyword lists.

Some might advocate a straightforward solution to our problem: using
a common format, like RDF, for all metadata. Though necessary, we
argue that this syntactical alignment step only represents the tip of the
iceberg in our case. Even with a global, common format, fundamental
problems remain: users would still have a hard time sharing their local
metadata, which might be incomplete and totally unrelated to metadata
coming from other users.

In the end, two fundamental hurdles prevent semi-structured metadata
from being shared:

Metadata scarcity: Though more and more tools rely today on some
semi-automatic annotation schemes to add metadata to resources
(see Haystack [KBH™05] for an example), fully-automated solutions
remain impractical. Most of the time, human attention, which is
today considered as one of the scarcest resources, is still required
for producing high-quality, meaningful metadata. Realistically, a

"http://www.adobe.com /products/xmp/
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ns="http://web.resource.org/cc/"
ttp://purl.org/dc/elements/1.1/"
ttp://www.w3.0rg/1999/02/22-rdf-syntax-ns#">

Local
Vocabulary

<dc:description>A lovely classical work </dc:description>
<dc:creator>

<Agent>:r#MyBr0therf< Agent>

</dc:creator> 77777 Local
<dc:publisher>; ' </dc:publishet\ Resource
Incomplete
Metadata

Figure 9.1: The two fundamental hurdles preventing semi-structured metadata
from being shared in decentralized settings: metadata scarcity

caused by incomplete metadata, and semantic heterogeneity at-
tributable to local vocabulary terms and local resources.

(potentially large) fraction of the shared resources will not be anno-
tated by the user, leaving some (most) of the related semi-structured
metadata incomplete. This lack of metadata severely hampers any
system relying on the semi-structured metadata to retrieve the re-
sources.

Semantic heterogeneity: Some of the vocabulary terms introduced by
end-users to annotate content locally may not make sense on a larger
scale. New vocabulary terms — new tag categories or properties used
locally by some community — should somehow be related to equiv-
alent vocabulary terms coming from different communities to guar-
antee interoperability. This is a semantic heterogeneity issue requir-
ing a decentralized integration paradigm, as we have to deal with
large-scale, decentralized communities of users without any central
authority to enforce vocabulary terms globally (see also Chapter 2).
A similar issue arises when a user makes an explicit reference to
a local resource in the collaborative setting: the reference can be
totally irrelevant to most of the other users who are not aware of
the resource in question.

An RDF document exhibiting concrete examples of those two hurdles is
reproduced in Figure 9.1.
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9.2.2 Opportunities for Reducing Metadata Scarcity and
Semantic Heterogeneity Collaboratively

In the rest of this chapter, we tackle the two aforementioned problems
in a large scale resource-sharing context. We focus on methods to re-
contextualize the metadata, i.e., to minimize both metadata scarcity and
semantic heterogeneity for the semi-structured metadata attached to the
shared resources. Even if sharing semi-structured metadata is intrinsically
difficult, we argue that by simultaneously sharing both the resources and
their associated metadata in large scale communities, we open the door to
new opportunities for supporting global searches on the shared resources.

Assuming that we can relate shared resources semantically inside a
given community of interest, e.g., by a low-level analysis of their content
or by a semantic analysis of their metadata, metadata can be propagated
within the community of interest to reduce metadata scarcity. By taking
into account other resources shared in a community, we can thus augment
individual metadata by combining local metadata attached to a resource
with other metadata originating from similar resources. We call this pro-
cess metadata imputation in Figure 9.2. Data imputation is a field aiming
at replacing missing values in a data set by some plausible values (see
Farhangfar et al. [FKPO04] for a recent survey of the field).

By relating resources and metadata coming from different communi-
ties, we can further enhance the process by creating schema mappings
between semantically related communities of interest. As previously dis-
cussed in this thesis, those schema mappings associate vocabulary terms
of one community to related terms coming from another community. They
allow the reformulation of a query posed against a given schema into a se-
mantically similar query written in terms of another schema. T'We refer to
this process as query propagation in Figure 9.2, where straight arrows rep-
resent mappings between the schemas of two given communities. Schema
mappings can reduce semantic heterogeneity by enabling the propagation
of a local query across the whole network of communities by following
series of mapping links iteratively.

In this chapter, we additionally take advantage of schema mappings
to propagate existing metadata across semantically heterogeneous com-
munities, and thus to reduce metadata scarcity. Metadata imputation is
this time contingent on the availability of the schema mappings relating
the schemas of heterogeneous communities. We refer to this process as
metadata propagation in Figure 9.2.

In turn, the metadata that have been propagated through a schema
mapping can be exploited in order to infer new mappings or verify ex-
isting mappings and to increase the accuracy of metadata propagation.
This shows a clear correlation between metadata scarcity and semantic
heterogeneity, as minimizing metadata scarcity through metadata prop-
agation takes advantage of schema mappings used to minimize semantic
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Community of interest

(Oriental Culture) Metadata
Propagation

Metadata
Imputation

Metadata
Propagation Metadata
Imputation

Community of interest
(Japanese Temples

Metadata
Imputation

Figure 9.2: Recontextualizing metadata: metadata scarcity is minimized by
imputing metadata for similar resources inside a community of in-
terest, while semantic heterogeneity is gradually alleviated thanks
to pairwise schema mappings.

heterogeneity, and vice-versa.

In the following, we propose a recontextualization process that reduces
the overall scarcity and heterogeneity of the metadata in an autocatalytic
process, where both metadata and mappings get reinforced recursively
by putting local metadata into a global community-based context. Tak-
ing a global view on the system, we observe that the global semantics
are not fixed a priori, but evolve as users interact with the system and
guide the recontextualization process by sharing new resources, by adding
new metadata, or by providing positive or negative feedback based on the
results retrieved following their queries. The way the semantics of the
system dynamically evolve in a bottom-up manner following local interac-
tions is typical of an emergent semantics system (see also the introduction
of the thesis).

9.3 Formal Model

In this section we extend our formal model to capture both metadata
scarcity and semantic heterogeneity in an information theoretic frame-
work. The problem we want to tackle can be formally introduced as fol-
lows: a large set of autonomous information parties we name peers p € P
store resources (e.g., calendar entries, pictures, or video files) r € R,
locally. Peers take advantage of schemas S € S to describe their re-
sources with semi-structured metadata. Schemas S; can be shared by
several peers forming a community of interest, and consist of a finite set
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of vocabulary terms ¢ € 7. We mainly focus on vocabulary terms rep-
resenting properties, which invariably exist in one way or another in all
the semi-structured metadata formats we have encountered, but classes of
resources can be taken into account by our process as well. In the setting
we consider, we assume that the number of shared resources is typically
significantly higher than the number of peers, which is itself significantly
higher than the number of communities: |R| >> |[P| >> |S].

