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Abstract. This paper presents the results of RiMOM in the Ontology 
Alignment Evaluation Initiative (OAEI) 2010. We participate in three tracks of 
the campaign: Benchmark, IM@OAEI2010 (IMEI), and Very Large 
Crosslingual Resources (VLCR). We first describe the basic alignment process 
and alignment strategies in RiMOM, and then we present specific techniques 
used for different tracks. At last we give some comments on our results and 
discuss some future work on RiMOM. 

1  Presentation of the system 

Recently, ontology alignment has been developed as a key technology to solve 
interoperability problems across heterogonous data sources. Many automatic ontology 
alignment systems have been proposed and achieve good performance in real world 
data. With the development of Linked Data [1] and various social network websites, 
huge amount of semantic data is published on the web, which not only poses new 
challenges over traditional schema level ontology alignment algorithms, but also 
demands new techniques for instance matching. 

RiMOM is a multistrategy dynamic ontology alignment system [2]. It implements 
several different matching strategies which are defined based on different ontological 
information. For each individual matching task, RiMOM can automatically and 
dynamically combine multiple strategies to generate a composed matching result. 
Recently, some new features were added into the new version of RiMOM which 
enable it to deal with unbalanced ontology matching [3], user interactive ontology 
matching [4], and large scale instance matching.  

1.1  State, purpose, general statement 

Currently, RiMOM is developed with a flexible framework for ontology alignment, 
where different kinds of alignment strategies can be plugged and configured easily. 
Fig 1 shows the architecture of RiMOM system. 

The whole system consists of three layers: interface layer, task layer and 



component layer. In the interface layer, RiMOM provides a graphical user interface to 
allow users to customize the matching procedure: including selecting preferred 
components, setting the parameters for the system, etc. In semi-automatic ontology 
matching, user can also get involved in the matching process via the user interface. 
The task layer stores parameters of the alignment tasks, and controls the execution 
process of components in the component layer. In component layer, we define five 
groups of executable components, including preprocessor, matcher, aggregator, 
postprocessor and evaluator. In each group, there are several instantiated components. 
For a certain alignment task, user can select appropriate components and execute 
them in desired sequence. 
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Fig 1. Architecture of RiMOM system 

1.2  Specific techniques used 

This year we participate in three tracks of the campaign: Benchmark, 
IM@OAEI2010 (IMEI), and Very Large Crosslingual Resources (VLCR). We 
describe specific techniques used in different tracks as follows: 
Benchmark Track 

For benchmark track, we use three matching strategies: 
(1) Name based strategy: In this strategy, we calculate the edit distance between 

labels of two entities. Edit distance estimates the number of operation needed to 
convert one string into another. We define 1 2(1 # / ( , ))op max_length l l as the 

similarity of two labels, where #op  indicates the number of operations, 

1 2( , )max_length l l  represents the maximal length of the two labels. 

(2) Metadata based strategy: In this strategy, we treat the information of each 
entity as a document, which consists of words in entity’s label and comment. Then we 
construct a weighted feature vector using tf-idf technology, the similarity between 
two entities is then calculated as the cosine of the two vectors. 



(3) Instance based strategy: In this strategy, we also construct a document for 
each entity, but the words are from the instances related to that entity. For a class 
entity, words in the label, comment and property value of all its instances are 
extracted as the entity’s document; for a property entity, all the values it occurs in 
instances are extracted as the entity’s document. Then the similarity between two 
entities is calculated as in Metadata based strategy. 

When combining the results of different matching strategies, we use a different 
method from which we used in OAEI 2008 and 2009. Instead of aggregating 
similarity values before extracting final alignment, we first extract alignment based on 
each individual strategy by threshold filtering method, and then combine alignments 
of different strategies together. A similarity propagation procedure based on structure 
information is performed to find more mappings. The similarity propagation 
procedure is implemented in iteration; in each iteration, the similarity is propagated 
from already found mappings to the rest candidate mappings, candidate mappings 
which get high similarity are then added to found mappings; this process is repeated 
until no more mapping is found. This combination method can generate alignments 
with very high precision with acceptable recall. 
Data Interlinking track 

