
Probabilistic Methods for Service Clustering

Gilbert Cassar, Payam Barnaghi, and Klaus Moessner

Centre for Communication Systems Research
University of Surrey

Guildford, GU2 7XH, UK
{g.cassar, p.barnaghi, k.moessner}@surrey.ac.uk

Abstract. This paper focuses on service clustering and uses service de-
scriptions to construct probabilistic models for service clustering. We dis-
cuss how service descriptions can be enriched with machine-interpretable
semantics and then we investigate how these service descriptions can be
grouped in clusters in order to make discovery, ranking, and recommen-
dation faster and more effective. We propose using Probabilistic Latent
Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA) (i.e.
two machine learning techniques used in Information Retrieval) to learn
latent factors from the corpus of service descriptions and group services
according to their latent factors. By creating an intermediate layer of
latent factors between the services and their descriptions, the dimen-
sionality of the model is reduced and services can be searched and linked
together based on probabilistic methods in latent space. The model can
cluster any newly added service with a direct calculation without requir-
ing to re-calculate the latent variables or re-train the model.

1 Introduction

The Service Oriented Architecture (SOA) is a model currently used to pro-
vide services on the Internet. SOA typically consists of three entities: a service
provider, a client, and a broker. A service provider offers the service and adver-
tises it by publishing a service description. A client looks for a service to fulfill a
certain task or to consume service data. The service broker accepts queries from
the client, refers to service descriptions supplied by the provider and returns Web
Service Description Language (WSDL)1 documents describing the best matches
to the query. However the common technologies used to describe, publish, and
discover services offer very limited freedom of expressiveness to the service de-
signers. Service description frameworks such as WSDL provide descriptions of
what a service is and what it can do; however with these kinds of descriptions
machines still cannot easily interprete different concepts described in the ser-
vice description. If more expressive technologies are used to describe a service,
machines will be able to use semantics, reasoning, and linked data2 to process
the service descriptions and generate new knowledge from what is supplied in
1 http://www.w3.org/TR/wsdl20/
2 http://linkeddata.org/

the service description; so this knowledge can be refered to by software agents
or search clients to offer better service search results and recommendations in
different applications.

The service repositories on the Internet are being increasingly over-populated
with more services created and published by users. Retrieving services which can
match to a user query is becoming a challenging task. By organising the service
data into clusters, services become easier and thus faster to be discovered and
recommended [11]. Clustering is an approach that transforms a complex problem
into a series of simpler sets which are easier to handle. Service Clustering aims to
group together those services which are similar to each other. Service Clustering
can be very helpful in terms of service recommendation and ranking since services
that are similar to the one chosen by the user will be grouped in the close
neighbourhood of that service. Methods for Service Composition can also benefit
from clustering of services because compatible services can be found more easily
if the services are clustered based on their functional attributes.

In this paper we investigate using probabilistic machine-learning methods to
extract latent factors zf εZ = {z1, z2, ..., zk} from semantically enriched service
descriptions. By describing the services in terms of latent factors, the dimension-
ality of the system is reduced considerably. The latent factors can then also be
used to efficiently cluster the services in a repository, making the model more
scalable and also more efficient in terms of publishing new service descriptions
to the repository. Figure 1 shows an example of assigning services to latent vari-
ables rather than conceptual words. In this work we elaborate the concept of
latent variables and describe how those variables can be calculated for service
descriptions.

Fig. 1. Describing services in terms of latent factors zf εZ = {z1, z2, ..., zk} rather than
conceptual words

The rest of this paper is organised as follows. Section 2 provides an overview
of related work. In Section 3 we propose a clustering mechanism based on
Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation
(LDA). Section 4 explains how we evaluate our clusters. Section 5 presents the
results obtained in our experiments and discusses the experimental data. Section
6 concludes the paper and discusses the future work.

2 Related Work

In this section we briefly discuss some service description models and then dis-
cuss related concepts to service clustering. First we discuss the Onthology Web
Language for Services (OWL-S)3 as it is the fundamental building block of our
approach and then we describe the clustering technologies related to our work.

