
Comprehensive service semantics and light-weight

Linked Services: towards an integrated approach

Stefan Dietze, Neil Benn, Hong Qing Yu, Carlos Pedrinaci,

Bassem Makni, Dong Liu, Dave Lambert, John Domingue

Knowledge Media Institute, The Open University, MK7 6AA, Milton Keynes, UK

{s.dietze, n.j.l.benn, h.q.yu, c.pedrinaci, b.makni, d.liu, d.j.lambert, j.b.domingue}@open.ac.uk

Abstract. Semantics are used to mark up a wide variety of data-centric Web

resources but, are not used in significant numbers to annotate online services—

that is despite considerable research dedicated to Semantic Web Services

(SWS). This is partially due to the complexity of comprehensive SWS models

aiming at automation of service-oriented tasks such as discovery, composition,

and execution. This has led to the emergence of a new approach dubbed Linked

Services which is based on simplified service models that are easier to populate

and interpret and accessible even to non-experts. However, such Minimal

Service Models so far do not cover all execution-related aspects of service

automation and merely aim at enabling more comprehensive service search and

clustering. Thus, in this paper, we describe our approach of combining the

strengths of both distinct approaches to modeling Semantic Web Services –

“lightweight” Linked Services and “heavyweight” SWS automation – into a

coherent SWS framework. In addition, an implementation of our approach

based on existing SWS tools together with a proof-of-concept prototype used

within the EU project NoTube is presented.

Keywords: Semantic Web Services, Linked Services, Linked Data, IPTV.

1 Introduction

The past decade has seen a wide range of research efforts in the area of Semantic Web

Services (SWS), mainly aiming at the automation of Web service-related tasks such

as discovery, orchestration or mediation via broker-based approaches. Building on

formal service semantics, several conceptual models, such as OWL-S [14] and

WSMO [9], and also standards such as SAWSDL [18] have been proposed which aim

at formalizing semantic service descriptions usually covering aspects such as service

capabilities, interfaces and non-functional properties. Besides, a considerable research

community evolved around these SWS frameworks, providing, for instance, related

annotation and execution tools [7].

While semantics are used to mark up a wide variety of data-centric resources on

the Web, that does not apply to online services in significant numbers. The reasons

for this are two-fold. Firstly, SWS research has for the most part targeted WSDL [22]

or SOAP-based [21] Web services, which are not prevalent on the Web [4]. Secondly,

due to the inherent complexity required to fully capture computational functionality,

creating SWS descriptions has represented an important knowledge acquisition

bottleneck and has required the use of rich knowledge representation languages and

complex reasoners. There exists an inherent conflict between the need to capture

comprehensive and meaningful service semantics – to allow reasoning-based

automation of any sort – and the requirement to keep the costs for providing services

descriptions low in order to simplify the modeling process and to ensure that efficient

and scalable solutions can be implemented [17]. Hence, despite considerable amount

of research dedicated to the SWS vision and the existence of a range of SWS-related

projects, tools and specifications, so far there has been little take up of SWS

technology within non-academic environments.

The prevalent lack of impact of SWS technology is particularly concerning since

Web services – nowadays including a range of often more light-weight technologies

beyond the WSDL/SOAP approach, such as RESTful services, HTTP GET-style

requests or XML-feeds – are in widespread use throughout the Web where

applications use distributed requests to combine and mash-up data from a variety of

open data sources. Hence, the challenges SWS attempted to tackle are of even more

crucial importance for today’s highly distributed Web applications. These issues have

led to the emergence of more simplified SWS approaches to which we shall refer here

as “lightweight”, such as WSMO-Lite [19] or the Micro-WSMO/hRESTs [10]

approach which replace “heavyweight” service semantics with less comprehensive

and less costly to produce service models that are represented in RDF(S), and hence,

comply with the infrastructure of the growing Semantic Web [2]. Analogous to the

Linked (Open) Data (LOD) term [3], this approach was recently dubbed as the Linked

Service approach [17]. Due to the fact that such service annotations are much easier to

produce and can be populated with references to widely established LOD

vocabularies, they address a much wider audience and allow even non-SWS experts

to describe and annotate services. However, while those models are easier to produce

[4], they merely aim at enabling structured, semantics-enabled search by humans or

automated service clustering. More expressive solutions are required to achieve

greater levels of automation, for instance, dealing with matching service requests with

extensive capability representations of available services, or with handling of data-

level mismatches when executing a set of services in an orchestrated manner.

Therefore, here, we aim to combine the strengths of both distinctive SWS

approaches – lightweight Linked Services and more heavyweight broker-based SWS

automation – into a coherent SWS framework. By integrating collaborative and user-

driven Web-scale service annotations with comprehensive SWS specifications, we

benefit from both low cost for providing annotations and a high level of automation.