The DI (Data Interlinking) track is designed to test the ontology matching systems’ 
ability on link generation of LinkedData. There are five datasets, i.e. DailyMed, 
Diseasome, DrugBank, Sider and LinkedMDB, requested to be matched to related 
datasets in the LinkedData respectively. These data sets are all comes from the real 
world data and in relatively larger scale than the generated dataset. We choose four 
datasets in the domain of medicine to test our algorithm while exclude the 
linkedMDB dataset. According to our observations on the instance data, we split the 
information in the instance into six categories: the URL, the Meta Information, the 
Name, the string type information, the non-string type information and the 
neighboring information. Among the six categories the Name, which usually comes 
from the rdfs:label property or other ontology specific property such as foaf:name) is 
the most distinguishing feature to identify an instance. In addition, the natural 
language information and the neighboring instances are very useful, too. Thus we 
propose a vector based method for the DI track. We build two vectors referred to as 
Name Vector and Virtual Document for each instance. The Name Vector is 
constructed by accumulating the terms in the Name property values and setting the 
occurrence of each term as its weight. For Virtual Document, we first collect the 
terms of the each instance’s descriptions and annotations then fetch the local 
information of its neighboring instances to construct a comprehensive vector. Because 
the Virtual Document Space is much larger, we compute the tf-idf value of each term 
as its weight. The similarity between two instances is calculated as the weighted sum 
of their similarity (Cosine Distance) on two kinds of vectors respectively. However, 
this method is infeasible on large scale input because pair-wise comparisons on 
instances are too costly. Thus we introduce a candidate selection process. Only the 
instance pairs which are selected as candidate mappings are compared. Generally we 
use two rules for candidate selection: 1) instances with common terms in their Name 
Vectors; 2) instances with common top weighted terms in their Virtual Documents. 
To utilize the functionality, we build inverted index of instances for terms in Name 
Vector and top weighted terms in the Virtual Document. Consequently our algorithm 



can generate the candidates very quickly and eliminate the meaningless comparisons 
between unrelated instances. Several experiment results show that the candidate 
selection will not eliminate the possible alignments in most of the cases. In the 
following phase of the algorithm, we may use the Meta Information and non-string 
type values as restrictions to filter the results according to the instance characteristics. 
For example, a common one is that those instances whose classes are not matched 
will be filtered out. At last a threshold is used on similarity for the final result. Totally 
speaking, this method is a generic and efficient method for instance matching. 
IIMB and PR track 

Traditionally, information of individuals in an ontology is frequently utilized in 
supporting of schema matching. Inversely, information of schema is of equal 
importance in alignment of individuals that are sharing the same ontology structure. 
Thus, for the Instance Matching Track of this year, we take more about schema 
information, especially classes and properties, into consideration in aligning 
individuals. 

For Instance Matching, our main idea is that we classify individuals by their 
classes, complete information of each individual as complete as possible, run 
matching algorithm for each class respectively, and compute similarity of two 
candidates based on weight-mean of properties assigned with specified weights. And 
the algorithm can be generalized as four consecutive phase: 

Preprocessing: Read and store the schema information for further use. Build a 
local schema that connects properties and classes and implement it by learning 
information of individuals.  

Information Complementation: Modify the information of each individual, 
aiming at making them as complete as possible. We defined some rules for judging 
the validity of values, as well as for solving the transformations in value, structure and 
logical. Reclassify individuals by recognizing and comparing properties they carry 
with those in classes, based on our local schema implemented in the previous phase. 

Matching: Given the facts that different properties of individuals play quite 
different roles, and that every individual has its unique characteristic(s), for each 
property, we assign it with a specified weight and combine this weight with string-
based similarity value computed under Edit Distance or Vector based algorithm. We 
assign the weight-mean of properties as the final similarity value. 

Spread Similarity: In order to fully utilize the connection of individuals, we apply 
a similarity-flooding-like algorithm to spread the similarity. 

1.3  Adaptations made for the evaluation 

In order to deal with large scale data sets, we use an inverted index technique to 
accelerate the speed of locating and reading data. 

