
Workshop on Ontology Patterns 

WOP 2010 

Papers and Patterns from the ISWC workshop 
 

Introduction 

Since the beginning of the semantic web initiative, ontologies have been referred to 
as the key tool for implementing the semantic web vision. The way they have been 
studied in, and brought to, this field has assumed that they are the same kind of 
ontologies used in artificial intelligence (AI) or studied in philosophy.  

However, by looking at the most popular web ontologies we can conclude that this 
is debatable: On one hand semantic web ontologies have inherited some things from 
AI and philosophical ontologies, on the other hand web ontologies exhibit another 
level of simplicity, scalability, and modularity, as well as including contributions 
from, and being used by, the masses (see also EKAW 20101 theme).  

Additional evidence of the need for a new ontology design paradigm comes from 
the growing interest in linked data on the web, which is an amazing breakthrough for 
the semantic web. The inherent basis of linked data is the data-driven paradigm, as 
opposed to a concept-driven one. This makes linked data authoring and publication 
easy but its consumption less than straightforward, especially considering the 
ontologies currently used for representing them: this constitutes a potential limitation 
on the possibility of a concrete realization of the semantic web vision in the near 
future. Ontology Patterns, and their related technologies, could be key for bridging the 
gap between linked data and ontologies, because they are conceived with simplicity, 
scalability, and modularity, as well as contributions from, and usage by, the masses in 
mind, without giving up the inheritance from AI and philosophical ontologies. Hence, 
Ontology Patterns could drive the next breakthrough for the semantic web. 

The aim of WOP is to give researchers and practitioners a stage where to share 
their latest findings and emerging issues, as well as building a common language for 
ontology patterns. Furthermore, the WOP community is supported by the 
ontologydesignpatterns.org initiative, and uses it as its main mean of communication, 
e.g. for pattern submission, reviewing and discussion outside the workshop schedule. 
A workshop should be a practical and interaction-rich event, and for this reason WOP 
had three parts: regular papers, posters/demos, and “pattern writing”, with a focus on 
the latter. The inspiration for this model comes from the pattern writing workshops 
for software patterns. The aim is to promote development and review of actual 
patterns, rather than papers describing patterns. Related events are also VoCamps for 
writing vocabularies for the Semantic Web.  

                                                            
1 http://ekaw2010.inesc-id.pt/ 



We received 6 submissions for the paper and poster track of the workshop. The 
program committee selected three submissions for oral presentation and one 
submission as position paper. 6 ontology patterns were submitted to the workshop, of 
which 5 patterns were selected for presentation in the poster session, such patterns are 
described in these proceedings as extended abstracts. The workshop also included a 
pattern writing session on proposed modeling issues, which can be found on the 
workshop web site. Finally, we had a session on late breaking news short 
presentations. Further information about the Workshop on Ontology Patterns can be 
found at: http://ontologydesignpatterns.org/wiki/WOP2010.  

  

Acknowledgments 

We thank all members of the steering committee, program committee, authors and 
local organizers for their efforts and support. We appreciate support from the FP6 
NeON Integrated Project, the FP7 IKS Integrated Project and the DEON project 
(STINT IG 2008-2011). 

 

    
 
 
 
 
Eva Blomqvist 
Vinay K. Chaudhri 
Oscar Corcho  
Valentina Presutti 
Kurt Sandkuhl 
 
October 2010 

 
 

 



Organization 

WOP2010 Chairs  

Paper and poster chairs:  
Valentina Presutti, STLab ISTC-CNR (IT) 
Vinay K. Chaudhri, SRI International (US) 

 
Pattern chairs:  

Eva Blomqvist, Jönköping University (SE)  
Oscar Corcho, Universidad Politécnica de Madrid (ES) 

 
Proceedings chair:  

 Kurt Sandkuhl, Jönköping University (SE) and University of Rostock (DE)  
 

Steering Committee  
Eva Blomqvist, ISTC-CNR (IT)  
Aldo Gangemi, ISTC-CNR (IT)  
Natasha Noy, Stanford University (US)  
Valentina Presutti, ISTC-CNR (IT)  
Alan Rector, University of Manchester (UK)  
Francois Scharffe, INRIA (FR)  
Steffen Staab, University of Koblenz (DE)  
Chris Welty, IBM Watson Research Center (US)  
 

Program Committee  
Alessandro Adamou, ISTC-CNR (IT)  
Marie-Aude Aufaure, Ecole Centrale Paris (FR)  
Vinay Chaudhri,SRI International (US)  
Mathieu D'Aquin, Open University (UK)  
Enrico Daga, ISTC-CNR (IT)  
Violeta Damjanovic, Salzburg Research (AT)  
Rim Djedidi, Paris-Sud University (FR) 
Leigh Dodds, Talis (UK)  
Henrik Eriksson, Linköping University (SE)  
Aldo Gangemi, ISTC-CNR (IT)  
Jose-Manuel Gomez, Universidad Politécnica de Madrid (ES)  
Gerd Groener, University of Koblenz (DE)  
Holger Lewen, AIFB University of Karlsruhe (DE)  
Natasha Noy, Stanford University (US)  
Wim Peters, University of Sheffield (UK)  



Alan Rector, University of Manchester (UK)  
Alan Ruttenberg, Science Commons Cambridge, MA (US)  
Marta Sabou, Open University (UK) 
Kurt Sandkuhl, Jönköping University (SE) 
Francois Scharffe, INRIA (FR)  
Steffen Staab, University of Koblenz (DE)  
Mari Carmen Suárez-Figueroa. Universidad Politécnica de Madrid (ES)  
Vojtech Svatek, University of Economics, Prague (CZ 
Tania Tudorache. Stanford University (US)  
Boris Villazón-Terrazas, Universidad Politécnica de Madrid (ES)   
Chris Welty, IBM Watson Research Center (US)  
 

Pattern Program Committee  
Alessandro Adamou, ISTC-CNR (IT).  
Rim Djedidi, University Paris Nord 13 (FR).  
Gerd Groener, University of Koblenz-Landau (DE).  
Enrico Motta, KMI Open University, Milton Keynes (UK).  
Olaf Noppens, University of Ulm (DE).  
Andrea Nuzzolese, ISTC-CNR (IT).  
Catherine ROUSSEY, LIRIS-CNRS Cemagref (FR).  
Alan Ruttenberg, Creative Commons (US).  
Mari Carmen Suárez-Figueroa. Universidad Politécnica de Madrid (ES).  
Vojtech Svatek, University of Economics, Prague (CZ).  
Pierre-Yves Vandenbussche, INSERM (FR).  
Boris Villazón-Terrazas, Universidad Politécnica de Madrid (ES).  
 



Table of Contents 

Keynote Talk  

Archeology for Ontology Patterns 
Chris Welty ...................................................................................................................... 1  
 

Research Papers  

The State of Ontology Pattern Research:  
A Systematic Review of ISWC, ESWC and ASWC 2005-2009 
Karl Hammar and Kurt Sandkuhl ................................................................................... 5  
 
Adapting Ontologies to Content Patterns using Transformation Patterns 
Vojtĕch Svátek, Ondřej Šváb-Zamazal, and Miroslav Vacura ..................................... 19 
 
Reusing Ontology Design Patterns in a Context Ontology Network  
María Poveda-Villalón, Mari Carmen Suárez-Figueroa, and  
Asunción Gómez-Pérez .................................................................................................. 35  
 

Position Paper  

A Decision-making Format for the Semantic Web 
Eva Blomqvist, Marion Ceruti, Jeff Waters and Don McGarry ................................... 53 
 

Pattern Abstracts  

Context Slices: Representing Contexts in OWL 
Chris Welty .................................................................................................................... 59 
 
Faceted Classification Scheme ODP 
Benedicto Rodriguez Castro .......................................................................................... 61 
 
Summarization of an inverse n-ary relation  
María Poveda-Villalón and Mari Carmen Suárez-Figueroa ....................................... 63 
 
Literal Reification 
Aldo Gangemi, Silvio Peroni and Fabio Vitali  ............................................................ 65 
 
SimpleOrAggregated 
María Poveda-Villalón and Mari Carmen Suárez-Figueroa ....................................... 67 



 



 

Keynote Talk 



 



Archeology for Ontology Patterns 

Chris Welty  

 
IBM Watson Research 

Hawthorne, NY 12540, USA 
cawelty@gmail.com 

 

Abstract 

Ontology Patterns for the semantic web are closest in spirit to software patterns, 
e.g. [1]. They are, or should be, motivated by design experience, not philosophical 
tradition. The software pattern community was launched into prominence as the result 
of an effort in "software archeology": digging through existing software, observing 
and cataloging different solution methods, generalizing and classifying them in a 
sensible framework, and publishing the result. In this talk I will argue for an 
archeological and less theoretical approach to ontology patterns, with examples. 

References 

1. Gamma, Helm, Johnson, and Vlissides (1995) Design Patterns. Addison-Wesley, 1995.   
 
 

Further Information 

For further information, please visit: 
http://ontologydesignpatterns.org/wiki/WOP:2010/KeynoteTalk  
 

1



 

2



 

Research Papers 

3



 

4



The State of Ontology Pattern Research

A Systematic Review of ISWC, ESWC and ASWC
2005–2009

Karl Hammar and Kurt Sandkuhl

School of Engineering at Jönköping University
P.O. Box 1026

551 11 Jönköping, Sweden
haka, saku@jth.hj.se

Abstract. While the use of patterns in computer science is well estab-
lished, research into ontology design patterns is a fairly recent devel-
opment. We believe that it is important to develop an overview of the
state of research in this new field, in order to stake out possibilities for
future research and in order to provide an introduction for researchers
new to the topic. This paper presents a systematic literature review of all
papers published at the three large semantic web conferences and their
associated workshops in the last five years. Our findings indicate among
other things that a lot of papers in this field are lacking in empirical
validation, that ontology design patterns tend to be one of the main fo-
cuses of papers that mention them, and that although research on using
patterns is being performed, studying patterns as artifacts of their own
is less common.

Keywords: Ontology design patterns, literature review, content classification

1 Introduction

The use of patterns in computer science-related work already has some tradition.
Since the seminal work on software design patterns by the “gang of four” [8],
many pattern approaches have been proposed and found useful for capturing
engineering practices or documenting organizational knowledge. Examples can
be found for basically all phases of software engineering, such as analysis pat-
terns [6], data model patterns [10], software architecture patterns [7, 4] or test
patterns. The pattern idea has been adapted in other areas of computer science,
such as workflow patterns [5], groupware patterns [12] or patterns for specific
programming languages [1].

Ontology design patterns are a rather new development. Ontology design
patterns in its current interpretation was introduced by Gangemi [9] and by
Blomqvist and Sandkuhl [3]. Blomqvist defines the term as “a set of ontolog-
ical elements, structures or construction principles that solve a clearly defined
particular modeling problem” [2]. Despite quite a few well-defined ontology con-
struction methods and a number of reusable ontologies offered on the Internet,

5



efficient ontology development continues to be a challenge, since this still re-
quires both a lot of domain knowledge/experience and knowledge of the under-
lying logical theory. Ontology Design Patterns (ODP) are considered a promising
contribution to this challenge. They are considered as encodings of best prac-
tices, which help to reduce the need for extensive experience when developing
ontologies.

When a new research area is emerging, as is the case for ontology design
patterns, both academia and industry are interested in the state of affairs, but
for different reasons. Academia’s interest often relates to identifying the open
problems and most pressing challenges to be explored and solved. Industry’s
prime interest is often in new technologies promising better operational efficiency
and effectiveness, or competitive advantages for particular products or services.
In order to decide which technologies qualify, they need to understand the choices
available, their advantages and disadvantages, and potentials risks. This paper
presents a literature survey intending to identify existing research in ontology
design patterns, structure this research, and evaluate the way it has been tested
and validated.

The remaining part of the paper is structured as follows: after an introduction
to the research questions and description of study design (Sections 2 and 3
respectively), the paper presents some key results of the survey (Section 4).
Section 5 discusses threats to validity and analyses the results, attempting to
answer the research questions posed, and pointing out possibilities for future
work.

2 Research Questions

The point of performing a literature survey is of course to get a handle on the
current state of affairs within the topic area. But what does this really boil
down to, what data should we gather and which questions should we ask? We
turn to another information gathering profession for guidance, by adopting and
adapting the Five Ws (and one H) formula for gathering information from the
journalism field. This is a set of questions that need to be answered for any piece
of reporting to be considered complete. The questions to pose are Who, What,
When, Where, Why, and How.

Since, in the case of academic research, the Who and the Where often con-
verge (few scholars work independently of research institutions) and since we do
not want to perform reviews of individual scholars, the Who question is dropped
from the list. The Why question is also left out - while it is indeed an important
question to answer (why ontology pattern research is done at all), it seems out of
scope of a survey such as this one. We are left with four questions to answer. We
map these questions to concrete answerable research questions for the survey:

1. What kind of research on ontology patterns is being performed? (What)
2. How has research in the field developed over time? (When)
3. Where is ontology pattern research performed? (Where)
4. How is research in ontology patterns being done? (How?)

6



3 Method

The method used to perform the literature review is illustrated in Fig. 1. It
consisted of first finding the relevant research papers (i.e. papers that discuss
ontology patterns), then classifying and sorting them based on various metrics
and measures in order to obtain the data needed to answer the research questions.
The following sections discuss each of these steps in more detail.

Fig. 1. Method overview.

3.1 Paper Selection

For the purpose of this survey, we have studied conference and workshop pro-
ceedings of ISWC, ASWC and ESWC from the last five years (2005-2009). The
reasons for choosing these delimitations are as follows:

– The conferences in question are three of the most well-established and pres-
tigious semantic web conferences in the academia. Papers that have been
accepted to them are therefore likely to be of a high quality and represen-
tative of the general direction in which the semantic web research field is
heading.

– As mentioned in section 1, the current interpretation of ontology design
patterns was introduced in [9] and [3], both of which were published in 2005.
We thus consider this a natural starting year for the survey. 2009 was selected
as the ending year for the simple reason that the 2010 conferences have not
all been held at the time of writing.

– After initially performing the selection process detailed below with only the
main conference proceedings as source, it was found that the number of
papers returned were rather few. In order to gain more data, the scope was
widened to include the workshop proceedings also, on the intuition that

7



the workshops while being narrower in focus may still be relevant markers
of trends and directions in ontology pattern research (see for instance the
WOP workshops that deal specifically with ontology patterns).

The proceedings were retrieved from various Internet databases including
SpringerLink1 and CEUR-WS2. A total of 2462 papers were retrieved, divided
into 861 conference papers and 1601 workshop papers. Unfortunately, not all
workshop proceedings could be located and retrieved, leaving the following work-
shops’ proceedings missing from the survey:

ISWC
SemUbiCare-2007

ESWC
Framework 6 Project Collaboration for the Future Semantic Web-2005

ASWC
All workshops from ASWC 2006
All workshops except DIST from ASWC 2008
All workshops from ASWC 2009

In order to find the subset of papers dealing with ontology patterns, all
of these papers were subjected to a full-text search. All papers containing the
phrases ontology patterns or ontology word patterns (word denoting any one
single word) were selected for further analysis. Thereafter, in order to weed out
false positives, papers mentioning patterns only in the reference list were removed
from the dataset. This left us with a total of 54 papers, 19 from conferences and
35 from workshops.

3.2 Metadata Extraction

The following metadata posts were determined to be useful in answering the
research questions:

– Publication year - necessary (but not sufficient) for answering RQ 2
– Author provenance (research institution) - sufficiently answers RQ 3
– Author count - necessary (but not sufficient) for answering RQ 4
– Institution count - necessary (but not sufficient) for answering RQ 4

These pieces of information were retrieved from the dataset. The publication
year was retrieved automatically by way of database queries and web spidering
scripts when downloading the source material, whereas the research institutions
and institution/author counts were ascertained by studying the papers manually.

Research institutions were counted and ranked by the number of mentions
they received in the headers of papers in the dataset. However, due to time
constraints, further study of the specific organizational structure of the various

1 http://www.springerlink.com
2 http://ceur-ws.org/

8



institutions was not performed. Consequently, different departments of the same
university were counted as belonging to the same unit, as were different branches
of a company or other research organization. This gives us a course-grained view
of what universities and organizations are involved in this type of research.

3.3 Data Extraction

Answering research questions 1 and 4 (the What and How questions) required
more detailed reading and analysis of the papers. We determined that the What
question could most accurately be answered by categorizing the papers based on
how they contribute to or make use of ontology pattern research. This catego-
rization is described later in this section and in Table 1. The How question, due
to its rather fuzzy nature, is harder to answer in a concrete manner. We decided
to focus on three measurable aspects: (1) how scientists cooperate, (2) how the
theories they propose are validated and tested, and (3) how central ontology pat-
terns are to the content of the studied papers (whether they are a core part of
the performed research or merely used in passing). Aspect 1 can be ascertained
by authorship metadata, see section 3.2. Aspects 2 and 3 are discussed in the
following sections.

Table 1. Content categories and definitions.

Category Definition

New pattern presentation The paper presents a new ontology pattern.
Pattern usage method The paper presents a new general approach or method of

using patterns to achieve some goal(s).
Pattern creation method The paper presents a new approach for isolating or cre-

ating ontology design patterns (including re-engineering
from other knowledge representation forms).

Patterns used The paper describes a case where patterns have been used
for achieving some goal(s)

Evaluation The paper focuses on evaluating patterns or pattern us-
age/creation methods

Pattern typology The paper discusses or suggests different types or group-
ings of patterns.

Pattern features The paper discusses specific features of ontology patterns.
This includes features of not only the reusable reference
implementation, but also the documentation and meta-
data associated with it.

Pattern identification The paper deals with finding instances of patterns in an
existing ontology.

Pattern languages The paper discusses languages or formalisms for repre-
senting or displaying patterns.

Antipatterns The paper concerns antipatterns or worst practices.
Not relevant The paper is a false positive - it does not deal with on-

tology pattern research, but only mentions the term in
passing.

9



Content Classification We read and tagged the papers with one or more
labels categorizing how they related to or made use of ontology patterns. Since
we did not know beforehand what categories would best describe the collected
material, the labels used could not be decided ahead of time. Instead, the label
were selected in an exploratory fashion as the readings of the papers progressed.
However, to try to ensure as unbiased a classification as possible, each label was
paired with a definition covering papers belonging to the category. The labels
and definitions are listed in Table 1. The papers were studied twice, once before
and once after deciding upon the categories.

In tagging the papers, we attempted to err on the side of caution. For in-
stance, if a pattern is used or mentioned in a paper without reference to original
creator, we have not assumed that the author of the paper has created this pat-
tern for this particular project. Rather, new patterns or new methods need to
be explicitly defined as new contributions before we add any of the relevant tags
to the paper.

The papers that were classified as belonging to the Not relevant category were
then pruned from the dataset, leaving 47 papers, of which 16 were conference
papers and 31 workshop papers.

Validation Classification In order to survey how ontology pattern research
is validated, two procedures were followed. To begin with, the papers were cate-
gorized according to in what manner validation or testing of the proposed ideas
and theories had been performed. For this purpose, the following four categories
were used:

– No validation - there is no mention of any validation of the ideas presented.
– Anecdotal validation - the paper mentions that the research has been vali-

dated by use in an experiment or in a project but it provides no detail on
how this validation was performed or its results.

