
Learning Sentences and Assessments in

Probabilistic Description Logics

José Eduardo Ochoa Luna1, Kate Revoredo2, and Fabio Gagliardi Cozman1

1 Escola Politécnica, Universidade de São Paulo,
Av. Prof. Mello Morais 2231, São Paulo - SP, Brazil

2 Departamento de Informática Aplicada, Unirio
Av. Pasteur, 458, Rio de Janeiro, RJ, Brazil

eduardo.ol@gmail.com,katerevoredo@uniriotec.br,fgcozman@usp.br

Abstract. The representation of uncertainty in the semantic web can
be eased by the use of learning techniques. To completely induce a pro-
babilistic ontology (that is, an ontology encoded through a probabilistic
description logic) from data, two basic tasks must be solved: (1) learning
concept definitions and (2) learning probabilistic inclusions. In this paper
we propose and test an algorithm that learns concept definitions using
an inductive logic programming approach and then learns probabilistic
inclusions using relational data.

1 Introduction

Probabilistic Description Logics (PDLs) have been extensively investigated in
the last few years [5, 8, 19, 7]. The goal is to represent uncertainty in the context
of classical description logics. So far probabilistic description logics have been
mostly restricted to academic purposes, as caveats in syntax and semantics have
prevented them from spreading into several domains. Additionaly, it can be hard
to elicit the probability component of a particular set of sentences.

The probabilistic description logic crALC [6, 22, 7] allows one to perform
probabilistic reasoning by adding uncertainty capabilities to the logic ALC [2].
Previous efforts for learning crALC have separately focused on concept defini-
tions [20] and probabilistic inclusions [24]. In this paper, we present an algorithm
for learning concept definitions and probabilistic inclusions at once; i.e., we dis-
cuss how to construct the whole probabilistic terminology based on crALC from
relational data. We expect that learning techniques can accomodate together
background knowledge and deterministic and probabilistic concepts, giving each
component its due relevance.

The algorithm we propose is mostly based on inductive logic programming
(ILP) [9] techniques with a probabilistic twist. A search for the best concept
description is performed. At the end of this search a decision is made as to
whether to consider the concept description found or to insert a probabilistic
inclusion based on this concept.

The paper is organized as follows. Section 2 reviews basic concepts of de-
scription logics, probabilistic description logics, crALC and machine learning



in a deterministic setting. Section 3 presents our algorithm for probabilistic de-
scription logic learning. Experiments are discussed in Section 4, and Section 5
concludes the paper.

2 Basics

The aim of this paper is to learn probabilistic terminologies from data. In this
section we briefly review both deterministic and probabilistic components of
probabilistic description logics. In addition, machine learning in a deterministic
setting is discussed.

2.1 Description Logics

Description logics (DLs) form a family of representation languages that are typi-
cally decidable fragments of first order logic (FOL) [2]. Knowledge is expressed
in terms of individuals, concepts, and roles. The semantic of a description is
given by a domain D (a set) and an interpretation ·I (a functor). Individuals
represent objects through names from a set NI = {a, b, . . .}. Each concept in the
set NC = {C, D, . . .} is interpreted as a subset of a domain D. Each role in the
set NR = {r, s, . . .} is interpreted as a binary relation on the domain.

Concepts and roles are combined to form new concepts using a set of construc-
tors. Constructors in the ALC logic are conjunction (C⊓D), disjunction (C⊔D),
negation (¬C), existential restriction (∃r.C), and value restriction (∀r.C). Con-
cept inclusions/definitions are denoted respectively by C ⊑ D and C ≡ D, where
C and D are concepts. Concepts (C ⊔ ¬C) and (C ⊓¬C) are denoted by ⊤ and
⊥ respectivelly. Information is stored in a knowledge base (K) divided in two
parts: the TBox (terminology) and the ABox (assertions). The TBox lists con-
cepts and roles and their relationships. A TBox is acyclic if it is a set of concept
inclusions/definitions such that no concept in the terminology uses itself. The
ABox contains assertions about objects.

