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Abstract. We present a structured approach to SPARQL to SQL trans-
lation using AQL—a purpose-built intermediate query language. The
approach produces a single SQL query for a single SPARQL query. Us-
ing AQL, we revisit the semantic mismatch between SPARQL and SQL
and present query transformations on AQL presentation which enable
the correct translation of some difficult corner cases. By using explicit
expression type features in AQL, we also present type inference for ex-
pressions. We demonstrate the benefit of type inference as a basis for
semantically correct optimizations in translation.

1 Introduction

We present a flexible approach to translating SPARQL queries into SQL queries,
and discuss the properties of the approach based on our experimental implemen-
tation.

SPARQL is a query language for RDF graphs [14]. RDF data consists of
triples expressing relationships between nodes. RDF is semi-structured, in that
it does not imply a schema for storage. On one hand, this makes RDF a very
flexible mechanism and suitable for representing, e.g., web-related meta-data or
other arbitrarily structured information. On the other hand, making efficient
queries to access such data is not easy.

Even if native RDF stores are arguably more promising in the long run,
there exists a massive amount of data stored in SQL databases with associated
technology, infrastructure and know-how. This cannot be ignored in discussions
on large scale adoption. During the transition, it is attractive to consider storing
the RDF data in SQL databases parallel with non-RDF data in existing systems.
The existing data can then be provided as virtual RDF graphs to applications
[4], providing unified access to all data.

We address query translation from SPARQL into SQL that enables the use
of SQL databases with flexible storage schemas. Storing RDF data in an SQL
database is not trivial. For example, there is no single SQL layout for RDF data
that is the best in all cases [1, 13]. Because of this, a flexible approach where the
SQL layout can be tuned on per-application basis is preferable. Similarly, query
translation is not easy, as SQL and SPARQL differ significantly, and for some
corner cases, even getting semantically correct translation is hard [6]. Further,
producing SQL queries that can be executed efficiently by the SQL database is
difficult.
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Our approach to the translation is to produce a single SQL query for a
single SPARQL query without the need for result post processing, except the
presentation. Also, an important design goal has been to produce SQL with the
support for using native SQL data types where possible and avoiding subselects.
This approach minimizes the amount of communication round-trips and leaves
more optimization opportunities for the SQL back-end [11].

To obtain these goals, we devised a translation design based on an interme-
diate language that we call AQL (Abstract Query Language). As is typical for
intermediate languages, it has straightforward basic semantics and has the abil-
ity to attach information to support translation. Such properties make it easy to
find a translation from the source language into AQL and enable finding efficient
translations from AQL to the target language.

AQL targets only the query semantics for translation. It does not address
other issues, such as the representation of results like many concrete query lan-
guages do (including SPARQL and SQL). AQL has been designed especially in
the context of SPARQL to SQL translation. It is used to address the translation
of queries into semi-structured data into relational database queries in general.

AQL has language features that enable the use of type information to support
translations. Similar type-based static analysis and translation mechanisms have
been used for programming languages. We demonstrate how such a methodology
can be applied to support the translation of SPARQL queries into SQL queries.

We have created an experimental implementation of our translation approach
to test its properties. Our implementation, Type-ARQuE (Type-inferring AQL-
based Resource Query Engine) [15], is an optimizing SPARQL to SQL query
translator. It supports the most important SPARQL language features in order to
validate the design. Type-ARQuE is written in C++ and supports PostgreSQL
and MySQL back-ends with different database layout options.

Based on the implementation, we show how some demanding cases of RDF
queries can be translated into efficient SQL queries. Our demonstration cases
underline the challenges raised by alternate variable bindings, variable scoping
and determining the required value joins. Especially, we demonstrate how deter-
mining the required value joins can benefit from type inference.

We review some of the related background in Sec. 2. The translation design
is covered in Sec. 3, containing an overview of the AQL language and the steps
of the translation of SPARQL into SQL by using AQL as an intermediate. We
give special attention to the use of AQL type information, as type inference is
essential for our translation. In Sec. 4 we illustrate the translation with concrete
examples. We continue by discussing the properties of our translation (Sec. 5)
and end with brief conclusions (Sec. 6).

2 Background

SPARQL[14] is a query language for RDF graphs. It is an official W3C recom-
mendation. SPARQL has syntactic similarity to SQL but with some important
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differences. Whereas in SQL the query data set is specified by joining tables
(FROM and JOIN clauses), graph match patterns are used in SPARQL.