2.1 Service Description Models

A detailed and machine-readable service description is the fundamental building
block for providing an architecture in which advanced service discovery mech-
anisms can be performed [2]. Service descriptions are defined using a service
description model. A service description model becomes a template that service
providers will use in order to publish and advertise the services that they of-
fer. Various approaches for creating service description models exist, including:
WSDL, USDL4, Web Service Modelling Language (WSML)5 and Web Service
Modelling Ontology (WSMO)6, and OWL-S.

OWL-S is a Service Description Framework that provides both rich expres-
sive descriptions and well-defined semantics. OWL-S describes the characteristics
of a service by using three top-level concepts, namely ServiceProfile, Service-
Grounding, and ServiceModel. ServiceProfile provides the information needed
to discover services. ServiceGrounding and ServiceModel provide information to
deploy and use the service.

The Service Profile provides a concise but meaningful description of the ser-
vice capabilities in order to advertise the service in a registry. However, once
the service has been selected from the registry, the Profile is no more of use and
the information contained in the ServiceModel is then used to interact with the
service.

The ServiceGrounding describes how to access the services. In OWL-S, Ser-
viceProfile and ServiceModel are abstract representations of a service and only
the ServiceGrounding contains information about protocol and message formats,
serialisation, transport, and addressing.

3 http://www.w3.org/Submission/OWL-S/
4 http://www.internet-of-services.com/index.php?id=24
5 http://www.wsmo.org/wsml/
6 http://www.wsmo.org/

Fig. 2. The structure of OWL-S

The concepts of Input, Output, Preconditions, and Effects are all defined in
OWL-S both in the ServiceProfile and in the ServiceModel. OWL-S provides the
main attributes to describe services and their functional attributes.

Another effective aspect of OWL-S is that it still relies on existing standards
for service invocation and discovery. Service invocations are still carried out using
WSDL definitions and OWL-S is designed so that it can extend UDDI for service
discovery making it easily integrable with the current SOA.

In this paper, we describe constructing a vector space model using OWL-S
descriptions and in Section 3 we discuss how the vector space model is used for
training probabilistic models. The probabilistic models are then used to cluster
the services.

2.2 Vector Space Modelling and Feature Extraction

Vector Space Modelling (VSM) is a technique used to convert data to vector
form in order to facilitate computational analysis of the data. In information
retreival, a widely used method for converting a text document to Vector Space
form is to use the Text Frequency and Inverse Text Frequency (TF/IDF) algo-
rithm [13]. Ma et al. use this technique in [8] to represent a dataset of WSDL
service descriptions in the form of a Service Transaction Matrix as shown in Ta-
ble 1. In Ma et al.’s work each row represents a WSDL service description, each
column represents a word from the whole text corpus, and each entry represents
the TF/IDF weighting of that word in the respective WSDL document.

TF/IDF weight wij for a word j in service i is calculated as follows:

wij = tfij · log
(

n

nj

)
(1)

where tfij is the word frequency of word j in service description i, n is the
total number of service descriptions, and nj is the number of services that con-

tain word j.

A variation of TF/IDF is proposed in [14] where a higher weight is given to
the IDF value. The reason behind this approach is to normalise the bias of TF
measure in short documents. The frequency of words in very short documents
such as service descriptions tends to be incidental. Thus the proposed TF/IDF 2

equation in [14] is described as the following:

wij = tfij · log
(

n

nj

)2

(2)

Wang et al. [16] prepare textual data for analysis using Part-of-Speech tag-
ging to identify and remove stop words from the word corpus. The Stanford
Log-Linear POS-tagger7 is used in their work to POS-tag the text and only the
nouns, verbs, and adjectives were kept for further analysis. The remaining words
are then used to describe each document as a vector of text frequencies.Using
vector space model, the proximity between two vectors will then also correspond
to similarity of their data characteristics. The vectors which are very similar can
be clustered together using clustering techniques.