1.4  Link to the system and parameters file 

The RiMOM System can be found at http://keg.cs.tsinghua.edu.cn/project/RiMOM/  



1.5  Link to the set of provided alignments (in align format) 

The results of RiMOM for OAEI 2010 Campaign are available at 
http://keg.cs.tsinghua.edu.cn/project/RiMOM/OAEI2010/   

2  Results 

As introduced above, RiMOM participates in three tracks in OAEI 2010; we 
present the results and related analysis below. 

2.1 Benchmark  

There are 111 alignment tasks in benchmark data set; we divide these tasks into 
three groups: 1xx, 2xx, and 3xx. We compare the results of RiMOM in OAEI 2010 
and OAEI 2009 [5] in Table 1. It can be observed that the performance of RiMOM in 
1xx task continues to be perfect as last year; as for the 2xx task, the result of this year 
is better than that of last year, with regard to both precision and recall; the precision of 
3xx increases this year, but the recall decreases, while the F1-measure is almost the 
same as last year. Overall, the precision, recall and F1-measure for the entire 
benchmark data set of RiMOM this year achieve 99% precision, 84% recall and an 
F1-measure of 91%. Compared with last year’s result, there are 6% improvement on 
precision, 2% improvement on recall and 4% improvement on F1-measure. 

 
Table 1. Benchmark test results of RiMOM in OAEI 2010 and OAEI 2009 
(Values are real precision and recall and not an average of precision and recall) 

Test 
OAEI 2010 OAEI 2009 

Prec. Rec. F1 Prec. Rec. F1 
1xx 1.00 1.00 1.00 1.00 1.00 1.00 
2xx 0.99 0.83 0.91 0.93 0.81 0.87 
3xx 0.91 0.74 0.82 0.81 0.82 0.81 
H-mean 0.99 0.84 0.91 0.93 0.82 0.87 

2.2 DI track of IM@OAEI2010  

We generate results for four of five datasets in the track except the LinkedMDB 
dataset. Since we are requested to mapping each dataset to several related datasets in 
LinkedData and these datasets not provided in the track, we download these datasets 
and transfer them into RDF format using Jena. As a result we cannot get some 
datasets such as STITCH because there is only a SPARQL endpoint for it. We also 
found there are many duplicate entries in the reference alignment of Sider and the 
namespace for DBpedia in the reference alignment of Drugbank is not uniform, we 
adjust these reference files to get the final result of our algorithm.  We set the 
parameter of our algorithm as NameWeight = 0.6 and threshold = 0.55. The result of 



Sider dataset is shown in Table 2. From the result we can see that according to the 
different characteristics of the instance file, the results may be very different: some 
are high in precision and some are high in recall. For those high in recall but low in 
precision, more careful filter may be added to the algorithm by studying the data. On 
the other hand, for those low in recall, the threshold may be cut down.  

 
Table 2. The result of Sider Dataset 

DataSet DBpedia DailyMed Diseasome Drugbank TCM STITCH TOTAL 

Precision 0.717 0.567 0.315 0.961 0.778 / 0.617 

Recall 0.482 0.706 0.837 0.342 0.812 / 0.467 

F-Measure 0.576 0.629 0.458 0.504 0.795 / 0.532 

 

The result of DailyMed dataset is shown in Table 3. The result of our algorithm is 
extremely bad in the LinkedCT dataset. It generates a lot of results (up to 100,000) so 
that the precision is very low. Because of the dominance of LinkedCT results in the 
reference, our result in total is not good, too. According to our observation on the 
reference alignment of LinkedCT, they are automatically generated from the 
owl:SeeAlso property in the file. After reviewing some of our results, we found that 
many of our results are reasonable but some of the references are not, we think the 
reference alignment is not very complete and sound. However, our algorithm cannot 
generate good results from DBpedia means we need much more improvement on it. 
The other two datasets with LinkedCT reference, Diseasome and DrugBank are 
similar in results. 