Relational databases are an important back-end option for storing RDF
graphs due to the wide user base of relational databases. A variety of SQL
layouts for storing RDF graphs have been suggested, but it seems that no single
layout is good for all purposes [1, 13].

Harris was one of the first to systematically consider SPARQL to SQL trans-
lation discussing various ways of organizing RDF triple stores and considers es-
pecially using SQL back-ends [8]. The opportunity for a number of optimizations
is acknowledged and the problem underlined as nontrivial.

To our knowledge, one of the most fundamental works on the problem domain
is presented in [6]. The technical report explains the SPARQL algebra with
discussion on how to map the SPARQL algebra to the traditional relational
algebra. In the report, difficult corner cases of translation are also analyzed.

A rather flexible translation approach is presented in [11]. They consider
SPARQL query translation into SQL queries by using a facet-based scheme that
is designed to handle filter expressions. They underline that it is desirable that
a single SPARQL query is translated into a single SQL statement, and that
comparison between results of different data types is useful. They also consider
optimization strategies to reduce complexity of translated queries.

Hartig and Heese considered optimization by query translation at SPARQL
algebraic level [9]. Their approach was based on translating the query in Jena
ARQ into a custom representation (SQGM) for optimization, and then translat-
ing back into ARQ.

Lately, Chebotko et al. presented a method for translating a SPARQL query
to a single SQL query with preservation of semantics [5]. Their method operates
on SPARQL algebraic level, and relies on SQL subqueries on data set declaration.

Left-to-right variable binding semantics are an alternative to bottom-up se-
mantics. This changes variable scoping, enabling queries containing filters in
nested graph groups that depend on variables bound by their parents. For a
discussion, see [6]. SPARQL utilizes currently the bottom-up semantics.

3 The Translator Design

The query translator in Type-ARQuE translates SPARQL queries into SQL.
The translator was designed with three main goals in mind. First, the translator
should produce a single SQL query for a single SPARQL query. Second, the type
support of the SQL back-end should be utilized. Finally, the translator should
not be fixed to some specific SQL schema and SQL dialect.

The translator is based on a multi-stage translation architecture [2], consist-
ing of front-end, intermediate, and back-end translation stages. The front-end
parses and translates SPARQL queries into intermediate queries (Sec. 3.2). The
intermediate query language, AQL (Sec. 3.1), is specifically designed to stand be-
tween SPARQL and SQL. The intermediate translation stage (Sec. 3.3) consists
of general query transformation and optimization passes (general preparation)
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as well as back-end specific transformation passes (specialization), and utilizes
type inference (Sec. 3.5). Finally, the translator back-end translates the AQL
query into SQL using a specific target dialect (Sec. 3.4).

A main design goal for AQL, the Abstract Query Language, was to be com-
pact with straightforward but high-level semantics. It is relational in nature. The
join expressions in AQL are extended from the traditional relational algebra to
cover both SPARQL and SQL join semantics.

3.1 The Abstract Query Language

AQL is an intermediate query language, representing the query semantics. In
other words, it does not cover representation of the query results, such as SE-
LECT vs. CONSTRUCT forms in SPARQL. Its intended use is machine-only.
We begin by introducing the language and then defining the query evaluation
constructs and semantics, and finally, we consider expressions in AQL.

An AQL query is represented by a query object, which contains the data
set declaration, sort orders, result slicing, and select expressions. The data set
declaration consists of a join tree, where each node contains a set of join names,
possible child nodes, and join criteria. The data set declaration specifies the data
that is used in the query process. The data is a list of query solutions, represented
by a 2-dimensional array, columns as solution components and rows as different
solutions. Order expressions specify the ordering of the data set. Result slicing
(LIMIT and OFFSET) selects a specific range of rows. Select expressions are
projections of a solution row to singular values, comparable with SQL select
expressions.

A node in a join tree represents joining one or more columns to the data set
using the attached join criteria. Child nodes represent nested joins. Each node
may be of type INNER or LEFT OUTER join. The columns are named by the
join names.