Table 1. A simplified TF/IDF matrix.

w1 w2 w3 w4 w5 w6 w7 w8

S1 0 0 1 0.0458 0 0 1 0
S2 0 0 0 0.0458 0.2218 0 0 0.3979
S3 0.0458 0 0.3979 0 1 0 0 0
S4 0 0.6990 0.5229 0 0 1 0 0
S5 0.3010 0 0 1 0.2218 0 0 1

When describing data in vector space, we represent different features of our
data as different dimensions in a multi-dimensional form. The extraction of fea-
tures to vector space is also called Indexing. Approaches like TF-IDF which parse
the text in every document and then treat every word as a seperate dimension
are referred to as Syntactic Indexes [11]. Syntactic Indexes have the advantage of
being able to parse any textual document and convert it to a vector format which
complies with the rest of the documents; however it results in a large number
of dimensions in vector space that becomes very computationally expensive. In
the context of service descriptions, it does not have the ability to focus on just
some selected characteristics of a service. Rich Indexes [11] on the other hand
consider only certain aspects of the information contained in the original data.

The service descriptions include different features of services as discussed in
the following:

7 http://nlp.stanford.edu/software/tagger.shtml

– Domain Information: Information about the service registration and other
attributes such as domain, cluster group, back-links, and listings.

– Semantic Descriptions: Where service descriptions are enriched with seman-
tic content such as those in WSMO and OWL-S.

– Functional Descriptions: Include interface information such as input and
output parameters, preconditions and effects [7].

– QoS Descriptions: Include information about the performance of a service,
specifying requirements such as bandwidth, response time and delay.

We propose using multiple indexes based on different features of a service
description (i.e. profile, functional descriptions, etc.). This approach enables us
to compare services over different domains; however in the context of service
clustering Platzer et al. [11] recommend not to merge information from two
seperate indexing strategies into one vector. In this case the components of
the vector are likely to move apart from each other and result in reducing the
effectiveness of the clustering algorithm.

Vector Space Modelling is a very useful method for analysing service descrip-
tions. Once service descriptions are represented in vectors, vector algebra [11]
and probabilistic methods [8] can be used to measure similarities between ser-
vices and group them into clusters.

2.3 Proximity Measure

Measuring the proximity between a service and other services in a dataset is
the basic step of most clustering techniques. If two vectors are close to each
other in vector space, then they have similar service descriptions or functional
attributes depending on characteristics used for constructing the model. Various
techniques exist to measure the proximity of two vectors. The most commonly
used proximity measures are described in the following.

Euclidean Distance The Euclidean Distance of two n-dimensional vectors
corresponds to the actual distance between the absolute position of the two
points in vector space described by the two vectors. The Euclidean distance can
be calculated using the following formula.

dis(p, q) = ‖p− q‖
2

=

√√√√
n∑

i=1

(pi − qi)2 (3)

where p and q are the two vectors and dis(p, q) is the Euclidean distance
between them.

Jaccard Coefficient The Jaccard coefficient is a similarity measure that skips
the components which give no information. Nayak and Lee [10] use the Jaccard
coefficient to measure the similarity between two Web services based on the

terms that are present in both service descriptions. The Jaccard coefficient of
two vectors p and q is given by the equation 4.

J(p, q) =
Tpq

Tp + Tq + Tpq
(4)

where Tpq is the number of common terms used in describing p and q, Tp

and Tq are the number of terms used in p only and q only respectively.

Multidimensional Angle Multidimensional Angle is an efficient measure of
the proximity of two vectors. It is used in various clustering approaches [11,
8]. This proximity measure applies cosine of the angle between two vectors. It
reaches from the origin rather than the distance between the absolute position
of the two points in vector space. This method is more efficient because if a
dimension is not present in both vectors it will automatically drop out of the
equation. Thus it provides dimensional reduction and reduces required compu-
tations. The multidimensional angle between vectors p and q can be calculated
using equation 5.

cos(p, q) =
p · q

‖p‖ · ‖q‖ =
∑n

i=1 piqi√∑n
i=1 p2

i

∑n
i=1 q2

i

(5)

where n is the number of dimensions.