Given a knowledge base K =< T ,A >, the reasoning services typically in-
clude (i) consistency problem (to check whether the A is consistent with respect
to the T ); (ii) entailment problem (to check whether an assertion is entailed by
K; note that this generates class-membership assertions K |= C(a), where a is
an individual and C is a concept); (iii) concept satisfiability problem (to check
whether a concept is subsumed by another concept with respect to the T ). The
latter two reasoning services can be reduced to the consistency problem [2].

2.2 Probabilistic Description Logics and crALC

Several probabilistic descriptions logics (PDLs) have appeared in the literature.
Heinsohn [12], Jaeger [14] and Sebastiani [25] consider probabilistic inclusion
axioms such as PD(Professor) = α, meaning that a randomly selected object is a
Professor with probability α. This characterizes a domain-based semantics: prob-
abilities are assigned to subsets of the domain D. Sebastiani also allows inclusions



such as P (Professor(John)) = α, specifying probabilities over the interpretations
themselves. For example, one interprets P (Professor(John)) = 0.001 as assigning
0.001 to be the probability of the set of interpretations where John is a Professor.
This characterizes an interpretation-based semantics.

The PDL crALC is a probabilistic extension of the DL ALC that adopts an
interpretation-based semantics. It keeps all constructors of ALC, but only allows
concept names on the left hand side of inclusions/definitions. Additionally, in
crALC one can have probabilistic inclusions such as P (C|D) = α or P (r) = β

for concepts C and D, and for role r. If the interpretation of D is the whole
domain, then we simply write P (C) = α. The semantics of these inclusions is
roughly (a formal definition can be found in [7]) given by:

∀x ∈ D : P (C(x)|D(x)) = α,

∀x ∈ D, y ∈ D : P (r(x, y)) = β.

We assume that every terminology is acyclic; no concept uses itself. This as-
sumption allows one to represent any terminology T through a directed acyclic
graph. Such a graph, denoted by G(T ), has each concept name and role name
as a node, and if a concept C directly uses concept D, that is if C and D appear
respectively in the left and right hand sides of an inclusion/definition, then D

is a parent of C in G(T ). Each existential restriction ∃r.C and value restriction
∀r.C is added to the graph G(T ) as nodes, with an edge from r to each restriction
directly using it. Each restriction node is a deterministic node in that its value
is completely determined by its parents.

The semantics of crALC is based on probability measures over the space of
interpretations, for a fixed domain. Inferences, such as P (Ao(a0)|A) for an ABox
A, can be computed by propositionalization and probabilistic inference (for exact
calculations) or by a first order loopy propagation algorithm (for approximate
calculations) [7].

2.3 Learning Description Logics

The use of ontologies for knowledge representation has been a key element of pro-
posals for the Semantic Web [1]. However, constructing ontologies from scratch
can be a bundersome and time consuming task [10]. Nowadays, mainly due to
the availability of data, learning of ontologies has turn out to be an interes-
ting alternative. Indeed, considerable effort is currently invested into developing
automated means for the acquisition of ontologies [16].

Most early approaches were only capable of learning simple ontologies such
as taxonomic hierarchies. Some recent approaches such as YINYANG [13], DL-
FOIL [10] and DL-Learner [18] have focused on learning expressive terminologies
(we refer to [20] for a detailed review on learning description logics). To some
extent, all these approaches have been inspired by Inductive Logic Programming
(ILP) techniques, in that they try to transfer ILP methods to description logic
settings. The goal of learning in such deterministic languages is generally to find
a correct concept with respect to given examples. A formal definition is:



Definition 1. Given a knowledge base K, a target concept Target such that
Target 6∈ K, a set E = Ep ∪En of positive and negative examples given as asser-
tions for Target, the goal of learning is to find a concept definition C(Target ≡ C)
such that K ∪ C |= Ep and K ∪ C 6|= En.

A sound concept definition for Target must cover all positive examples and
none of the negative examples. A learning algorithm can be constructed as a
combination of (1) a refinement operator, which defines how a search tree can
be built, (2) a search algorithm, which controls how the tree is traversed, and
(3) a scoring function to evaluate the nodes in the tree defining the best one.

The refinement operator Refinement operators allow us to find candidate
concept definitions through two basic tasks: generalization and specialization
[17]. Such operators in both ILP and description logic learning rely on θ-sub-
sumption to establish an ordering so as to traverse the search space. If a concept
C subsumes a concept D(D ⊑ C), then C covers all examples which are covered
by D, which makes subsumption a suitable order. Arguably the best refinement
operator for description logic learning is the one available in the DL-Learner
system [17, 18], as this operator has been proved to be complete, weakly complete
and proper (see [17] for details).