– Validation by example - one or more examples are presented in the text,
validating the concepts presented in a theoretical manner.

– Empirical validation - some sort of experimental procedure or case study has
been performed.

Each paper was assigned to one validation category only. In the cases where
a paper matched more than one category, the category mapping to a higher level
of validation was selected, i.e. empiricism trumps example which in turn trumps
anecdote.

Note that there is a difference between examples used in passing in text to
motivate some particular design choice or to illustrate syntax, and examples
made explicit and presented as validation or test of theory. The latter is grounds
for inclusion in the category Validation by example, the former is not. In the
studied papers it was also common to take one example or use case and follow
along with it from the beginning of the paper (where it occurs as problem de-
scription) to the end (presenting a solution to said problem). This is considered

10



to be thorough enough of an example for such a paper to be included in the
Validation by example category.

Having categorized the papers by validation technique, a further study of
validation quality was performed against the papers categorized as belonging
to the Empirical validation group. For this study we made use of some of the
metrics and corresponding measurement criteria developed in [11]:

– Context description quality - the degree to which the context (organization
where the evaluation is performed, type of project, project goals, etc.) of the
study is described.

– Study design description quality - the degree to which the design (the vari-
ables measured, the treatments, the control, etc.) of the study is described.

– Validity description quality - the degree to which the validity (claims of
generalizability, sources of error etc.) of the study is discussed.

ODP Importance Classification In order to learn how important the use
of or research into ontology patterns is to each particular paper, we studied in
what section of the paper that patterns were mentioned. The intuition was that
this information would give a crude indication as to whether ontology patterns
were considered an essential core part of the research (warranting inclusion in
the title or abstract) or not. Title inclusion indicate greater importance than
abstract inclusion, in turn indicating greater importance than mere inclusion in
the body text. For this measure, terms such as “Knowledge patterns”, “Semantic
patterns”, or just plain “patterns” were also considered acceptable synonyms
for ontology patterns, provided they were used in a manner indicating a link to
ontologies and the use of such patterns in an ontology engineering context.

4 Results

The processes described in section 3 provided us with a large amount of data to
analyze, a subset of which is presented in this chapter. The full dataset is too
large to include in full, but is available on demand.

Table 2. ODP papers by year

Year Conferences Workshops

2005 2 2
2006 2 2
2007 7 3
2008 1 4
2009 4 201

1 15 of which are from WOP
2009

Table 3. Institutes by paper count

Institute name Conference Workshop

ISTC-CNR 4 2
U. of Economics, Prague 2 4
U. Politecnica de Madrid 1 5
U. of Karlsruhe 0 4
Jönköping U. 3 0
Salzburg Research GmbH 2 1
U. of Innsbruck 1 2
U. of Manchester 1 2
U. of Sheffield 1 2

11



Table 2 presents the number of papers in the dataset indexed by the year they
were published, the idea being that this might give an indication as to whether
research interest in the field is expanding. Table 3 lists the research organizations
most often listed as affiliations of authors in the dataset (sorted by summarized
publication count and alphabetically). The full list is considerably longer at 49
entries in total, but is for brevity here limited to organizations with three or
more mentions.

Table 4. Classification of the reviewed papers’ connection to ODPs.

Classification Conferences Workshops

Antipatterns 0 2
Evaluation 0 2
New pattern presented 3 12
Pattern creation methods 1 1
Pattern features 1 5
Pattern identification 0 2
Pattern languages 1 4
Pattern usage method 4 11
Pattern typology 0 3
Patterns used 8 6

Table 4 contains the results of the process described in section 3.3, that is,
the labels denoting categories of pattern-related research and the number of
papers tagged with each such label. The results are divided into columns for the
conference papers and workshop papers.

Table 5. Validation levels of reviewed papers.

Source No validation Anecdote Example Empiricism

Conferences 3 2 5 6
Workshops 3 2 19 7

Tables 5 and 6 present the results of the validation classification performed
in section 3.3, i.e. how the results were validated and, in the case of empirical
procedures being used for this purpose, how well the experiments or case studies
were described. Table 7 presents the institution counts of the papers in the
dataset. Table 8, finally, shows the result of the ODP importance classification
in section 3.3, i.e. in what parts of the papers that the topic of patterns were
addressed.

12



Table 6. Quality of empirical validations.

Quality indicator Weak Medium Strong

Conference papers
Context description 4 1 1
Study design description 0 3 3
Validity description 5 1 0

Workshop papers
Context description 5 2 0
Study design description 1 3 3
Validity description 6 1 0

Table 7. Institution counts

Institutions Conferences Workshops

1 12 16
2 2 10
3 2 5

5 Analysis and Discussion

In this section we discuss some limitations to the generalizability of the sur-
vey and sources of error. We then analyze the data resulting from the survey,
attempting to answer the research questions posed in section 2.

5.1 Sources of Error

There are of course limitations to the validity of this survey. To begin with,
the selection of source material (ISWC/ASWC/ESWC 2005-2009) may give a
limited view of the developments within the field as a whole. It is our belief that
these three conferences are important and well-known enough for this selection
to give a good overview of the general state of ontology pattern research, but
we cannot guarantee that key influential work has not been presented elsewhere,
thus falling below our radar. The reader should therefore keep this limitation of
generalizability in mind when reading our results.

Furthermore, in the selection process described in section 3.1, we do not
check for false negatives. This means that there may be papers within the source
material which are not matched in the full text search and thus not selected for
further analysis, even though they actually deal with ontology patterns. In order

Table 8. ODP importance classification of reviewed papers.

Group Conferences Workshops Workshops (w/o WOP)

Title match 7 22 8
Abstract match 3 3 2
Body match 6 6 6

13



to study how common such false negatives are, a random set of discarded papers
would need to be read manually. This is something that due to time constraints,
we were unable to do. If the false negatives are evenly distributed over the various
metrics that we have studied, the impact of missing these papers in the analysis
might not be that great, but without further looking into this we cannot say
either way.

Another possible error lies with the fact that we have been unable to gather
all of the data from the ASWC workshops. This means that it is very possible
that Asian universities are ranked lower than they actually deserve in the analysis
of where research is done (RQ3).

Finally, in Section 3.3 there are at least two threats to validity. To begin
with, we read and classify papers. This process is of course, by its very nature,
prone to bias since judgement as to what categories a certain paper matches is
not always entirely clear cut. We have tried to limit this threat as far as possible
by defining fairly rigid categories, but the reader should keep in mind that this
is not a 100 % objective measure by any means. Secondly, since we selected the
categories on basis of the papers that we have read, it is likely that we have not
exhausted the whole set of possible categorizations of ontology pattern research.
In other words, there may be categories of research that are not present in our
findings, for the very reason that they are not present in our data.

5.2 What kind of research on ontology patterns is being performed?
(RQ1)

The results indicate that while patterns are used in various different ways in
research and new patterns are being presented, there is quite a lot less work
being done on how to formalize the creation and/or isolation of patterns. This,
in our view, means one of two things. It could indicate that the best ways of
creating and finding patterns have been established, and that there is thus little
need for more research to be done in those areas. However, due to the youth of
the field, we believe this to be less likely.

Instead, we believe it is more likely that the results indicate a lack of sufficient
research in these areas. This situation could be problematic if it indicates that
the patterns that are used are not firmly grounded in theory or practice. If
one adds to this the fact that relatively little work is being done on pattern
evaluation, the overall impression is that patterns are being presented and used
as tools, but are not being sufficiently studied as artifacts of their own.

Another area that appears to be understudied is antipatterns, “worst prac-
tices” or common mistakes. We theorize that this may be because finding such
antipatterns necessitates empirical study, which as we report in section 5.5, ap-
pears to be less common in the papers we have studied.

The distribution of research categories seems to be rather consistent between
the set of conference papers and the set of workshop papers, with exception for
the categories Patterns used and Pattern creation methods. The latter could be
a simple statistical anomaly (as we’ve mentioned there are few papers dealing

14



with this topic, for which reason small discrepancies stand out more). The former
seems a bit more notable however. We have no theory explaining this finding.

5.3 How has research in the field developed over time? (RQ2)

We can see that there is a much larger number of papers matching our search
criteria published in 2009 than in 2005, in large part due to the first Workshop
on Ontology Patterns being held in 2009. If we remove the WOP papers, we still
see a growth in volume.

One interesting note in relation to RQ1 is that all of the work on pattern
identification and pattern creation methods that we found was published in 2009.
Furthermore, the papers dealing with pattern evaluation are all from 2008-2009,
possibly indicating that researchers have noticed these gaps in theory and are
attempting to do something about them.

Unfortunately both of these observations are based on so few papers and
such a short period of time that it would be very difficult to claim them as a
general trends or make predictions based on them.

5.4 Where is ontology pattern research performed? (RQ3)

Keeping in mind the possibility of errors in selection mentioned in section 5.1,
our results indicate that ODP work is primarily taking place at European in-
stitutions. In Table 3 we can see that all of the top nine institutions publishing
more than two papers are located in mainland Europe and the UK. However,
even if we include all of the institutions that have two publications in the dataset,
we still do not find any non-european organizations. As a matter of fact, out of
a total of 49 institutions that had published, only four were located outside of
Europe. Out of these four, three were based in the USA and one in New Zealand.

We can also see that while the dataset is dominated by research originating
at universities, there are also a number of private corporations, research founda-
tions, and other types of non-university organizations that work in the field. Out
of the 49 institutions found, 17 were such non-university organizations (approx-
imately 35 %). These proportions are slightly lower when taking into account
the number of publications per institution, with the non-university organizations
netting 31 % of all institutional mentions in the dataset.

5.5 How is research in ontology patterns being done? (RQ4)

Studying academic cooperation, one easily accessible metric is the number of
authors per paper. However, author counts on their own can be misleading. In
some academic cultures students’ advisors get authorship, while in others they
do not. We instead look at both author counts and institution counts which gives
a better indication of actual research cooperation.

Out of a total of 47 papers, 19 (just over 40 %) list more than one affiliated
institution and 7 (just under 15 %) list three institutions. These figures, however,

15



include papers written by only one author. If we look at the subset of 40 papers
that were written by more than one author, the figures are 47.5 % and 17.5 %
respectively. No matter which way you slice it, these numbers in our opinion
indicate a quite healthy degree of cooperation between research institutions in
the field.

Interestingly, there seems to be a difference between work published at work-
shops and work published at the main conferences - of the former, 51.6 % are
credited to single institutions, whereas the of the latter, 75 % are. This possibly
indicates that the prestige and/or difficulty associated with the higher barrier
of entry to full conferences cause researchers to keep such papers “in-house” to
a larger degree.

With regards to the validation and testing of ODP research, we find that there
may be some work to be done. Nearly one third of the papers published at full
conferences contain no validation or only anecdotal validation of the presented
work. Another near-third validates the work via examples, but provide no real-
world testing to ensure validity. For workshop papers, a smaller proportion of
the papers have no validation or anecdotal validation, but on the other hand,
a much larger proportion validate only through example. Of the papers that
do contain empirical testing, it is uncommon to see discussions on the limits of
validity of said testing. This situation may be somewhat problematic. Though
not all types of research invite the opportunity to perform experiments or case
studies, nor actually require them, we find quite a few papers that could have
benefitted from a more thorough testing procedure.

Finally, looking at how central ODPs are to the content of the papers, we
find that the most common situation is actually that patterns are mentioned
already in the title (see Table 8), indicating that they are quite central to the
papers. This remains the case even when we filter out the WOP papers which
naturally skew the results. We have no explanation for this unexpected result.
One possibility is that this indicates that ontology design patterns are primarily
used within the ODP research community and thus written about by people who
consider them to be important enough to warrant inclusion in the title.

5.6 Future Work

We can imagine followups to this study a few years down the line, studying the
developments on a longer time scale, or using a wider set of source conferences
(including for instance EKAW or KCAP). Also, an in-depth analysis of the
individual papers could be performed, studying the citation counts of the papers
and cross referencing this against the other metrics studied, in order to validate
how well the latter map against the real world qualities that give a paper a high
citation count.

Another aspect that we would like to explore when time and resources permit
is the use of patterns within industry. It is certainly possible that there are
patterns and best practices that are established outside of the academia, and if
this is the case, it is not too far-fetched to asssume that such patterns are more
grounded in empirical knowledge than those discussed in this paper.

16



With regard to the more important question of future research opportunities
in the ODP field we suggest that further work is needed on:

– methods of evaluating the efficiency and effectiveness of ODP,
– developing ODPs for particular usages,
– isolating ODPs from existing ontologies or other information artifacts.

We would also like to see, where possible, a greater focus on evaluating aca-
demic results in this field in an empirical manner. This would aid in firmly
establishing the credibility and maturity of the ODP research field, which we
believe to be necessary if ontology patterns are to be established as a viable so-
lution to the complexity challenges of ontology development, in both the greater
research community and in industry.

References

1. Beck, K.: Smalltalk Best Practice Patterns. Volume 1: Coding. Prentice Hall, En-
glewood Cliffs, NJ (1997)

2. Blomqvist, E.: Semi-automatic ontology construction based on patterns. Ph.D.
thesis, Linköpings universitet (2009)

3. Blomqvist, E., Sandkuhl, K.: Patterns in ontology engineering: Classification of on-
tology patterns. In: Proceedings of the 7th International Conference on Enterprise
Information Systems. pp. 413–416 (2005)

4. Buschmann, F., Henney, K., Schmidt, D.: Pattern-oriented software architecture:
On patterns and pattern languages. John Wiley & Sons Inc (2007)

5. van Der Aalst, W., Ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and parallel databases 14(1), 5–51 (2003)

6. Fowler, M.: Analysis Patterns: reusable object models. Addison-Wesley (1997)
7. Fowler, M.: Patterns of enterprise application architecture. Addison-Wesley Long-

man Publishing Co., Inc. Boston, MA, USA (2002)
8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of

reusable object-oriented software. Addison-wesley Reading, MA (1995)
9. Gangemi, A.: Ontology design patterns for semantic web content. In: The Semantic

Web–ISWC 2005. pp. 262–276. Springer (2005)
10. Hay, D.: Data Model Patterns: Conventions of Thought. Dorset House (1996)
11. Ivarsson, M., Gorschek, T.: Technology transfer decision support in requirements

engineering research: a systematic review of REj. Requirements engineering 14(3),
155–175 (2009)

12. Schümmer, T., Lukosch, S.: Patterns for computer-mediated interaction. Wiley
(2007)

17



 

18



Adapting Ontologies to Content Patterns using
Transformation Patterns

Vojtěch Svátek, Ondřej Šváb-Zamazal, and Miroslav Vacura

Department of Information and Knowledge Engineering,
University of Economics, W. Churchill Sq.4, 130 67 Prague 3, Czech Republic

{svatek|ondrej.zamazal|vacuram}@vse.cz

Abstract. Ontology content patterns are meant to be used not only for
new ontologies but also for reengineering of existing ontologies. However,
the modelling style of such ontologies often differs from the best-practice
pattern that is to be imported to their root portions, which makes the
integration of the two models time-consuming and error-prone. We ex-
plore how the recently developed PatOMat transformation framework
could be applied to ease the adaptation of ‘legacy’ ontologies to a widely
used content pattern from the OntologyDesignPatterns.org library. We
also investigate the link between transformation choices and logical pat-
terns as those earlier proposed by the W3C SWBPD Group.

1 Introduction

Ontology content patterns [4] are nowadays considered as a central artifact for
promoting best practices and supporting shareability in ontology design. Al-
though, ideally, content patterns (CPs, for brevity) should be taken into account
from the very start of the design process, it is a common situation that the au-
thors of the ontology are, at the onset, either unaware of the existence of CPs
at all or too novice to choose the right one. The CPs then only enter the design
process at a later phase, when at least a prototype of the ontology already exists,
and their adoption has the nature of ontology reengineering.

In the easiest setting, generic CPs can be (as kind-of foundational ontology
fragments) ‘passed under’ the current root concepts of the ontology. However,
as the same conceptualisation can be expressed using different modelling styles
in a language such as OWL,1 the need for style transformations may often arise.
A straightforward example of such transformation is change from ‘class-centric’
to ‘property-centric’ style, or vice versa, considering that the same notion can
be modelled as a class (e.g. ‘Purchase’) or an object property (‘bought from’).

In our previous work on the PatOMat project,2 we already addressed the
general need for style transformation in ontological engineering. A general frame-
work, a simple transformation pattern language, and a set of RESTful services
1 In our framework we implicitly assume the use of OWL (possibly in version OWL 2

[6]) as ontology language.
2 http://patomat.vse.cz

19



(relying on external tools such as OPPL and OWL-API, see Section 2) have
been developed, and thoroughly exemplified for an ontology matching scenario
in [11]: having two ontologies to be matched, we can transform the modelling
style of the one so as to make automated matching to the other easier.

The new scenario in this paper is rather one related to ontology import. How-
ever, compared to the generic scenario of either matching or importing an arbi-
trary ontology into another one, we consider here a particular, small and widely
reusable ontological component—a content pattern—to which an existing ‘provi-
sional’ ontology is adapted in order to gain both in rigour and comprehensibility.

The rest of the paper is structured as follows. Section 2 briefly reviews the
PatOMat framework, transformation language and implemented prototype ser-
vices, as described in [11]. Section 3 summarises the ontology matching scenario
from [11], and introduces the new scenario of importing a CP into a prototype
ontology. Section 4 presents the specific input setting of our case study: the
AgentRole pattern from the OntologyDesignPatterns.org library, and the Con-
fOf ontology from the OntoFarm collection. Section 5 discusses the dimensions
of ontology transformation wrt. AgentRole, which relate to the source pattern,
target pattern, and additional axioms in the source ontology. Section 6 shows
an XML serialisation of a (selected) relevant transformation pattern. Finally,
Section 7 surveys some related work, and Section 8 wraps up the paper.

2 Overview of the PatOMat Transformation Framework

The central notion in the PatOMat framework3 is that of transformation pattern
(TP). A TP contains two ontology patterns (the source OP and the target OP)
and the description of transformation betweem them, called pattern transforma-
tion (PT). The representation of OPs is based on the OWL 2 DL profile. How-
ever, while an OWL ontology refers to particular entities, e.g. to class Person, in
the patterns we generally use placeholders. Entities are specified (i.e. placehold-
ers are instantiated) at the time of instantiation of a pattern. An OP consists of
entity declarations, axioms, and naming detection patterns; the last capture the
naming aspect of the OP important for its detection. A PT consists of a set of
transformation links and a set of naming transformation patterns. Transforma-
tion links are either logical equivalence relationships or extralogical relationships
holding between two entities of different type. Naming transformation patterns
serve for generating new names for old or newly created entities. Naming pat-
terns range from passive naming operations such as detection of a head noun for
a noun phrase to active naming operations such as derivation of verb form of a
noun. The framework prototype implementation consists of three core services:4

– The OntologyPatternDetection service takes the transformation pattern and
a particular original ontology on input, and returns the binding of entity

3 [11] provides more details about the framework, and at http://owl.vse.cz:8080/

tutorial/ there is a fully-fledged tutorial for the current version.
4 All accessible via the web interface at http://owl.vse.cz:8080/.

20



placeholders on output, in XML. The structural/logical aspect is captured
in the structure of an automatically generated SPARQL query; the naming
aspect is dealt with based on its description within the source pattern.