Peers store the semi-structured metadata attached to their resources in
local databases of triadic relations we call metadata statements (r,t,v).
A statement (r,¢,v) associates a value v to a local resource r through
a vocabulary term ¢. Values v appearing in the statements can either
represent literals [ € £ or local resources. Hence, statements can be seen
at the syntactical level as RDF triples with constraints on the values of
their subject (r), predicate (¢) and object (v). A statement evaluates to
true if it exists in one of the databases of the peers, to false otherwise.

Peers can pose queries locally in order to retrieve specific resources
based on vocabulary terms, literals and other local resources. As for the
preceding chapter, queries take the form of conjunctions of triple patterns:

r? s (ri,t,01), 0y (Thy tny Un)

where rp, t;, v are local resources, vocabulary terms, literals or variables
and 77 is a distinguished variable appearing in at least one of the triple pat-
tern (rg, tx, vg). Note that joins can be expressed by multiple occurrences
of the same variable in that notation. We say that a resource ro € R is
an answer to the query ¢, and write g |= ro, if, when substituted for the
distinguished variable, there exists a valuation of all other variables in the
conjunction of triple patterns such that the valuation evaluates to true.

Now, let us assume that some of the statements are incomplete and
that the peers have a means to export resources through some common
infrastructure (e.g., the World Wide Web or a Distributed Hash Table).
Our goal is to recontextualize the local statements in the common in-
frastructure to support global search capabilities: we create additional
statements in such a way that any peer posing a query g against its local
schema can retrieve a maximal number of relevant resources r | ¢ = r
from the global set of shared resources R while minimizing false positives
and user’s involvement under the following restrictions:

Metadata scarcity: Some values v appearing in the statements are re-
placed by null-values L inducing incomplete statements (rg, tx, Lx).
Null-values are equivalent to the values they replace but cannot be
distinguished by the peers.

Semantic Heterogeneity: Each local resource and vocabulary term is
assigned a set of fixed interpretations ! from an abstract and global
domain of interpretations A with »! C Al. Arbitrary peers are not
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aware of such assignments (i.e., they are not aware of the global se-
mantics of the system). We define two resources r; and r; as equiva-
lent, expressed by r; = r;, if and only if rZ-I = TJI- . We define that a re-
source r; subsumes another resource r;, expressed by r; C r;, if and
only if 7“][- C rl. Trueness of statements is relative to the equivalence
and subsumption relation, in the sense that if a statement (r,¢,v)
evaluates to true, then all statements (', ¢/, v") | ' Er,t' C¢,0' Cwo
also evaluate to true.

Taking advantage of those definitions, we can introduce the notions of
metadata completeness and soundness. We define that a set of IV state-
ments {(r,t1,v1),...,(r,ty,vN)} pertaining to a resource r is complete
when v; # 1L V v;. A set of statements is sound if all the statements
evaluate to true. We generally assume that our process starts with sets of
statements that are sound but incomplete. Our recontextualization pro-
cess then tries to complete the statements while minimizing the number
of unsound statements generated.

9.4 Recontextualizing Metadata

This section presents our general approach for generating additional meta-
data to recontextualize shared metadata in large scale settings. A specific
implementation of this approach is described in Section 9.5 in the context
of an image sharing scenario.

The heterogeneity, autonomy and large number of peers we consider
precludes the use of centralized techniques. Traditional integration tech-
niques (e.g., the mediator architecture introduced in Chapter 2) are im-
practical in our context as no global schema can be enforced in heteroge-
neous and decentralized communities. Traditional metadata management
techniques are not applicable either, due to the lack of shared informa-
tion (resources, vocabulary terms) and the sheer size of the problem which
precludes the use of algorithms scaling exponentially or even linearly with
the size of the data.

Instead, we propose local, probabilistic heuristics aiming at recontex-
tualizing metadata extracted from a specific source to a decentralized
collaborative context. Following a long tradition of providing scalable
application-level services on top of an existing physical network, we push
the “intelligence” of the approach towards the edge of the network, i.e.,
perform all complex operations locally at the peers, while only consider-
ing simple in-network operations on a shared hash-table. In the following,
we suppose that all resources and peers are identified by globally unique
identifiers. Our heuristics are based on decentralized data indexing, data
imputation and data integration techniques. We start by defining the no-
tion of entropic metadata that will be used throughout the rest of this
chapter to guide the process of metadata self-organization.
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9.4.1 Entropic Metadata

As we recontextualize statements in the shared infrastructure, we always
keep track of the incomplete metadata (metadata scarcity) attached to the
resources. We introduce the notion of metadata entropy to capture the
degree of uncertainty related to the incomplete statements. Keeping track
of this uncertainty is important to detect the resources requiring further
recontextualization (too many incomplete metadata), and to propagate
metadata in a meaningful way by associating uncertainty to the metadata
that are inferred automatically.

We extend our model to write statement as quadruples (r,t,v,p)
where v is a list of possible values v, € v for the statement and pg € p
stands for the probability of the statement (r,¢,vy) evaluating to true.
The entropy H(r,t,v,p) of a statement measures the degree of uncer-
tainty related to its set of possible values v, and evaluates to:

K
H(r,t,v,p) = = prlogx (pr)

k=1
where K is the number of possible values in v. The entropy of all complete
statements exported by the peers is zero, as they consider a single possible
value with a probability of 1 of evaluating to true (i.e., we consider that
all statements stored locally at the peers are correct; if some of these
statements are created semi-automatically, we can alternatively start with
a smaller value 0 < p < 1). Incomplete statements (r,¢, L) start with an
entropy of one initially, representing an unknown (and potentially infinite)
set of identically distributed values. Their entropy will decrease over the
course of our recontextualization process as plausible values get discovered
trough metadata imputation and propagation.

We define the entropy of a resource as the normalized sum of the

entropy of its IV associated metadata statements:

N
H(T) = Z H(T’, tn, vnapn)Nil-
n=1
A resource with half of its metadata left incomplete will thus start with
an entropy of 0.5.