The score function In a deterministic setting a cover relationship simply tests
whether, for given candidate concept definition (C), a given example e holds;
that is, K ∪ C |= e where e ∈ Ep or e ∈ En. In this sense, a cover relationship
cover(e,K, C) indicates whether a candidate concept covers a given example. A
cover relationship is commonly evaluated by instance checking [10].

In description logic learning one often compares candidates through score
functions based on the number of positive/negative examples covered. To avoid
overfitting on concepts, horizontal expansions3 are also explored [18]. For in-
stance, in DL-Learner a fitness relationship considers the number of positive
examples as well as the length of solutions when expanding candidates in the
tree search.

The algorithm to traverse the search space The learning algorithm de-
pends basically on the way we traverse the candidate concepts obtained after
applying refinement operators. In a deterministic setting the search for candi-
date concepts is often based on the FOIL [23] algorithm. There are also different
approaches (for instance, DL-Learner, an approach based on genetic algorithms
[16], and one that relies on horizontal expansion and redundance checking to
traverse search trees [18]).

3 Given a node in a search tree, the horizontal expansion is its upper bound on the
length of child concepts.



3 Learning the PDL crALC

A probabilistic terminology consists of both concepts definitions and probabi-
listic components (probabilistic inclusions in crALC). We aim at automatically
identifying from data sound deterministic concepts and consistent probabilistic
inclusions. A key design choice in learning under a combined approach is to give
a due relevance to each component.

It is worth noting that there are well established deterministic concepts such
as Father ≡ Male ⊓ hasChild.⊤ for which it would be unnecessary to find a
probabilistic interpretation. On the other hand, there are concepts with natural
probabilistic assessments such as P (FlyingBird|Bird) = α. In principle, a learning
algorithm should be able to deal with these subtleties.

We argue that negative and positive examples underlie the choice of either a
concept definition or a probabilistic inclusion. In a deterministic setting we ex-
pect to find concepts covering all positive examples, which is not always possible.
It is common to allow flexible heuristics that deal with these issues. Moreover,
there are several examples that cannot be ascribed to candidate hypotheses4.
Uncertainty stems from such missing information. Therefore, when we are un-
able to find a concept definition that covers all positive examples we assume
such hypothesis as candidates to be a probabilistic inclusion and we begin the
search for the best probabilistic inclusion that fits the examples.

As in description logic learning three tasks are important and should be
considered: (1) refinement operators, (2) scoring functions and (3) a traverse
search space algorithm. The refinement operator described in 2.3 is used for
learning the deterministic component of probabilistic terminologies. The other
two tasks were adapted for probabilistic description logic learning as follows.

3.1 The Probabilistic Score Function

In our proposal, since we want to learn probabilistic terminologies, we adopt a
probabilistic cover relation given in [15]:

cover (e,K, C) = P (e|K, C).

Every candidate hypothesis together with a given example turns out to be a
probabilistic random variable which yields true if the example is covered, and
false otherwise. To guarantee soundness of the ILP process (that is, to cover
positive examples and not to cover negative examples), the following restrictions
are needed:

P (ep|K, C) > 0, P (en|K, C) = 0.

In this way a probabilistic cover relationship is a generalization of the deter-
ministic cover, and is suitable for a combined approach. Probabilities can be

4 In some cases the Open World Assumption inherent to description logics prevent us
for stating membership of concepts.



computed through Bayes’ theorem:

P (e|K, C1, . . . , Ck) =
P (C1, C2, . . . , Ck|T )P (T )

P (C1, . . . , Ck)
,

where C1, . . . , Ck are candidate concepts definitions, and T denotes the target
concept variable. Here are three possibilities for modeling P (C1, . . . , Ck|T ): (1)
a naive Bayes assumption may be adopted [15] (each candidate concept is in-
dependent given the target), and then P (C1, . . . , Ck|T ) =

∏
i P (Ci|T ); (2) the

noisy-OR function may be used [20]; (3) a less restrictive option based on tree
augmented naive Bayes networks (TAN) may be handy [15]. This last possibility
has been considered for the probabilistic cover relationship used in this paper.
In each case probabilities are estimated by maximum (conditional) likelihood
parameters. The candidate concept definition Ci with the highest probability
P (Ci|T ) is the one chosen as the best candidate.