Weighted Similarity Measures This method is used by Nayak and Lee in [10]
where the similarity of two services is based on different parts of their service
descriptions. Each service description is enhanced with semantic components:
OWL-S Profile, Model, and Grounding, and a WSDL document. The Weighted
Similarity of two services is then calculated by summing together the Jaccard
coefficient of each component where every Jaccard coefficient of the summation
is multiplied by a weight which reflects how significant that component is. This
proximity measure is given by:

Sim(p, q) = w1 · JDes(p, q) + w2 · JSerP (p, q) + w3 · JWSDL(p, q)
+w4 · JPModel(p, q) + w5 · JGround(p, q)

(6)

where w1 to w5 are the assigned weights and JDes(p, q), JSerP (p, q), JWSDL(p, q),
JPModel(p, q), and JGround(p, q) are the Jaccard coeffiecient of the service de-
scription, service profile, WSDL, service model, and service grounding respec-
tively.

2.4 Clustering Algorithms

Clustering algorithms generally deal with data described in vector space by us-
ing some form of vector algebra to measure the similarity between vectors and
grouping together the vectors which are most similar to each other. The following
describes some of the common approaches for clustering.

K-Means Algorithm The K-Means algorithm is a well know clustering al-
gorithm based on Squared Error criterion [12]. Squared Error algorithms keep
converging until a convergence criterion is reached. The steps for implementing
the K-Means algorithm as given in [6] are:

1. Randomly generate K cluster centres within the vector space used.
2. Compute the proximity of each vector to each cluster centre and assign each

vector to the nearest cluster centre.
3. Recompute the cluster centres by taking the mean of the member vectors in

each cluster.
4. If the convergence criterion is not met, go back to step 2.

A typical convergence criterion would be a treshold value of a squared error
equation [12] or converging until there is no or minimal change in cluster centres
after each iteration [6].

Agglomerative Algorithm The Agglomerative algorithm is a bottom-up hi-
erarchical clustering method. The algorithm starts by assigning each vector to
its own cluster; then it starts merging together the most similar clusters at every
iteration until a stopping criterion is met [6]. The steps for implementing the
Agglomerative algorithm are:

1. Treat each vector as a cluster.
2. Compute a matrix with the proximity of each cluster to every other cluster.
3. Find the most two similar cluster in the matrix and merge these two clusters

into one cluster.
4. Update the proximity matrix with the mean of the two merged clusters as

the centre of the new cluster.
5. Stop if the proximity treshold is reached or if all the vectors are converged

into one cluster. Otherwise go back to step 2.

A Web Service clustering approach based on this algorithm is proposed
in [11]. This work uses a repository of 275 WSDL service descriptions. Each
WSDL document is treated as a text document and the whole text is converted
into vector space then clustered using the Agglomerative algorithm. The per-
formance evaluation provided is based on data extrapolation to evaluate scala-
bility of the method in larger repositories. The algorithm discusses efficiency of
matching a client’s query compared to a simple key word matching. However,
the WSDL documents include serveral repetitive phrases and also specific ter-
minology to describe technical aspects of services. Analysing WSDL as a text
document and constructing the model based on the whole concept set extracted
from the WSDL description could suffer from biasing and overfitting the results.

2.5 Probabilistic Latent Semantic Analysis (PLSA)

Probabilistic Latent Semantic Analysis is an unsupervised machine-learning tech-
nique used to map high-dimensional count vectors (such as the ones yielded by
TF/IDF in vector space model) to a lower dimensional representation in Latent
Semantic Space [4]. PLSA is based on the Aspect Model; a latent variable model
which associates an unobserved class variable zf εZ = {z1, z2, ..., zk} with each
observation [5].

PLSA discovers the semantics behind the words in a text corpus, i.e. the
topics which the words in the document belong to. Words are observable variables
wjεW = {w1, w2, ..., wv} which can be observed through the text corpus that
consists of documents, topics on the other hand are latent variable which are
not directly observable through the text.

In service descriptions, we use words taken from service descriptions and cre-
ate a PLSA model. Once the latent variables zf εZ = {z1, z2, ..., zk} are identi-
fied, services can be described as a multinomial probability distribution P (zf |di)
where di is the service description (or document) describing service i. The repre-
sentation of a service with these latent variables reflects the likelihood that the
service belongs to certain concept groups [8].