9.4.2 Sharing Metadata through Data Indexing

Our recontextualization process starts with the indexing of the shared
metadata and resources. We index the location py of each resource rg
a peer wants to share in a shared hash-table. We then index all meta-
data statements (r,¢,v,1) pertaining to the resource that has just been
indexed. The indexing process continues recursively by indexing all re-
sources 1’ appearing as values v in the already indexed metadata, and
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Figure 9.3: Indexing resources and statements from an RDF /S graph; the inner
and outer boxes correspond to the a recursion depth limited to
respectively zero and one.

their respective statements (r',t',v',1). Figure 9.3 shows an example of
the indexing process on a simple RDF graph with a recursion depths lim-
ited to zero and one respectively. All statements are exported using a
common representation (e.g., XML serialization of RDF triples) and are
indexed in such a way that they can be retrieved based on their resource
r, term t or value v (as promulgated by the GridVine system — see the
preceding chapter). Higher recursion values lead to sharing more informa-
tion, which can then be used in the rest of the recontextualization process
to relate semantically similar resources. On the other hand, higher recur-
sion values also impose a higher network traffic and load on the shared
hash-table.

9.4.3 Dealing with Metadata Scarcity through Intra-
Community Metadata Imputation

We take advantage of data imputation techniques [FKPO04] to replace
missing values in incomplete statements with plausible values derived from
similar statements shared in a given community of interest. In our case, we
are confronted to values missing completely at random, i.e., metadata can
be missing irrespective of the resource they are attached to or their actual
value. We base our imputation process on a K-Nearest Neighbor search,
which has been shown as being very effective in many contexts [BM03|
and has two distinctive advantages in our context: i) it does not require
building a predictive model for each predicate for which a value is missing
and ii) it can be based on a simple index lookup in the shared hash-table.

We proceed as follows: when indexing a resource, we analyze it and
generate feature values representing its content and/or metadata state-
ments. Feature values can for example be based on a low-level analysis of
the resource (e.g., image analysis) or a lexicographical analysis of its meta-
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data (see next section for some concrete examples). Features should be
extracted in such a way that similar resources get closely related feature
values, which might or might not be verified in practice and which natu-
rally impacts on the effectiveness of our approach (see Section 9.5.2). Fea-
ture extractors might be different for different types of resources (e.g., pic-
tures, text files, etc.). We index each resource r based on its feature value
FV(r) in the shared hash-table to be able retrieve resources with similar
feature values. Also, we consider a distance D(r,r’) = |FV (r') — FV (r)]
based on those values.

For each instance r for which we have to insert at least one incomplete
statement (r,¢, L), we search for K similar resources r’ in the hash-table,
such that r and 7’ are annotated using the same schema, D(r,r’) is mini-
mal — and below a similarity threshold 7 — and H(r’) as low as possible.
That is, we search for resources coming from the same community of in-
terest that are most similar according to our feature value metric and
whose statements are as sound and complete as possible. Probabilistic
values v”/, p’’ are created for the incomplete statement by combining all
related statements (1} ,t, vy, p},) from the K candidates. Probabilities pf,
are computed by taking into account the distance D(r, 7)) between the
resource in question and the candidate resources whose values are be-
ing considered, and the respective probabilities pg; of the set of L values
v € vy, appearing in the statements of the candidate resources:

p// _ D(Tv r;c)il p?cl
i 25:1 D(r,r)~! Zlel Pl

By doing so, sound statements or statements coming from very similar
instances are preferred. We combine the probabilities p] and pf attached
to the same value vj = v} but coming from two different statements
(r],t,v}) and (1}, t,v5) by summing up the two probabilities p} and pj.
When less than K similar resources exist in the radius of the similarity
threshold 7, abstract resources with incomplete statements (r, ¢, L) with
D(r,r)) = 7 are considered. Figure 9.4 shows an example of the impu-
tation process for an incompletely annotated movie file r, combining the
statements of its two nearest neighbors r’ and r”. Note that a similar
imputation process could again take place later on, once the statements
have already been recontextualized but new resources have been indexed,
for example periodically every T period of time for resources with a high
entropy. In a dynamic context and for high values of K, one should addi-
tionally avoid storing too many unlikely values by eliminating all values
with low probabilities (p}; < Pmin)-
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Metadata Statements

for resource r'1:

r'1

‘ Title = "BenHur" (p = 1) ’
(BenHur.xvid)

for resource r‘2:

' i}
1y Title = "Cleopatra" (p = 0.7)
! Title = "BenHur"  (p =0.3)

for resource r:

Title = "BenHur"  (p = 0.66)
Title = "Cleopatra" (p = 0.20)
Title = 1 (p=0.14)

'
2
(Cleopatr.avi)

=

Figure 9.4: An example of data imputation: statements coming from two
nearby candidate resources ] and r} and an abstract instance r
are combined to complete the statements attached to resource r
whose Title was missing.

9.4.4 Dealing with Semantic Heterogeneity with Pairwise
Schema Mappings

We address semantic heterogeneity issues by creating pairwise mappings
linking semantically related vocabulary terms. We extend the application
of self-organization principles to the creation of the mappings based on
the information available in the shared hash-table. Those mappings can
be used to identify equivalent terms in the data propagation process (see
below Section 9.4.5), and to reformulate queries iteratively as in a peer
data management system — see Chapter 3.

A peer p indexes into the shared hash-table all locally known equiva-
lence relations (¢, =,t",1), with ¢/, t” € S, pertaining to the terms appear-
ing in its statements. We then try to discover cross-schemas relationships
in a decentralized fashion. Automatic schema matching is an active area
of research [Euz04b] and is not the focus of this work. For our purpose,
we use a simple instance-based schema matching approach by piggyback-
ing on the imputation process: we create a new mapping (¢, =,t", p=)
whenever two statements (r',t',v",p’) and (r”,t",v",p") on two similar
resources ' and r” with D(r',r") < 7 with equivalent values v' = v” are
discovered. The probability p= that this relation holds is derived by re-
trieving analogous statements (r;, ¢, v, p;) (7%, t”, vk, p) from the shared
hash-table:

ij V(Tj,t/, Uj7pj)7 (rk‘at”v Uk,pk)|D(Tj,Tk) <TA Vj = Uk

b= =
ijV(Tj, tla vj7pj)7 (rka tﬁa vk7pk)’D(Tj7 Tk) <T
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The probability is thus computed by counting the number of equivalent
values appearing in instances considered as being similar for the two terms.
Incomplete assertions (i.e., assertions with v = 1) are not considered in
these computations. Unsound assertions (i.e., assertions with p < 1) can
be taken into account in this process by weighting their importance with
their likeliness (i.e., less likely values v; with probabilities p; close to zero
will have less impact than more probable values). Note that subsumption
mappings can be exported and discovered in an identical manner by taking
into account subsumption relations C in place of the equivalence relations
above.