Joins manipulate the rows in the data set. Conceptually, this begins with
creating a temporary data set by taking all the triples in the store, and raising
the set to the Cartesian power of the number of triple names in the join node. The
temporary data set is then joined to the result data set by Cartesian product.
Then, the child nodes, if any, are joined. Finally, each join criterion is evaluated
per row. The row is eliminated unless it meets all criteria. It is possible that a row
that was originally in the result data set is eliminated if all new combinations fail
to meet the criteria. In that case, if the join is LEFT OUTER join, the original
row is retained and nulls are inserted to new columns.

There are differences in the join processes between the relational algebra and
AQL, namely, in the order of operations. In the relational algebra, the data set
is created by processing the nested joins first. Joining a table (or a set of tables)
and evaluating the join condition is an atomic operation [7]. In AQL, a top-down
approach is used instead. The child joins are joined to the parent recursively,
and only after that the join criteria are processed. The AQL approach enables
referencing more columns in the join criteria than what is possible in the SQL
approach. In SQL, the child joins and parent may be referenced in the join
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criteria. In AQL, the parent (recursive) and every earlier node using in-order
join tree traversal may be used, in addition. This extension covers both the
SPARQL and SQL semantics.

We now define the AQL and its evaluation semantics, borrowing notation
used in SPARQL evaluation definition [14] where applicable.

The query object is defined as follows:

(aql-query join-name-group

join*

(criterion <expr>)

sort-expr*

(result-max-rows <integer>)?

(result-row-offset <integer>)?

select-expr*

distinct?)

The parts are:

join-name-group — The join names for the root join node.
join* — Any number of join expressions.
criterion — The filter expression for the data set.
sort-expr — Any number of sort expressions defining the sequence for data set

enumeration.
result-max-rows, result-row-offset — Slice specifiers.
select-expr* — The select expressions.
distinct? — Optional result modifier.

A join expression represents joining the set of all triples in the store one or more
times into the data set. The join expression is defined as:

(join join-type join-name-group expr join*)

And the parts:

join-type — The join type, either INNER for inner join or LEFT for left outer
join.

join-name-group — The set of join names.
expr — The join condition expression.
join* — Any number of nested joins.

The aql-query object, join expressions and AQL query criteria form a join tree
which specifies the data set. The data set is a 2-dimensional array, consisting
of solutions as rows and triples as named columns. For the query result data
set definition, let T be the set of all triples in the store and I the identity for
Cartesian product (I is an empty array of 1 rows, 0 columns).

The data set for a join subtree is produced by function JoinNode(D0, n)
where the current data set is denoted as D0 and the root node of the subtree as
n. Return value denotes the data set after joining n to D0. The following steps
define the evaluation of JoinNode(D0, n):
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1. Join the Cartesian product specified by join name group of the node:
Dr ← D0 D1, where D1 = Tjn1 × · · ·× TjnN

2. Join children of n in left to right order into the data set D as:
Dr ←JoinNode(· · · (

JoinNode(JoinNode(D0 D1, n.child1), n.child2), · · · n.childN)
3. Apply filter:

Dr ← filter(Dr, n.expr)
4. If the join type of n is LEFT, add row d,ω into Dr for each row d removed

from D0 by the filter expression, where ω contains nulls to fill the join
columns.

5. Return Dr

The result data set D for the query is produced by JoinNode(I, aql-query).
Fig. 1 illustrates the result data set with query result.

After the result data set is formed, order expressions are used to sort the
data set. The first order expression is evaluated for each row and then the rows
are ordered so that the rows with smaller order value are enumerated first in
ascending order or vice versa in descending order. If two or more rows have the
same order value, the second order expression is used to determine the ordering
between these rows, and so on. The sort expressions are of form:

(sort ascending|descending <expression>)

Finally, select expressions are applied for each row in the sorted data set.
The set of select expressions for a row produces a result row. When the select
expressions are applied for each row in the data sequence, the result sequence is
produced. In AQL, select expressions are of form:

(select <column-label> <expression>)

After the result sequence is produced, if the distinct modifier is set, all dupli-
cate rows are eliminated.