To construct a PLSA model we first require to look at the joint proability
of an observed pair. The joint probability of an observed pair P (di, wj) is given
by:

P (di, wj) = P (di)P (wj |di) (7)

where:

P (wj |di) = P (di)P (wj |di)
k∑

f=1

P (zf |di)P (wj |zf) (8)

assuming that a document and a word are conditionally independent given
the latent factor.

This model indirectly associates the words wjεW = {w1, w2, ..., wv} to their
corresponding documents by introducing an intermediate layer of latent factors
zf εZ = {z1, z2, ..., zk}. Thus we are getting dimensionality reduction by mapping
a high word-document matrix P (d,w) into a lower k-dimension latent semantic
space [8]. By substituting equation 8 in equation 7, we obtain:

P (d,w) =
k∑

f=1

P (zf) P (d|zf) P (w|zf) (9)

The parameters P (z), P (d|z), and P (w|z) can be found using a model fitting
technique such as the Expectation Maximization (EM) algorithm as described
in [4]. Once the algorithm is trained and the parameters are found, any new
document can be folded into the model [8] using:

P (zf |dnew) =
P (dnew|zf) · P (zf)∑k

j=1 P (dnew|zj)
(10)

In our work, service descriptions are treated as documents and these textual
and functional descriptions are used to construct the PLSA model. The details
of the approach is discussed in Section 3.

2.6 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation is another machine-learning technique which uses
a generative probabilistic model for collections of discrete data [1]. LDA intro-
duces a Dirichlet prior on the document-topic distribution in order to simplify
the problem of statistical inference [16]. The principal of LDA is the same as
that of PLSA: mapping high-dimensional count vectors to a lower dimensional
representation in latent semantic space.

Using the same notation described in PLSA, with LDA the probability of the
ith word occuring in a given document is:

P (wi) =
k∑

f=1

P (wi|zi = f)P (zi = f) (11)

where zi is a latent factor (or topic) from which the ith word was drawn,
P (zi = f) is the probability of topic f being the topic from which wi was drawn,
and P (wi|zi = f) is the probability of having word wi given the fth topic.

The generative model of LDA is obtained by letting:

Φ(j) = P (w|z = f) (12)

and

Θ(d) = P (z) (13)

Instead of estimating P (d|z) and P (w|z) as in PLSA, the LDA generative
model estimates Φ, Θ, and z. Different methods can be used to train the algo-
rithm and estimate these parameters Blei et al. [1] use variational inference with
EM algorithm. Wang et al. [16] use a method based on Gibbs Sampling which
was proposed in [3] and [15].

3 A Probabilistic Approach for Service Clustering

Classical service clustering algorithms use proximity measures to calculate the
similarity between services and group similar services together. Our approach
applies probabilistic machine-learning techniques to extract latent-factors from
service descriptions and then uses the latent-factors to group the services into
clusters. This approach gives us a number of advantages over classical clustering

algorithms. First, the dimensionality of the model is reduced as every service
can be described in terms of a small number of latent factors rather than a
large number of concepts. Consequently, searching for a service inside a cluster
can be performed by searching for matching latent factors rather than matching
the text describing the service to a set of key words extracted from the user
query. Second, the algorithm is scalable and can be applied to large repositories
because only a small portion of the data set is required to train the algorithm.
The rest of the service descriptions and any other new service published to the
repository can be folded-in and assigned to a cluster very easily without high
computational requirements.

We use OWL-S as the basis of our model and all the service descriptions pub-
lished to the repository are in OWL-S format. OWL-S provides rich machine-
readable semantics which make it easier to define the different components of a
service that facilitate the feature extraction stage for vector space modelling. The
rich semantics of OWL-S make it also possible to implement logic based tech-
niques for service matching and ranking; however the use of such techniques is
beyond the scope of the current paper. In the current work, we focus on the tex-
tual descriptions and the functional descriptions contained in an OWL-S service
representations. The two categories of features (i.e. service profile and service
model) are extracted separately and stored in separate vector space models.