– The InstructionGenerator service takes the particular binding of placehold-
ers and the transformation pattern on input, and returns particular transfor-
mation instructions on output, also in XML. Transformation instructions are
generated according to the transformation pattern and the pattern instance.

– The OntologyTransformation service takes the particular transformation in-
structions and the particular original ontology on input, and returns the
transformed ontology on output.

The third service is partly based on OPPL [2] and partly on our specific im-
plementation over OWL-API.5 Currently we use OPPL for the operations on
axioms and for adding entities, and OWL-API for re/naming entities according
to naming transformation patterns and for adding OWL annotations. As far as
detection is concerned, the SELECT part of OPPL could be used to some extent;
our naming constraints are however out of the scope of OPPL. Furthermore, in
contrast to OPPL, we decompose the process of transformation into parts, which
enables user intervention within the whole workflow.

3 PatOMat in Use: Matching vs. CP Importing Scenario

As mentioned in the Introduction, the initially considered scenario for pattern-
based ontology transformation was the ontology matching scenario, schemati-
cally depicted in Fig. 1 (the ‘structural changes’ shown are merely illustrative
and don’t claim to correspond to meaningful transformations). The transforma-
tion step here precedes the actual matching step in the whole workflow. A given
ontology (possibly just a fragment thereof), which is to be matched to a second
ontology, is first matched to the source OP of a TP; the choice of the fragment as
well as of the TP is however guided by an analysis of the second ontology (such
that the target OP of the TP should use the same modelling style as the second
ontology). The transformed ontology is built in the style of the target OP of the
TP. This makes the subsequent matching to the second ontology easier; e.g. sim-
ple and fast string matching methods can be used instead of sophisticated and
fragile matching methods.

The content pattern import scenario (adapting a prototype ontology, via
transformation, to the style of a CP), depicted in Fig. 2, differs from the previous
one in the overall workflow, in the sense that the import literally precedes the
transformation. Namely, in the first step, the CP is included in the ontology as a
separate structure, merely subordinated to owl:Thing. Then the transformation
takes place; however, only TPs specifically tailored to the given CP are consid-
ered. In the transformed ontology,6 shaped to the style of the target OP of the
TP, the CP is already integrated into the ontology, as part of its root structure.
5 http://owlapi.sourceforge.net/
6 For illustration, Fig. 2 also contains an entity B, which is not matched by the TP

and thus implicitly copied to the transformed ontology.

21



Fig. 1. Schematic depiction of transformation for ontology matching

Fig. 2. Schematic depiction of transformation for CP import

22



Even if a part of the input to the transformation, the content pattern, is
fixed, there is potentially great variability in the ways different ontologies can
be adapted to the pattern. The variability goes along (at least) three different
dimensions: the style of the source pattern occurrence proper, the style of the
target pattern (apart from the imported content pattern itself), and the existence
of additional axioms external to the source pattern that refer to entities from
the pattern. We exemplify each of these dimensions in Section 5.

4 Input Settings for the Import Scenario Case Study

4.1 Role Modelling Approaches and AgentRole Pattern

The notion of role7 has repeatedly appeared in the history of knowledge mod-
elling. We will not examine this phenomenon in depth here (for thorough dis-
cussion refer e.g. to [3], Ch.7), but will only present the most obvious modelling
options in the context of OWL, partially borrowed from [10].

For expressing general notions in OWL, essentially, one has two atomic entity
types available. An ontology designer not deeply acquainted with the notion of
ontological role will typically model a role implicitly, as

– a class that is a subclass of a class expressing a natural concept (e.g. Teacher
as subclass of Person), such that the ‘role’ class is endowed with restrictions
over one or more properties (e.g. an instance of Teacher has to be teacherOf
some Student and teacherAt some University), or

– just as one or multiple separate properties (such as teacherOf, teacherAt)
representing aspects of the role.

It should be mentioned that Sunagawa [10] also suggests a sophisticated OWL
pattern for capturing all important aspects of role playing: role concepts (i.e. roles
proper), natural concepts (that play roles), and role holders (that hold roles but
inherit properties from natural concepts). We do not however consider this pat-
tern here, as it is very unlikely for it to have been engineered ‘just by chance’ in
the kind of prototype ontologies we focus on in our approach.

The wiki-based web portal at OntologyDesignPatterns.org contains a vast
number of patterns of various types, all related to ontology design and ex-
ploitation. The most represented category is that of content patterns as im-
mediately reusable ontology building blocks: there are 80 such patterns (though
none yet certified) at the time of writing this paper. As the library aims to lower
the threshold for even less experienced ontology designers, most CPs are rela-
tively simple, yet grounded in well-designed foundational ontologies such as the
lightweight version of DOLCE.8 The AgentRole pattern, depicted in UML-like
notation in Fig. 3, is an example of such a simple content pattern leveraging

7 This general notion should not be confused with the term ‘role’ used for binary
relation in description logics (as formal underpinning of OWL).

8 http://www.loa-cnr.it/ontologies/DUL.owl

23



on the modular structure of imports. The AgentRole pattern, displayed with
its elements in solid, specializes the ObjectRole pattern (entities from the ‘or’
namespace), which in turn specializes the Classification pattern (entities from
the ‘class’ namespace), both displayed with their elements in dashed. Following
from the most generic model, the Classification pattern merely allows to state
the relationship between an entity and the concept to which this entity is some-
how classified; this corresponds to an informal ‘reification’ of the subClassOf
relationship. ObjectRole, in turn, already deals with role playing, understood as
a specific type of classification;9 entities playing roles can be any objects (i.e. no
arbitrary things such as properties any more). Finally, AgentRole introduces
an even more specific class of such role-playing objects, called Agent, which is
declared as disjoint with class Role.

Fig. 3. AgentRole pattern and its imports

4.2 Example Input Ontology

As core example of input ontology to be adapted, we will use an existing ontology
from the OntoFarm10 collection, the ConfOf ontology. It models the domain of
‘organizing conferences’ from the point of view of a particular review (and other
activity) support software: the ConfTool.11 We will however also discuss patterns
alternative to those used in ConfOf.

One ‘role-playing’ fragment in ConfOf is depicted in Fig. 4. The notion of
authorship is modelled as the Author class being subclass of Person. The Author
class has a pair of existential and universal restriction over the writes property,
and also appears in the domain of this property and in the range of its inverse,
writtenBy.

9 There is a subproperty relationship (not depicted in the diagram) between isRoleOf
and Classifies, and hasRole and isClassifiedBy, respectively.

10 For an overview on the OntoFarm project see http://nb.vse.cz/~svatek/

ontofarm.html.
11 http://www.conftool.net

24



Fig. 4. Fragment of ConfOf ontology dealing with authorship

5 Transformation Process Alternatives

In this section we will demonstrate the aspects of the ‘CP import’ scenario of
pattern-based ontology transformation, outlined in Section 3, on the concrete
setting presented in Section 4.

5.1 Source Pattern

As natural candidates for the source pattern we can consider the simple role pat-
terns from Section 4.1: we can call them ‘class-oriented’ and ‘property-oriented’
pattern, respectively. Obviously, ConfOf sticks to the ‘class-oriented’ role pat-
tern. Another ontology could however, for example, avoid the Author class and
model the author role merely in terms of properties such as writes and written
by (or e.g. authorOf and hasAuthor), with domain/range set to Person, this
leading to the ‘property-oriented’ pattern.

In addition, due to the above-mentioned sequencing of operations, the content
pattern is already present in the ontology when the ontology is submitted to
transformation, and thus has to be a part of the source pattern. However, it is
unconnected to the rest of the ontology (and source pattern) yet.

5.2 Target Pattern

Obviously, the content pattern is transferred to the target pattern without
change. However, the way the rest of the source pattern occurrence is shaped
and linked to the content pattern may vary.

Note that, in the particular context of AgentRole pattern and the class-
oriented role modelling style of ConfOf, the transformation of the notion of
‘author’ from a (seemingly) natural concept to a role amounts to transition from
the ‘instance of’ relationship (being a language primitive in OWL DL) to the
hasRole relationship (i.e. object property). By consequence, the fact of a person
having the author role, which was previously expressed as e.g. “John rdf:type
Author”, now has to connect the individual John to some ‘author role’ entity
through the hasRole property. Assuming we formalise the author role as class in

25



the target pattern, we arrive to an instance of the “defining classes as property
values” problem, treated as a logical pattern in [7].

From the set of five ‘modelling approaches’ (actual logical patterns, in fact) of
this published pattern we will only consider those expressible in OWL DL. This
eliminates “Approach 1: Use classes directly as property values”. The remaining
are, in turn (in the original terminology of [7]):

– Approach 2: Create special instances of the class to be used as property
values

– Approach 3: Create a parallel hierarchy of instances as property values
– Approach 4: Create a special restriction in lieu of using a specific value
– Approach 5: Use classes directly as annotation property values

We will not analyze the pros and cons of different approaches wrt. particular
situations, as in [7]. Instead we will try to reveal important aspects of transfor-
mation of the ConfOf fragment to the given approach. It should be noted that
the application of the approaches is not always as obvious as in the “books-about-
animals” example used through [7], as the nature of the underlying dc:subject
property is somewhat different from the hasRole property in our example; we
occasionally comment on such differences.

Transformation to Approach 2. It may lead, assuming some naming transfor-
mations, to the situation depicted in Fig. 5 (we omit the namespace prefixes
and don’t distinguish imports, for better readability). The Author class was re-
moved, while there is a new class, with the same name but different meaning,
subordinated to Role; there is now also now a distinguished instance of the latter
class, called AuthorRole12 (in rounded rectangle) as part of the ontology. While
populating the transformed ontology, an instance of Person can be connected
by the hasRole property with the AuthorRole individual.

ConfOf models authorship in a simple way such that there are no subclasses
of Author. However, if there were such subclasses (e.g. PosterAuthor), they would
be transformed to subclasses of the new Author class; each such class would also
have a corresponding individual (e.g. PosterAuthorRole) as direct instance.

Transformation to Approach 3. The transformation corresponds to the setting
in Fig. 6. The difference from Approach 2 is that Author has no longer the
semantics of role and thus is not subclass of Role. As AuthorRole is still instance
of Role, we link it to Author using the annotation property rdfs:seeAlso.

The most important distinction is however not visible in this simple diagram.
Namely, if there were a subclass system under Author in the original ontology,
it would have to be transferred to the instance level. Instead of subclasses, there

12 In the “books-about-animals” example in [7], the class is assumed to correspond to
an animal species and the instance to the ‘topic’ of this animal. Both in the original
example and in the example used in this paper, the nature of such instances—‘roles’
and ‘topics’, respectively—is thus not very coherent with the semantics of the class
(whose name, be it e.g. Lion, or Author, is rather appropriate for a natural concept).

26



Fig. 5. Target of transformation using Approach 2

Fig. 6. Target of transformation using Approach 3

27



would be individuals such as PosterAuthorRole, which would be all direct in-
stances of Role, and their specialization relationship would be modelled by a
dedicated object property such as subRoleOf.

Transformation to Approach 4. This is similar to Approach 2 (including the
treatment of a hypothetical subclass system), except that

– the original Author class is not removed
– consequently, the new class (subclass of Role) is not named Author but

AuthorRole
– no special instances are generated for the new (AuthorRole) class
– instead, an additional restriction (in bold) is imposed on the Author class,

relating it to the AuthorRole class.

The result is in Fig. 7.

Fig. 7. Target of transformation using Approach 4

Transformation to Approach 5. The transformation corresponds to the setting
in Fig. 8. In this approach, similarly to Approach 3, Author is not subclass of
Role, and represents, together with its hypothetical subclasses, a branch of the
ontology separate from Person, too. The Role class and the original hasRole and
isRoleOf object properties, although imported with the AgentRole pattern, are
not used at all. Instead, a new pair of annotation properties, borrowing the name
of these two object properties, is defined. They can be used to directly connect
instances of Person to class Author (or its subclass), as using classes as values
of annotation properties is possible within OWL DL. Obviously, the downside is
unavailability of information in annotations to conventional DL reasoners.

28



Fig. 8. Target of transformation using Approach 5

Feedback to the W3C Pattern. The context of transformation probably makes
obvious that the five approaches from [7] (including Approach 1, which amounts
to using a class directly as value of the property, thus lifting the ontology to
the OWL Full dialect) are not the only possible choices for expressing the given
conceptualization. Systematic variation of the (declaratively expressed) trans-
formation pattern can give rise to multiple new approaches, which deserve to be
further systematized, in a new round of the best practice identification process.

5.3 Additional Axioms

The implemented version of the transformation framework does not make dis-
tinction between the source pattern proper (i.e. structures whose occurrence is
essential for the presence of the pattern) and additional, ‘external’ axioms that
only ‘touch’ the pattern by referring to one of its entities. Such axioms may or
may not be present for an ontology fragment to match the source pattern, but if
they are present then they have to be considered by the transformation. Consid-
ering them as mandatory makes the whole transformation pattern over-specific
and hard to understand. Therefore, for the new (not yet implemented) version
of the transformation framework, we will decompose the transformation pat-
terns into a mandatory part (containing the source and target ontology patterns
proper, and their pattern transformation) and an optional part (containing the
additional axioms, and their pattern transformation).

Specifically, when looking at Fig. 4, we see that the original Author class
is used both in local (existential and universal) and global (domain and range)
restrictions. If we use e.g. Approach 2, the Author class is however removed.
The easiest but most lossy way of dealing with axioms that referred to it would
be to drop the local restrictions together with the class, and to let the global
restrictions refer to the immediate superclass (i.e., Person). However, we can also
(at the cost of complexity overhead) replace the removed named class with the
composed class expression Person u ∃ hasRole.Author in these axioms. While
this is straightforward for the global restrictions (just setting the domain/range
of the respective properties to be this class expression), for modelling the local

29



restrictions in OWL 2 DL we would have to employ an explicit anonymous class
in order to link the two composed concept expressions, e.g.:

1 ≡ Person u ∃ hasRole.Author
1 v ∃ writes.Contribution

Detailed discussion of the impact of such manipulations is however beyond the
scope of this paper.

6 XML Serialisation of Transformation Patterns

Fig. 9 shows the XML serialisation of the transformation pattern for Approach 2.
The codes for all four mentioned approaches are available in the transformation
pattern library accessible from http://nb.vse.cz/~svabo/patomat/tp/.

As mentioned in Section 2, the transformation pattern consists of two ontol-
ogy patterns, the source and the target one, plus a pattern transformation. Both
OPs contain the given CP (AgentRole), with concrete classes, in their ‘axioms’
part (last six axioms in each OP).

In addition, the source OP declares two placeholders for classes, ?A and
?B, such that the second is subclass of the first (such as Author is of Person):
this is the only axiom with placeholders. There is no naming detection pattern,
for simplicity (as none is needed in this simple example). Additional axioms,
mentioned in Section 5.3, are not yet considered either.

The target pattern declares two placeholders for classes, ?C and ?D, and
one for individual, ?b, which is instance of the latter class. The first two of its
axioms however already interlink the imported CP with placeholder classes (this
corresponds to subordinating Person to Agent and Author to Role). The third
axiom states that ?b is instance of ?D (such as AuthorRole to Author).

The pattern transformation, finally, declares the logical equivalence13 trans-
formation links between the classes from the source and target OP, and a simple
naming pattern transformation for creating the name of the new individual by
concatenating the name of class ?B with the string ‘Role’.

7 Related Work

We are unaware of any style transformation approach used in connection with
content patterns as in our current research. As regards our framework as such,
several generic approaches to ontology transformation have recently been pub-
lished. We refer here to two that look most relevant to our work (aside pure
OPPL, which we ourselves use as an external component of our framework).

In [9] the authors consider ontology translation from the Model Driven En-
gineering perspective. The basic shape of our transformation pattern is very
13 For simplicity we use an equivalence link even for ?B vs. ?D, although the equivalence

between the class Person before and after transformation is arguable; removing a
class and creating a new one would be sounder.

30



<tp>

<op1>

<entity_declarations>

<placeholder type="Class">?A</placeholder>

<placeholder type="Class">?B</placeholder>

</entity_declarations>

<axioms>

<axiom>?B subClassOf ?A</axiom>

<axiom>or:isRoleOf range or:Object</axiom>

<axiom>or:hasRole domain or:Object</axiom>

<axiom>or:hasRole range or:Role</axiom>

<axiom>or:isRoleOf domain or:Role</axiom>

<axiom>:Agent subClassOf or:Object</axiom>

<axiom>:Agent disjointWith or:Role</axiom>

</axioms>

</op1>

<op2>

<entity_declarations>

<placeholder type="Class">?C</placeholder>

<placeholder type="Class">?D</placeholder>

<placeholder type="Individual">?b</placeholder>

</entity_declarations>

<axioms>

<axiom>?C subClassOf :Agent</axiom>

<axiom>?D subClassOf :Role</axiom>

<axiom>?b a ?D</axiom>

<axiom>or:isRoleOf range or:Object</axiom>

<axiom>or:hasRole domain or:Object</axiom>

<axiom>or:hasRole range or:Role</axiom>

<axiom>or:isRoleOf domain or:Role</axiom>

<axiom>:Agent subClassOf or:Object</axiom>

<axiom>:Agent disjointWith or:Role</axiom>

</axioms>

</op2>

<pt>

<eq op1="?A" op2="?C"/>

<eq op1="?B" op2="?D" />

<ntp entity="?b">?B+Role</ntp>

</pt>

</tp>

Fig. 9. Simple transformation pattern for Approach 2

31



similar to their metamodel. They consider an input pattern, i.e. a query, an out-
put pattern for creating the output, as well as variables binding the elements.
However, the transformation is considered at the data level rather than at the
schema level as (primarily) in our approach.

In comparison with the previous work the authors of [5] leverage the ontol-
ogy translation problem to the generic meta-model. This work has been done
from the model management perspective, which implies a generality of this ap-
proach. There are important differences to our approach. Although they consider
transformations of ontologies (expressed in OWL DL), these transformations
are directed into the generic meta-model or into any other meta-model such as
that of UML or XML Schema. In contrast, in our approach we stay within one
meta-model, the OWL language, and we consider transformation as a way of
translating a certain representation into its modelling alternatives.

8 Conclusions and Future Work

We demonstrated that transformation patterns are a useful mediator for ad-
equately importing content patterns into ontologies, especially into prototype
ones that have been designed ad hoc, are not yet widely used, and now are to
be put (through the content patterns) onto a more solid and shared foundation.
Although the scenario used in this paper is quite narrow, we believe that it
uncovers recurrent issues related to ontology style heterogeneity in general.

Aside the AgentRole pattern and its generalizations, we plan to explore other
content patterns from OntologyDesignPatterns.org. Analogously, we will experi-
ment with different input ontologies, which will require new transformation op-
erations such as changing between properties and classes (‘de/objectification’),
as e.g. in the ‘n-ary relations’ logical pattern [8]. Obviously, the cost/benefit ratio
of the CP import functionality should also eventually be examined with respect
to the size of the ontology to be transformed and amount of data that already
refer to it (and have to be transformed too, either at query time or in bulk).

The most critical future work, which is not specific for content pattern import
but generic for pattern-based transformation, is however support for recursive
and optional parts of patterns. This will lead to much more efficient transfor-
mation, as the transformation process, triggered at a ‘root’ entity (such as the
Author class in ConfOf ) could be propagated down the subclass (for different
specific types of authors) or subproperty links, and yield an analogous, though
stylewise different structure in the target ontology.