The expressions in AQL are of three categories: typed literals, triple property
expressions, and function expressions. Function and property expressions are
assigned a set of possible types. The expression templates are below:

(literal <type> <value>)

(property <type-set> <join-name> subject|predicate|object)

(function <function-name> <type-set> <param-expr>*)

literal specifies a typed literal, such as 5 (int) or ’abc’ (string). property
specifies access to the subject, the predicate, or the object of a named triple in a
solution. type-set in property makes an assumption of the property type: the
type must belong to the assumed type set. function represents evaluation of a
function returning a value of a type belonging to the type set.
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t1 t2 t3 · · · tn

s p o s p o s p o s p o
row 1

· · ·

row 2

· · ·

row m

select1 select2 · · · selectl

row 1
row 2

· · ·

row m

Fig. 1. Illustration of a solution set (left-hand table) and the query result (right-hand
table) of an AQL query as a 2-dimensional arrays. Triple columns are added by in-order
traversal of join groups, one column and three sub-columns (subject, predicate, object)
per triple name. The rows are inserted and filtered by running the data set production
algorithm described in Sec. 3.1. Each row represents a single solution to the query.
Afterwards, the rows are ordered and sliced, and finally, the select expressions are
evaluated per solution row to produce the query result array.

3.2 SPARQL to Abstract Query Language

The translation into AQL is mostly straightforward. First, the SPARQL query
is parsed into an abstract syntax tree. After that, variable accesses are checked
to conform to bottom-up binding unless left-to-right semantics are enabled. In
bottom-up binding, variable may be used in FILTER expression if it is bound by
a triple match pattern in the same or a nested graph group. Then, the abstract
syntax tree is normalized by merging non-optional SPARQL graph groups with
their parents.

For each graph group an AQL join node is created and unique join names are
assigned to the triple match patterns in the graph group. Then the join names
are inserted into the respective AQL join groups. The graph group hierarchy is
naturally preserved in the AQL join group hierarchy.

Variable binding step addresses the mapping of SPARQL variable bindings
to AQL property and function expressions. The SPARQL semantics require that
variables are bound by the first matching triple match pattern. As non-optional
match patterns always bind a variable, that variable can be mapped to the
property of the triple join corresponding to the first non-optional match pat-
tern. However, optional match patterns introducing variables require a bit more
consideration.

Before a variable is encountered in a non-optional match pattern, the variable
may be bound by optional graph groups containing a match pattern mentioning
the variable. In this case, coalesce-expressions are used to select the first value-
binding triple match visible at point of access.

After the variables are bound to property expressions, join conditions are
constructed by triple match patterns. Literals in match patterns impose con-
straints to triple join properties. If a match pattern introduces a new variable,
no condition is rendered. If a variable is already introduced, it is required that
the property of the respective triple join is equal to the variable, if the variable
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was bound. When it is not certain that the variable is bound, additional not-null
conditions are added for non-optional match patterns. After translating match
pattern conditions, filter expressions are translated as additional join conditions.
Thus, match patterns and filters are unified.

Finally, selects and order expressions are translated. This completes the
SPARQL to AQL translation.

3.3 Translation Passes on Abstract Query Language

The translation passes prepare an AQL query for SQL translation. The process
is called lowering. Lowering consists of general preparation and specialization
parts. General preparation is a sequence of generic transformation passes which
simplify the AQL, and makes it easier to translate. Specialization part perform
back-end-specific transformations such as replacing AQL property expressions
with SQL access expressions for a specific layout. We list the passes in both
parts briefly below.

General preparation:

– Inner join merge — joins inner joins with parents to simplify the query.
– Logical expression normalization — moves not-expressions inwards using De

Morgan’s laws and fuses not-expressions with comparisons, e.g., ¬(a > b∧c =
d) → a ≤ b ∨ c �= d

– Operators to functions — transforms comparison, typecast, and logical op-
erators to equivalent function expressions.

– Type inference — infers possible types for expressions. Described in more
detail in Sec. 3.5.

– Empty type sets to nulls — replaces possible empty type sets with null
expressions. An expression with conflicting type requirements may only pro-
duce a null.

– Nested join flattening — transforms deep nested joins with many-levels-up
accesses to a less deep form. Exemplified in Fig. 4.

– Comparison optimization — transforms equality and non-equality value com-
parisons to reference comparisons.

– Function variant selection — chooses the most appropriate variants of poly-
morphic functions in expressions.

Specialization:

– Property value requirer — adds not-null conditions whenever property ex-
pression could produce null. Null can be produced if value table(s) must be
left-joined or typecast must be used to access value of a triple property.

– Property access resolver — rewrites property access expressions with lower-
level back-end-specific equivalents. In the back-end-specific accesses table
names, value and index columns are resolved and the required typecasts and
COALESCEs are added whenever needed.