The OWL-S service profile contains a textual description of service opera-
tions. These textual descriptions together with the title of the service are ex-
tracted and used to build the vector space model. All punctuation marks are
removed from the text and words merged together with a capital letter in be-
tween such as “TaxCalculator“ are separated back to two different words. For
example, “TaxCalculator“ becomes “‘tax calculator“. The Stanford POS Tagger
is then used to eliminate all the stop-words and only words tagged as nouns,
verbs, and adjectives are retained. Once the text is processed, the vector space
model describing each service as a vector of word frequencies is calculated using
the TF/IDF give in equation 1.

The funtional descriptions in OWL-S consist of the properties hasInput, ha-
sOutput, hasParameter, hasPrecondition, and hasResult found in the service
model. The service model points to a process which in turn defines the WSDL
message-map types needed to interact with the service. All these features are ex-
tracted from the OWL-S descriptions using a reasoner. In order to make the fea-
tures fit in the vector space model, the property name and the type are appended
together to produce a new term that is used as a ’word’ in constructing the vec-
tor space model. For example “hasInput Book“ becomes “hasInput Book“. This
way, a service in which Book is defined as input will be distinguished from a
service in which Book is defined as output. TF/IDF is then used to analyse
constructed ’words’ to create the vector space model for functional attributes.

PLSA is implemented using the PennAspect8 model which uses maximum
likelihood to compute the three parameters: P (w|z), P (d|z), and P (z). Half of
the the dataset is used to train the algorithm and the other half is used for val-

8 http://www.cis.upenn.edu/ ungar/Datamining/software dist/PennAspect/index.html

idation in order to prevent overfitting [16]. Once the parameters are calculated,
new services published to the repository can be folded-in as proposed in [8] by
using the following.

P (zf |dnew) =
P (dnew|zf) · P (z)∑k

j=1 P (dnew|zj)
=

P (dnew|w) · P (w|zf) · P (z)∑k
j=1 P (dnew|zj)

(14)

This equation can be computed for each latent factor zf εZ = {z1, z2, ..., zk}
with respect to every new service dnew thus obtaining the probability of dnew

being described by each of the latent variables P (z|dnew). The service dnew can
be assigned to latent factor zf having the highest probability given a service
dnew [8] thus efficiently clustering each service.

We have implemented the LDA model using LingPipe9 toolkit for processing
text. This toolkit uses Gibbs sampling to train the algorithm and to obtain the
parameter P (d|z). After training the algorithm, new services can be folded in
by using Gibbs sampling with fixed topic-word probabilities and sampling the
assignments of words to topics in the new service [16].

4 Evaluation of Clusters

The Purity of clusters is used as a measure of evaluating the accuracy of a clus-
tering technique [9], [8]. If the pool of services used to evaluate the algorithm
were originally organised in a set of classes c = {c1, c2, ..., im}, then for clus-
ters generated by the algorithm z = {z1, z2, ..., zk} the purity of a clustering
algorithm can be computed as:

Purity =
1
n

k∑

f=1

maxc

{
nc

f

}
(15)

where n is the total number of services and nc
f is the number of services in

cluster zf belonging to class c while c varies from 1 to m.
It is easy to obtain a high value of cluster purity if the data set is clustered

into a large number of clusters. If each cluster is very small, the likelihood of
having a high percentage of the cluster belonging to one known class could be
very high (especially in very short documents like service descriptions). Therefore
in order for the purity measurement to give a more accurate result, the number
of clusters generated should not be very big compared to the size of the dataset.

5 Results

In our experiment, we compared the accuracy of two probabilistic clustering
algorithms (PLSA and LDA) to that of two proximity measure based algorithms.

9 http://alias-i.com/lingpipe/

The dataset of service descriptions used in this experiment was obtained from
the OWL-S service retrieval test collection, OWLS-TC10. This dataset consists
of 1007 service descriptions defined in OWL-S form. Each service belongs to one
out of seven service categories named as: communication, economy, education,
food, medical, travel, and military. These categories are used as the base classes
to evaluate Purity of clusters after the clustering algorithms are tested.