9.4.5 Dealing with Metadata Scarcity through Inter-
Community Metadata Propagation

Schema mappings can be used to propagate metadata across different
communities of interest. The process is similar to the imputation pro-
cess confined to a single community of interest (see Section 9.4.3), but
takes into account schema mappings (t,=,t,p=) to impute values based
on equivalent vocabulary terms ¢ and t'. Probabilities attached to val-
ues retrieved through a schema mapping are always multiplied by the
probability attached to that mapping p= to account for the fact that
the mapping is in itself uncertain. Note that a value can be propagated
iteratively across series of communities of interest in that manner, and
that propagated values can in turn bootstrap the creation of new schema
mappings.

9.4.6 Possible Answers and User Feedback

User queries r? : (71,t1,v1),- -, (n, tn, vn) can be resolved by iterative
lookup on the shared hash-table (see the preceding chapter): for each
triple pattern in the query, candidate triples are retrieved by looking-
up one of the constant terms of the triple pattern in the shared hash-
table. Answers to the query are then obtained by combining the can-
didate triples. In addition to the certain answers obtained in that way,
possible [DS04] answers are generated by reformulating queries following
(probabilistic) schema mappings to query distant communities of interest:

7 (rL 1), (Tt vn)
| (3S; |t th €SHA =t1,... .6, =ty

n

and by taking into account the probabilities attached to the values of the
entropic statements generated by the metadata imputation and propaga-
tion processes. The resulting answers can be ranked with respect to their
likelihood to present the most likely results first to the user. Additionally,
resources with a high entropy (i.e., resources with many incomplete or
unsound statements) can be at this stage proposed to the user in order to
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Figure 9.5: The PicShark architecture: PicShark uses P-Grid to store shared
resources and GridVine to share semi-structured metadata.

take advantage of his feedback to classify those highly uncertain resources
and to bootstrap a new data imputation round.

9.5 PicShark: Sharing Annotated Pictures in
the Large

To demonstrate the viability of our metadata recontextualization strate-
gies, we are developing a system called PicShark. PicShark is an applica-
tion built on top of a semantic overlay network allowing global searches
on shared digital pictures with incomplete, local and semi-structured an-
notations.

Our approach follows the principle of data independence by separating
the logical layer, a semantic overlay managing structured metadata and
schemas, from the physical layer consisting of a structured peer-to-peer
overlay network for efficient routing of messages (see Figure 9.5). The
physical layer is used to implement various functions at the logical layer,
including query resolution, information imputation and integration.

We use P-Grid [ACMD™03] as a substrate for storing all shared in-
formation in a Distributed Hash-Table (DHT). Indexing of statements is
handled by GridVine, described in the preceding chapter. GridVine im-
plements heuristics for storing RDF/S triples in a decentralized way, and
facilitate efficient resolution of conjunctive queries in O(log(n)) messages,
where n is the number of peers in the system.

On top of this architecture, PicShark takes care of fostering global
semantic interoperability by recontextualizing local statements exported
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Figure 9.6: The PicShark components: PicShark uses metadata extractors to
align metadata on a syntactic level, aligners to align schemas on a
semantic level, and feature extractors to relate semantically similar
images.

to the P2P network. Users can export sets of local pictures through
the export(pics) functionality and search for pictures by specifying simple
conjunctive queries against their local schemas.

Figure 9.6 gives an overview of the various components used in Pic-
Shark. Data indexing takes advantages of metadata extractors (see below)
to syntactically align the statements before sharing them through Grid-
Vine. Creation of mappings is handled by aligners, while feature extractors
are used to extract the feature vectors used to relate similar images.

9.5.1 Information Extraction in PicShark

Metadata extractors are used in PicShark to extract local metadata from
the images and to syntactically align them to a common representation.
PicShark uses RDF/S as semantic interlingua, and converts all supported
metadata formats to this representation. The application currently sup-
ports two very different semi-structured metadata formats: PSA, which
is a proprietary format used by Photoshop Album? and based on struc-
tured hierarchies of tags, and XMP, which is a standard based on RDF/S.
Both standards are extensible and let users define new vocabulary terms
to annotate their pictures. The PSA FEztractor extracts semi-structured
statements and vocabulary terms from the local relational database used
by Photoshop Album to store all metadata, while its XMP counterpart

2http:/ /www.adobe.com/products/photoshopalbum/
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extracts statements and vocabulary terms from the payload of the pic-
tures. The extractors generate all missing GUIDs (for local vocabulary
terms and pictures), index statements using GridVine and images using
P-Grid directly.

Features can be extracted from the images by a low-level analysis
based on sixty texture and color moments, or by the extraction of spa-
tial and temporal metadata from the images; with time-stamps directly
embedded into the images and with the proliferation of GPS devices and
localization services (such as ZoneTag?), we believe that the combination
of both temporal and spatial information represents a new and computa-
tionally inexpensive way of identifying similar images (see also below for
a discussion on that topic).

9.5.2 Performance Evaluation

Evaluating the performance of a system like PicShark is intrinsically dif-
ficult for several reasons: first, PicShark is (to the best of our knowledge)
the first application taking advantage of semi-structured, local, hetero-
geneous and incomplete metadata statements. As statements from other
popular image classification applications such as Photoshop Album or Ex-
tensis Portfolio* are not searchable in the large, constituting a realistic
and sufficiently large data set is currently difficult. Second, recontextu-
alization is a highly recursive, distributed and parallel process, such that
getting a clear idea of the ins and outs of the process is difficult for large
data sets or numerous peers. In the following, we detail series of con-
trolled experiments pertaining to a set of three hundred photos®, which
were manually annotated using Adobe Photoshop Album Starter Edition
3. The set of photos is divided into three subsets, each taken by a different
person during a common trip to Japan. The first two subsets were anno-
tated using the same schema, while the third subset was annotated using
a different — but semantically related — schema. Temporal information
was directly taken from the time-stamp embedded by the cameras, while
spatial information was added manually to each picture.