As we have chosen a probabilistic cover relationship, our probabilistic score
is defined accordingly:

score(K|C) =
∏

ei∈Ep

P (ei|K, C),

where C is the best candidate chosen as described before.
In the probabilistic score we have previously defined, a given threshold allow

us differentiate between a deterministic and probabilistic inclusion candidate.
Further details are given in the next section.

3.2 The Algorithm to Learn Probabilistic Terminologies

Previous efforts for learning the PDL crALC have separately explored concepts
definitions [20] and probabilistic inclusions [24]. In this paper, we advocate for a
combined approach where we use a classical approach for traversing the space of
deterministic concepts and a probabilistic procedure for generating probabilistic
inclusions.

The choice between a deterministic or a probabilistic inclusion is based on a
probabilistic score. We start by searching a deterministic concept. If after a set of
iterations the score of the best candidate is below a given threshold, a search for a
probabilistic inclusion is preferred rather than keep searching for a deterministic
concept definition. Then, the current best k-candidates are considered as start
point for probabilistic inclusion search. The complete learning procedure is shown
in Algorithm 1.

The algorithm starts with an overly general concept definition in the root
of the search tree (line 1). This node is expanded according to refinement op-
erators and horizontal expansion criterion (line 4), i.e, child nodes obtained by
refinement operators are added to the search tree (line 5). The probabilistic pa-
rameters of these child nodes are learned (line 6) and then they are evaluated
with the best one chosen for a new expansion (line 3) (alternative nodes based



Require: an initial knowledge base K =< T ,A > and a training set E.
1: SearchTree with a node {C = ⊤, h = 0}
2: repeat

3: choose node N = {C, h} with highest probabilistic score in SearchTree
4: expand node to length h + 1:
5: add all nodes D ∈ (refinementOperator(C)) with lenght =h + 1
6: learn parameters for all nodes D

7: N = {C, h + 1}
8: expand alternative nodes according to horizontal expansion factor and h + 1[18]
9: until stopping criterion

10: N ′ = best node in SearchTree
11: if score(N ′) > threshold then

12: return deterministic concept C′ ∈ N ′

13: else

14: call ProbabilisticInclusion(SearchTree)
15: end if

Algorithm 1: Algorithm for learning probabilistic terminologies.

on horizontal expansion factor are also considered (line 8)). This process contin-
ues until a stopping criterion is attained (difference for scores is insignificant);
After that, the best node obtained is evaluated and if it is above a threshold,
a deterministic concept definition is found and returned (line 11). Otherwise, a
probabilistic inclusion procedure is called (line 13).

The Algorithm 2 learns probabilistic inclusions. It starts retrieving the best
k nodes in the search tree and computing the conditional mutual information for
every pair of nodes (line 2). Then an undirected graph is built where the vertices
are the k nodes and the edges are weighted with the value of the conditional
mutual information [21] for each pair of vertices (lines 4 and 5). A maximum
weight spanning tree [4] from this graph is built (line 6) and the target concept
is added as a parent for each vertice (line 7). The probabilistic parameters are
learned (line 8). This learned TAN-based classifier [11] is used to evaluate the
possible probabilistic inclusion candidates (line 9) and the best one is returned.

4 Experiments

In order to evaluate the learning algorithm we have divided the analysis in two
stages. In a first stage, the algorithm was compared with, arguably, the best de-
scription logic learning algorithm available (the DL-Learner system). The second
stage evaluated suitability of the algorithm for learning probabilistic terminolo-
gies in real world domains.