Another generic functionality we also plan to achieve in long term is system-
atic, pattern-based swapping of the information lost during style transformation
into OWL 2 annotations, see e.g. [1] for initial considerations.

From the research point of view, a challenging task is to automatically suggest
fragments of ontologies that should be (transformed and) subordinated to a
content pattern. For the AgentRole pattern, for example, this challenge amounts
to recognising classes or properties that implicitly express a role. In [12] we
already formulated and in [13] made an initial evaluation (with promising result)

32



of a heuristic for detection of a ‘role’ class, through the occurrence of its name
in (a naming pattern context of) a property having this class as domain. Much
more complex heuristics, possibly inductively learnt, would however be needed
for efficient recommendation.

This research has been partially supported by the CSF grant no. P202/10/1825,
“PatOMat – Automation of Ontology Pattern Detection and Exploitation”.
The authors are indebted to Eva Blomqvist, Aldo Gangemi and Valentina Pre-
sutti for inspiring discussions and hints regarding the ODP.org content patterns.

References

1. Annotation System. OWL WG, Work-in-Progress document, http://www.w3.org/
2007/OWL/wiki/Annotation_System.

2. Egaña M., Stevens R., Antezana E.: Transforming the Axiomisation of Ontologies:
The Ontology Pre-Processor Language. In: OWLED. 2008. (z related work:)

3. Guizzardi G.: Ontological Foundations for Structural Conceptual Models, PhD The-
sis, University of Twente, The Netherlands. Published as the book Ontological
Foundations for Structural Conceptual Models, Telematica Instituut Fundamen-
tal Research Series No. 15, ISBN 90-75176-81-3 ISSN 1388-1795; No. 015; CTIT
PhD-thesis, ISSN 1381-3617; No. 05-74.

4. Presutti V., Gangemi A.: Content ontology design patterns as practical building
blocks for web ontologies.: In Proceedings of ER2008. Barcelona, Spain, 2008.

5. Kensche D., Quix C., Chatti M., Jarke M.: GeRoMe: A Generic Role Based Meta-
model for Model Management. In: Journal on Data Semantics, Vol.8, p.82–117,
2007.

6. Motik B., Patel-Schneider P.F., Parsia B. (eds.): OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax. W3C Recommendation 27 Oc-
tober 2009, online at http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/.

7. Noy N. (ed.): Representing Classes As Property Values on the Semantic Web.
W3C Working Group Note 5 April 2005, online at http://www.w3.org/TR/

swbp-classes-as-values/.
8. Noy N., Rector A. (eds.): Defining N-ary Relations on the Semantic Web.

W3C Working Group Note 12 April 2006, online at http://www.w3.org/TR/

swbp-n-aryRelations/.
9. Parreiras F. S., Staab S., Schenk S., Winter A.: Model Driven Specification of Ontol-

ogy Translations. In: 27th International Conference on Conceptual Modeling (ER-
2008). n. 5231, p. 484–497. 2008.

10. Sunagawa E., Kozaki K., Kitamura Y., Mizoguchi R.: Role organization model in
Hozo. In: Proc. EKAW’06, Podebrady, Czech Republic. Springer, LNCS.

11. Šváb-Zamazal O., Svátek V., Iannone L.: Pattern-Based Ontology Transformation
Service Exploiting OPPL and OWL-API. In: EKAW-2010, Lisbon, Portugal, 2010.

12. Svátek V., Šváb-Zamazal O., Presutti V.: Ontology Naming Pattern Sauce for (Hu-
man and Computer) Gourmets. In: Workshop on Ontology Patterns at ISWC’09,
Washington DC, 2009. Online http://sunsite.informatik.rwth-aachen.de/

Publications/CEUR-WS/Vol-516/

13. Svátek V., Šváb-Zamazal O.: Entity Naming in Semantic Web Ontologies: Design
Patterns and Empirical Observations. In: Znalosti 2010, 9thCzecho-Slovak Annual
Knowledge Technology Conference, Jindřich̊uv Hradec 2010, Czech Republic.

33



 

34



Reusing Ontology Design Patterns in a Context 
Ontology Network  

María Poveda-Villalón, Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez 
Ontology Engineering Group. Departamento de Inteligencia Artificial. 

Facultad de Informática, Universidad Politécnica de Madrid.  
Campus de Montegancedo s/n.  

28660 Boadilla del Monte. Madrid. Spain 
 mpoveda@delicias.dia.fi.upm.es, {mcsuarez, asun}@fi.upm.es  

Abstract. Reusing knowledge resources, specifically Ontology Design Patterns 
(ODPs), has became a popular technique within the ontology engineering field. 
Such a reuse allows speeding up the ontology development process, saving time 
and money, and promoting the application of good practices. Recently methods 
and tools to support the reuse of ODPs have emerged. In addition, the existence 
of detailed examples of real use cases that reuse ODPs favours the adoption and 
application of such methods. Thus, our objective in this paper is to show an 
example of how to apply a method for reusing ODPs during the development of 
a context ontology network to model context-related knowledge that allows 
adapting applications based on user context. Besides, in this paper we present 
the main drawbacks found during the application of the reuse method as well as 
some proposals to overcome them.  

Keywords: ontology design pattern, ontology development, context ontology  

1   Introduction 

With the goal of speeding up the ontology development process, ontology 
practitioners are starting to reuse [11, 12] as much as possible knowledge resources 
(ontologies, ontology modules, ontology statements, and ontology design patterns as 
well as non-ontological resources). This approach also allows ontology developers to 
save time and money and to promote the application of good practices. 

Regarding the ODPs, their reuse has proven different benefits [1] like (a) to make 
easier the ontology development or (b) to produce ontologies of better quality. The 
reuse of ODPs should be supported by methods and tools to minimize the reuse effort 
and to maximize their benefits. In this sense, methods and tools to support the reuse of 
ODPs have recently emerged.  

However, methods and tools are not enough to guarantee a successful reuse of 
ODPs. In this regard, the existence of detailed examples of how ODPs are reused in 
real use cases would be of great help. This kind of guided examples would favour the 
adoption of ODPs and their related methodological and technological support. 

Thus, our main objective in this paper is to present a guided example of how we 
have carried out the reuse of ODPs during the development of an ontology network 
about user’s contextual information, called mIO! ontology network. This ontology 

35



network is a context ontology in the mobile environment that aims to represent 
contextual knowledge about the user that can influence his interaction with mobile 
devices. In addition, we also show in this paper some lessons learned during the 
application of the method for reusing ODPs as well as some proposals for overcoming 
the drawbacks found in the method.  

The remainder of the paper is structured as follows: Section 2 summarizes the state 
of the art on methodological and technological aspects of the ODPs reuse. Section 3 
describes in detail how we have followed the guidelines to reuse ODPs as well as how 
we have adapted such guidelines during the development of the mIO! ontology 
network. Section 4 shows the lessons learned during the ODPs reuse. Finally, Section 
5 concludes and shows some lines of future work.  

2   Ontology Design Patterns and how to reuse them 

The idea of applying patterns for modelling ontologies was proposed by [2]. Since 
then, relevant works on patterns have been the Semantic Web Best Practices and 
Deployment Working Group1, the Ontology Design Patterns Public Catalogue2, and 
the Ontology Design Patterns Portal3. According to [4] Ontology Design Patterns 
(ODPs) are modeling solutions to solve a recurrent ontology design problem. ODPs 
are a way of encoding best practices, based on experiences and knowledge of ‘good’ 
solutions. In [5], authors distinguish the following six different types of ODPs: 
reasoning, structural, content, presentation, lexico-syntactic, and correspondence. 

Generally patterns are perceived as having three kinds of benefits [5]: (1) reuse 
benefits, (2) guidance benefits, and (3) communication benefits. The ontology design 
patterns reuse refers to the activity of using available ontology design patterns in the 
solution to different modelling problems during the development of new ontologies 
[15]. The goal of the ODPs reuse is to facilitate the solution of modelling issues and 
to improve interoperability through using well-proven solutions and best practices, in 
the form of patterns. In this sense, there are experiments that prove that the reuse of 
ODPs makes the ontology development process easier and improves the quality of the 
resulting ontologies [1]. 

Even when such benefits have been established, there is the need to provide 
methodological and technological support to the pattern usage with the goal of (a) 
minimising the reuse effort and (b) maximising the ODPs benefits. In this regard, 
methods and tools have recently appeared to guide and support the ODPs reuse. 

On the one hand, a method for reuse any type of ODP, called XD (for eXtreme 
Design), is presented in [3, 9]. In this method the ODPs reuse activity is divided into 
eight tasks (1. Identify requirements to be addressed; 2. Identify available patterns; 3. 
Divide and transform the problem, select a partial problem; 4. Match selected partial 
problem to patterns; 5. Select patterns; 6. Apply (reuse) selected patterns and 
compose them; 7. Evaluate and revise with respect to partial problem; and 8. Integrate 
partial solutions). The method has as input the Ontology Requirements Specification 

                                                           
1 http://www.w3.org/2001/sw/BestPractices/OEP/ 
2 http://www.gong.manchester.ac.uk/odp/html/index.html 
3 http://ontologydesignpatterns.org 

36



Document (ORSD) and a set of available ODPs, and as output an ontology network 
including the ODPs reused. In summary, the workflow starts with the identification of 
the requirements to be addressed by reusing ODPs and the available ODPs registries 
and libraries. Next, an iterative set of tasks takes place in which (a) each problem is 
divided into sub-problems, (b) a sub-problem is selected and matched with the ODPs, 
(c) the ODPs are selected and applied, and (d) the result is evaluated. This cycle is 
repeated until all the sub-problems are addressed. Finally, the method concludes by 
integrating all the partial solutions resulting in an ontology network which contains 
the ODPs selected. The XD method could be specialized to address the reuse of 
concrete types of ODPs, for example, content patterns [3, 9, 13]. 

It is well known that the adoption of any emerging methodology or method is 
facilitated by providing detailed examples of how to apply them to real and complete 
use cases. However, as far as we know, there are no complete examples of how to 
apply the XD method to the reuse of any type of ODP. Thus, we present in this paper 
a detailed example of how we have reused different types of ODPs during the 
development of a context ontology network. 

On the other hand, there are also tools that provide a technological support for the 
ODPs reuse activity. The plug-in for NeOn Toolkit4 called “XD Tools”5 allows the 
content ODPs reuse accordingly to this variant of the XD method. Whereas, the 
ontology editor Protégé 3.4.46 allows the automatic reuse7 of the following logical 
patterns and good practices: “Value Partition”, “Enumeration”, “N-ary Relation”, 
“OWL List”, and “RDF List”. 

3   ODPs Reuse in the mIO! Ontology Network 

As already mentioned, the main purpose of this context ontology, called mIO! 
ontology network, is to represent knowledge related to the user context, e.g., 
information on location and time, user information and its current or planned 
activities, as well as devices located in his surroundings. The ontology aims at solving 
the challenge of configuring, discovering, executing, and enhancing services based on 
the user context.  

The development of this ontology network about contextual information has been 
carried out following the NeOn Methodology [12]. During the development of such 
an ontology network we have reused different knowledge resources (ontologies, non-
ontological resources, and ODPs) as explained in [8]. In this paper, we focus 
exclusively on how we have performed the reuse of ODPs. 

To reuse ODPs we have applied the general method described in [13] rather than 
the one explained in [9], since we are not interested exclusively in content patterns but 
in any type of ODP. For the same reason we have manually put into practice method 
instead of using the XD Tools. It is important to add that in some cases during the 
application of the method we have had to adapt and/or extend the guidelines provided. 

                                                           
4 http://neon-toolkit.org 
5 http://neon-toolkit.org/wiki/XDTools 
6 http://protege.stanford.edu/download/registered.html#p3 
7 This reuse is performed in a guided way by means of a wizard. 

37



Thus, in this section we describe (a) how we have applied the general XD method8 
for reusing different types of ODPs and (b) how we have adapted and/or extended the 
guidelines provided by the method. 

Task 1. Identify requirements to be addressed 

To identify the requirement to be addressed by means of the reuse of ODPs, we 
have chosen the third question proposed in [13] based on our knowledge about ODPs. 
The other two questions proposed in [13] could result in selecting requirements that 
cannot be solved by reusing ODPs and for this reason we have discarded such 
questions. Therefore, the selected question is “What requirements can be associated 
with existing patterns types?”.  

The main drawback at this point is the fact that to be able to answer this question 
developers should be versed in ODPs types. In this sense, based on our knowledge 
about ODPs, we have not selected those requirements that could be addressed by 
existing ODPs types but those that apparently can be solved by reusing existing 
ODPs.   

Table 1 shows both the non-functional and the functional requirements extracted 
from the ORSD9 that will be addressed by reusing ODPs. The functional 
requirements belong to the following subdomains as we can observe in the identifier10 
field: Interface (INT), Device (DSP), Time (TMP), Location (LOC), and User (USR). 
These functional requirements can be written both as Competency Questions (CQs) 
and their corresponding responses [6] and as affirmative sentences in natural language 
(NL) as explained in [8]. 

Table 1. Requirements to be addressed by reusing ODPs 

Non-functional requirements 

• The ontology should be modular. 

Functional requirements 

Requirement 
identifier 

Requirement 

CQ identifier CQ and its response 

DSP_PC7 

What devices exist?  
Display, touchscreen, balise, keyboard, trackball, pulse oximeter, glucose meter, 
emvironmental temperature sensor, environmental humidity/pressure sensor, 
Anemometer, CO2 level sensor, printer, camera, GPS Receiver, short distance 
communication module (NFC. ZigBee, Bluetooth), long distance communication 
module (GPRS, UMTS, WiFi), processing module, memory module, loudspeaker, 
microphone and reading/writing module NFC 

DSP_PC9 

What are the components of a display?  
A display is composed by: 
- input interfaces 
- presentation surface 
- control interfaces 
- power system 

                                                           
8 To simplify the example description, we present a unique process addressing simultaneously 

all the requirements. 
9 The whole ORSD for the mIO! ontology network is available in [7]. 
10 The abbreviations come from the Spanish name of each subdomain: Intefaz (INT), 

Dispositivo (DSP), Tiempo (TMP), Localización (LOC), and Usuario (USR).  

38



CQ identifier CQ and its response 

DSP_PC49 

What are the components of a CO2 level sensor? 
A CO2 level sensor is composed by: 
- source 
- power system 
- detector 
- amplifier 
- output /download data port (optional)  

DSP_PC61 

What are the components of a printer? 
A printer is composed by: 
- leaf storage receptacle 
- printhead 
- ink container 

 
- storage device 
- processing device 
- communication interface  
- screen 

DSP_PC71 

What are the components of a camera? 
A camera is composed by: 
- lens 
- image capture device 
- image processing device 
- storage device 

 
- communication interface  
- positioning device 
- lighting device 
- screen 
- microphone 

DSP_PC83 

What are the components of a GPS receiver? 

A GPS receiver is composed by:  
- antenna 
- signal processor 
- processing module 
- communication interface 

- screen 
- speaker 
- microphone 

DSP_PC96 

What are the components of a speaker? 
A speaker is composed by: 
- communication interface 
- amplifier 
- decoder 

 
- signal processing module 
- active element 
- casing 

DSP_PC102 

What are the components of a microphone? 

A microphone is composed by: 
- diaphragm 
- coil 
- permanent magnet 

 A condenser microphone is composed by: 
- diaphragm of lightweight and flexible 
membrane 
- rigid backplate 
- cable to the preamplifier 
- bias voltage feeder 

TMP_PC4 
What are the days of the week? 
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday 

LOC_PC14 
When was the last time that the user was in the location X? 
The day Z from xx: xx: xx to yy: yy: yy 

NL sentence 
identifier Affirmative NL Sentence 

INT_CA3 

The interfaces types are: 
- conversational 
- gestural 
- graphic 
- natural language 
- command line 

 
- multi screen 
- touch 
- textual 
- vocal 
- web 

USR_CA7 
A user will be in a specific location at any given time. The possible physical 
movement of the user is associated with this aspect 

Task 2. Identify available patterns 

To carry out this task, first we have identified different libraries and repositories in 
which patterns could be found. Next, based on our knowledge about ODPs and on 

39



their descriptions11 and uses we have sketched preliminary correspondences between 
the requirements selected in Task 1 and the available ODPs. Note that there are 
patterns that belong to several libraries or repositories. 

The ODPs resources and the ODPs suitable to be reused are: 
• Ontology Design Patterns (ODP) Portal12: this Wiki aims to gather ODPs in 

a repository. The patterns are reviewed by a quality committee. Besides, users 
can submit new patterns or modelling issues. In this portal we have found the 
following suitable patterns to be reused within the mIO! ontology network 
development: 

o Componency 
o N-Ary Participation 

• W3C Semantic Web Best Practices and Deployment (SWBPD)13: this 
repository contains pattern descriptions and some examples of modelling 
patterns. The repository also includes other types of best practices as 
guidelines, repositories of vocabularies and ontologies, learning material, and 
demos. In this repository we have found the following suitable patterns to be 
reused within the mIO! ontology network development: 

o N-ary Relations. Pattern 1: Introducing a new class for a relation 
o Specified Values in OWL: "value partitions" and "value sets" 

• NeOn D2.5.1 [10]: A Library of Ontology Design Patterns: reusable solutions 
for collaborative design of networked ontologies. This catalogue contains 
content patterns classified by domains. In this resource we have found the 
following suitable patterns to be reused within the mIO! ontology network 
development: 

o Componency (CP-COM-01) 
o N-Ary Participation (CP-NPAR-01) 

• NeOn D5.1.1 [14]: NeOn Modelling Components. This catalogue provides 
descriptions about logical, architectural, and some content patterns. In this 
resource we have found the following suitable patterns to be reused within the 
mIO! ontology network development: 

o Modular Architecture (AP-MD-01) 
o Taxonomy (AP-TX-01) 
o Part-Whole Relation (CP-PW-01) 
o Specified Values: Set of Individuals (LP-SV-01) 
o Specified Values: Subclasses (LP-SV-02)  
o N-ary Relation: New Class (LP-NR-01) 

To illustrate how we have mentally sketched a correspondence between 
requirements and possible ODPs we present here some examples.  

Let us take the DSP_PC9 requirement as the starting point. We can observe that in 
the requirement appear the terms “components”, “composed by” and a list of the parts 

                                                           
11 These descriptions usually include (a) the name of the pattern, (b) a graphical description, (c) 

an enumeration of its elements, and (d) a set of requirements (in the form of CQs) or use 
cases (in the form of sentences in natural language) the pattern is intended to address. 
Sometimes, the code in an ontology implementation language is also provided. 

12 http://ontologydesignpatterns.org/ 
13 http://www.w3.org/2001/sw/BestPractices/  

40



that form a display. These characteristics of the requirement are clues to think about 
the “Part-Whole Relation” or “Componency” patterns due to the information included 
in the description and uses cases of these patterns. The same reasoning can be applied 
to the requirements DSP_PC49, DSP_PC61, DSP_PC71, DSP_PC83, DSP_PC96, 
and DSP_PC102. 

In the case of the requirement TMP_PC4 the days of the week are enumerated. It is 
well known that this is a unique enumeration and the days of the week are different 
among them. These features can lead a developer to think in the “Specified Values: 
Set of Individuals” and the “Specified Values: Subclasses” patterns. 