Intra-Community Recontextualization

We start by exporting the first two subset of 100 images each, along with
their metadata. We drop each statement — except spatial and temporal
information, which are always preserved — with a probability pMissing to
simulate metadata scarcity. We then recontextualize the 100 images from
the first subset one by one using images and statements from the second
subset to simulate intra-community recontextualization (remember that

3http://research.yahoo.com /zonetag/

Ahittp:/ Sfwww. extensis.com,/

Sboth photos and semi-structured metadata are available at
http://lsirpeople.epfl.ch/pcudre/PicShark
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Figure 9.7: Normalized total entropy pertaining to the first subset of images,
for metadata missing with various probabilities pMissing; at each
step, we recontextualize one of the 100 images from the first subset
with its two nearest neighbors from the second subset, using either
low-level features (LL) or spatial and temporal information (S+7).

both subsets use the same schema). We alternatively base the imputa-
tion process on either low-level features or spatial and temporal metadata.
This experiment is thus interesting to analyze results pertaining to meta-
data imputation in a given community of interest. As our image set is
pretty homogeneous, we set 7 = oo and K = 2, i.e., we always take the
two nearest neighbors to recontextualize a given picture.

Figure 9.7 shows the evolution of the total entropy pertaining to the
first subset of photos during the recontextualization process, for various
values of pMissing ranging from 20% to 80%. The figure gives a normal-
ized value of the total entropy (the absolute entropies start at 82, 166,
and 329 for pMissing = 20%, 40%, and 80% respectively). The curves
represent the average value obtained over 10 consecutive runs. Note that
the results are pretty stable: the standard deviation never exceeds 10%
of the absolute value. The entropy — and thus, the uncertainty on the
set of images — decreases as more and more pictures get recontextualized.
The imputation process based on spatial and temporal values (S + T is
slightly better than the process based on low-level features (LL) at find-
ing images with very related statements. For high pMissing values, many
values are missing and fewer metadata statement get propagated.

The impact of the nearest-neighbor search is best illustrated in Fig-
ure 9.8 and Figure 9.9, which respectively depict the aggregated proba-
bility for the sound and unsound metadata generated by the system. We
call aggregated probability the sum of all probabilities attached to prop-
agated metadata (propagated metadata with L values are not taken into
account). Note that propagating metadata usually decreases the total
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Figure 9.8: Aggregated probability of the sound statements generated by the
system, for metadata missing with various probabilities pMissing;
at each step, we recontextualize one of the 100 images from the first
subset with its two nearest neighbors from the second subset, using
either low-level features (LL) or spatial and temporal information
(S+1T).

entropy of the system, except when highly uncertain metadata are gener-
ated (e.g., when a L value is replaced by two generated values with 50%
probability each). S+ T is systematically better than LL at finding good
neighbors, as it always generates more sound and less unsound statements
than LL. This is not surprising, as finding similar photos based on color
and textures moments only is known to be a difficult problem in general.
S + T generates high-quality metadata that are sound more than 80%
of the time. On the other hand, S + T is often wrong when propagat-
ing metadata about people appearing on the pictures: here, spatial and
temporal information is typically not sufficient and a combination of both
S+ T and LL would probably be more efficient.

In absolute terms, more statements are propagated for pMissing =
40%. For pMissing = 20%, few metadata are propagated (few values
are missing), while for pMissing = 80%, few values are available for
propagation initially.

Inter-Communitiy Recontextualization

In the the second part of the experiment, we continue the recontextual-
ization process started above and further recontextualize the 100 photos
coming from the first subset with 100 photos coming from the third subset
annotated with a different schema. In that way, we simulate the creation
of mappings and the propagation of metadata coming from different com-
munities of interest.
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Figure 9.9: Aggregated probability of the unsound statements generated by the
system, for metadata missing with various probabilities pMissing;
at each step, we recontextualize one of the 100 images from the first
subset with its two nearest neighbors from the second subset, using
either low-level features (LL) or spatial and temporal information
(S+1T).

First, the third set of images and their related metadata are exported.
We do not drop metadata in the third set, thus simulating a large set
of metadata encoded according to different schemas. Schema mappings
are created between the two schemas using the method described above.
Once the mappings are created, we further recontextualize each of the 100
images of the first set with their two closets-neighbors from the third set.
We only use S + T this time, as LL systematically yields inferior results
as for the intra-community recontextualization step described above. Fig-
ure 9.10 gives the evolution of the normalized entropy for the first set of
images. More uncertain metadata are propagated than for the previous
case due to mappings, which were generated totally automatically based
on the values of the statements and are uncertain in this case. Images
with a high entropy (e.g., for pMissing = 80%), however, benefit a lot
from this second recontextualization round, since their statements were
still largely incomplete after the first recontextualization round and since
all statements from the third set are complete.

Figure 9.11 shows the aggregated probability of the sound statements
generated during this second round of recontextualization. Unsound state-
ments follow a similar trend, but never represent more than 20% of the
generated statements. At the end of our recontextualization process and
depending on the value of pMissing, 60 to 75% of the initial entropy of
the system induced by incomplete metadata has been alleviated. Most
statements contain now entropic metadata that are sound in their major-
ity (less than 20% of the propagated statement are unsound on average
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Figure 9.10: Normalized total entropy pertaining to the first subset of images,
for metadata missing with various probabilities pMissing; at each
step, we recontextualize an image from the first subset of images
with its two nearest neighbors from the third subset, based on
spatial and temporal information (S + 7).

with S + T'). Also, schema mappings relating the two communities of
interest have been created automatically. Thus, we are now able to query
the system and retrieve relevant images from both communities, while
this was totally impossible before the recontextualization process because
of the lack and of the heterogeneity of the metadata.

9.6 Related Work

To the best of our knowledge, our approach is the first approach aiming
at recontextualizing semi-structured, heterogeneous and scarce metadata
in large scale decentralized environments. Our work is at the confines
of decentralized data integration, personal information management and
data imputation techniques.