Two experiments were conducted: one using only the OWL-S attributes con-
taining textual descriptions of the services, and another using only the OWL-S
attributes describing functional attributes. Agglomerative and a K-Means clus-
tering algorithm were also used to compare the performance of PLSA and LDA
to proximity based clustering. The dataset was clustered with each algorithm
starting with five clusters and increasing in steps of five up to fifty clusters. The
Purity of clusters was computed for each algorithm at every step and the results
were compared. The purity of the individual clusters for clustering the data set
in seven clusters (same as the number of known classes) are shown in Table 2
and Table 3.

The results show that overall purity varies against number of clusters while
using textual descriptions from service profile. The results of clustering based on
profile descriptions are shown in Figure 3. The results for clustering based on
functional attributes are also shown in Figure 4. The Agglomerative algorithm
could not be used to cluster functional attributes because the dimensions of the
vectors describing functional attributes are smaller than those describing textual
data and consequently the algorithm could not converge to less than 65 clusters.

Table 2. Purity of clusters for 7 clusters based on Profile Descriptions.

Agglomerative K-Means PLSA LDA

Cluster 1 1.0000 0.8020 1.0000 0.8978
Cluster 2 1.0000 0.6585 0.5862 0.7574
Cluster 3 1.0000 0.6111 0.5556 0.6203
Cluster 4 0.7119 0.4324 0.5000 0.5971
Cluster 5 0.3974 0.3591 0.5000 0.5789
Cluster 6 0.3939 0.3509 0.3669 0.5244
Cluster 7 0.3600 0.3220 0.3385 0.4000

5.1 Discussion

The results show that LDA performs significantly better than PLSA. LDA also
takes relatively less time than all the other algorithms to train and create the
clusters. The Agglomerative and K-Means algorithm both perform better than
PLSA. The K-means algorithm depends on the random factor of where the
initial cluster centroids are generated and does not always converge in an optimal
10 http://www.semwebcentral.org/projects/owls-tc/

5 10 15 20 25 30 35 40 45 50
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

No. of Clusters

P
ur

ity

LDA
K−Means
Agglomerative
PLSA

Fig. 3. Purity of clusters for clustering based on Profile Descriptions of the Services.

5 10 15 20 25 30 35 40 45 50
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

No. of Clusters

P
ur

ity

LDA
K−Means
PLSA

Fig. 4. Purity of clusters for clustering based on the Functional Attributes of the
Services.

Table 3. Purity of clusters for 7 clusters based on Functional Attributes.

K-Means PLSA LDA

Cluster 1 0.8883 1.0000 0.8397
Cluster 2 0.6299 0.6243 0.6552
Cluster 3 0.6051 0.5000 0.5677
Cluster 4 0.5455 0.4441 0.5603
Cluster 5 0.4321 0.4000 0.4804
Cluster 6 0.4108 0.3333 0.4237
Cluster 7 0.2976 0.2488 0.3624

way. K-means algorithm is also very slow and computationally expensive; this
makes it unsuitable for large repositories. As it can be seen from Figure3 and
Figure 4, LDA performs better than the other algorithms. This makes it an ideal
solution for clustering services in large repositories. The low purity results for
PLSA are due to limited number of concepts used for training the model. Service
description are similar to short documents in this context. Thus PLSA is not able
to converge to a high accuracy using these limited concepts. Extracting latent
factors from a corpus of service descriptions also gives us the basis to construct
more efficient service discovery and ranking mechanisms.

An important aspect of this work, also based on OWL-S design, are the
semantics. Although in the current work we treat all the descriptions and at-
tributes as text, semantic relations can be exploited to enhance the discovery
and recommendation result based on the constructed clusters. Some of these
aspects are described in future work in Section 6.

6 Conclusions and Future Work

This paper proposes a probabilistic method to create two seperate clustering
schemes; one based on profile descriptions of the services and the other based on
the functional attributes. This enables to search services based on classic text
queries and/or using more specific functional queries. The latter can be very
useful for service personalisation and service composition where the functional
attributes of the services are of great importance.