This also has the benefit of enabling a range of matchmaking scenarios (from user-

driven keyword matching to automated capability matchmaking).

Section 2 introduces work related to our research. Section 3 gives an overview of

our approach and describes the approach and tools that were developed to support our

two-stage approach, while Section 4 describes the deployment and evaluation of our

work within in an EU research project.

2 Related work & background

The landscape of SWS is characterized by a number of conceptual models that,

despite a number of common characteristics, remain essentially incompatible due to

the different representation languages and expressivity utilized as well as because of

conceptual differences. The main conceptual frameworks and specifications devised

thus far include for instance WSMO [20], OWL-S [14]. SAWSDL [18], which in turn

derives from WSDL-S [18]. The vast majority of the SWS initiatives were built upon

the enrichment of WSDL Web services with semantics. It is only recently that

researchers have started focusing on Web APIs and RESTful services. The main

outputs of this recent research are SA-REST [18] and MicroWSMO [12]

Over the last few years, a significant portion of research on the SW has been

devoted to creating what is referred to as LOD [3] which is based upon a set of

principles, including the usage of HTTP URIs to provide information and allow

access based on RDF and SPARQL. Since these principles were outlined, there has

been a large uptake, most notably through DBpedia [1] and others that have produced

a vast amount of linked datasets. While the great potential of this massive data space

still remains largely unexploited, service-oriented computing has been argued to be a

suitable approach to supporting the construction of advanced applications based on

linked data [16].

2.1. Lightweight service annotation: the iServe Linked Services approach

In order to support annotation of a variety of services, such as WSDL services as well

as REST APIs, the EC-funded project SOA4ALL1, has developed iServe2 a novel and

open platform for publishing semantic annotations of services based on a direct

application of linked data principles [17]. iServe supports publishing service

annotations as linked data—Linked Services—expressed in terms of a simple

conceptual model that is suitable for both human and machine consumption and

abstracts from existing heterogeneity around service kinds and annotation formalisms.

In particular iServe provides:

• Import of service annotations in a range of formalisms (e.g., SAWSDL, WSMO-

Lite, MicroWSMO, OWL-S) covering both WSDL services and Web APIs;

• Means for publishing semantic annotations of services which are automatically

assigned a resolvable HTTP URI;

• Support for content negotiation so that service annotations can be returned in plain

HTML or in RDF for direct machine consumption;

• SPARQL endpoint allowing querying over the services annotations;

• REST API to allow remote applications to consume and provide annotations.

• Support for linking service annotations to existing vocabularies on the Web.

In order to cater for interoperability, iServe uses what can be considered the

maximum common denominator between existing SWS formalisms which we refer to

1 http://www.soa4all.eu/
2 http://iserve.kmi.open.ac.uk

as the Minimal Service Model (MSM). The MSM, first introduced together with

WSMO-Lite and hRESTS [19], is thus a simple RDF(S) ontology able to capture

(part of) the semantics of both Web services and Web APIs in a common model.

MSM is extensible to benefit from the added expressivity of other formalisms. The

MSM, denoted with the 'msm' namespace in Fig. 1, defines Services as having a

number of Operations each of which have an Input, Output MessageContent, and

Faults. In turn, a MessageContent may be composed of MessageParts which may be

mandatory or optional. iServe additionally uses the SAWSDL, WSMO-Lite and

hRESTS vocabularies. The SAWSDL vocabulary captures in RDF the three main

kinds of annotations over WSDL and XML Schema, including modelReference,

liftingSchemaMapping and loweringSchemaMapping that SAWSDL supports.

WSMO-Lite builds upon SAWSDL by extending it with a model specifying the

semantics of the particular service annotations. It provides a simple RDFS ontology

together with a methodology for expressing functional and non-functional semantics,

and an information model for WSDL services based on SAWSDL’s modelReference

hooks. The hRESTS vocabulary extends the MSM with specific attributes for

operations so as to allow modeling additional details necessary for Web APIs.

Fig. 1. iServe conceptual model for services – The Minimal Service Model and WSMO-Lite.

In order to support users in creating semantic annotations for services two editors

have been developed: SWEET [12] (SemanticWeb sErvices Editing Tool) and

SOWER (SWEET is nOt a Wsdl EditoR), which support users in annotating Web

APIs and WSDL services respectively. However, SWEET and SOWER build on the

assumption that either HTML documentation of services/APIs (SWEET) or WSDL

files (SOWER) are available as starting point for annotation. In addition, while the

iServe approach enables uptake of SWS technology by a wider audience, the

automation and matchmaking scenarios which it facilitates are actually limited. The

reason for that being that the MSM deliberately excludes execution aspects for the

sake of simplicity and the lack of a commonly prescribed capability representation

model.