Task 3. Divide and transform the problem, select a partial problem 

At this point the method [13] suggests transformations like (a) writing CQs to 
represent requirements stated only in example scenario sentences if not already 
present in the ORSD and (b) grouping similar CQs that may be solved together.  

In our case, the selected requirements are quite simple so it was not necessary to 
divide them. In fact, some of them have been grouped during the transformation 
because of their similarity. Besides, we have only transformed the functional 
requirements since the non-functional one represents a “manageable piece” itself.  

To perform the transformation of the problem we propose the following approach. 
We have taken into account that the functional requirements selected in Task 1 can be 
written as CQs and their responses or as affirmative sentences in natural language as 
Table 1 shown. In addition, we have observed that some suitable patterns to be reused 
(e.g. the Taxonomy (AP-TX-01) pattern [14]) have as part of their descriptions 
general use cases in form of sentences in natural language instead of CQs. Bearing in 
mind all these facts, we have transformed the requirements depending on the 
descriptions fields of the patterns suitable to be reused. Therefore, some CQs have 
been transformed into sentences in natural language and vice-versa. Others 
requirements have been transformed according to the suitable patterns descriptions 
but maintaining their original format. Table 2 summarizes the transformation types 
proposed in our approach and shows the specific transformation cases that have 
occurred during the mIO! use case. Finally, the resulting transformations are shown in 
Table 3. 

Table 2. Requirement transformation cases 

  
The requirement was transformed 

into: 
 
 

 
Sentence in 

NL 
Competency 

Question 

T
he

 r
eq

ui
re

m
en

t 
w

as
 

w
ri

tt
en

 a
s:

 

Sentence in 
NL 

INT_CA3 USR_CA7 

Competency 
Question 

DSP_PC7 
TMP_PC4 

 

DSP_PC9 
DSP_PC49 
DSP_PC61 
DSP_PC71 
DSP_PC83 
DSP_PC96 
DSP_PC102 
LOC_PC14 

41



It should be noted that there are no guidelines to carry out the requirements 
transformation. In our case, we have carried out the transformation based on how 
general are the original requirements in the ORSD. Having in mind this approach, we 
have abstracted the requirements in order to make them similar to the ODPs 
descriptions. For example, in the requirements DSP_PC9, DSP_PC49, DSP_PC61, 
DSP_PC71, DSP_PC83, DSP_PC96, and DSP_PC102 a list of components is shown 
for each concrete device. During the transformation, we have abstracted these 
requirements writing them as a unique CQ that could be applied to any of them and 
that could be match with the CQs addressed by some available patterns.  

Table 3. Transformation of subproblems 

Requirement 
identifier 

Transformation 

INT_CA3 
Perform categorization/classification of interface types at different extents of 
granularity. 

DSP_PC7 Perform categorization/classification of devices at different extents of granularity. 

DSP_PC9 

What are the components of this device? 

Response: A list containing the parts of the device. 

DSP_PC49 

DSP_PC61 

DSP_PC71 

DSP_PC83 

DSP_PC96 

DSP_PC102 

TMP_PC4 List the days that make up the week. 

LOC_PC14 What is the location of a particular user at a particular time?  

Response: A structure containing the location of the user in a given point of time. USR_CA7

 
It is important to mention here that there are two important drawbacks at this point 

of the reuse. First, we cannot transform the requirements only into CQs because there 
are ODPs that only have in their descriptions use cases written as sentences in natural 
language, as we have already noted. Second, ontology developers should be well 
versed in ODPs to discern what type of transformation they should carry out. 
Therefore, we have realized the high importance of making a finer identification of 
the most suitable ODPs in Task 2. 

Task 4. Match selected partial problem to patterns 

As it can be observed in Table 3 none of the requirements has been divided into 
sub-problems, but they have been simply transformed. Therefore, it was not necessary 
to assign a new numbering for the partial problems since they correspond to the 
identifier of each requirement. 

The matching between the problems to be addressed by reusing ODPs and the 
ODPs available in libraries and repositories, identified in Task 2, is shown in Table 4. 

 
 

42



Table 4. Matching between partial problems and ODPs suitable to be reused 

Non-functional requirements 

Requirement Suitable pattern(s) 

• The ontology should be modular. • Modular Architecture (AP-MD-01) 
Functional requirements 

Requirement 
identifier 

Transformation Suitable pattern(s) 

INT_CA3 
Perform categorization/classification of 
interface types at different extents of 
granularity. 

• Taxonomy (AP-TX-01) 

DSP_PC7 
Perform categorization/classification of 
devices at different extents of granularity. • Taxonomy (AP-TX-01) 

DSP_PC9 

What are the components of this device? 

• Componency 

• Componency (CP-COM-01) 

• Part-Whole Relation (CP-PW-01) 

DSP_PC49 

DSP_PC61 

DSP_PC71 

DSP_PC83 

DSP_PC96 

DSP_PC102 

TMP_PC4 List the days that make up the week. 

• Specified Values in OWL: "value 
partitions" and "value sets" 

• Specified Values: Set of Individuals 
(LP-SV-01) 

• Specified Values: Subclasses (LP-SV-
02)  

LOC_PC14 

What is the location of a particular user at 
a particular time? 

• N-Ary Participation 

• N-ary Relations. Pattern 1: 
Introducing a new class for a relation 

•  N-ary Participation (CP-NPAR-01) 

• N-ary Relation: New Class (LP-NR-
01) 

USR_CA7 

 
It is important to mention that at this point the method does not provide detailed 

guidelines about how to match the requirements with the available patterns. As we 
have explained in Task 1, we have selected those requirements that could be covered 
by at least one available ODP. Based on our knowledge about ODPs and on our 
experience reusing them, we can propose the following heuristics to quickly identify a 
suitable ODP to be reused while reading the requirements: 

• If a requirement mentions something about a list of values, we could infer that 
the “Specified Values in OWL: "value partitions" and "value sets"”, the 
“Specified Values: Set of Individuals (LP-SV-01)” or the “Specified Values: 
Subclasses (LP-SV-02)” patterns could be reused. 

• If a requirement is about types and subtypes of a given concept, we could infer 
that the “Taxonomy (AP-TX-01)” pattern could be reused. 

• If a requirement contains more than two concepts related, we could infer that 
the “N-Ary Participation”, “N-ary Relations. Pattern 1: Introducing a new class 
for a relation”, “N-ary Participation (CP-NPAR-01)” or the “N-ary Relation: 
New Class (LP-NR-01)” patterns could be reused. 

43



• If a requirement is about parts of something, we could infer that the 
“Componency”, “Componency (CP-COM-01)” or “Part-Whole Relation (CP-
PW-01)” patterns could be reused. 

• If a requirement is about the need for modularity within the ontology, we could 
infer that the “Modular Architecture (AP-MD-01)” pattern could be reused. 

Task 5. Select patterns 

At this point, we must select the most appropriate pattern in those cases identified 
in Task 4 in which there are several suitable patterns to cover the requirements. Since 
there are no detailed guidelines to perform this task, we have taken the following 
decisions for requirements related to more than one potential ODP: 

• For the requirements DSP_PC9, DSP_PC49, DSP_PC61, DSP_PC71, 
DSP_PC83, DSP_PC96, and DSP_PC102, there is no need to represent 
transitive relationships. For this reason, we have selected the “Componency 
(CP-COM-01)” pattern instead of the “Part-Whole Relation (CP-PW-01)” 
pattern. It is important to mention that we have reused the “Componency” 
pattern from the ODP Portal instead of the one included in the NeOn D2.5.1 
[10], because the ODP Portal provides an OWL file that contains the source 
code for the pattern. 

• For the TMP_PC4 requirement is needed to represent a set of individuals 
whose enumeration is equivalent to the parent class. Therefore, we have 
selected the “Specified Values: Set of Individuals (LP-SV-01)” pattern14 
instead of the “Specified Values: Subclasses (LP-SV-02)” pattern.  

• For the requirements LOC_PC14 and USR_CA7 there is no need to represent 
events or situations. For this reason, we have selected the “N-ary Relation: 
New Class (LP-NR-01)” pattern15 instead of the “N-ary Participation” pattern 
or the “N-ary Participation (CP-NPAR-01)” one. 

It is worth mentioning that for the non-functional requirement and for the 
requirements INT_CA3 and DSP_PC7, the ODPs related to those requirements in 
Table 4 have been directly selected. 

Task 6. Apply (reuse) selected patterns and compose them 

In this task we have observed that ODPs can take different roles in different stages 
of an ontology development process depending on their types and the problem that 
they address. For example, we have distinguished the following situations: 

• Reusing ODPs to define the architecture of the ontology network during the 
conceptualization activity through the “Modular Architecture (AP-MD-01)” 
pattern. 

• Reusing ODPs in the implementation activity to complete the knowledge 
represented; for example, we can enrich a mereological relationship through 
the “Componency (CP-COM-01)” pattern. 

                                                           
14 In this case the use of the “Specified Values: Set of Individuals (LP-SV-01)” pattern and the 

“Specified Values in OWL: "value partitions" and "value sets"” patterns would be equivalent. 
15 In this case the use of the “N-ary Relation: New Class (LP-NR-01)” pattern and the “N-ary 

Relations. Pattern 1: Introducing a new class for a relation” patterns would be equivalent. 

44



• Reusing ODPs in the implementation activity to represent logical structures 
that are not supported by the ontology language, for example, the “N-ary 
Relation: New Class (LP-NR-01)” pattern.  

• Reusing ODPs in the implementation activity to join concepts from different 
ontologies, for example, thorough the “N-ary Relation: New Class (LP-NR-
01)” pattern. 

In addition, here we show the result of applying the patterns selected in Task 5 to 
the mIO! ontology network16.  

The reuse of the “Modular Architecture (AP-MD-01)” pattern has given rise to the 
modular structure that forms the miO! ontology network. Such a structure is shown in 
Fig. 117. 

 

Fig. 1. “Modular Architecture” pattern applied to the mIO! ontology network 

The reuse of the “Componency (CP-COM-01)” pattern has been carried out within 
the Device.owl ontology by importing (See [10] for more information about this 
operation) (Fig. 2-a) the componency.owl pattern and specializing (See [10] for more 
information about this operation) (Fig. 2-b) the pattern.  

                                                           
16 The screenshots shown have been taken from NeOn Toolkit’s default tabs and the 

“Relationship Browser” (http://www.neon-toolkit.org/wiki/2.3.1/Relationship_Browser) 
plug-in. 

17 The blue dotted triangles represent ontologies, whereas the arrows with grey solid triangles 
represent the “import” relationship between ontologies. These relationships must be 
understood as follows: the mIO.owl ontology imports the Service.owl one. 

45

http://www.neon-toolkit.org/wiki/2.3.1/Relationship_Browser


 
Fig. 2. “Componency” pattern applied to Device subdomain 

The result of reusing the “Specified Values: Set of Individuals (LP-SV-01)” pattern 
during the modelling of the days of the week is shown in Fig. 318.  

Fig. 3. “Specified Values: Set of Individuals” pattern applied to the days of the week 

Fig. 419 depicts the result of reusing the “N-ary Relation: New Class (LP-NR-01)” 
pattern to model the location of a user at given point of time. In the model shown in 
Fig. 4 has been taken into account both locations in a geo-political entity, such as a 
country or a city, and locations specified by coordinates. 

Finally, it is worth mentioning that Task 7 (Evaluate and revise with respect to 
partial problem) and Task 8 (Integrate partial solutions) have not been carried out as 
authors propose in [13] since none of the requirements has been divided into sub-
problems. In addition, the reuse of patterns has been carried out by a single 
development team so there is no need to integrate solutions developed in parallel by 
different teams. Finally, the evaluation of the obtained model has been carried out 
during the evaluation of the whole ontology network.  

                                                           
18 The days of the week are represented by boxes with an “I” to indicate that they are instances, 

whereas the class “WeekDay” is represented by a box with a “C”. In addition the lines that 
link the class with the instances indicate that they belong to the class. 

19 The ellipses represent classes and the lines with a triangle represent relationships among 
classes. 

46



 

Fig. 4. “N-ary Relation: New Class” pattern applied to locations at given point of time 

4   Lessons Learned 

After the application of the general XD method to reuse ODPs during the 
development of the mIO! ontology network, we have realized (a) the usefulness of 
following a method to guide the ODPs reuse during the ontology building and (b) the 
advantages of reusing ODPs, ensuring the use of good practices in the ontology. 

However, we have also realized the difficulty of applying the abovementioned 
method because of the lack of detailed guidelines in some of the tasks. For this reason 
in this section we report (a) some of the lessons we have learned during the 
application of the method as well as (b) some proposals that could be valuable for any 
enhancement of the method and/or for any further development that reuses ODPs.  

During the execution of Task 1, we have realized that a beginner could select 
requirements that cannot be solved by means of reusing ODPs when he/she answers 
the questions proposed in [13] for such a task. Thus, ontology developers must have 
some experience with ODPs to make a more direct identification of the requirements 
that will be addressed. Such an experience is needed to select only those requirements 
that can be fulfilled by reusing ODPs. 

We can also add that in those cases in which a beginner selects requirements that 
cannot be solved by means of ODP reuse, such a developer would have at least the 
following two options: (a) to propose a new pattern to cover such requirements and 
(b) to cover such requirements with other knowledge resources (such as ontologies or 
non-ontological resources) as proposed in [12, 16]. 

In the case of Task 2, we also consider that experience with ODPs is required 
again. In this task some types of patterns, as content patterns, can be identified as 
suitable to be reused by means of tools (e.g., XD Tools); however, there are other 
types of patterns that cannot be identified using tools due to (a) such patterns have no 
CQs in their description to match with the requirements to be addressed or (b) the 
patterns are not available at on-line libraries. Thus, in these cases, the ontology 
developer should have large knowledge about both ODPs and repositories to identify 
manually the patterns. 

Besides, in this task it could happen that for a given requirement there are no 
patterns related or that the developers cannot find patterns suitable to be reused. In 
that case, we propose the following alternatives that can be included in the method: 

47



(a) to posting a modelling issue20 within the ODP Portal related to the given 
requirement; (b) to look for others resources suitable to be reused such as ontologies 
or non-ontological resources as explained in [12] and [16] respectively; and (c) to 
manually face the problem and to submit a proposed pattern21 that covers the given 
requirement to the ODP Portal. 

To carry out Task 3 the method [13] suggests transforming the requirements 
(written as example scenario sentences) into CQs. However, in our case we have also 
had to transform some of the requirements into sentences in natural language. This 
transformation was needed to match the requirements to be addressed with some 
ODPs use cases, as already explained in Section 3. 

Regarding to Task 4, based on our experience applying the method, this task only 
seems necessary if at least one requirement has been divided in Task 3. In other cases, 
Task 4 can be considered similar to Task 2. 

We can also mention that after performing Task 5 it is possible that no pattern 
matches with the problem to be addressed. In this case, we propose to follow the same 
options already presented for Task 2. 

Finally, we have observed that ODPs can be applied at different points of an 
ontology development. For example, in the mIO! ontology network case the “Modular 
Architecture (AP-MD-01)” pattern was applied during the conceptualization activity 
whereas the rest of patterns were applied during the implementation activity. 

5   Conclusions and Future Lines of Work 

This paper presents an example of how to apply the general XD method to reuse 
different types of ODPs (logical, architectural, and content patterns). This application 
has been performed with a real use case within the development of a context ontology 
network, called mIO! ontology network22. This guided example could be used 
together with the method in further ontology developments, what would favour the 
adoption of ODPs and of the abovementioned method. 

During the process we have taken advantage of following a guided method that 
sets and orders the tasks to carry out during the reuse of ODPs. The method also 
provides some examples or criteria to take into account as well as a list of catalogues 
where to find ODPs. Once the method was applied, we have realized that time was 
saved in the conceptualization and implementation activities. 

However, we have also identified some points during the reuse process where the 
developers’ experience on ODPs seems quite important (tasks 1 and 2). In addition, 
we have discovered some drawbacks in the general XD method that could be solved 
by extending and improving the guidelines for tasks 1, 2, 3, and 5, as already 
explained in Section 4.  

As future work we have plan to apply the XD method together with the XD Tools 
in a collaborative ontology development within a real use case. The idea of this new 
application of the method is to focus on requirements that have to be divided into 

                                                           
20 http://ontologydesignpatterns.org/wiki/Community:PostModelingIssue 
21 http://ontologydesignpatterns.org/wiki/Submissions:SubmitAPattern 
22 http://www.oeg-upm.net/index.php/es/ontologies/82-mio-ontologies 

48



different sub-problems. Our final aim is to analyze (a) what tasks the XD Tools make 
easier and (b) what tasks still need more detailed guidelines. 

 
Acknowledgments. This work has been partially supported by the Spanish project 
mIO! (CENIT-2008-1019).  

References 

1. Blomqvist, E., Gangemi, A., Presutti, V. Experiments on Pattern-based Ontology Design. In 
Proceedings of K-CAP 2009, pp. 41-48. 2009. 

2. Clark, P., Thompson, J., & Porter, B. W. Knowledge Patterns. In KR2000: Principles of 
Knowledge Representation and Reasoning. pp. 591-600. 2000. 

3. Daga, E., Blomqvist, E., Gangemi, A., Montiel, E., Nikitina, N., Presutti, V., Villazón-
Terrazas, B. NeOn D2.5.2 Pattern based ontology design: methodology and software 
support. NeOn project. http://www.neon-project.org. 2010. 

4. Gangemi, A., Gomez-Perez, A., Presutti, V., Suarez-Figueroa, M.C. Towards a Catalog of 
OWL-based Ontology Design Patterns. In proceedings of CAEPIA. 2007.  

5. Gangemi, A.; Presutti, V. Ontology Design Patterns. Handbook on Ontologies (Second 
Edition). Springer. International Handbooks on Information Systems. 2009. 

6. Gruninger, M., Fox, M. S. The role of competency questions in enterprise engineering. In 
Proceedings of the IFIP WG5.7 Workshop on Benchmarking - Theory and Practice, 
Trondheim, Norway, 1994. 

7. Poveda, M. Metodología NeOn Aplicada a la Representación del Contexto. Master Thesis. 
Spain. Universidad Politécnica de Madrid. September, 2010. 

8. Poveda, M., Suárez-Figueroa, M.C., García-Castro, R., Gómez-Pérez, A. A Context Ontology 
for Mobile Environments. Proceedings of CIAO 2010. Lisbon, Portugal. 11 October 2010. 

9. Presutti, V., Daga, E., Gangemi, A., Blomqvist, E. eXtreme Design with Content Ontology 
Design Patterns. In Proceedings of WOP 2009. Washington D.C., USA, 25 October, 2009, 
Vol. 516 CEUR Workshop Proceedings. 2009. 

10. Presutti, V., Gangemi, A., David S., Aguado de Cea, G., Suárez-Figueroa, M.C., Montiel-
Ponsoda, E., Poveda, M. NeOn D2.5.1: A Library of Ontology Design Patterns: reusable 
solutions for collaborative design of networked ontologies. NeOn project. http://www.neon-
project.org. 2008. 

11. Simperl, E. Reusing ontologies on the Semantic Web: A feasibility study. Data Knowledge 
Engineering. Volume 68. Number 10. Pages: 905-925. 2009. 

12. Suárez-Figueroa, M.C. PhD Thesis: NeOn Methodology for Building Ontology Networks: 
Specification, Scheduling and Reuse. Spain. Universidad Politécnica de Madrid. June 2010. 