The aim of the first stage was to investigate whether by introducing a pro-
babilistic setting the algorithm behaves as well as traditional deterministic ap-
proaches in description logic learning tasks. In this preliminar evaluation (as a
rule, there is a lack of evaluation standards in ontology learning [18]) we have



Require: SearchTree previously computed
1: for each pair of candidates Ci, Cj in first k nodes of the SearchTree do

2: compute the conditional mutual information I(Ci, Cj |T )
3: end for

4: build an undirected graph in which vertices are the k candidates
5: annotate the weight of an edge connecting Ci to Cj by the I(Ci, Cj |T )
6: build a maximum weight spanning tree from this graph
7: add T as parent for each Ci

8: learn probabilities for P (Ci|Parents(Ci))
9: return the highest probabilistic inclusion P (T |C′) = α

Algorithm 2: Algorithm for learning probabilistic inclusions.

considered five datasets available in the DL-Learner system and reported in [18].
Evaluation results are shown in Table 1.

Table 1. Description logic learning results

Problem axioms, examples DL-learner Combined approach

correct (length) correct(length)

trains 252,10 100(5) 100%(5)
arches 47,5 100%(9) 100%(10)
moral 31,43 100%(3) 100%(5)

poker(pair) 35,49 100%(8) 100%(8)
poker (straight) 45,55 100%(5) 100%(5)

The combined approach was able to learn correct concept definitions. How-
ever, in some cases produced longer solutions.

In the second stage we focused on learning of probabilistic terminologies from
real world data. Wikipedia5 was used to do so. Wikipedia articles consist mostly
of free text, but also contain various types of structured information in the form
of Wiki markup. Such information includes infobox templates, categorization in-
formation, images geo-coordinates, links to external Web pages, disambiguation
pages, redirects between pages, and links across different language editions of
Wikipedia.

In the last years, there were several projects aimed at structuring such huge
source of knowledge. Examples include, The DBpedia project [3], which ex-
tracts structured information from Wikipedia and turns it into a rich know-
ledge base, and YAGO [26], a semantic knowledge base based on data from
Wikipedia and WordNet6. Currently, YAGO knows more than 2 million entities
(like persons, organizations, cities, etc.). It knows 20 million facts about these

5 http://www.wikipedia.org/
6 wordnet.princeton.edu/



entities. Unlike many other automatically assembled knowledge bases, YAGO
has a manually confirmed accuracy of 95%. Several domains ranging from films,
places, historical events, wines, etc. have been considered in this ontology. More-
over, facts are given as binary relationships that are suitable for our learning
settings. There are approximately 92 relationships available. Examples include
actedIn, bornIn, created, discovered describes, diedIn, happenedIn, hasAcademicAdvisor,

hasChild, hasHDI, hasWonPrize, influences, isMarriedTo, isPartOf, livesIn, politicianOf,

worksAt.

We have used subsets of YAGO facts for learning probabilistic terminologies.
Two domais have been mostly explored. The first, related to scientists. The
second, related to film directors. In both cases the threshold used was 0.85 and
the 20 best candidates were considered in the probabilistic inclusion learning
step.

The first dataset consists of 2008 potential scientists for which we have
learned concept definitions and probabilistic inclusions. The complete termi-
nology is given below:

P (Person) = 0.9
P (Topic) = 0.4
P (Year) = 0.35
P (Prize) = 0.2
P (Text) = 0.25
P (EducationalInstitution) = 0.3
P (wrotes) = 0.4
P (hasAcademicAdvisor) = 0.80
P (interestedIn) = 0.6
P (diedOnYear) = 0.7
P (hasWonPrize) = 0.4
P (worksAt) = 0.85
P (influences) = 0.6

Scientist ≡ Person
⊓(∃hasAcademicAdvisor.Person

⊓∃wrotes.Text ⊓ ∃worksAt.EducationalInsitution)
P (InfluentialScientist | Scientist ⊓ ∃influences.

∃diedOnYear.Year) = 0.85
P (Musician | Person ⊓ ∃hasAcademicAdvisor.∃wrote.Text) = 0.1
HonoredScientist ≡ Scientist

⊓ ∃hasWonPrize.Prize

This resulting crALC terminology can be further investigated by proba-
bilistic inference7. The basic task we address is classification. Assume we are
interested in classifying a potential scientist given we know he/she has written
a book and has an academic advisor:

P (Scientist(0)|Person(0) ⊓ ∃wrote.Text(1) ⊓ hasAcademicAdvisor.Person(2)) = 0.5

When further evidence is available the value probability is updated to:

P (Scientist(0) |Person(0)
⊓(∃wrote.Text(1) ⊓ ∃hasAcademicAdvisor.