2.2. Automated services brokerage: the IRS-III framework

IRS-III3 [7] is a SWS execution environment which acts as a service broker –

mediating between the goals of a client and relevant services that are deployed on the

Web – striving for a high level of service automation. IRS-III adopts the WSMO

conceptual model of services. The ultimate aim of the WSMO model of Web services

is to be able to provide a well-defined semantics, which can then be interpreted by a

reasoner to enable automatic discovery, selection, composition, mediation, execution,

and monitoring of services [10]. As opposed to MSM, IRS-III directly covers

execution-related aspects.

The WSMO conceptual model of services consists of the following core elements:

goal, mediator, and Web service. These are described in a formal representation

language, for instance, OCML [15] in the case of IRS-III. The functionality offered

by a Web Service is captured by its capability description, which defines necessary

pre- and postconditions as well as underlying assumptions and effects of the service.

These are usually formalized as logical expressions. The means to interact with the

Web service is captured by its interface definition.

Given that IRS-III directly aims at automating service execution related aspects,

the interface covers choreography and orchestration descriptions. Choreography

addresses the communication between the IRS-III broker and a Web service, and is

described as so-called grounding. The IRS-III grounding mechanism supports REST-

based, SOAP-based, and XML-RPC based services [11]. Grounding involves two

processes referred to as lifting and lowering. Lowering involves transforming input

parameters at the semantic level to data input to the service at the syntactic level.

Lifting involves the opposite transformation, i.e. transforming the data output from

the service at the syntactic level into an ontological object at the semantic level.

Orchestration addresses the problem of how to model functionality that is

composed of several Web services. At the semantic level the orchestration is

represented by a workflow model expressed in OCML, that describes the flow of

control between the Web services. The IRS-III orchestration model supports the main

control-flow primitives of sequence, selection, and repetition.

At runtime, IRS-III automatically discovers and invokes Web services suitable for

a given client request, formulated as a goal instance, by selecting suitable services and

executing these whilst adhering to any data, control flow and Web service invocation

constraints. In principle, selection is based on comparing the capability descriptions of

the request with the ones of the relevant SWS. Such matchmaking is currently

supported, for instance, via (a) comparison and evaluation of logical expressions used

in the capability descriptions, or (b) a hybrid approach [6] which combines similarity-

computation via vector representations of SWS instances with (a). The IRS-III

functionalities are exposed through a Java API4 (details in [7]), and an HTTP-based

3 http://technologies.kmi.open.ac.uk/irs - IRS: Internet Reasoning Service
4 http://technologies.kmi.open.ac.uk/irs/irs3docs/api/index.html

REST API, which applications use to interact with IRS-III.

3 Two-stage service annotation and reasoning

In order to tackle the challenges introduced in Section 1, we aim at combining the two

distinct SWS representation approaches

(R1) lightweight Linked Services (as facilitated by MSM), and

(R2) heavyweight SWS automation (as facilitated by WSMO).

R1: Light-weight Linked Services R2: Semantic Web Service Automation

request goals

Developers

annotate & reuse services

C1: referencing

Applications

Web Service Web Service Web Service Web Service Web Service

C2: transformation

Fig. 2. From lightweight service annotations to heavyweight SWS automation - overall

approach.

While these approaches currently co-exist without a well-defined relationship, we

propose two different bi-directional correlations, which are under investigation:

(C1) service model cross-referencing,

(C2) service model transformation and augmentation.

Under (C1), we subsume all kinds of references between models across (R1) and (R2)

as depicted in Fig. 2. For instance, a lightweight service annotation (MSM) could

point to a heavyweight WSMO description that models the same service more

exhaustively or vice versa. That would allow semantics to be exploited in (R1) as well

as (R2) for reasoning of different sorts, for instance, to perform some clustering or

filtering based on (R1) to reduce the amount of potentially interesting services for a

given query in (R2). In addition, (C2) considers the transformation between models

across (R1) and (R2), either manually or (semi-)automatically. Our current

implementation builds upon existing SWS research namely WSMO and WSMO-

Lite/MSM by integrating iServe and IRS-III. The remainder of this section describes

the two approaches - (C1) and (C2) - in more detail.

3.1. Services model cross-referencing

Service model cross-referencing involves the formal definition of relationships

between service models. The two main types of relationship are depicted in Figure 3.

msm:Service wsmo:Goal
used-by

0..* 0..*

msm:Service wsmo:Goal
describes

0..* 0..1

(a)

(b)
Fig. 3. Supported service model cross-referencing relationships.