13. Suárez-Figueroa, M.C., Blomqvist, E., D’Aquin, M., Espinoza, M., Gómez-Pérez, A., 
Lewen, H., Mozetic, I., Palma, R., Poveda, M., Sini, M., Villazón-Terrazas, B., Zablith, F., 
Dzbor, M. NeOn D5.4.2: Revision and Extension of the NeOn Methodology for Building 
Contextualized Ontology Networks. NeOn project. http://www.neon-project.org. February 
2009. 

14. Suárez-Figueroa, M.C., Brockmans, S., Gangemi, A., Gómez-Pérez, A., Lehmann, J., 
Lewen, H., Presutti, V., Sabou, M.. NeOn D5.1.1: NeOn Modelling Components. NeOn 
project. http://www.neon-project.org. March 2007. 

15. Suárez-Figueroa, M.C., Gómez-Pérez, A. First Attempt towards a Standard Glossary of 
Ontology Engineering Terminology. 8th Proceedings of TKE 2008. 18-21 August 2008. 

16. Villazón-Terrazas, B. PhD Thesis: A Method for Reuse and Re-engineering Non-
Ontological Resources into Ontologies. Spain. Universidad Politécnica de Madrid. To be 
appeared. 

49



 

50



 

Position Paper 

 

51



 

52



A Decision-making Format for the Semantic Web

[Position Paper]

Eva Blomqvist
STLab, ISTC-CNR

eva.blomqvist@istc.cnr.it

Marion Ceruti
Jeff Waters

Space and Naval Warfare
Systems Center Pacific

marion.ceruti@navy.mil;
jeff.waters@navy.mil

Don McGarry
MITRE Corporation

dmcgarry@mitre.org

ABSTRACT
This paper describes the work of the W3C Decisions and
Decision-making Incubator1, with the goal to identify re-
quirements for a standard decision format, through a set
of use cases, and to develop a first version of a potential
standard format for representing decisions, fulfilling the re-
quirements of the use cases and exploiting semantic web
standards. Ongoing efforts include the identification and
modelling of ‘decision patterns’ and development of proof-of-
concept applications to validate assumptions and patterns.

Keywords
Decision Making, Decision Format, Ontology Pattern

1. INTRODUCTION
The time and effort we spend converting our decisions into

work products, such as briefs, proposals, and communication
of decisions in meetings, conversations, and emails, could be
reduced if we had a standard format for representing and
sharing decisions. Our tools could be instrumented to gen-
erate our decisions in a format that could be shared and also
track the state of decisions within the decision-making pro-
cess. Instrumentation could support the development of a
metric of information flow and help us optimize our decision
processes across our organization or enterprise [7]. Visibil-
ity of the decisions in their formation and evolution would
enable proactive management and assistance from others [8].

1.1 Usage Scenarios
Sharing decisions across a broad and diverse set of users

and systems is an important aspect of situational awareness
in many domains, for instance, in emergency management2.
During an emergency, decisions must be shared among emer-
gency managers and first responders from multiple organi-
zations, jurisdictions, and functional capabilities. For exam-
ple, decisions to route patients must be shared among first
responders in the field who are sending the patients, those
who are doing the transport, the medical facilities receiving
the patients, and the patient’s families and relatives.

1
For more information, or to participate in the Decisions Incubator,

please review the charter at http://www.w3.org/2005/Incubator/de
cision/charter and visit the wiki at http://www.w3.org /2005/Incu-
bator/decision/wiki/Main Page.
2
For more information on emergency and incident management, see

for example the National Incident Management System, December
2008, published by the U.S. Department of Homeland Security at
http://www.fema.gov/pdf/emergency/nims/NIMS core.pdf.

First responders and emergency managers work under dif-
ficult conditions using current mechanisms for information
sharing; they need improved solutions. For example, paper-
based Incident Command forms provide an initial standard-
ization of emergency information3. An Incident Command
Structure (ICS) can organize responders into a hierarchical
structure of sections (e.g. Operations, Planning, Logistics,
Finance) and roles (e.g. Incident Commander, Public In-
formation Officer, Safety Officer)4. XML-based standards
are being developed to improve sharing of emergency infor-
mation. The Organization for the Advancement of Struc-
tured Information Systems (OASIS) has a family of stan-
dards known as the Emergency Data Exchange Language
(EDXL)5. The Emergency Data Exchange Language Com-
mon Alerting Protocol (EDXL-CAP) exemplifies simple, use-
ful, and understandable information-exchange formats. What
EDXL-CAP did for alerts, a Common Decision Exchange
Protocol (CDEP) could do for decisions [6].

An important next step is to utilize the semantic web stan-
dards, including RDF, SPARQL, OWL and GRDDL to in-
tegrate information for dynamic queries across datasets, and
for inferencing using the underlying ontologies (e.g. indicat-
ing that the emergency equipment named X in one jurisdic-
tion is the same as the type named Y in another jurisdic-
tion). Initial steps in this direction are already being taken,
e.g., through the OASIS Distribution Element (DE) sup-
porting packaging and addressing of emergency management
information for purposes such as routing. The standard
has links to externally-managed ‘lists’ representing concepts
such as ‘senderRole’, ‘receiverRole’ and ‘keywords’. Ontolo-
gies should encapsulate, in a machine-understandable man-
ner, such information sharing policies. Implicitly present
is the underlying decision-making process, continuing at all
levels through an emergency. The decision format advocated
in this paper will support the move toward the use of linked
data [1], and the recognition of the significance of informa-
tion sharing policies utilizing semantic standards.

The need for representing, sharing and managing deci-
sions in a machine-understandable format is not exclusive
to emergency management. One example of another critical

3
For examples of incident command forms, see http://training.

fema.gov/EMIWeb/IS/ICSResource/ICSResCntr Forms.htm.
4
For more information on ICS, see the online training provided

by the U.S. Federal Emergency Management Agency, Lesson 3, at
http://emilms.fema.gov/IS100A/indexMenu.htm.
5
For a good overview of EDXL, see http://en.wikipedia.org

/wiki/EDXL. The EDXL family of standards is available at the OA-
SIS website: http://www.oasis-open.org/home/index.php.

53



domain of interest is organizational innovation. Each per-
son is a ‘decision-maker’ at some level in the organization.
The decisions a person makes are critical to the success of
an organization, so aspects of decision-making and objective
measures of the decision-making process become significant.
Decisions involve weighing reasonable options based on met-
rics in order to take an action. If we granulize the decision-
making process by considering each member of our organi-
zation as a decision-maker, then we can support the repre-
sentation and sharing of individual innovative actions. Most
organizations attempt to solve this problem through direct
or indirect person-to-person communication (e.g., meetings,
telecons) or unstructured collaborative tools (email, chat,
wiki). XML formats can support notice-type publishing of
activities, e.g, RSS or ATOM feeds; however, there remains
an opportunity to showcase semantic standards to capture
decision-making to improve the querying, inferencing, and
integration with underlying ontology support.

The focus of this paper is on the information sharing as-
pects of a decision, which is fostered by a format which is
concise, generic, i.e., domain independent, and tiered. The
more concise the format, the more quickly it can be under-
stood and accepted by developers and users alike.

1.2 Project Goals
The work performed by this incubator activity is designed

to help organizations improve integration of human decisions
into computer systems, to track and manage digitally the
decision-making process, to enable improved information-
flow metrics, to maintain an archive of the decisions and
the decision-making process, to enable semi-automation of
certain decision-making processes, to improve information
sharing, and ultimately, to support better, rapid, and agile
decision making [7]. The potential standard format should
provide concise, generic, structured assessments and deci-
sions that allow ‘drill down’, support pedigree and confi-
dence, enable approvals and vetting, define options consid-
ered, including decision criteria with weighting, links to pre-
vious decisions and sub-decisions, and support flexible struc-
turing of complex decisions [7]. However, to reach its full
potential, the proposed decision format must be compatible
with semantic web tools and standards, to provide semantic
interoperability and to provide a basis for reasoning that can
ease development of advanced applications.

In summary the main goals of the incubator are:

• To discover a set of requirements for a standard deci-
sion format, through a set of use cases.

• To develop a draft of a potential standard format for
representing decisions, fulfilling the requirements of
the use case and exploiting semantic web standards.

2. METHODOLOGY BACKGROUND
Creating a vocabulary for expressing decisions that ex-

ploits semantic web standards means, in practice, creating
a set of ontology modules that can be linked in a network,
to be used independently or together in different combina-
tions. The main tools we use for this practical task is the
eXtreme Design ontology engineering methodology and the
notion of Ontology Design Patterns (ODPs), supported by
the ontology development environment NeOn Toolkit6.

6
http://www.neon-toolkit.org

Figure 1: The AgentRole Content ODP’s graphical
representation in UML.

2.1 Ontology Design Patterns
Under the assumption that classes of problems in ontology

design can be solved by applying common solutions (as expe-
rienced in software engineering), ODPs can support design
reusability. ODPs can be of several types [3], e.g, focusing
on logical language constructs, architectural issues, naming,
or on the efficient provision of reasoning services. In this
paper we focus on Content ODPs (CPs), which are small or
cleverly modularized ontologies with explicit documentation
of design rationales. CPs can be used as building blocks in
ontology design [2]. As an example we describe a CP called
AgentRole. It represents the relation between agents, e.g.,
people, and the roles they play, e.g., manager and meet-
ing chair. Figure 1 shows the UML diagram7 of the OWL8

building block representing this CP.
CPs are collected in different catalogues, such as the ODP

portal9. In addition to their diagrammatic representation,
CPs are described using catalogue-entry fields (c.f. software
pattern templates), such as name, intent, covered require-
ments, consequences, and building block, linking to an OWL
realization of the pattern. The requirements an ODP covers
are expressed using Competency Questions (CQs) [4], i.e.,
typical natural-language queries.

2.2 eXtreme Design
With the name ‘eXtreme Design’ (XD) we identify an ag-

ile approach to ontology engineering [5]. In this paper we
focus on XD for CP reuse in ontology design. In XD a devel-
opment project is characterized by two sets: (i) the problem
space, composed of the actual modeling issues (local prob-
lems), e.g., to model steps in a decision making process; (ii)
the solution space, made up of reusable modeling solutions,
e.g., a piece of an ontology that models sequences of events
(a CP). Each CP, as well as the local problem, is related to
ontology requirements expressed as CQs or sentences. If a
local problem can be described in terms of the CQs of a CP
then that CP can be reused for building the solution. XD
does not prescribe a specific method for matching the local
problem to patterns, and at the moment the only tool sup-
port available are search functionalities utilizing the textual
descriptions of the patterns.

XD is a test-driven and task-focused approach that re-
sults in highly modular ontologies. The main principles of
XD include the intensive use of CPs, and extensive collabo-
ration [5]. The iterative workflow of XD contains 12 steps.
The project is initiated in the first four steps, which in-

7
For notation details, see: http://www.topquadrant.com/products/

TB Composer.html
8
http://www.w3.org/2004/OWL/

9
http://www.ontologydesignpatterns.org

54



clude, scoping, and requirements engineering (e.g., deriving
the CQs from user stories). In steps five through nine the
CQs are divided into into small, coherent sets and ontology
modules produced realize those sets of CQs. These steps
include unit tests on each module before its release. The
three final steps integrate modules into a coherent solution,
focusing on collaboration and integration.

3. ONGOING WORK
In this section we describe our ongoing efforts and how

we apply the XD methodology to support these efforts. We
proceed in a bottom-up fashion, starting from the use cases
and deriving requirements for a representation format that
can be realized as ontology modules based on ODPs. How-
ever, we have also encountered a number of cases where this
leads to the development of general ODPs themselves.

3.1 Use Cases
Use cases are in our context general scenarios, horizon-

tal with respect to application domains (i.e., they are rep-
resented in multiple domains), where the envisioned deci-
sion format can give some substantial benefit. So far, five
use cases have been identified (the list is continuously ex-
tended). The use cases are intended to be general and not
domain specific, in terms of industry domain. Their detailed
description, including resulting requirements in the form of
CQs can be found in the Incubator wiki10. Background and
related work for two of the use cases are described more in
depth in Sections 3.1.1 and 3.1.2.

• Measuring Information Flow - Where a decision
process representation can help answering questions
such as ‘When did a certain process begin and end?’,
‘How much time was spent on a certain step in the
process?’, and ‘What is the average time for making a
certain type of decision?’.

• Linked Data Supporting Decisions - Where linked
data [1] supports decision making, and a decision rep-
resentation format could help answer questions such
as ‘What data support this decision?’, ‘What were the
options and the criteria used for this decision?’, and
‘How were the options assessed?’

• Automatic Assessment of Options - Where a de-
cision format is intended to support semi-automatic
decision making by automatic assessment of options
through some metric. In this case questions are for
instance ‘What are the metrics for this decision and to
what options do they apply?’, ‘What are the relative
weights of different metrics?’, and ‘How will the met-
rics be combined to generate an overall assessment?’

• Interoperability - For example, a shared decision
representation can support interoperation between dif-
ferent command and control units and between deci-
sion makers and people implementing decisions.

• Situational Awareness - A representation of de-
cisions and the decision-making process can support
systems and/or organizations to be aware of the de-
cision status, to identify situations, such as the situ-
ation when important information is missing, and to

10
http://www.w3.org/2005/Incubator/decision/wiki/Final Report

Use Cases

base new decisions on the collected knowledge in the
recorded decisions of the organization.

3.1.1 Measuring Information Flow
Research shows that an analytical solution of information

velocity is intractable but metrics that support the under-
standing of information flow can be useful [8]. An agent-
based model for information flow can be used to character-
ize physical analogs to causal measures [6]. In this use case,
interactions and exchanges can be modeled as physical prop-
erties. Information, its suppliers, and consumers are then
treated as agents. The behavior of the agents and system as
a whole can be discussed and infodynamic analogs of ther-
modynamic and other physical quantities associated with
these processes could be explored [8]. The use of concep-
tual analogs from the physical domain implies the viability
of future ontologies to characterize information flow.

3.1.2 Automatic Assessment of Options
Design considerations have been described and exempli-

fied for implementing a decision-acquisition system based on
a CDEP [7]. CDEP is an XML- and REST-based protocol
for representing generic human decisions in a simple, inter-
operable format. The characteristics of decisions can be ex-
pressed using CDEP and its proposed XML format [7]. The
CDEP concepts will be considered, and enhanced, within
the currently envisioned decision format, and a conversion
XSLT stylesheet will enable interoperability across these for-
mats as needed. The use case ontology would allow for the
consideration of multiple data sources, multiple decision op-
tions, and the tracking of decision confidence throughout the
decision-making process.

3.2 Decision Patterns
The decision patterns include concrete decision format

components, as well as generic patterns, hence, both:

• The ontology modules that we propose as a starting
point for creating a standard in this field,

• and the more general ODPs that we discover and de-
velop as a result of this effort.

The first module draft that was produced corresponds to the
use case of ‘Measuring Information Flow’ listed above. This
ontology module is a specialization of the Transition ODP11.
In this case we found an ODP already available that we could
specialize and create a specific decision-process pattern. In
other cases, such as when viewing a decision as a past event,
no ‘event-pattern’ was available in the ODP portal. There-
fore, we are creating general ODPs to be specialized in the
decision ontology modules. By treating general (rather than
domain-specific) use cases of decision-making, we make sure
that the developed modules are actually reusable patterns,
rather than a solution tailored to one specific application.
All decision patterns will be implemented in RDF/OWL.
Eight patterns are identified so far, but need to be created.
Four examples are described below:

• A ‘Statement with variable’-pattern, to describe queries,
such as the question underlying a decision.

• ‘Filter’ and ‘Aggregation’-patterns, where a filter would
represent criteria applicable to some data, e.g., a set

11
http://ontologydesignpatterns.org/wiki/Submissions:Transition

55



of options, and an aggregation would represent a way
to combine data, e.g., grouping options.

• A ‘Normalization’-pattern that models transformations
of values into a common scale, for comparing options.

• A ‘Weighting’-pattern to express the relative impor-
tance of data, e.g., weighting of assessment criteria.

3.3 Proof-of-concept Application
To verify the requirements and the ontology modules, and

to demonstrate the usefulness of such a format, a demonstra-
tion system is being developed at the Space and Naval War-
fare Systems Center Pacific. Initially, the system will focus
on enabling decision making using open linked data sets [1].
The user has four modules, or screens. In the Topic screen,
the user enters the key question of the decision, keywords,
and where the decision result will appear. The keywords
will drive a search for relevant open-linked data sets. Next,
the user selects a data set from which the entries provide a
named set of options. From the Options screen, the user se-
lects the properties to use as metrics. On the Metrics screen,
the user selects filtering criteria to reduce the options. The
user can additionally assign weights to the metrics. When
a similar decision is encountered, users can efficiently select
a named set of Options or Metrics to aid reuse of decision
components. A semi-automatic learning process will be con-
sidered for future releases, proposing named sets of options
or metrics found useful to other users, based on similar-
ity of questions and keywords. On the Assessment screen,
the filtered options appear in an ordered list based on the
weighted metrics. The user selects one or more options as
the answer to the decision question. The user is returned
to the Topic screen where the answer(s) is/are recorded and
visible. Throughout the process, the time spent in the vari-
ous stages is tracked to assess information flow. Future ver-
sions of this system will support manual entry of decisions,
a more robust set of filtering criteria, integration of multiple
datasets, and mobile applications for efficiency in the field.
The decision format discussed here will be used to manage
the decision as a whole, and its modular components.

3.4 Experiences
An important outcome, apart from the requirements and a

proposed decision representation, will be experiences related
to the XD methodology and ODPs. XD has been used in the
project both as a framework for the modelling but also as a
means for teaching ontology engineering to participants less
familiar with semantic technologies. So far we found that
the level of detail of the XD methodology is highly benefi-
cial for teaching ontology engineering to novice modelers. It
introduces an intuitive way of scoping the problem, through
modularization, and it allows the modeler to draw on previ-
ous experiences of others through ODPs. We envision that
the project will benefit the further development of XD, and
XD will be validated through valuable experiences.

4. OUTLOOK
In September 2010, the project reached its half-way point

and should be completed by the end of March 2011. By
that time the project will have a set of requirements for a
potential decision-representation standard, i.e., the use cases
(initial set in Section 3.1), and a first draft of such a repre-
sentation, i.e., the decision patterns (initial ideas in Section

3.2). We intend to submit any patterns developed (both
general and specific to decision-making) to the ODP portal.
We expect to present a set of proof-of-concept applications
(see Section 3.3). These applications will show the poten-
tial of our draft patterns. The applications will be used to
validate our results against current practices in different do-
mains, e.g., to validate the hypothesis that linked data are
suitable to support decision making and that automatic as-
sessment of options is possible in certain use cases. During
the project, we will make the problems and possible solu-
tions visible in different communities, e.g., the semantic web
community, domain specific interest groups, and standards
organizations. We envision that at the end of the project
we can propose a standardization effort in the context of
W3C. We can pursue several use cases and application ideas
as separate research projects.

5. ACKNOWLEDGMENTS
The authors thank the Office of Naval Research for their

support of this work. This paper is the work of U.S. Govern-
ment employees performed in the course of their employment
and no copyright subsists therein.

6. REFERENCES
[1] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data -

The Story So Far. International Journal on Semantic
Web and Information Systems, 5(3):1–22, 2009.