 
Table 3. The result of DailyMed dataset 

DataSet DBpedia LinkedCT TCM Sider TOTAL

Precision 0.246 0.070 0.159 0.567 0.085 

Recall 0.293 0.235 0.535 0.706 0.296 

F-Measure 0.267 0.107 0.123 0.629 0.132 

 

Table 4. Results of IIMB 
IIMB_SMALL IIMB_LARGE 

Dataset Prec. Rec. F1 Dataset Prec. Rec. F1 
001 - 020  0.975 0.975 0.975 001 - 020 0.997 0.994 0.995 
021 - 030 0.861 0.710 0.778 021 - 030 0.798 0.696 0.744 
031 - 060 0.913 0.953 0.933 031 - 040 0.843 0.766 0.803 
061 - 070 0.809 0.639 0.714 041 - 060 0.877 0.976 0.924 
071 - 080 0.792 0.500 0.613 061 - 070 0.663 0.586 0.622 

    071 - 080 0.575 0.557 0.566 
 
 



2.3 IIMB track of IM@OAEI2010  

The result for IIMB_SMALL and IIMB_LARGE is shown in Table 4. As the 
number of datasets increases, the text-based information the dataset contains decrease 
while complex combination of modifications increase, thus the performance of our 
algorithm decreases since it is anyway fundamentally based on string comparison.  
We can also see that with the amount of instances grows, the influences brought by 
the noise increase, which do nothing but harm to effect of our algorithm. 

2.4 PR track of IM@OAEI2010 

PR track consists of three subtasks; the results for these tasks are shown in Table 5. 
It can be observed that RiMOM gets perfect performance on the first task; for the 
second task, RiMOM gets really good recall and the precision is 95.2%; for the last 
task, the precision and recall both decrease compared to the former two tasks. 
 

Table 5. Results of PR 
Dataset Precision Recall F-Measure 

Person11 - Person12 1.0 1.0 1.000 

Person11 - Person12 0.952 0.99 0.971 

Restaurant1 - Restaurant2 0.86 0.768 0.811 

2.5  VLCR track 

The purpose of VLCR task is to match three resources to each other, namely, the 
Thesaurus of the Netherlands Institute for Sound and Vision (called GTAA), the New 
York Times subject headings and DBpedia. Each resource consists of lots of instances: 
142,000 in GTAA, 12,000 in NYT and 7,500,000 in DBpedia. Table 6 lists the 
number of the mapping we found. 

 
Table 6. Result for VLCR task 

Dataset Number of mappings 
NYT-DBpedia 9257 

GTAA-DBpedia 68337 

NYT-GTAA 
Direct mapping 4324 

Indirect mapping 4487 
 

Due to the lack of information, sometimes it is very difficult to match two 
instances in NYT and GTAA directly. Since we have mapped the two relatively small 
instance sets to DBpedia, it is possible to use the map results to get more maps 
between the two small one. Instances in NYT and GTAA matches to the same 
instance in DBpedia will be added to the final results.As shown in the table, NYT–
DBpedia, GTAA-DBpedia and NYT-GTAA are three subtasks of VLCR task. 
Indirect matching find 163(rise by 3.7% ) new mappings in NYT-GTAA task.  



3  General comments 

By far instance matching, especially matching on real world instance is still a very 
challenging problem. Instance Matching is of great importance for bringing the 
ontology matching into practical use with its wide range of application scenarios. 
Instance matching shows its special characteristics compared with the conventional 
schema matching and the large scale nature of instance matching is a big obstacle to 
employ the existing methods. A relatively generic and efficient method for instance 
matching is in great need. The IMEI track of OAEI 2010 provides a good platform to 
test the instance matching algorithms and this area will attract more attention in the 
community. 

4  Conclusion 

In this paper, we present the results of RiMOM in OAEI 2010 Campaign. We 
participate in three tracks this year, including Benchmark, IMEI, and VLCR. We have 
presented the architecture of RiMOM system and described specific techniques used 
in this campaign. In this campaign, we design a new strategy combination method for 
benchmark tracks, and get better performance than last year. We particularly focus on 
the instance matching task; propose some new strategies for these tasks. The results 
illustrates that our system RiMOM can achieve good performance in both schema 
matching and instance matching tracks. 
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