– Expression optimization — simplifies various expressions and performs com-
mon subexpression elimination. Having an explicit clean-up pass simplifies
some of the previous passes.
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– Function variant selection — this pass is run again to ensure that all variants
of functions have been chosen after transformations.

– Typecast injection — inserts typecasts wherever needed in the expressions.
– Property access collection — collects all low-level property accesses. This is

used to determine which value-joins are required in the final SQL.

3.4 Translation to SQL

After an AQL query is lowered, the translation into SQL is straightforward. The
arrangement resembles code generation in compilers [3]. The AQL expressions
in selects, orders, join conditions, and the query criteria are translated into SQL
by traversing the expression trees.

The AQL join tree is then transformed into an SQL join tree with value joins
and join expressions attached. For multiple triple joins in AQL join group, cross
join is used in SQL. The SQL join tree is then serialized into string form.

Finally, all the translation results are inserted into an SQL query template.
This completes the SPARQL to SQL translation process.

3.5 Type Inference

In our approach, type inference for all expressions is performed in AQL after the
join tree and its expressions are normalized. The inferred information is used,
e.g., to optimize value accesses in complex SQL schemas.

We utilize equations on two levels to resolve the possible types for property
and function expressions. The lower-level equations infer the possible types in the
join conditions. The higher-level equations transfer the inferred type constraints
between join conditions in the join tree.

Throughout this section, p denotes the property, i.e., the triple component
(subject, predicate, or object), S is the finite set of all known types and Cn,p ⊂ S
is the set of the possible types of a property p and expression node n. For
example, Cn,t5.object = {string, int} specifies that the object of the named triple
t5 may only be of type string or int. n is the expression node (i.e., function,
literal or property expression) that scopes this constraint.

Type Inference on Join Condition Expressions. The normalized expres-
sion tree may contain function, property and literal expression nodes. Property
and literal expression nodes are always leaf nodes. The children of function nodes
represent function parameters.

For every expression node n, a set of possible expression types Rn ⊂ S and
a set of property type constraints Cn,p are assigned. Then, based on expression
node types, conditions to Rn and Cn,p between adjacent nodes are set, as:

– if n is a literal of type t: Rn = {t}, Cn,p = Cparent(n),p

– if n is a property expression p: Rn = Cn,p, Cn,p = Cparent(n),p
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AND

{t1.o:int}

�������������

�������������

= (int,int):boolean
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{t1.o:int}
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{t1.o:int}
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= (int,int):boolean
{t1.o:int,
t2.o:num}
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t1.o:int
{t1.o:int,
t2.o:num}

t2.o:num
{t1.o:int,
t2.o:num}

Fig. 2. Illustration of type inference for a simple expression. Using the inference pro-
cedure described in Sec. 3.5, the set of possible types (in braces {· · · }, ‘?’ represents
all possible types) are reduced by analyzing expression types and function signatures,
and propagating the sets using transfer functions. Property t1.o has been inferred as
integral type and t2.o as general numeric type.

– if n is an expression node for the function f and mi are the parameter nodes.
Then, Rn = Ff (Rm1 , Rm2 , . . .) where Ff maps the set of possible parame-
ter types to a set of possible return types. The constraint set propagation
depends on the type of the function f as follows. If f is
• or: Cn,p = Cparent(n),p ∩ (

�
i Cmi,p)

• not: Cn,p = Cparent(n),p

• any other function: Cn,p = Cparent(n),p ∩ (
�

i Cmi,p)

Expression type inference is illustrated in Fig. 2.

Constraint Propagation between Joins. The constraints are transferred
between the roots of join condition expressions, as the effective Boolean value
of the expression root determines whether the join contributes to the query
solution. In the join tree, the constraint transfer between any two nodes must
follow the following two simple rules:

1. Every inferred type constraint of node n applies to every child
node mi of n, i.e., Cmi,p ⊂ Cn,p. This is because the nested joins cannot
contribute to the solution if n is null, and therefore, we can assume that
inferred type restriction applies also to the nested joins without problems.
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2. Every inferred type constraint made in n for a property of a triple
defined by n or some of its children applies everywhere. This is
because the property value can be non-null only if n is not null.

Note that by rule 1, all constraints inferred for the root join apply everywhere.