Future work will focus on developing a query mechanism based on latent
factors rather than matching key words in a query to the service descriptions’
text. This kind of service clustering also makes it easier to recommend services
since similar services are grouped in the same cluster. It is important to note that
although this work was focused on OWL-S service descriptions, our approach can
be applied to other service description models such as WSMO and this will also
be investigated in future work. The probabilistic methods used in this paper (i.e.
LDA and PLSA) can be trained using a small percentage of the whole dataset,
the rest of the service descriptions can be folded into the model as described in
Section 3. This makes both algorithms very scalable to large service repositories.
The semantics of service descriptions will be also used for further enhancement

of clustering results. The reasoning mechanisms will be also incorporated in
the recommendation and discovery methods to provide more relevant results to
service consumers.

Acknowledgment

This paper describes work undertaken in the context of the m:Ciudad project,
m:Ciudad - A metropolis of ubiquitous services (http://www.mciudad-fp7.org/).
m:Ciudad is a medium-scale focused research project supported by the European
7th Framework Programme, contract number: 215007. The authors would like
to thank Dr. Wei Wang from the University of Nottingham Malaysia Campus
for his comments and sugesstions regarding probablistic models.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

2. Charlton, P., Ribiere, M.: Rich service description for a smarter lifestyle. In: AA-
MAS ’03: Proceedings of the second international joint conference on Autonomous
agents and multiagent systems. pp. 512–519. ACM, New York, NY, USA (2003)

3. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National
Academy of Sciences 101(Suppl. 1), 5228–5235 (April 2004)

4. Hofmann, T.: Probabilistic latent semantic analysis. In: Proc. of Uncertainty in
Artificial Intelligence, UAI99. pp. 289–296 (1999)

5. Hofmann, T., Puzicha, J., Jordan, M.I.: Learning from dyadic data. In: Proceedings
of the 1998 conference on Advances in neural information processing systems II.
pp. 466–472. MIT Press, Cambridge, MA, USA (1999)

6. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264–323 (1999)

7. Liu, C., Peng, Y., Chen, J.: Web services description ontology-based service dis-
covery model. In: WI ’06: Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence. pp. 633–636. IEEE Computer Society, Washing-
ton, DC, USA (2006)

8. Ma, J., Zhang, Y., He, J.: Efficiently finding web services using a clustering seman-
tic approach. In: CSSSIA ’08: Proceedings of the 2008 international workshop on
Context enabled source and service selection, integration and adaptation. pp. 1–8.
ACM, New York, NY, USA (2008)

9. Mandhani, B., Joshi, S., Kummamuru, K.: A matrix density based algorithm to
hierarchically co-cluster documents and words. In: WWW ’03: Proceedings of the
12th international conference on World Wide Web. pp. 511–518. ACM, New York,
NY, USA (2003)

10. Nayak, R., Lee, B.: Web service discovery with additional semantics and clustering.
In: WI ’07: Proceedings of the IEEE/WIC/ACM International Conference on Web
Intelligence. pp. 555–558. IEEE Computer Society, Washington, DC, USA (2007)

11. Platzer, C., Rosenberg, F., Dustdar, S.: Web service clustering using multidimen-
sional angles as proximity measures. ACM Trans. Internet Technol. 9(3), 1–26
(2009)

12. Rui, X., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural
Networks 16(3), 645–678 (2005)

13. Salton, G.: Automatic text processing: the transformation, analysis, and retrieval of
information by computer. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (1989)

14. Segev, A., Toch, E.: Context-based matching and ranking of web services for com-
position. IEEE Transactions on Services Computing 99(PrePrints), 210–222 (2009)

15. Steyvers, M., Griffiths, T.: Latent Semantic Analysis: A Road to Meaning, chap.
Probabilistic topic models. Laurence Erlbaum (2007)

16. Wei, W., Barnaghi, P., Bargiela, A.: Probabilistic topic models for learning termi-
nological ontologies. IEEE Transactions on Knowledge and Data Engineering 22,
1028–1040 (2010)