The way we propagate queries is typical of a new type of large scale
semantic infrastructures named peer data management (see Chapter 3).
Stuckenschmidt et al. [SVHBO04] recently addressed the problem of inte-
grating distributed RDF repositories with a central mediator. They focus
on the optimization of query resolutions but does not directly address se-
mantic heterogeneity. REMINDING [TSWO04] is an emergent semantics
approach where the network memorizes which queries are successfully an-
swered by which peers in order to optimize the routing of future and
related queries. More recently, Aurnhammer et al. [AHS06] proposed an
emergent semantics approach to retrieve images based on collaborative
tagging. Their approach is however limited to unstructured annotations
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Figure 9.11: Aggregated probability of the sound statements generated by
the system, for metadata missing with various probabilities
pMissing; at each step, we recontextualize an image from the
first subset of images with its two nearest neighbors from the
third subset, based on spatial and temporal information (S + 7).

and does not consider metadata scarcity or heterogeneity.

Haystack [KBH'05] is an information management system, which uses
extractors and lets non-technical users teach the application how to ex-
tract semantic Web content to generate RDF triples from various sources.
In Haystack, search is a user-centric process handled by orienteering, i.e.,
the iterative reformulation is handled entirely by the users and is not au-
tomated. Gnowsis [FHGT06] is a collaborative semantic desktop where
semantic information is collected from different applications on the desk-
top and integrated with information coming from external tagging por-
tals. Semantic annotations are either extracted or derived from user’s
interactions. The Semex System [DHO5] is a platform for personal infor-
mation management. Semex reconciles heterogeneous references to the
same real-world object using context information and similarity values
computed from related entities. The system leverages on previous map-
pings provided by the users and on object and association databases to
foster interoperability. Reconciliation of data was also recently revisited in
the context of the ORCHESTRA [TI06] project; in ORCHESTRA, partic-
ipants publish their data on an ad hoc basis and simultaneously reconcile
updates with those published by others. Individual updates are associated
with provenance information, and each participant only accepts updates
with a sufficient authority ranking, meaning that each participant may
have different (though conceptually overlapping) data instances.

Data imputation denotes techniques aiming at replacing missing values
in a data set by some plausible values (see Farhangfar et al. [FKP04] for
a recent survey of the field).
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9.7 Conclusions

With the rapid emergence of socially-driven applications on the Web,
self-organization principles have once again proven their practicability
and scalability: through Technorati Ranking®, Flickr Interestingness’ or
del.icio.us recommendations®, an ever-increasing portion of the Web self-
organizes around end-users semantic input. In this chapter, we advocated
a decentralized, community-based and imperfect (in terms of soundness
and completeness) way of integrating semi-structured metadata through
self-organizing assertions. Our PicShark system aims at automatic meta-
data creation by using intra and inter-domain propagation of entropic
statements and schema alignment through decentralized instance-based
schema matching.

PicShark represents a first proof-of-concept of the applicability of self-
organization principles to the organization of semi-structured, heteroge-
neous and partially annotated content in large-scale settings. We showed
in our experiments how an incomplete set of metadata can be enhanced
collaboratively using our approach. To the best of our knowledge, Pic-
Shark is currently the only system capable of using incomplete and het-
erogeneous data sets such as the one we used to foster global, structured
search capabilities automatically. This first implementation effort opens
the door to many technical refinements. As future work, we plan to im-
prove our imputation process to include personalized and fuzzy classifi-
cation rules to relate semantically similar content. Also, we intend to
analyze the system churn — in terms of total entropy, user feedback, and
recently indexed instances, metadata or mappings — in order to deter-
mine the optimal scheduling of recontextualization rounds. Finally, we
want to improve the deployability of our application in order to test our
approach in situ on large and heterogeneous communities of real users,
and are currently launching an initiative jointly with an art center in that
context.

Shitp:/ /www.technorati.com/
http:/ /www.flickr.com/
Shitp://del.icio.us/
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Chapter 10

Conclusions

The last decade saw the rise of various mechanisms for organizing
minimally-structured, human-processable data in the large, from
ranking of HTML pages at the scale of the Web to classification of
keyword-annotated digital images. Today, we believe that a new
revolution targeting declarative, semi-structured machine-processable
information is on its way. End users, who used to be restricted to
passively consuming manually curated digital information, are today
evolving into industrious supervisors of semi-automatic processes creating
digital artifacts on a continuous basis. Peer production [Ben05], where
decentralized communities of individuals collaborate to create complex
digital artifacts, or human computation [vA06], where, interestingly,
computational processes perform their function via outsourcing certain
steps to human agents, are just two facets characterizing this evolving
trend towards a data industrial revolution. Networks of computers,
yesterday considered as a convenient medium to store-and-transmit
human-targeted information, are today evolving into autonomous spaces
consuming, transforming, but also producing their own information. As
structure is still inherently implied by all machine-processable data, we
believe that this revolution represents a formidable challenge towards
creating next generation information management algorithms, relying
on increasingly complex — but also uncertain — digital information to
support higher-level data processing.

Throughout this thesis, we advocated a human-inspired but machine-
targeted, bottom-up view on the problem of semi-structured data integra-
tion in large scale settings. We introduced a holistic view on semantics by
focusing on implicit agreements through transitive and large-scale anal-
yses of schema mappings simultaneously relating sets of heterogeneous
representations of structured information. Also, we presented system ar-
chitectures and experimental evidences supporting the validity and ap-
plicability of our concepts. We tackled four specific issues related to the
current ecology of the Web (see Chapter 3): scalability, through P2P
architectures and decentralized communications, uncertainty, by explic-
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itly modeling the sets of possible information, dynamicity, through self-
organizing and continuous processes, and finally limited expressivity, by
concentrating on fundamental constructs of various data representation
languages. As more and more digital information is today generated
in automated and decentralized manners, it is getting more and more
important to support incremental interoperability mechanisms to mean-
ingfully process data in the large [HFMO06]. Emergent semantics, as de-
scribed in our work, is currently receiving increasing attention from the
research community in that context — as indicated by the recent invited
papers [ACMO04, ACCM*04] or special issue [ACMO6] on the subject,
or by the Emergent Semantics EU challenge!. We see the emergent, de-
centralized phenomena we fostered and analyzed throughout this thesis
as not only complementing the traditional approaches organizing semi-
structured information through top-down consensus creation, but also as
the only resort for organizing data in the distributed, autonomous and
complex data spaces currently emerging.