(a) MSM instances referring to WSMO goal instances:

This involves specifying a link between an MSM instance and a corresponding

WSMO goal description. Links of this kind define that the respective goal

(wsmo:Goal) makes use of the service described by the respective msm:Service, i.e.

for instance, the goal is linked to the service and potentially allows its discovery and

execution as part of a more complex orchestration. Following that reference,

developers are able to query the iServe repository via SPARQL or its API to (i)

discover suitable services described via MSM, and then (ii) use a corresponding goal

invocation URI to execute the service via IRS-III execution facilities. However, one

assumption for such use cases is the existence of service models in both, iServe as

well as IRS-III, which describe the same underlying service.

(b) MSM instances describing WSMO goal instances:

An additional link between MSM (iServe) and WSMO (IRS-III) is established by

annotating the interface for achieving a particular goal (wsmo:Goal within IRS-III)

itself as a minimal service description (msm:Service) within iServe. This is feasible

and useful since WSMO goals within IRS-III are exposed via a REST-API and hence,

each goal constitutes a particular service itself, which makes use of one or more actual

Web services/APIs to provide a specific functionality. This has the benefit of allowing

developers to query the MSM knowledge base in order to keep track of and discover

WSMO goals. In that, complex functionalities – which might make use of a number

of services – can be exposed via IRS-III and then be annotated within iServe as

(higher level) services themselves.

3.2. Service model transformation and augmentation

Here, we consider the transformation and augmention of models across (R1) and

(R2), either manually or (semi-)automatically. This involves transforming service

descriptions based on one conceptual model of services (e.g. the MSM) into the other,

e.g., WSMO and vice versa.

0..1
msm:Service wsmo:Service

maps-to

0..1

Fig. 4.Transformation between service representations across both conceptual models.

As can be seen from the previous sections, there is some overlap between the

elements of a service description according to the MSM and the elements of a service

description according to the WSMO conceptual model. This applies in particular to

the service entity within both models. Here, we investigated the overlap between both

schemas in order to establish potential mapping rules. The following figure depicts

the core entities of WSMO and MSM, their relationships and their potential cross-

model mapping. Please note, that for the sake of simplification, we left aside the

WSMO elements goal and mediator, which have no expression in the MSM

whatsoever.

Fig. 5.MSM vs WSMO entities: relationships and mappings.

As depicted above, both models share a certain overlap, mainly relating to the core

concepts such as Ontology, Web Service and Non-Functional Parameter (Property)

and a number of properties which are equivalent. We foresee a bi-directional semi-

automated transformation strategy between WSMO and MSM consisting of the

following steps:

S1. Generating raw target model from source model.

S2. Semi-automatic augmentation of target model.

This transformation is making use of the mentioned model schema overlap and aims

at generating raw target models (e.g. a WSMO service instance) from a given source

model (e.g. a MSM service instance) as part of S1. S2 then aims at semi-automatically

enriching the generated service instance in order to create a fully target schema

compliant service instance.

3.3. Implementation: service annotation and integration via SmartLink

In order to tackle some of the issues mentioned above and to approach integration of

service models, a new services annotation and search tool was created, SmartLink

("SeMantic Annotation enviRonmenT for Linked services"). SmartLink allows

annotation of REST-ful services based on the MSM from scratch, that is, without any

pre-existing services documentation such as WSDL or HTML files, as assumed by

existing iServe annotation tools (Section 2.1). Besides, SmartLink exploits an

extension of the MSM schema including a number of additional non-functional

properties. MSM-schema properties are directly stored in iServe, while additional

properties are captured in a complementary RDF store based on OpenRDF Sesame5.

Due to these extensions, we refer in the following to our service RDF store as

iServe+. These non-functional properties are, for instance, contact person, developer

name, Quality of Service (QoS), development status, service license, and WSMO goal

reference. The latter property directly contributes to facilitate our vision of allowing

MSM models to refer to existing WSMO goals which utilize the same service entity;

that is, it facilitates our model referencing vision (Section 3.1) between MSM and

WSMO models. In addition, by allowing developers to directly annotate existing

REST-ful services and APIs, SmartLink directly provides another contribution to

enable our service model integration vision (Section 3.1) based on allowing the

annotation of WSMO goal requests – which in fact are REST-ful services themselves

– as MSM service instances.

SmartLink currently provides mechanisms which enable the export of particular

(MSM) service instances as RDF or human-readable HTML. In order to facilitate

service model transformation and augmentation between MSM and WSMO as

proposed in Section 3.2, current research deals with the establishment of an export

mechanism of MSM service models as WSMO instances. While current

implementation work is concerned with adding corresponding export facilities to

SmartLink, model transformation is just enabled on a manual basis at the moment.