Solving the Equations. We take a conservative approach by assuming initially
that objects of triples may be of any type. Subjects and predicates may only be
IRIs in RDF graphs. Then we exclude non-viable type alternatives, i.e., those
that cannot appear. The exclusion is performed by iterating the two steps below
until a fixed point is found. The steps correspond to the higher and lower level
type inference equations. As the sets of viable type alternative constraints are
initially finite and may only shrink, the fixed point is guaranteed to be reached.
The descriptions of exclusion steps:

1) Condition expression step. First, all function expressions are analyzed in pre-
order, separately for all join condition expressions. Based on parameter types
and constraints on the return type the union of the viable function variants
are computed. This may imply new constraints on function parameters, e.g.,
function a=abs(b) requires that b is numeric. If function parameters are prop-
erty expressions, the type set Cn,p of the property is shrunk to reflect function
parameter requirements.

After the constraint sets of properties are shrunk, they are propagated in
post-order to adjacent expression nodes using the transfer rules described in
Type Inference on Join Condition Expression above. Finally, every constraint
set is intersected by constraints in expression root node.

2) Constraint propagation step. After the possible type sets in join condition
expressions are shrunk, the sets are propagated between join conditions. This is
straightforward using the two rules in Constraint Propagation between Joins.

4 Translation Examples

In this section, we demonstrate some of the techniques utilized by our query com-
piler. Alternate binders demonstrates a translation where a variable may bound
by two alternate optional match patterns. Two levels up access demonstrates
query flattening in AQL. This is required when there is a reference to a variable
which is bound by a graph pattern residing two or more levels up in the join tree.
Expression type inference demonstrates how type inference is used to eliminate
superfluous joins to value tables in faceted storage layouts. The examples are
translated using Type-ARQuE using the PostgreSQL target. Alternate binders
and two levels up access are motivated by the corner cases discussed in [6].

In examples alternate binders and two levels up access, the triple graph is
stored in a single table, InlinedTriples, consisting of three columns for sub-
jects, predicates and objects. In expression type inference we use a central triple
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table, VI_Triples, which consists of three index columns. The columns refer
to value tables containing the actual property values, such as VI_Strings and
VI_BigStrings for string-typed values.

Alternate binders query (Fig. 3) has two optional graph patterns, both which
may bind variable d. We call this the alternate binders case. The variable deref-
erence expression depends on where d is accessed. In the first optional match,
we may assume that d is bound there. In the second match there are two alter-
natives: 1) the first match binds and the triple object must equal to this, or 2)
the first pattern did not match and equality comparison should be omitted. In
SELECT part, COALESCE-expression is used to select the binding expression.

Two levels up access example (Fig. 4) demonstrates working around the
“two-levels-up” variable access by transforming the join tree. The nested join
is translated as a sibling join with additional condition requiring that the former
parent must match. In the figure, the join tree of the AQL is displayed before
and after flattening. In this example, the extended left-to-right variable binding
semantics are assumed. The query is not proper for bottom-up semantics, as in
this case, the variable c is inaccessible in the filter.

In Expression type inference (Fig. 5) we demonstrate the use of type inference
to determine the required value joins when using a facet-based storage layout.
Without type inference, when dereferencing a variable, all value tables must be
joined which can be costly. Using type inference, the number of joins and the
complexity of respective coalesce expressions can often be reduced significantly.

5 Discussion

Our translation approach is somewhat different to the approach in popular
SPARQL-enabled RDF stores, such as Jena/SDB[10] and Sesame[12], in that
we use a purpose-built intermediate language in the translation. The use of an
intermediate language enables an approach for translation using relatively small
and straightforward passes.

AQL provides a new look into the problem of mismatching semantics between
SPARQL and SQL, especially when left-to-right variable binding semantics are
used. This is because AQL is more explicit than SPARQL algebra regarding
query evaluation, and AQL is less complex than SPARQL algebra in what comes
to the language features.

Contrary to SPARQL, AQL does not have query variables. In our approach,
variables are translated into triple property access expressions, which refer to
parts of the query solutions. Resolving variables to property access expressions
is fairly straightforward and eliminates tedious translation problems related to
variables altogether. Variables are especially difficult to translate directly into
SQL expressions, as they may be bound by different parts of SPARQL query.
We demonstrated this in the alternate binders case in Sec. 4.