Directions for Future Research

The novel results introduced by our research open the door for a multitude
of improvements and further developments. A first important effort is the
development of various tools to test our algorithms on large populations of
users. Towards that direction, we are currently implementing some of our
algorithms in the context of the Nepomuk Social Semantic Desktop?, with
the explicit ambition of producing a fully functional, distributed desktop
managing semi-structured information in emergent semantics ways in a
couple of years.

From a more theoretical side, we are currently dissatisfied with the
ways used to characterize semantic correspondences in standard data rep-
resentation formats. We believe it would be beneficial to characterize
correspondence of classes at a finer granularity, for example using prob-
abilistic description logics approaches, and to formalize possible-worlds
schema mappings and their implications. Along the same lines, we be-
lieve it is important to extend emergent semantics processes to a wider
palette of language constructs, including relational constraints and de-
scription logics-based ontological properties.

While focusing on decentralized and collaborative mechanisms, we did
not take into account security and trust-related issues in our work. Secu-
rity and trust are essential aspects of P2P architectures and have received
increased attention from the research community recently [DA06]. As for
all other endeavors based on distributed processes or computations, we
believe it will be important to tackle those issues in order to maximize the

Lhttp:/ /complexsystems.lri.fr/Portal /tiki-index. php ?page=Emergent %20semantics
2http: / /nepomuk.semanticdesktop. org/
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utility of our systems, e.g., for handling freeloading behaviors or detecting
malicious nodes. Also to be tackled, the tractability of all transformation
processes, in order to guarantee accurate prior information on the various
pieces of information scattered throughout the system.

Finally, note that the view we took on mappings, schemas and data
throughout this thesis was almost always systematically biased: mostly,
we focused on uncertain schema mappings and considered schemas and
data as being readily available and processable (with one notable ex-
ception in Chapter 9). In emergent environments where both data and
schemas can be missing, uncertain, or generated on the fly, a better way
to look at the problem would be to consider all pieces of information on
uncertain and reciprocal bases. We already proposed the creation of data
based on uncertain mappings in the context of PicShark. Under differ-
ent circumstances, it might for example be beneficial to curate schemas
based on available mappings. In the end, we believe we should regard
data, schemas and schema mappings as complementary elements shaping
a triadic structure, used by collections of autocatalytic processes fostering
the reinforcement of uncertain information throughout the system.
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List of Frequently Used
Symbols and Abbreviations

Greek Symbols

) Probability that two (or more) unsound mappings compen-
sate each other and create a sound reformulation along a
mapping path

HS;—S; A schema mapping allowing to reformulate a query posed
against schema S; into a new query posed against S

T The projection operator used in structured queries and
schema mappings

p The renaming operator used in structured queries and
schema mappings

o The selection operator used in structured queries and
schema mappings

T A semantic threshold on the soundness of a mapping

Latin Symbols

A; An attribute part of a schema S

f Feedback information gathered from the network of map-
pings

fo Feedback information gathered by analyzing cycles in the

network of mappings

f= Feedback information gathered by analyzing parallel paths
in the network of mappings
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184 Symbols
f= Feedback information gathered by analyzing results received
from other peers
m; An attribute mapping, which maps one or several attributes
from a target schema onto an attribute A; from a source
schema
M¢p—z(x) A message between a factor node f() and a variable node x
used in sum-product message passing computations
Di A peer representing an autonomous information source con-
nected to the network
Djk Probability of a random schema of having in-degree j and
out-degree k in a network of mappings
q A structured query
p A structured schema constituted of a set of attributes A =
{A1,..., A}
Abbreviations
DB Database
DHT Distributed Hash Table
GAV Global As View
GUID Globally Unique Identifier
1D Identifier
LAV Local As View
P2P Peer-To-Peer
PDMS Peer Data Management System
RDF Resource Description Framework
SON Semantic Overlay Network
SRS The Sequence Retrieval System
TTL Time-To-Live
XML Extensible Markup Language
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INRIA SOP & University of Sophia Antipolis — France.

11.96 — 02.00 B.Sc. degree in Communication Systems
EPFL, Lausanne — Switzerland

09.92 — 07.96  Scientific Baccalauréat (rank: 15%)

College du Sud, Bulle — Switzerland.
09.89 — 07.92 Secondary School in Classics (Latin & Ancient Greek)

Ecole Secondaire de la Gruyere, Bulle — Switzerland.

WORK EXPERIENCE

03.05 — 10.06
07.04 - 10.04
12.03 - 03.04

Lecturer
School of Computer and Communication Sciences
EPFL, Lausanne — Switzerland.

Visiting Researcher
Web Search & Mining Group
Microsoft Research Asia, Beijing — P.R. China

External Lecturer
United Nations IT Group
United Nations Headquarters, Geneva — Switzerland
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10.01 — 03.05 Research & Teaching Assistant
School of Computer and Communication Sciences
EPFL, Lausanne — Switzerland.

03.01 — 09.01 Research Intern
Media Delivery Architectures Group
IBM T.J. Watson Research Center, Hawthorne, NY — USA.

03.99 — 02.00 Software Intern
Hewlett-Packard Research Group
EPFL, Lausanne — Switzerland.

07.96 — 10.96 Telecommunications Specialist
Swiss Army
Kloten — Switzerland.

PUBLICATIONS

Book & Book Chapters

e Karl Aberer and Philippe Cudré-Mauroux (Eds): Journal on Data
Semantics VI, Springer Verlag 2006.

e Philippe Cudré-Mauroux and Karl Aberer: Belief Propagation on
Uncertain Schema Mappings in Peer Data Management Systems.
Global Data Management, 10S Press, 2006.

e Karl Aberer, Philippe Cudré-Mauroux and Manfred Hauswirth: Se-
mantic Gossiping: Fostering Semantic Interoperability in Peer Data
Management Systems. Semantic Web and Peer-to-Peer, Springer
Verlag, 2006.