4 Case study: two-fold service annotation within NoTube

This section describes a first application of our approach in the context of the NoTube

project6 where the ultimate goal is to develop a network of services, connected

through the use of semantics, to personalize consumption of digital (IP)TV content.

4.1. NoTube challenges

In order to illustrate the challenges with respect to service-related tasks, we describe

one of the main use cases driven by the TV broadcast industry partners within the

NoTube project – namely the requirement to provide personalized content and

metadata delivery to users. Here, the basic feature is the matching of heterogeneous

users’ profiles, e.g. including interests, preferences and activity data, and user

contexts (e.g. current location and viewing device) to filter and deliver TV content

from a variety of sources. Addressing this particular use case in a service-oriented

manner involves selecting and orchestrating between numerous services that provide

various functionality, for instance, to aggregate users’ topic interests based on their

social networking activities, retrieve electronic program guide (EPG) data from

various sources, and provide recommendations based on a dedicated algorithm. To

support the highly service-oriented nature of the project, two major goals need to be

supported: (1) support of distributed developers with lightweight service annotations,

5 http://www.openrdf.org/
6 http://www.notube.tv

and (2) support of application automation with Semantic Web Service brokerage. To

support these goals, we deploy and adapt iServe and IRS-III as SWS frameworks.

4.2. Two-fold service semantics: implementation and integration within NoTube

Supporting lightweight NoTube service annotations via SmartLink and iServe
While the NoTube development takes place in a highly distributed setting and follows

service-oriented principles, NoTube developers need to be provided with the means to

document and search for appropriate services and data sources in order to build

applications and higher-level services.
<rdf:RDF xmlns:so="http://www.purl.org/vocabularies/service-ontology#"

xmlns:msm="http://cms-wg.sti2.org/ns/minimal-service-model"

xmlns:saw="http://www.w3.org/ns/sawsdl#”...>

<rdf:Description

rdf:about="http://lupedia.ontotext.com/lookup#text2rdfa">

 <so:hasContactPerson>Stefan Dietze</so:hasContactPerson>

 <so:hasGoal>GET-LUPEDIA-ENTITIES-GOAL</so:hasGoal>
 <msm:hasInput

 rdf:resource="http://lupedia.ontotext.com/lookup/input#lookupText"/>

 <msm:hasOutput

 rdf:resource="http://lupedia.ontotext.com/lookup/output#lookupResult"/>

 …

 <so:hasOneLiner>Lookup of free text in DBPedia based on entity recognition and

 DBPedia lookup.</so:hasOneLiner>

 <msm:hasOperation

 rdf:resource="http://lupedia.ontotext.com/lookup/#text2rdfa"/>

 <sa:modelReference rdf:resource="http://www.service-

 finder.eu/ontologies/ServiceCategories#Multimedia"/>

 <sa:modelReference rdf:resource="http://www.service-

 finder.eu/ontologies/ServiceCategories#Content"/>

 …

</rdf:Description>

…

<rdf:Description

rdf:about="http://lupedia.ontotext.com/lookup/output#lookupResult">

 <sa:modelReference rdf:resource="http://dbpedia.org/data/Entity"/>

</rdf:Description

…

</rdf:RDF>

Listing 1. RDF-excerpt of LUPedia service description based on MSM.

Hence, as an initial step, lightweight service semantics need to be generated, stored

and exposed in an explorable way to support the NoTube developers in finding and

reusing appropriate services. NoTube adopts the iServe environment by utilising the

iServe+ and SmartLink tools which cater for additional NoTube-specific requirements

(Section 3.3) which operates on top of the iServe RDF store. In addition, the general-

purpose service taxonomy used by iServe (ServiceFinder ontology7) was extended

with a service classification specific to the NoTube domain.

Listing 1 depicts an extract of the RDF description of a particular NoTube service

(LUPEDIA8) which performs a lookup of free text in DBPedia in order to allow

enrichment of EPG metadata with additional DBPedia entities. Besides the utilisation

7 http://www.service-finder.eu/ontologies/ServiceCategories
8 http://lupedia.ontotext.com/

of model references to external vocabularies – please note the highlighted reference

(<sa:modelReference>) at the bottom – the listing also highlights some of the

integrative elements which had been utilized within NoTube. For instance, the

<so:hasGoal>-property refers to a particular WSMO goal instance within IRS-III to

cater for our model referencing approach (Section 3.1).