∃influences.Person(3))) = 0.65

7 Given a domain size, a relational Bayesian network is constructed to do so.



In the second dataset we have collected facts about film directors ranging
from classical to contemporary. About 5589 potential directors have been con-
sidered. The complete probabilistic terminology is shown below.

P (Person) = 0.9
P (Prize) = 0.1
P (Year) = 0.25
P (Film) = 0.3
P (isMarriedTo) = 0.1
P (influences) = 0.35
P (hasWonPrize) = 0.28
P (hasChild) = 0.05
P (diedOnYear) = 0.5
P (directed) = 0.8
P (actedIn) = 0.4

Actor ≡ Person ⊓ ∀actedIn.Film
P (Director | Person ⊓ (∃directed.Film ⊓ ∃influences.

∃actedIn.Film) = 0.75
P (FomerActor | Director ⊓ ∃actedIn.Film) = 0.6
HonoredDirector ≡ Director ⊓ ∃hasWonPrize.Prize
FamilyDirector ≡ Director ⊓ (∃isMarriedTo.Director ⊔ ∃hasChild.Director)
P (InfluentialDirector | Director ⊓ ∃hasWonPrize.Prize ⊓ ∃influences.

∃isMarriedTo.Director) = 0.7
P (MostInfluentialDirector | Director ⊓ ∃diedOnYear.Year ⊓ ∃influences.

∃hasWonPrize.Prize) = 0.8

Learned components range from basic concept definitions such as Actor to
probabilistic inclusions for describing most influential directors. Assume we are
interested in classifying a person given we know that he/she has acted and
directed. According to evidence available:

P (Actor(0)|Person(0) ⊓ ∃actedIn.Film(1) ⊓ ∃directed.Film(2)) = 0.4

P (Director(0)|Person(0) ⊓ ∃actedIn.Film(1) ⊓ ∃directed.Film(2)) = 0.55

As further evidence is given, probability value changes to:

P (Actor(0) |Person(0)
⊓(∃actedIn.Film(1) ⊓ ∃directed.Film(2)
⊓∃influences.Person(3))) = 0.3

5 Conclusion

We have proposed a method for learning deterministic/probabilistic components
of terminologies expressed in crALC. Differently from previous approaches, we
have produced a combined scheme, where both the deterministic and probabi-
listic components receive due attention.

This unified learning scheme has the following components: (1) a refinement
operator for traversing the search space, (2) probabilistic cover and score rela-
tionships for evaluating candidates, (3) a mixed search procedure. Initially, the
search aims at finding deterministic concepts. If the score obtained is below a
given threshold, a probabilistic inclusion search is conducted (a probabilistic clas-
sifier is produced). Experiments with probabilistic terminology in a real-world
domain suggest that probabilistic inclusions do lead to improved likelihoods.



Probabilistic description logics offer expressive languages in which to conduct
learning, while charging a relatively low cost for inference. The present contri-
bution offers novel ideas for this sort of learning task; we note that the current
literature on this topic is rather scarce. Our future work is to investigate the
scalability of our learning methods.

Acknowledgements

The first author is supported by CAPES and the third author is partially
supported by CNPq. The work reported here has received substantial support
through FAPESP grant 2008/03995-5.

References

1. G. Antoniou and F. van Harmelen. Semantic Web Primer. MIT Press, 2008.
2. F. Baader and W. Nutt. Basic description logics. In Description Logic Handbook,

pages 47–100. Cambridge University Press, 2002.
3. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-

mann. DBpedia - a crystallization point for the web of data. Web Semant.,
7(3):154–165, 2009.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2001.

5. P. C. G. Costa and K. B. Laskey. PR-OWL: A framework for probabilistic on-
tologies. In Proceeding of the 2006 conference on Formal Ontology in Information
Systems, pages 237–249, Amsterdam, The Netherlands, The Netherlands, 2006.
IOS Press.

6. F. G. Cozman and R. B. Polastro. Loopy propagation in a probabilistic descrip-
tion logic. In Sergio Greco and Thomas Lukasiewicz, editors, Second International
Conference on Scalable Uncertainty Management, Lecture Notes in Artificial In-
telligence (LNAI 5291), pages 120–133. Springer, 2008.