[2] E. Blomqvist. OntoCase-Automatic Ontology
Enrichment Based on Ontology Design Patterns. In
ISWC 2009, 8th International Semantic Web
Conference, volume 5823 of LNCS, pages 65–80,
Washington, DC, November 2009. Springer.

[3] A. Gangemi and V. Presutti. Ontology Design Patterns.
In Handbook on Ontologies, 2nd Ed., International
Handbooks on Information Systems. Springer, 2009.

[4] M. Gruninger and M. S. Fox. The role of competency
questions in enterprise engineering. In Proceedings of
the IFIP WG5.7 Workshop on Benchmarking - Theory
and Practice, 1994.

[5] V. Presutti, E. Daga, A. Gangemi, and E. Blomqvist.
eXtreme Design with Content Ontology Design
Patterns. In Proc. of WOP 2009, collocated with
ISWC-2009, volume 516. CEUR Workshop
Proceedings, November 2009.

[6] J. Waters and M. Ceruti. Modeling and simulation of
information flow: A study of infodynamic quantities. In
Proc. of the 15th International Command and Control
Research and Technology Symposium (ICCRTS 2010),
Santa Monica, CA, June 2010.

[7] J. Waters, M. Ceruti, R. Patel, and J. Eitelberg.
Decision-acquisition system based on a common
decision-exchange protocol. In Proc. of the 15th
International Command and Control Research and
Technology Symposium (ICCRTS 2010), Santa Monica,
CA, June 2010.

[8] J. Waters, R. Patel, J. Eitelberg, and M. Ceruti.
Information velocity metric for the flow of information
through an organization: Application to decision
support. In Proc. of the 14th ICCRTS (ICCRTS 2009),
Washington, DC, June 2009.

56



 

Pattern Abstracts 

 

57



 

58



Context Slices: Representing Contexts in OWL 
http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices 

 
 
 
 

 
Chris Welty 

IBM Watson Research 
Hawthorne, NY 12540, USA 

cawelty@gmail.com 

 
 
 
 

ABSTRACT 
This ontology pattern can be used to represent and reason about 
contextualized statements using standard OWL dialects. The 
simple idea is to bundle the notion of context into certain nodes in 
the graph, rather than the more typical treatment of contexts as a 
property of the statements themselves. 

Keywords 
Semantic Web, OWL, RDF, Contexts. 

 

1. INTRODUCTION 
Most information on the web is contextualized somehow, for 
example information may be believed by a person or organization, 
it may hold only for some time period, it may have been 
reported/observed by an individual, etc. There are myriad 
proposals and logics for context, but none are standards and few 
have even prototype implementations.  
In RDF and other binary relation languages (like object oriented 
languages and description logics), one typical way to represent 
that a binary relation holds in some context is to "reify" the 
relation-holding in the context as an object with a binary relation 
between the obtainment and each the two relation arguments and a 
third binary relation between the obtainment and an object 
representing the context itself. The downside to this approach is 
the expressive ability of the language to describe the binary 
relation, especially in the case of description logics, is lost. One 
can of course use RDF reification, however this is not supported 
in OWL, either.   
The motivation for context slices is to provide a logical pattern for 
encoding context information in standard RDF graphs that allows 
some of the expressiveness of OWL to be used in describing the 
relations that hold in contexts.  
This is a generalization of the four dimensional ontology for 
fluents published in [1].  
 

2. PATTERN DESCRIPTION 
The idea of the context slices pattern is, rather than reifying the 
statement itself, to create a projection of the ''relation arguments'' 
in each context for which some binary relation holds between 
them.   

Take for example the statement "Chris believes Sam is CEO of 
IBM".  Say we already have nodes in some graph representing 
Sam, Chris and IBM.  We create, as shown in Figure 1, the 
context c1 corresponding to Chris' belief, and two nodes 
representing Chris' belief about Sam and Chris' belief about IBM 
(shown as Sam@c1 and IBM@c1).   

This allows us to represent ceoOf as a binary relation, which 
seems more natural, and it allows us to use the expressivity of 
OWL in more ways. We can say of the ceoOf relation that it has 
an inverse, hasCeo.  We can express cardinality, e.g., a company 
may have only one CEO within a context.  We can say that a 
relation is transitive or symmetric. We can express relation 
taxonomies in the usual way.   

While clearly OWL does not support RDF reification, and so none 
of this is possible if statement reification is used. As mentioned 
above a more standard way of representing this kind of 
information (including time, belief, knowledge, etc.) is to create 
an OWL class that represents the relation holding, with properties 
for the arguments.  This approach makes it possible to express 
global but not local range and domain constraints, global but not 
local cardinality, and symmetry. 

Note that the ContextualProjection class should be considered 
disjoint with any of the classes in an ontology that have 
projections. 

 

 
Figure 1: Graphical illustration of an example using the pattern. 

 

 

3. IMPLEMENTATION 
In OWL functional syntax: 

 Ontology(<http://example.org/ContextSlices> 
   Annotation(owl:versionInfo "1.0"@en) 
   Annotation(rdfs:label "Context slices ontology logical 

pattern"@en) 

59



  
   Declaration(Class(cs:Context)) 
   DisjointClasses(cs:Context cs:ContextualProjection) 
   Declaration(Class(cs:ContextualProjection)) 
   SubClassOf(cs:ContextualProjection 

ObjectAllValuesFrom(cs:hasContext cs:Context)) 
   SubClassOf(cs:ContextualProjection 

ObjectExactCardinality(1 cs:hasContext)) 
   SubClassOf(cs:ContextualProjection 

ObjectExactCardinality(1 cs:projectionOf)) 
   DisjointClasses(cs:ContextualProjection cs:Context) 
   Declaration(ObjectProperty(cs:contextualProperty)) 
   ObjectPropertyDomain(cs:contextualProperty 

cs:ContextualProjection) 
   ObjectPropertyRange(cs:contextualProperty 

cs:ContextualProjection) 
   Declaration(ObjectProperty(cs:hasContext)) 
   FunctionalObjectProperty(cs:hasContext) 

   ObjectPropertyDomain(cs:hasContext 
cs:ContextualProjection) 

   Declaration(ObjectProperty(cs:projectionOf)) 
   FunctionalObjectProperty(cs:projectionOf) 
   ObjectPropertyDomain(cs:projectionOf 

cs:ContextualProjection)) 
 

4. REFERENCES 
[1] Welty, Chris and Richard E. Fikes. 2006. A Reusable 

Ontology for Fluents in OWL. In Bennet and Fellbaum, eds., 
Proceedings of the Fourth International Conference on 
Formal Ontology in Information Systems. IOS Press. See 
http://www.booksonline.iospress.nl/Content/View.aspx?piid
=2209.  

 
 

 
 

60



Faceted Classification Scheme ODP
http://ontologydesignpatterns.org/wiki/Submissions:Faceted Classification Scheme

Bene Rodriguez-Castro
School of Electronics and

Computer Science
University of Southampton

Southampton, UK
b.rodriguez@ecs.soton.ac.uk

Hugh Glaser
School of Electronics and

Computer Science
University of Southampton

Southampton, UK
hg@ecs.soton.ac.uk

Les Carr
School of Electronics and

Computer Science
University of Southampton

Southampton, UK
lac@ecs.soton.ac.uk

Keywords
Faceted Classification, Normalisation, Multiple Classifica-
tion Criteria

1. INTRODUCTION
The Faceted Classification Scheme (FCS) ODP is a Reengi-

neering ODP that transforms a non-ontological resource from
the field of Library and Information Science, also known as
Faceted Classification Scheme, into an ontological resource.
The ontological resource corresponds to an OWL DL model
that results from a specific application of the Normalisation
ODP [4] [2] based on a series of (a) alignments between the
two conceptual models; and (b) transformation guidelines.

The FCS ODP targets a specific, very recurrent modeling
issue in ontology development, subject to the vulnerabil-
ity of ad-hoc modeling practices that could potentially lead
to unexpected or undesirable results in ontology artifacts.
The scenario consists of domain-specific concepts that can
be represented according to multiple alternative classifica-
tion criteria. To the best of our knowledge, guidelines for
the conceptualization and representation of domain-specific
concepts prone to be described based on multiple (poten-
tially alternative) classification criteria, has not been explic-
itly considered in the context of ontology modeling for the
Semantic Web.

An extended and detailed version of all the sections that
follow and the rationale behind the FCS ODP is presented
at length in [5].

2. PATTERN DESCRIPTION
A FCS is defined as: “a set of mutually exclusive and

jointly exhaustive categories, each made by isolating one
perspective on the items (a facet), that combine to com-
pletely describe all the objects in question, and which users
can use, by searching and browsing, to find what they need”
[1].

The Norm. ODP is classified as a“Good Practice”pattern
in the catalog of ODPs introduced in [2]. It can be applied
to any OWL DL ontology that consists of a polyhierarchy
where some semantic axes can be pointed. Each of those
axes will be a module.

The key similarity between these two conceptual models,
lies in the notion of (a) facet in FCSs; and (b) module (or
semantic axis) in the Norm. ODP. Both elements repre-
sent one perspective of the domain being modelled, a single
characteristic of division, a single criterion of classification
in their respective paradigm.

Library Sc. Ontology Modeling
FCS FCS ODP OWL Impl.
TDC :TDC owl:Class (primitive)

Faceti
:Faceti owl:Class (primitive)
:hasFaceti owl:ObjectProperty

FiTermj
:FiTermj owl:Class (primitive)
:FiTermjTDC owl:Class (def.) (≡)

Itemx :SpecificTDCx owl:Class (primitive)

Table 1: Alignment of a FCS to the Norm. ODP

owl:Thing
|-- :Faceti

|-- :FiTermj

|-- :TargetDomainConcept (or :TDC)
|-- (≡) :FiTermjTDC
|-- :SpecificTDCx

owl:topObjectProperty
|-- :hasFaceti

(≡) denotes a defined owl:Class.

Figure 1: FCS elements placed into the Norm. ODP

The main principle is to represent each facet as an inde-
pendent module or semantic axis. Following this principle
makes the application of the Norm. ODP almost straight-
forward. Moreover, the resultant ontology includes the rep-
resentation of the multiple alternative classification criteria
that were considered in the original FCS for the target do-
main concept.

Table 1 summarizes the alignment of the elements in the
generic structure of both conceptual models. This alignment
enables the conversion of a FCS into an OWL DL ontology
by applying the Norm. ODP, where:

• TDC denotes the target domain concept (or domain
of discourse) of the FCS.

• Faceti denotes one of the facets of the FCS.

• FiTermj denotes one of the terms of Faceti.

• Itemx denotes one the items from the domain of dis-
course to be classified.

Figure 1 depicts the placement of the elements of a generic
FCS into the generic structure of the Norm. ODP based on
the corresponding mappings from Table 1.

61



Agent: dishwasher, person

Form: gel, gelpac, liquid, powder, tablet

Brand Name: Cascade, Electrasol, Ivory, No Name,
Palmolive, President’s Choice, Sunlight

Scent: green apple, green tea, lavender, lemon,
mandarin, ocean breeze, [...]

Effect on Agent: aroma therapy (subdivisions:
invigorating, relaxing)

Special Property: antibacterial

Figure 2: Example of“Dishwashing Detergent”FCS.

3. PATTERN USAGE EXAMPLE
Figure 2 presents the facets and terms of a FCS example

in the domain of “Dishwashing Detergent” from [1].
To apply the FCS ODP, the elements in the generic on-

tology structure (derived from the Norm. ODP) in Fig. 1
are populated with the facets and terms of the “Dishwashing
Detergent” FCS example in Fig. 2, according to the align-
ments specified in Table 1. The overall normalised ontology
model obtained as a result is presented in Fig. 3. A version
of the complete normalised ontology model for the “Dish-
washing Detergent” FCS example in [1] is available online1

in RDF/XML format.

4. RELATED WORK
The FCS ODP considered previous work that defined map-

pings between different semantic models and OWL ontolo-
gies such as the Resource Space Model (RSM) [6] and the
concept of Faceted Lightweight Classification Ontology [3].
A detailed discussion is available in [5].

5. CONCLUSIONS
The FCS ODP has presented an initial set of basic design

guidelines to develop an OWL DL ontology model that sup-
ports the representation of multiple alternative classification
criteria of a specific domain concept. These guidelines pro-
vides a partial solution to potentially hazardous ad-hoc prac-
tices in the development of such ontology models, putting
forward a systematic and fit-for-purpose approach.

6. REFERENCES
[1] W. Denton. How to make a faceted classification and

put it on the web. Online, November 2003.
http://www.miskatonic.org/library/facet-web-
howto.html.

[2] M. Egana-Aranguren. Role and Application of Ontology
Design Patterns in Bio-ontologies. PhD thesis, School
of Computer Science, University of Manchester, 2009.

[3] F. Giunchiglia, B. Dutta, and V. Maltese. Faceted
lightweight ontologies. In A. Borgida, V. K. Chaudhri,
P. Giorgini, and E. S. K. Yu, editors, Conceptual
Modeling: Foundations and Applications, volume 5600
of Lecture Notes in Computer Science, pages 36–51.
Springer, 2009.

1
http://purl.org/net/project/enakting/ontology/detergent fcs norm

owl:Thing
|-- :Agent

|-- :Person
|-- :Dishwasher

|-- :Form
|-- :Gel
|-- :Gelpac
|-- (... rest of terms in the facet "Form")

|-- :BrandName
|-- :Cascade
|-- :Electrasol
|-- (... rest of terms in the facet "Brand Name")

|-- :Scent
|-- :GreenApple
|-- :GreenTea
|-- (... rest of terms in the facet "Scent")

|-- :EffectOnAgent
|-- :AromaTherapy

|-- :Invigorating
|-- :Relaxing

|-- :SpecialProperty
|-- :Antibacterial

|-- :DishwashingDetergent (:TDC)
|-- (≡) :ManualDishDetergent
|-- (≡) :DishwasherDishDetergent
|-- (≡) :GelDishDetergent
|-- (≡) :GelpacDishDetergent
|-- (≡) (... rest of subclasses for each term

in the facet "Form")
|-- (≡) :CascaseDishDetergent
|-- (≡) :ElectrasolDishDetergent
|-- (≡) (... rest of subclasses for each term

in the facet "Brand Name")
|-- (≡) :GreenAppleDishDetergent
|-- (≡) :GreenTeaDishDetergent
|-- (≡) (... rest of subclasses for each term

in the facet "Scent")
|-- (≡) :AromaTherapyDishDetergent

|-- (≡) :InvigoratingDishDetergent
|-- (≡) :RelaxingDishDetergent

|-- (≡) :AntibacterialDishDetergent
|-- :PresidentsPersonLiquidAntibacterial
|-- :PalmoliveAromaTherapyLavenderYlangYlang
|-- :SpecificDishDetergent3
|-- (... rest of specific dish detergent classes

:SpecificDishDetergentx to classify)

owl:topObjectProperty
|-- :hasAgent
|-- :hasForm
|-- :hasBrand
|-- :hasScent
|-- :hasEffectOnAgent
|-- :hasSpecialProperty

(≡) denotes a defined owl:Class.

Figure 3: Normalised ontology structure of the
“Dishwashing Detergent” FCS.

[4] A. L. Rector. Modularisation of domain ontologies
implemented in description logics and related
formalisms including owl. In K-CAP ’03: Proceedings of
the 2nd international conference on Knowledge capture,
pages 121–128, New York, NY, USA, 2003. ACM.

[5] B. Rodriguez-Castro, H. Glaser, and L. Carr. How to
reuse a faceted classification and put it on the semantic
web. In The 9th International Semantic Web
Conference (ISWC), June 2010.

[6] H. Zhuge, Y. Xing, and P. Shi. Resource space model,
owl and database: Mapping and integration. ACM
Trans. Internet Technol., 8(4):1–31, 2008.

62



Summarization of an inverse n-ary relation 
http://ontologydesignpatterns.org/wiki/Submissions:Summarization_of_an_inverse_n-ary_relation 

María Poveda Villalón 
Ontology Engineering Group (OEG) 

Departamento de Inteligencia Artificial. Facultad de 
Informática. Universidad Politécnica de Madrid (UPM) 

Campus de Montegancedo, s/n 

28660 Boadilla del Monte, Spain 
+34 913363670 

mpoveda@delicias.dia.fi.upm.es  

Mari Carmen Suárez-Figueroa 
Ontology Engineering Group (OEG) 

Departamento de Inteligencia Artificial. Facultad de 
Informática. Universidad Politécnica de Madrid (UPM) 

Campus de Montegancedo, s/n 

28660 Boadilla del Monte, Spain 
+34 913363672 

mcsuarez@fi.upm.es

  

ABSTRACT 

In this paper, we describe a logical ontology design pattern that 

summarizes a relationship and its inverse between two 

distinguished members of an n-ary relationship. 

Keywords 

Ontology design pattern, N-ary relation, inverse relation. 

1. INTRODUCTION 
In Semantic Web languages such as RDF and OWL, a property 

is a binary relation. This binary relation is used to link two 

individuals or an individual and a value. In some cases, 

however, the natural and convenient way to represent certain 

situations is to use relations and to link an individual to more 

than just one individual or value. These relations are called n-

ary relations1. 

The n-ary relations become even more complex if we pretend to 

represent inverse relationships2 between all the participants in 

the n-ary relation. However, we might have special interest in 

the links between two of the participants involved in the 

relationship, and not have interest in all of them. For this reason, 

we propose a pattern to speed up both the modelling and the 

queries of a relationship between two distinguished participants 

in an n-ary relation, and its inverse relationship. 

2. PATTERN DESCRIPTION 

2.1 Motivation 
It is well known that an n-ary relationship should be used to 

address any of the following situations [1]: 

a) A binary relationship that really needs a further argument. 

For example, to represent the distance between two places. 

b) Two binary relationships that always go together and 

should be represented as one n-ary relation. For example, 

to represent the value of an observation (e.g. temperature 

in a patient) and its trend. 

                                                                 

1 http://www.w3.org/TR/swbp-n-aryRelations/ 

2 http://www.w3.org/TR/swbp-n-

aryRelations/#choosingPattern1or2 

c) A relationship that is really amongst several things. For 

example, to represent the spatial location of a person in a 

given point of time. 

On the one hand, the motivation of this pattern is to express the 

inverse relationship of an n-ary relation in which there are two 

distinguished participants. This means that the relationship 

exists mainly between two entities and the rest of entities 

involved in the relationship can be considered as additional 

arguments. This situation can also mean that there is a single 

individual standing out as the subject or the "owner" of the 

relation.  

On the other hand, the motivation is to provide a shortcut for 

queries that involve two distinguished participants in the n-ary 

relationship. 

This pattern is inspired on the third consideration shown in the 

description of n-ary relations3 from the W3C Semantic Web 

Best Practices Group (SWBP Group). The difference in our case 

is that there are two distinguished participants in the 

relationship. Therefore, this pattern could be considered as an 

extension of the third consideration shown by the SWBP Group 

applied to the use case of additional attributes describing a 

relation4. 

2.2 Aim 
The aim of this pattern is to allow asking for n-ary relationships 

and their inverse relations between two distinguished 

participants without a complex query. Such a complex query 

would involve the class created to support the n-ary relation 

between the origin and destination classes of the n-ary 

relationship. 