The following screenshot depicts the query interface of SmartLink, which allows to

query for services. Service matchmaking is being achieved by matching a set of core

properties (input, output, keywords) or submitting more comprehensive SPARQL

queries.

Fig. 6. SmartLink service query interface as utilized in NoTube.

Support of service automation with Semantic Web Service brokerage
The IRS-III acts a middleware component for the NoTube project with the purpose of

automatically finding, combining and invoking relevant Web Services based on goals

specified by NoTube application developers. By annotating existing services via

WSMO, we abstract from the Web service implementations, ensuring a high level of

autonomy and flexibility. That is, service consumers treat goals as black boxes which

provide abstract functionalities achievable by IRS-III in terms of reasoning on

WSMO service instances to discover and orchestrate suitable services. Goals are

requested via the IRS-III REST API (Section 2.2), and, as such, each individual goal

achievement request constitutes a service itself.

The following code excerpt shows the WSMO description (in OCML) of the same

NoTube service (LUPedia) and a corresponding WSMO goal (GET-LUPEDIA-

ENTITIES-GOAL). This code has been obtained by manually applying our

transformation strategy from Section 3.2. Besides the I/O definitions (“has-text” and

“has-lupedia-entities”) the listing also shows the grounding definitions that

determine how the WSMO goal invocation instance is grounded to the underlying

Web service. The grounding consists of three key definitions (highlighted in the

Listing):

• The definition of the service listener (GET-LUPEDIA-ENTITIES-WS-PUBLISHER-

INFORMATION);

• The lowering definition defining the lowering from the semantic level

(WSMO/OCML instances) into the input parameters of the Web service (LOWER-

FOR-GET-LUPEDIA-ENTITIES-GOAL, not shown in full detail);

• The lifting definition which describes the lifting of service execution results into

WSMO/OCML instances (LIFT-FOR-GET-LUPEDIA-ENTITIES-GOAL, not shown in

full detail). The lifting defines a rule for parsing and handling the XML result of

the LUPedia service (see also [11])

(DEF-CLASS GET-LUPEDIA-ENTITIES-GOAL (GOAL)

 ((HAS-INPUT-ROLE :VALUE has-text)

 (HAS-OUTPUT-ROLE :VALUE has-lupedia-entities)

 (has-text :TYPE String)

 (has-lupedia-entities :TYPE List)))

…

(DEF-CLASS GET-LUPEDIA-ENTITIES-WS-PUBLISHER-INFORMATION (PUBLISHER-INFORMATION)

 ((HAS-WEB-SERVICE-HOST :VALUE "lupedia.ontotext.com")

 (HAS-WEB-SERVICE-LOCATION :VALUE "/lookup/text2xml")))

(DEF-RULE LOWER-FOR-GET-LUPEDIA-ENTITIES-GOAL

 …)

(DEF-RULE LIFT-FOR-GET-LUPEDIA-ENTITIES-GOAL

 …

 (extract-lupedia-entities-from-xml ?xml ?list-of-lupedia-entities)

 if

 (= ?list-of-lupedia-entities

 (setofall ?lupedia-entity

 (and

 (#_xml:rootElement ?xml ?rootEl)

 (#_xml:contents ?rootEl ?rootContents)

 (member ?lookupsEl ?rootContents)

 (#_xml:tag ?lookupsEl "lookups")

 (#_xml:contents ?lookupsEl ?lookupsContents)

 (member ?instanceURIEl ?lookupsContents)

 (#_xml:tag ?instanceURIEl "instanceUri")

 (#_xml:contents ?instanceURIEl (?instanceURIContents))

 (#_xml:value ?instanceURIContents ?instance-uri)

 (member ?classURIEl ?lookupsContents)

 (#_xml:tag ?classURIEl "instanceClass")

 (#_xml:contents ?classURIEl (?classURIContents))

 (#_xml:value ?classURIContents ?class-uri)

 (= ?lupedia-entity (#_LUPediaEntity

 ?instance-uri

 ?class-uri)))))))

Listing 2. WSMO/OCML-code of LUPedia service.

Integration aspects between MSM and WSMO within NoTube
Section 3 introduced two methods for integrating the MSM and WSMO approaches:

(a) Service model cross-referencing, and (b) Service model transformation. Within

NoTube, the service model cross-referencing approach as described in Section 3.1

was implemented in two ways: by including a property in the extended MSM schema

that provides a link to a corresponding WSMO goal description in the IRS-III

execution environment (as illustrated by Listing 1). Furthermore, each WSMO goal

invocation URI, that is the REST API goal achievement request which itself

represents a REST-ful service for invoking some particular functionality, is also

represented as a service following the extended MSM. That allows to expose higher

level functionalities – achieved by orchestrating a number of heterogeneous services –

as services themselves. Due to a lack of automated model transformation mechanisms

so far and the lack of use cases requiring models being used in both representations,

service instances had so far been transformed manually between WSMO and MSM.