When using the extended left-to-right variable binding, the “FILTER scope”
problem poses a difficult corner case for translation [6]. The naïve SPARQL to
SQL translation always fails, because in SQL, the variable bound by a graph
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SELECT ?a ?d
WHERE {

?a ?b ?c
OPTIONAL { ?a <http://test/surname> ?d }
OPTIONAL { ?a <http://test/lastname> ?d }

}

SELECT tri_1_1.subj_value AS c0,
COALESCE(tri_2_1.obj_value,tri_3_1.obj_value) AS c1

FROM InlinedTriples AS tri_1_1
LEFT JOIN InlinedTriples AS tri_2_1 ON

tri_2_1.subj_value=tri_1_1.subj_value AND
tri_2_1.pred_value=’http://test/surname’

LEFT JOIN InlinedTriples AS tri_3_1 ON
tri_3_1.subj_value=tri_1_1.subj_value AND
tri_3_1.pred_value=’http://test/lastname’ AND
(tri_2_1.obj_value IS NULL OR
tri_3_1.obj_value=tri_2_1.obj_value)

Fig. 3. Variable d is bound by the first matching optional graph pattern. Variable
dereference is translated as coalesce of alternate binders. In the latter optional graph
pattern, the case where the first graph pattern binds d is taken into account by inserting
additional null or equals condition.

pattern is not available in an optional join at a nesting distance of two or more
levels. In our approach, in these cases the join tree is flattened by a semantically
equivalent transformation, reducing the set of untranslatable queries. As a side
product of variable elimination and “FILTER scope” workaround, the “Nested
OPTIONALs” problem in [6] is also remedied.

Using the left-to-right semantics, there are queries that are structurally un-
translatable by our method. This class consists of queries where a parent graph
group refers to a variable in nested graph group with a two-levels-up access. We
present an archetype of this class, which we call the 2-up-1-down-access query:

SELECT ∗
WHERE { ?a ?b ?c

OPTIONAL { ?d ?e ?f
FILTER(?i=’abc’)
OPTIONAL { ?g ?h ?i

FILTER(?c=’def’) } } }

Within this class of queries, join tree flattening produces access expressions with
forward references in the join conditions. In SQL, this is illegal. However, we
believe that most of the practical queries do not belong to this class.

The data set construction semantics in AQL can be considered as a process
of self-joining the set of all triples in the store with join conditions instead of
applying triple match patterns. This unifies the handling of triple match patterns
and filters. This also enables a clean isolation of triple store layout from the rest
of the translation, as we can consider all the triples to reside in one virtual table,
and translate the accesses to the virtual triple table to concrete layout-specific
tables and columns.
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SELECT ?a ?d ?e ?g
WHERE { ?a ?b ?c
OPTIONAL { ?a ?d ?e

OPTIONAL { ?e ?f ?g FILTER (?c=45.1) } } }

(aql−query ("tri_1_1") ... # before flattening
(join left ("tri_2_1")

(function "builtin:comp−eq" (boolean)
(property (IRI) "tri_2_1" subject)
(property (IRI) "tri_1_1" subject))

(join left ("tri_3_1")
(function "builtin:and" (boolean)

(function "builtin:comp−eq" (boolean)
(property (IRI) "tri_3_1" subject)
(property (IRI) "tri_2_1" object))

(function "builtin:comp−eq" (boolean)
(property (double) "tri_1_1" object)
(literal double 45.1))) ...)

(aql−query ("tri_1_1") ... # after flattening
(join left ("tri_2_1")

(function "builtin:comp−eq" (boolean)
(property (IRI) "tri_2_1" subject)
(property (IRI) "tri_1_1" subject)))

(join left ("tri_3_1")
(and (function "builtin:and" (boolean)

(function "builtin:comp−eq" (boolean)
(property (IRI) "tri_3_1" subject)
(property (IRI) "tri_2_1" object))

(function "builtin:comp−eq" (boolean)
(property (double) "tri_1_1" object)
(literal double 45.1)))

(function "builtin:is−not−null" ANY
(property (reference) "tri_2_1" subject))))

...)