2.3 Solution description 
As it can be observed in Figure 1 the class "NAryRelationClass" 

is the class created to support the n-ary relationship5 and its 

further relations or attributes. The relationship 

"mainRelationship" and its inverse relation have been created to 

                                                                 

3 http://www.w3.org/TR/swbp-n-

aryRelations/#choosingPattern1or2 

4 http://www.w3.org/TR/swbp-n-aryRelations/#useCase1 

5 This structure is created like in [1] and 

http://www.w3.org/TR/swbp-n-aryRelations/#useCase1 

63

mailto:mcsuarez@fi.upm.es


short-circuit the relation between the distinguished participants 

in the n-ary relationship.  

NAryRelationOriginClass NAryDestinationClasshasNAryRelationship nAryRelationhip

mainRelationship

inverseMainRelationship

InvolvedClass1 InvolvedClassN

relationship1

relationshipN

<<owl::inverseOf>>

-attribute1

-attributeM

NAryRelationClass

 

Figure 1. Graphical representation of the “Summarization of 

an inverse n-ary relation” pattern. 

3. Example 

3.1 Problem example 
We might want to represent that a service provider provides a 

service at a place in a given period of time with a particular 

price. The model should also represent that a service is offered 

by a provider.  

In this scenario, we have also observed that the queries executed 

by our applications often ask for the relationship between 

providers and their services and rarely ask for the relationships 

about the services and where they are provided.  

Figure 2 depicts the result of applying the “Summarization of an 

inverse n-ary relation” pattern to represent the abovementioned 

problem. 

ServiceProvider ServiceoffersServiceAtPlaceInTimeWithPrice offersService

serviceProvidedBy

providesService

Time SpatialThing

offersServiceInTime

offersServiceAtLocation

<<owl::inverseOf>>

-hasServicePrice

NAryRelationOffersServiceAtPlaceInTimeWithPrice

 

Figure 2. “Summarization of an inverse n-ary relation” 

pattern applied to service providers. 

3.2 Consequences 
The main advantage of this pattern is that allows asking for 

those services that are provided by a service provider and vice-

versa without a complex query. This complex query would 

involve the class created to support the n-ary relation between 

service providers and services. 

 

 

 

 

 

 

 

 

 

4. Related Work 
The origin of this pattern is the Logical Pattern for Modelling 

N-ary Relation: Introducing a New Class for the Relation 

pattern6 and the third consideration shown in the description of 

n-ary relations from the W3C SWBP Group. Therefore, this 

pattern is related to and can be used in combination with the 

Logical Pattern for Modelling N-ary Relation: Introducing a 

New Class for the Relation. 

5. Summary and Outlook 
The Summarization of an inverse n-ary relation pattern allows 

us to speed up the queries involving relationships between two 

distinguished participants in an n-ary relation. 

Future lines of work will address the problem of summarizing 

the relationships and their inverse between a set of distinguished 

member (at least three) into an n-ary relationship. 

In addition, the elaboration of guidelines that explain in detail 

how to identify the distinguished members in an n-ary 

relationship would be very useful to extend the pattern 

description and to facilitate its use.   

6. ACKNOWLEDGMENTS 
This work has been partially supported by the Spanish project 

mIO! (CENIT-2008-1019). 

7. REFERENCES 
[1] Suárez-Figueroa, M.C., Brockmans, S., Gangemi, A., 

Gómez-Pérez, A., Lehmann, J., Lewen, H., Presutti, V., 

Sabou, M.. NeOn D5.1.1: NeOn Modelling Components. 

NeOn project. http://www.neon-project.org. March 2007 

 

 

 

                                                                 

6 http://www.w3.org/TR/swbp-n-aryRelations/#pattern1 

64



Literal Reification

http://ontologydesignpatterns.org/wiki/Submissions:Literal_Reification

Aldo Gangemi
ISTC-CNR

aldo.gangemi@cnr.it

Silvio Peroni
University of Bologna

speroni@cs.unibo.it

Fabio Vitali
University of Bologna
fabio@cs.unibo.it

ABSTRACT

In this paper we introduce the pattern literal reification, a
modelling technique to address scenarios, in which we need
to bless particular literals, usually when applying data prop-
erties, in order to use them as subjects and/or full-fledged
objects of semantic assertions.

Keywords

OWL, SWRL, literal reification

1. INTRODUCTION

Recently within the Semantic Web community a new topic
has been actively discussed: whether and how to allow lit-
erals to be subjects of RDF statements1. This discussions
failed to provide a unique and clear indication of how to
proceed in that regard.

Although one of the suggestions coming out of the dis-
cussion was to explicitly include the proposal in a (future)
specification of RDF, this topic is not actually new, partic-
ularly in ontology modelling. The needs to describe “typi-
cal” literals (specially strings) as individuals of a particular
class has been addressed by a lot of models in past, such as
Common Tag2 (through the class Tag), SIOC3 (through the
classes Category and Tag), SKOS-XL4 (through the class
Label), and LMM5 (through the class Expression). After
considering the above-mentioned models and other related
and inspiring ones, we have developed a pattern called literal

reification to address this issue. It allows to express literal
values as proper ontological individuals so as to use them as
subject/object of any assertion within OWL models.

The rest of the paper follows this structure: in Section 2
and Section 3 we respectively introduce a high level and de-
tailed description of the pattern; in Section 4 we discuss two
particular application scenarios that we use to demonstrate
all the capabilities of the pattern.

2. GENERAL DESCRIPTION

Extending the pattern region
6, the pattern literal reifica-

tion promotes any literal as “first class object” in OWL by

1http://www.w3.org/2001/sw/wiki/Literals as Subjects.
2http://www.commontag.org
3http://rdfs.org/sioc/spec
4http://www.w3.org/TR/skos-reference/#xl
5http://www.ontologydesignpatterns.org/ont/lmm/LMM L1.owl
6http://ontologydesignpatterns.org/wiki/Submissions:Region

reifying it as a proper individual of the class litre:Literal. In-
dividuals of this class express literal values through the func-
tional data property litre:hasLiteralValue and can be con-
nected to other individuals that share the same literal value
by using the property litre:hasSameLiteralValueAs. More-
over, a literal may refer to, and may be referred by any
OWL individual through litre:isLiteralOf and litre:hasLiteral

respectively.
Note that the pattern defines also a SWRL rule that al-

lows to infer the (not explicitly asserted) literal value of a
particular literal individual when it is connected to another
literal individual via litre:hasSameLiteralValueAs:

litre:hasSameLiteralValueAs(x,y) ,
litre:hasLiteralValue(y,v)

-> litre:hasLiteralValue(x,v)

This pattern allows to use each reified literal as subject or
object of any assertion, and it is able to address scenarios
described, for example, by the following competency ques-
tions:

• What is the context in which entities refer to a partic-
ular literal value?

• What is the meaning of a particular value considering
the context in which it is used?

Plausible scenarios of its application include:

• modelling domains concerning descriptive tags, in which
each tag may have more than one meaning depending
on the context in which it is used;

• extending quickly the capabilities of a model by adding
the possibility to make assertions on values, previously
referred through data properties, without modifying it.

3. ELEMENTS

As shown in Fig. 1, the pattern literal reification is com-
posed by a class, a data property and three object properties,
described as follows:

• Class litre:Literal. It describes reified literals, where
the literal value they represent is speficied through the
property litre:hasLiteralValue. Each individual of this
class must always have a specified value.

• Data property litre:hasLiteralValue. It is used to spec-
ify the literal value that an individual of litre:Literal
represents.

65



• Object property litre:hasSameLiteralValueAs. It re-
lates the reified literal to another one that has the same
literal value.

• Object property litre:hasLiteral. It connects individu-
als of any class to a reified literal.

• Object property litre:isLiteralOf. It connects the rei-
fied literal to the individuals that are using it.

Figure 1: A figure summarizing the pattern.

4. SCENARIOS

4.1 Same tag, different meanings

Used frequently in the Web 2.0, descriptive tags such as
the ones used in folksonomies are keywords (e.g., strings)
assigned to a particular resource, such as a web document,
with the intent to describe it. Just like words in any natural
language, tags may have different meanings depending on
the context in which they are used.

For instance, the word “Paris” may be either a name of a
city or a first name of a person. Here, it is clear that the
act of tagging with “Paris” both the Wikipedia pages about
the Eiffel Tower and the one about Paris Hilton hides two
different intents: in the former case, “Paris” denotes the city
in which the tower stands; in the latter case, “Paris” denotes
a particular person, i.e., Paris Hilton.

Using the literal reification pattern it is possible to express
descriptive tags as first class objects in OWL, by considering
them as proper individuals of the class litre:Literal. Different
individuals may thus represent different meanings even if
their literal values are identical7:

7http://www.essepuntato.it/2010/06/sc1.ttl

<http ://en.wikipedia.org/wiki/Eiffel_Tower >
a foaf:Document
; prism:keyword :parisTag1 .

<http ://en.wikipedia.org/wiki/Paris_Hilton >
a foaf:Document
; prism:keyword :parisTag2 .

:parisTag1 a litre:Literal
, [ a skos:Concept

; skos:definition "A name associated
to a city"@en ]

; litre:hasLiteralValue "Paris"
; lmm:denotes dbpedia:Paris .

:parisTag2 a litre:Literal
, [ a skos:Concept

; skos:definition "A first name of
a person"@en ]

; litre:hasSameLiteralValueOf :parisTag1
; lmm:denotes dbpedia:Paris_Hilton .

4.2 Keeping track of name changes

NameHistory3.0 is a (fictional) institution that keeps track
of all the names of people, and stores them as an ABox of the
FOAF ontology. In particular, each person is stored as an
individual of the class foaf:Person with a specific first name
(data property foaf:givenName) and family name (data prop-
erty foaf:familyName).

On 24/09/2010, Bruce Wayne formally applied for chang-
ing his first name to Jack. Since NameHistory3.0 has to keep
track of everything concerning names of people, on that date
“Jack” was added as Mr. Wayne’s first name. It was then
that NameHistory3.0 noticed that, without any additional
information, it is not possible to know which of the two first
names are legally valid at any given point in time.

A solution to that scenario, which avoids any modifica-
tion of the ontology model and consequently of the entire
triple store (operation that is obviously time-consuming and
error-prone), is to use the literal reification pattern in com-
bination with the new expressivity for punning in OWL 2.
Through them, it is possible to define a literal individual as
also belonging to the class foaf:givenName – that is actually
defined as a data property, but may be additionally be meta-
modelled as a class. We can now associate a particular time
interval to each literal, so as to represent when the literal
itself, i.e., the given name, is legally valid8:

:mr_wayne a foaf:Person
; foaf:familyName "Wayne"
; litre:hasLiteral

[ a litre:Literal , foaf:givenName
; litre:hasLiteralValue "Bruce"
; dcterms:valid

[ a ti:TimeInterval
; ti:hasIntervalStartDate

"1983 -01 -15"
; ti:hasIntervalEndDate

"2010 -09 -24"] ]
; litre:hasLiteral

[ a litre:Literal , foaf:givenName
; litre:hasLiteralValue "Jack"
; dcterms:valid

[ a ti:TimeInterval
; ti:hasIntervalStartDate

"2010 -09 -24" ] ] .

8http://www.essepuntato.it/2010/06/sc2.ttl

66



SimpleOrAggregated 
http://ontologydesignpatterns.org/wiki/Submissions:SimpleOrAggregated 

María Poveda Villalón 
Ontology Engineering Group (OEG) 

Departamento de Inteligencia Artificial. Facultad de 
Informática, Universidad Politécnica de Madrid (UPM) 

Campus de Montegancedo, s/n 

28660 Boadilla del Monte, Spain 
+34 913363670 

mpoveda@delicias.dia.fi.upm.es  

Mari Carmen Suárez-Figueroa 
Ontology Engineering Group (OEG) 

Departamento de Inteligencia Artificial. Facultad de 
Informática, Universidad Politécnica de Madrid (UPM) 

Campus de Montegancedo, s/n 

28660 Boadilla del Monte, Spain 
+34 913363672 

mcsuarez@fi.upm.es

  

ABSTRACT 

In this paper, we describe a content ontology design pattern to 

represent objects that can be simple or aggregated. The 

aggregation relation refers to several objects gathered in another 

object acting as a whole; all these objects should belong to the 

same concept in the model. 

Keywords 

Ontology design patterns, mereology, aggregation. 

1. INTRODUCTION 
Mereological relationships are one of the basic structuring 

primitives of the universe, and many applications require 

representations of them (catalogues of parts, fault diagnosis, 

anatomy, geography, etc.) [3]. 

We usually have the need of representing objects that are made up 

of other types of object. In these situations, we can use the part-of 

[1] pattern to represent transitive mereological relationships. 

Some examples can be “Brain and heart are parts of the human 

body” or “Substantia nigra is part of brain”. In addition, we can 

use the componency [1] pattern to distinguish between parts and 

proper parts in a non transitive fashion. An example of this case 

can be “The turbine is a proper part of the engine; both are parts 

of a car. Furthermore, the engine and the battery are proper parts 

of the car”. 

However, sometimes we need to represent objects that can be 

made up of objects that belong to the same concept. In these cases 

it is also need to distinguish objects into simple or aggregated 

ones. For this reason, we have created the SimpleOrAggregated 

pattern to represent aggregation relationships, both transitive and 

non transitive, between objects that belong to the same concept in 

the model. An example of this situation can be “aggregated 

service provider is formed by simple or aggregated service 

providers”. 

2. PATTERN DESCRIPTION 

2.1 Intent 
The goal of this pattern is to represent objects that can be simple 

or aggregated (that is, several objects gathered in another object 

acting as a whole). 

The main difference between the aggregation relation and other 

mereological relationships (such as part-of or componency) is that 

the aggregated object and its aggregated members should belong 

to the same concept. 

2.2 Solution Description 
As it can be observed in Figure 1 the class "ObjectByCardinality" 

has been created to classify simple and aggregated objects into its 

subclasses "SimpleObject" and "AggregatedObject", respectively. 

These subclasses are disjoint among them.  

<<owl::inverseOf>><<owl::ObjectProperty>>

hasDirectAggregatedMember

<<owl::ObjectProperty>>

isDirectAggregatedMemberOf

<<owl::ObjectProperty>>

<<owl::TransitiveProperty>>

hasAggregatedMember

<<owl::ObjectProperty>>

<<owl::TransitiveProperty>>

isAggregatedMemberOf<<owl::inverseOf>>

<<rdfs::domain>> <<rdfs::range>> <<rdfs::domain>> <<rdfs::range>>

Object AggregatedObjectAggregatedObject Object

ObjectObjectByCardinality
<<owl::equivalentClass>>

<<owl::equivalentClass>>

AggregatedObjectSimpleObject

U

<<owl::equivalentClass>>

<<owl::someValuesFrom>>

hasAggregatedMember<<owl::disjointWith>>

 

Figure 1. Graphical representation of the 

SimpleOrAggregated pattern. 

The aggregation relationship between objects means that objects 

of a class can be composed by other objects of the same class. 

This relationship is represented by the transtive property 

"hasAggregatedMember" and its inverse property 

"isAggregatedMemberOf". These properties have as subproperties 

the non transitive properties "hasDirectAggregatedMember" and 

its inverse "isDirectAggregatedMemberOf", respectively. By 

means of this structure of properties, we provide a mechanism (a) 

to represent transitive aggregation relationships (that is, if A has B 

as aggregated member and B has C as aggregated member then A 

has C as aggregated member) and (b) to link each aggregated 

67

mailto:mcsuarez@fi.upm.es


member just to the next level (that is, A has B as direct aggregated 

member).  

Finally, the class "AggregatedObject" has been defined as 

equivalent to those things that have some values for the property 

"hasAggregatedMember". This modelling allows the automatic 

classification of aggregated objects in this class when a reasoner is 

applied.   

2.3 Consequences 
This content pattern allows designers to represent both simple 

individuals of a given concept (that is, an individual that is made 

up of itself) and aggregated individuals of a given concept (that is, 

an individual that is made up of several individuals of the same 

concept). In summary, this pattern allows to represent both simple 

objects and aggregated objects and their members. 

In addition, this pattern can be used to detect the following 

contradictory situation by means of applying a reasoner: 'to 

instantiate the relationship "hasAggregatedMember" for an Object 

that belongs to "SimpleObject"'. This situation represents a 

consistency error and it is detected when a resoner is applied due 

to the following modelling decisions included in the pattern: (a) 

"AggregatedObject" class represents the "hasAggregatedMember" 

domain and (b) "AggregatedObject" is disjoint with 

"SimpleObject".  

3. PATTERN USAGE EXAMPLE 
This pattern has been applied to different domains such as service 

providers and context sources during the mIO! ontology network1 

development.  

As an example, we show in Figure 2 the application of the 

SimpleOrAggegrated pattern to represent that a service provider 

can be classified as simple or aggregated. Each service provider 

can be also classified with respect to the type of service it 

provides (e.g. cultural, entertainment, food, health, etc.). 

4. Related work  
The origin of this pattern is the modelling of service providers and 

context sources into the mIO! ontology network [2] within the 

Spanish project mIO!2. The pattern has been also applied to 

computing and storage resources modelling in the Metascheduler 

ontology3 in the context of the Spanish project España Virtual4. 

 

                                                                 

1http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/ontologies/82-

mio-ontologies 

2 http://www.cenitmio.es/ 

3http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/ontologies/85-

metascheduler-ontologies 

4 http://www.españavirtual.org/ 

ServiceProviderServiceProviderByCardinality

<<owl::equivalentClass>>

AggregatedServiceProviderSimpleServiceProvider

U

<<owl::equivalentClass>>

<<owl::someValuesFrom>>

hasAggregatedMember<<owl::disjointWith>>

MIOServiceProvider

LocalServiceProvider

CulturalServiceProvider

EntertainmentServiceProvider

ReligiousServiceProvider

InformationServiceProvider

HostingServiceProvider

HealthCareProvider

FoodServiceProvider

TransportationServiceProvider

SportServiceProvider

Shop

SecurityServicesProvider

<<owl::equivalentClass>>

 

Figure 2. SimpleOrAggregated pattern applied to service 

providers.  

5. Summary and Outlook 
The SimpleOrAggregated pattern provides a mechanism to 

classify objects as simple or aggregated objects depending on 

whether they are an aggregation of some objects. This 

classification is compatible with another possible classification of 

objects.  

6. ACKNOWLEDGMENTS 
This work has been partially supported by the Spanish project 

mIO! (CENIT-2008-1019). 

7. REFERENCES 
[1] Presutti, V., Gangemi, A., David S., Aguado de Cea, G., 

Suárez-Figueroa, M.C., Montiel-Ponsoda, E., Poveda, M. 

NeOn D2.5.1: A Library of Ontology Design Patterns: 

reusable solutions for collaborative design of networked 

ontologies. NeOn project. http://www.neon-project.org. 

2008.  

[2] Poveda, M., Suárez-Figueroa, M.C., García-Castro, R., 

Gómez-Pérez, A. A Context Ontology for Mobile 

Environments. Proceedings of CIAO 2010. Lisbon, Portugal. 

11 October 2010. 

[3] Suárez-Figueroa, M.C., Brockmans, S., Gangemi, A., 

Gómez-Pérez, A., Lehmann, J., Lewen, H., Presutti, V., 

Sabou, M.. NeOn D5.1.1: NeOn Modelling Components. 

NeOn project. http://www.neon-project.org. March 2007.

68