For instance, the service description in Listing 1 was generated by following the

transformation procedure introduced in Section 3.2 to generate the service instance

illustrated by Listing 2.

4.3. Lessons learned

From our initial use case, a few observations have been made which will shape our

future efforts related to our two-fold services annotation and reasoning approach.

While it was fairly easy to gather lightweight service semantics within NoTube by

encouraging developers in the project to directly annotate their services via

SmartLink, the lack of service automation and execution support provided by our

extended MSM models, and, more importantly, the current tool support, made it

necessary to transform and augment these models to expose them via IRS-III, i.e. as

WSMO models within IRS-III, in order to perform more execution-oriented tasks.

While transformation currently was achieved manually, future work will be dedicated

to minimize this effort by striving for (semi-)automated transformation as sketched in

Section 3.2.

The recommendation of LOD model references via open APIs – SmartLink

currently uses WATSON9 – proved very useful to aid the population of our iServe+

store. However, due to the increasing number of LOD datasets – strongly differing in

terms of quality and usefulness – it might be necessary in the future to select

recommendations only based on a controlled subset of the LOD cloud in order to

reduce available choices.

With respect to service automation and brokerage, WSMO and IRS-III provide

certain facilities to define service orchestrations or to achieve automated service

selection [5]. However, while SWS frameworks strive for fully automated service

brokerage, current tools and technologies do not facilitate that vision and allow only a

very limited degree of actual automation. Still, the execution-oriented nature of

WSMO/IRS-III provided a number of benefits when dealing with highly

heterogeneous services. For instance, NoTube benefited from applying our rule-based

definition of lifting- and lowering mechanisms [11] to map between heterogeneous

service input and output schemas – e.g., based on JSON, RDF or XML – and the

knowledge-level representations of services, to allow some further reasoning-based

processing of data.

However, while our integrative approach proved useful in the sense that it

supported required services discovery and automation scenarios within NoTube,

maintaining services models following two distinct representation approaches turned

out to be a costly task triggering the need for further investigation.

5 Conclusions

We have described a two-stage approach to semantic service representation and

reasoning, aiming at a combination of the strengths of two distinctive methods –

lightweight Linked Services and more heavyweight broker-based SWS automation –

into a coherent SWS framework. The paper argued that by integrating collaborative

and user-driven Web-scale service annotations with comprehensive SWS

specifications, application developers benefit from both low cost for providing

annotations and a high level of automation. In that, while taking advantage of service

9 http://watson.kmi.open.ac.uk/WatsonWUI/

models produced by a large non-expert audience, both structured search for service

instances by humans as well as automation of service tasks is supported to some

extent.

In our vision, integration between lightweight service annotations and

comprehensive SWS specifications is achieved by different means of (a) model cross-

referencing and (b) model transformation and augmentation. Based on this vision we

proposed a consistent approach of integrating a set of SWS-related tools and service

models aiming at interoperability between lightweight service annotations and

heavyweight service specifications. Besides, an application of our approach within the

EU research project NoTube was presented as a proof-of-concept prototype.

While the current solution provides an overall framework for integrated service

models which support different levels of automation, future work needs to investigate

automated model transformation mechanisms in order to support the seamless

integration of instances across distinct service models schemas. However, it might be

argued, that there exists only an insufficient overlap between MSM and WSMO

which does not support a more automated means of transformation as such. Besides,

as mentioned above, maintaining services models following two distinct

representation paradigms leads to additional effort. As additional downside, we like to

point out that existing SWS brokerage technologies, such as IRS-III, support

automation only to a certain extent.

In these respects, our future work will also investigate on (a) different levels of

services automation, ranging from simple I/O matchmaking to capability

matchmaking and execution handling, (b) their feasibility and usefulness and (c)

possibilities to extend light-weight approaches, such as MSM, in order to support

higher levels of automation.

6 Acknowledgments

This work is partly funded by the European project NoTube. The authors would like

to thank the European Commission as well as all partners of the NoTube project for

their support.

7 References

[1] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. (2008).

Dbpedia: A nucleus for a web of open data. In Proceedings of 6th International Semantic

Web Conference, 2nd Asian Semantic Web Conference (ISWC+ASWC 2007), pages 722–

735.

[2] Berners-Lee, T., Hendler, J., Lassila, O (2001). "The Semantic Web". Scientific American

Magazine. retrieved March 29, 2009.