SELECT tri_1_1.subj_value AS c0, tri_2_1.pred_value AS c1,
tri_2_1.obj_value AS c2, tri_3_1.obj_value AS c3

FROM InlinedTriples AS tri_1_1
LEFT JOIN InlinedTriples AS tri_2_1 ON

tri_2_1.subj_value=tri_1_1.subj_value
LEFT JOIN InlinedTriples AS tri_3_1 ON

tri_3_1.subj_value=tri_2_1.obj_value AND
aqltosql_any_to_double(tri_1_1.obj_value)=45.1 AND
tri_2_1.subj_value IS NOT NULL

Fig. 4. The “two-levels-up” variable access in filter condition is flattened by one level
by a join tree transformation. The join tri_3_1 is moved down to the same level
with tri_2_1 with additional condition that tri_2_1 needs to be non-null. The orig-
inal semantics are retained but the query becomes translatable into valid SQL. Non-
interesting parts of the AQL queries are pruned away for brevity. This query requires
the extended left-to-right variable binding semantics.
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SELECT ?a ?c
WHERE { ?a ?b ?c. FILTER (?c=55 || ?c=’David’) }
ORDER BY (?c)

SELECT tri_1_1_subj_VC_IRIs.iri_value AS c0,
COALESCE(tri_1_1_obj_VC_Strings.str_value,

tri_1_1_obj_VC_BigStrings.text_value,
CAST(tri_1_1_obj_VC_Integers.int_value AS TEXT)) AS c1

FROM VC_Triples AS tri_1_1
LEFT JOIN VC_Strings AS tri_1_1_obj_VC_Strings ON

tri_1_1_obj_VC_Strings.id=tri_1_1.obj
LEFT JOIN VC_BigStrings AS tri_1_1_obj_VC_BigStrings ON

tri_1_1_obj_VC_BigStrings.id=tri_1_1.obj
LEFT JOIN VC_Integers AS tri_1_1_obj_VC_Integers ON

tri_1_1_obj_VC_Integers.id=tri_1_1.obj
INNER JOIN VC_IRIs AS tri_1_1_subj_VC_IRIs ON

tri_1_1_subj_VC_IRIs.id=tri_1_1.subj
WHERE

(tri_1_1_obj_VC_Integers.int_value=55 OR
COALESCE(tri_1_1_obj_VC_Strings.str_value,

tri_1_1_obj_VC_BigStrings.text_value)=’David’) AND
(tri_1_1_obj_VC_Strings.str_value IS NOT NULL OR
tri_1_1_obj_VC_BigStrings.text_value IS NOT NULL OR
tri_1_1_obj_VC_Integers.int_value IS NOT NULL)

ORDER BY COALESCE(tri_1_1_obj_VC_Strings.str_value,
tri_1_1_obj_VC_BigStrings.text_value,
CAST(tri_1_1_obj_VC_Integers.int_value AS TEXT)) ASC

Fig. 5. Type inference is especially useful with faceted storage layouts. This becomes
obvious when observing translation of variable c. It is inferred that c must be either
integer or string for any solution to the query. Therefore, only string and integer value
tables are required to be joined to obtain value for c. As variable a is used in subject,
it is inferred as IRI.

6 Conclusion

We have presented an approach for SPARQL to SQL translation. The translation
produces a single SQL query for a single SPARQL query, and does not rely on
SQL result post-processing, except in data presentation. This approach reduces
the amount of communication round-trips to the SQL server and allows the SQL
server do more optimizations.

The translation is structured into three stages (front-end, intermediate, back-
end) and the stages themselves are subdivided into self-contained passes. The
intermediate stage operates on a purpose-built intermediate language, AQL. Us-
ing AQL, we have presented a way to target the queries for different SQL layouts
for RDF data, and a strategy for query optimization.

As a basis for optimizations, we introduced type inference and provided an
algorithmic view on its implementation. The implementation relies only on the
constraints derived from the SPARQL query. Type inference is used to optimize
expressions and SQL accesses. Ontology-awareness would likely enhance type in-
ference in many practical scenarios, as, e.g., known predicate of a triple often con-
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strains type possibilities of the object. For triple with predicate foaf:homepage,
we would expect IRI as the object type, for instance.

Using the extended join semantics of AQL, we provided intermediate-level
query transformations for reducing the mismatch between SPARQL and SQL
join semantics. The transformations enable translation of the corner cases pre-
sented in [6]. However, there is still a class of SPARQL queries that remain
untranslatable by our approach, when the extended left-to-right variable bind-
ing semantics are used. Of this class, we presented a representative archetype.

To validate our design, we implemented Type-ARQuE, an experimental trans-
lator based on the presented design. The translator covers a representative subset
SPARQL and demonstrates the translation in detail.
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