Journal Papers

e Philippe Cudré-Mauroux, Karl Aberer, Alia I. Abdelmoty, Tiziana
Catarci, Ernesto Damiani, Arantxa Illaramendi, Mustafa Jarrar,
Robert Meersman, Erich J. Neuhold, Christine Parent, Kai-Uwe
Sattler, Monica Scannapieco, Stefano Spaccapietra, Peter Spyns,
and Guy De Tré: Viewpoints on Emergent Semantics. Journal on
Data Semantics VI, 2006.

e Adriana Budura, Philippe Cudré-Mauroux and Karl Aberer: From
Bioinformatic Web Portals to Semantically Integrated Data Grid
Networks. Future Generation Computer Systems, 22, 2006.
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e Karl Aberer, Philippe Cudré-Mauroux and Manfred Hauswirth:
Start making sense: The Chatty Web approach for global semantic
agreements. Journal of Web Semantics, 1 (1), December 2003.

e Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran
Despotovic, Manfred Hauswirth, Magdalena Punceva and Roman
Schmidt: P-Grid: A Self-organizing Structured P2P System. SIG-
MOD Record, 32(2), September 2003.

e Karl Aberer, Philippe Cudre-Mauroux, Anwitaman Datta,
Zoran Despotovic, Manfred Hauswirth, Magdalena Punceva,
Roman Schmidt and Jie Wu: Advanced Peer-to-Peer Networking:
The P-Grid System and its Applications.  PIK (Prazis der
Informationsverarbeitung und Kommunikation), 26(3), 2003.

e Karl Aberer, Philippe Cudré-Mauroux and Manfred Hauswirth: A
Framework for Semantic Gossiping. SIGMOD Record, 31(4), 2002.

Conference Papers

e Philippe Cudré-Mauroux, Menasheh Fogel, Ken Goldberg and
Michael J. Franklin: “Sentry Pallets” for Automated Monitoring
of Spatial Constraints. International Conference on Robotics and
Automation (ICRA), 2006.

e Philippe Cudré-Mauroux, Karl Aberer and Andras Feher: Proba-
bilistic Message Passing in Peer Data Management Systems. Inter-
national Conference on Data Engineering (ICDE), 2006.

e Karl Aberer, Philippe Cudré-Mauroux and Zoran Despotovic: On
the Convergence of Structured Search, Information Retrieval and
Trust Management in Distributed Systems. German Conference on
Multiagent Systems (MATES), 2005.

e Philippe Cudré-Mauroux and Karl Aberer: A Necessary Condition
For Semantic Interoperability In The Large. International Con-
ference on Ontologies, DataBases, and Applications of Semantics
(ODBASE), 2004.

e Karl Aberer, Philippe Cudré-Mauroux, Manfred Hauswirth and
Tim van Pelt: GridVine: Building Internet-Scale Semantic Overlay
Networks. International Semantic Web Conference (ISWC), 2004.

e Karl Aberer, Tiziana Catarci, Philippe Cudré-Mauroux, Tharam
Dillon, Stephan Grimm, Mohand-Said Hacid, Arantza Illarramendi,
Mustafa Jarrar, Vipul Kashyap, Massimo Mecella, Eduardo Mena,
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Erich J. Neuhold, Aris M. Ouksel, Thomas Risse, Monica Scanna-
pieco, Felix Saltor, Luca de Santis, Stefano Spaccapietra, Steffen
Staab, Rudi Studer and Olga De Troyer: Emergent Semantics Sys-

tems. International Conference on Semantics of a Networked World
(ICSNW), 2004.

e Karl Aberer, Philippe Cudré-Mauroux, Aris M. Ouksel, Tiziana
Catarci Mohand-Said Hacid, Arantza Illarramendi, Vipul Kashyap,
Massimo Mecella, Eduardo Mena, Erich J. Neuhold, Olga De Troyer,
Thomas Risse, Monica Scannapieco, Felix Saltor, Luca de San-
tis, Stefano Spaccapietra, Steffen Staab and Rudi Studer: Emer-
gent Semantics Principles and Issues. International Conference on
Database Systems for Advanced Applications (DASFAA), 2004.

e Karl Aberer, Philippe Cudré-Mauroux and Manfred Hauswirth:
The Chatty Web: Emergent Semantics Through Gossiping.
International World Wide Web Conference (WWW), 2003.

e Philippe Cudré-Mauroux and Karl Aberer: A Decentralized Archi-
tecture for Adaptive Media Dissemination. International Confer-
ence on Multimedia and Expo (ICME), 2002.

Workshop Papers

e Philippe Cudré-Mauroux, Julien Gaugaz, Adriana Budura and
Karl Aberer: Analyzing Semantic Interoperability in Bioinformatic
Database Networks. Semantic Network Analysis Workshop (SNA),
2005

e Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta and Man-
fred Hauswirth: PIX-Grid: A Platform for P2P Photo Exchange.
Workshop on Ubiquitous Mobile Information and Collaboration Sys-
tems (UMICS), 2003.

Tutorial

e Karl Aberer and Philippe Cudré-Mauroux: Semantic Overlay Net-
woks. International Conference on Very Large Data Bases (VLDB),
2005.
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TEACHING

Lecturer for the Introduction to Information Systems course, EPFL,
B.Sc. program in Communication Systems, Spring 2005.

Lecturer for the Advanced XML & Web Services course, U.N. Head-
quarters in Geneva, Switzerland, 2003 - 2004.

Teaching Assistant for the Distributed Information Systems course,
EPFL, M.Sc. program in Communication Systems, Fall 2003 &
2004.

Teaching Assistant for the Conception of Information Systems course,
EPFL, M.Sc. program in Communication Systems, Spring 2002 &
2003.

Teaching Assistant for the Bases de Données course, EPFL, B.Sc. pro-
gram in Computer Science, Fall 2001 & 2002.

PROFESSIONAL ACTIVITIES

Member of the IFIP Working Group 2.6. on Databases, of the IEEE
and of the ACM.

Co-Guest Editor for the Journal on Data Semantics VI, special issue
on Emergent Semantics, Springer Verlag 2006.

Program Committee Member for ISWC 2006, DISWeb 2006,
MCISME 2006, P2P Data and Knowledge Sharing 2006, Semantics
2005, EEE 2005 and OTM 2004.

Reviewer for VLDB (2002, 2004, 2005, 2006), ICDE (2004, 2006), ISWC
(2003, 2004, 2005), WWW (2004, 2005, 2006) and SIGMOD (2003,
2004).

Reviewer for SIGMOD Record, the Journal of Web Semantics, the Jour-
nal of Cooperative Information Systems and the Journal of Data
Semantics.

AWARDS

e Outstanding EMEA Student, P&G, Geneva. Invited to the Interna-
tional Program in IT Business Management, Roma — Italy (2003).

e Best Student, M.Sc. program in Multimedia Communications, Eu-
recom Institute & EPFL, France & Switzerland (2001).

e Best Scientific Student, College Du Sud, Bulle — Switzerland (1996).