[3] Bizer, C., T. Heath, et al. (2009). "Linked data - The Story So Far." Special Issue on

Linked data, International Journal on Semantic Web and Information Systems (IJSWIS).

[4] Davies, J., Domingue, J., Pedrinaci, C., Fensel, D., Gonzalez-Cabero, R., Potter, M.,

Richardson, M., and Stincic, S. (2009). Towards the open service web. BT Technology

Journal, 26(2).

[5] Dietze, S., Benn, N., Domingue, J., Conconi, A., and Cattaneo, F.: "Interoperable

Multimedia Metadata through Similarity-based Semantic Web Service Discovery". In

Proceedings of 4th International Conference on Semantic and Digital Media Technologies

(SAMT '09), 2--4 December 2009, Graz, Austria.

[6] Dietze, S., Benn, N., Domingue, J., Conconi, A., and Cattaneo, F. (2009) Two-Fold

Semantic Web Service Matchmaking – Applying Ontology Mapping for Service

Discovery, 4th Asian Semantic Web Conference, Shanghai, China.

[7] Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta, A., Norton, B., Pedrinaci,

C.: “IRS-III: A broker-based approach to Semantic Web Services”, Jounal of Web

Semant, pp. 109-132. Elsevier Science Publishers B. V, 2008.

[8] Farrell, J., and Lausen, H. 2007. Semantic Annotations for WSDL and XML Schema.

http://www.w3.org/TR/sawsdl/. W3C Candidate Recommendation 26 January 2007.

[9] Fensel, D.; Lausen, H.; Polleres, A.; de Bruijn, J.; Stollberg,, M.; Roman, D.; and

Domingue, J. 2007. Enabling Semantic Web Services: The Web Service Modeling

Ontology. Springer.

[10] Kopecky, J.; Vitvar, T.; and Gomadam, K. 2008. MicroWSMO. Deliverable, Conceptual

Models for Services Working Group, URL: http://cms-

wg.sti2.org/TR/d12/v0.1/20090310/d12v01_20090310.pdf.

[11] Lambert, D., and Domingue, J. (2008) Grounding semantic web services with rules,

Workshop: Semantic Web Applications and Perspectives, Rome, Italy

[12] Maleshkova, M., Pedrinaci, C., and Domingue, J. (2009). Supporting the creation of

semantic restful service descriptions. In Workshop: Service Matchmaking and Resource

Retrieval in the Semantic Web (SMR2) at 8th International Semantic Web Conference.

[13] Maleshkova, M., Kopecky, J., and Pedrinaci, C. (2009). Adapting SAWSDL for semantic

annotations of restful services. In Workshop: Beyond SAWSDL at OnTheMove Federated

Conferences & Workshops.

[14] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,

S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and Sycara, K. (2004).

OWL-S: Semantic Markup for Web Services. Member submission, W3C. W3C Member

Submission 22 November 2004.

[15] Motta, E., Reusable Components For Knowledge Modelling: Case Studies in Parametric

Design Problem Solving. IOS Press, ISBN I 58603 003 5, 1999.

[16] Pedrinaci, C., Domingue, J., and Reto Krummenacher (2010) Services and the Web of

Data: An Unexploited Symbiosis, Workshop: Linked AI: AAAI Spring Symposium

"Linked data Meets Artificial Intelligence".

[17] Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., and Domingue, J.

(2010) iServe: a Linked Services Publishing Platform, Workshop: Ontology Repositories

and Editors for the Semantic Web at 7th Extended Semantic Web Conference.

[18] Sheth, A. P., Gomadam, K., and Ranabahu, A. (2008). Semantics enhanced services:

Meteor-s, SAWSDL and SA-REST. IEEE Data Eng. Bul l., 31(3):8–12.

[19] Vitvar, T.; Kopecky, J.; Viskova, J.; and Fensel, D. 2008. Wsmo-lite annotations for web

services. In Hauswirth, M.; Koubarakis, M.; and Bechhofer, S., eds., Proceedings of the

5th European SemanticWeb Conference, LNCS. Berlin, Heidelberg: Springer Verlag.

[20] WSMO Working Group (2004), D2v1.0: Web service Modeling Ontology (WSMO).

WSMO Working Draft, (2004). (http://www.wsmo.org/2004/d2/v1.0/).

[21] World Wide Web Consortium, W3C: Simple Object Access Protocol, SOAP, Version 1.2

Part 0: Primer, (2003). (http://www.w3.org/TR/soap12-part0/).

[22] World Wide Web Consortium, W3C: WSDL: Web services Description Language

(WSDL) 1.1, (2001). (http://www.w3.org/TR/2001/NOTE-wsdl20010315)