7. F. G. Cozman and R. B. Polastro. Complexity analysis and variational inference for
interpretation-based probabilistic description logics. In Conference on Uncertainty
in Artificial Intelligence, 2009.

8. C. D’Amato, N. Fanizzi, and T. Lukasiewicz. Tractable reasoning with Bayesian
description logics. In SUM ’08: Proceedings of the 2nd international conference
on Scalable Uncertainty Management, pages 146–159, Berlin, Heidelberg, 2008.
Springer-Verlag.

9. L. De Raedt, editor. Advances in Inductive Logic Programming. IOS Press, 1996.
10. N. Fanizzi, C. D’Amato, and F. Esposito. DL-FOIL concept learning in description

logics. In ILP ’08: Proceedings of the 18th International Conference on Inductive
Logic Programming, pages 107–121, Berlin, Heidelberg, 2008. Springer-Verlag.

11. N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine
Learning, 29:131–163, 1997.

12. J. Heinsohn. Probabilistic description logics. In International Conf. on Uncertainty
in Artificial Intelligence, pages 311–318, 1994.

13. L. Iannone, I. Palmisano, and N. Fanizzi. An algorithm based on counterfactuals
for concept learning in the semantic web. Applied Intelligence, 26(2):139–159, 2007.



14. M. Jaeger. Probabilistic reasoning in terminological logics. In Principals of Know-
ledge Representation (KR), pages 461–472, 1994.

15. N. Landwehr, K. Kersting, and L. DeRaedt. Integrating Näıve Bayes and FOIL.
J. Mach. Learn. Res., 8:481–507, 2007.

16. J. Lehmann. Hybrid learning of ontology classes. In Proceedings of the 5th Interna-
tional Conference on Machine Learning and Data Mining, volume 4571 of Lecture
Notes in Computer Science, pages 883–898. Springer, 2007.

17. J. Lehmann and P. Hitzler. Foundations of refinement operators for description
logics. In Hendrick Blockeel, Jude W. Shavlik, and Prasad Tadepalli, editors, ILP
’07: Proceedings of the 17th International Conference on Inductive Logic Program-
ming, volume 4894 of Lecture Notes in Computer Science, pages 161–174. Springer,
2007.

18. J. Lehmann and P. Hitzler. A refinement operator based learning algorithm for
the ALC description logic. In Hendrick Blockeel, Jude W. Shavlik, and Prasad
Tadepalli, editors, ILP ’07: Proceedings of the 17th International Conference on
Inductive Logic Programming, volume 4894 of Lecture Notes in Computer Science,
pages 147–160. Springer, 2007.

19. T. Lukasiewicz. Expressive probabilistic description logics. Artif. Intell., 172(6-
7):852–883, 2008.

20. J. E. Ochoa-Luna and F. G. Cozman. An algorithm for learning with probabilistic
description logics. In 5th International Workshop on Uncertainty Reasoning for
the Semantic Web (URSW) at the 8th International Semantic Web Conference
(ISWC), pages 63–74, Chantilly, USA, 2009.

21. J. Pearl. Probabilistic Reasoning in Intelligent Systems: networks of plausible in-
ference. Morgan Kaufman, 1988.

22. R. B. Polastro and F. G. Cozman. Inference in probabilistic ontologies with at-
tributive concept descriptions and nominals. In 4th International Workshop on
Uncertainty Reasoning for the Semantic Web (URSW) at the 7th International
Semantic Web Conference (ISWC), Karlsruhe, Germany, 2008.

23. J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In Proceedings
of the European Conference on Machine Learning, pages 3–20. Springer-Verlag,
1993.

24. K. Revoredo, J. Ochoa-Luna, and F.G. Cozman. Learning terminologies in pro-
babilistic description logics. In Proceedings of the 20th Brazilian Symposium on
Artificial Intelligence. To appear, 2010.

25. F. Sebastiani. A probabilistic terminological logic for modelling information re-
trieval. In ACM Conf. on Research and Development in Information Retrieval
(SIGIR), pages 122–130, 1994.

26. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.
In WWW ’07: Proceedings of the 16th international conference on World Wide
Web, pages 697–706, New York, NY, USA, 2007. ACM.


