
890 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 6, JUNE 2012

HORNET: A Cycle-Level Multicore Simulator
Pengju Ren, Mieszko Lis, Myong Hyon Cho, Keun Sup Shim, Christopher W. Fletcher,

Omer Khan, Member, IEEE, Nanning Zheng, Fellow, IEEE, and Srinivas Devadas, Fellow, IEEE

Abstract—We present HORNET, a parallel, highly configurable,
cycle-level multicore simulator based on an ingress-queued worm-
hole router network-on-chip (NoC) architecture. The parallel
simulation engine offers cycle-accurate as well as periodic syn-
chronization; while preserving functional accuracy, this permits
tradeoffs between perfect timing accuracy and high speed with
very good accuracy. When run on six separate physical cores on a
single die, speedups can exceed a factor of over 5, and when run
on a two-die 12-core system with 2-way hyperthreading, speedups
exceed 12×. Most hardware parameters are configurable, in-
cluding memory hierarchy, interconnect geometry, bandwidth,
crossbar dimensions, parameters driving power, and thermal
effects. A highly parametrized table-based NoC design allows
a variety of routing and virtual channel allocation algorithms
out of the box, ranging from simple dimension-ordered routing
to complex Valiant, ROMM, O1Turn or PROM schemes, BSOR,
and adaptive routing. HORNET can run in network-only mode
using synthetic traffic or traces, or directly emulate a MIPS-based
multicore. HORNET is freely available under the open-source MIT
license at http://csg.csail.mit.edu/hornet/.

Index Terms—Multicore simulation, network-on-chip, parallel
simulation.

I. Introduction

In recent years, architectures with several distinct CPU
cores on a single die have become the standard: general-
purpose processors now include as many as eight cores [1]
and multicore designs with 64 or more cores are commercially
available [2]. Experts predict that by the end of the decade we
could have as many as 1000 cores on a single die [3].

For a multicore on this massive scale, connectivity is a
major concern, and inefficient interconnects can severely
limit performance. Current interconnects like buses, all-to-all
point-to-point connections, and even rings clearly do not scale
beyond a few cores. The relatively small scale of existing
network-on-chip (NoC) interconnects has allowed plentiful
on-chip bandwidth to make up for simple routing [4], but this

Manuscript received May 20, 2011; revised September 28, 2011; accepted
December 30, 2011. Date of current version May 18, 2012. This work
was completed during the visit of P. Ren at the Massachusetts Institute of
Technology. This paper was recommended by Associate Editor H.-H. S. Lee.

P. Ren and N. Zheng are with Xi’an Jiaotong University, Xi’an 710049,
China (e-mail: pengjuren@gmail.com; nnzheng@mail.xjtu.edu.cn).

M. Lis, M. H. Cho, K. S. Shim, C. W. Fletcher, and S. Devadas are with
the Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: mieszko@csail.mit.edu; mhcho@csail.mit.edu; ksshim@csail.
mit.edu; cwfletch@csail.mit.edu; devadas@csail.mit.edu).

O. Khan is with the University of Connecticut, Storrs, CT 06269 USA
(e-mail: khan@uconn.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2012.2184760

will not last as scales grow from the 8 × 8 mesh of a 64-core
chip to the 32 × 32 dimensions of a 1000-core: assuming
all-to-all traffic and one flow per source/destination pair, a
link in a 8 × 8 mesh with XY routing carries at most 128
flows, but in a 32 × 32 mesh, the worst link could be on the
critical path of as many as 8192 flows.

These kinds of scales will expose phenomena not percep-
tible in current smaller-scale multicores, and future multi-
cores will therefore require relatively high-performance on-
chip networks and sophisticated routing. In such complex
systems, complex interactions make real-world performance
difficult to intuit, and designers have long relied on cycle-level
simulations to guide algorithmic and architectural decisions;
NoCs are no different. On a multicore scale, however, a cycle-
level system simulator has high computation requirements,
and taking advantage of the parallel execution capabilities of
today’s systems is critical.

With this in mind, we present HORNET, a highly config-
urable, cycle-level multicore simulator with support for a
variety of memory hierarchies, interconnect routing and VC
allocation algorithms, as well as accurate power and thermal
modeling. Its multithreaded simulation engine divides the
work equally among available host processor cores, and per-
mits either cycle-accurate precision or increased performance
at some accuracy cost via periodic synchronization. HORNET

can be driven in network-only mode by synthetic patterns or
application traces, or in full multicore mode using a built-in
MIPS core simulator. Specifically, using HORNET, we:

1) show that results from small-scale NoC simulations
cannot be used to guide architectural decisions on a
1000-core scale;

2) identify key factors for parallelizing NoC simulators
and show how to take advantage of them for linear
performance scaling as the number of host cores grows;

3) show that without cycle-level simulation, and, in partic-
ular, accurate modeling of congestion, various properties
of the NoC being simulated (e.g., packet latencies) can
suffer significant (e.g., 2×) errors in measurement, and
that the detailed information provided by cycle-level
simulation can drive architectural decisions;

4) demonstrate that end-to-end integration with a processor
model is necessary for accurate modeling of application
performance;

5) describe how simulated power and thermal profiles over
the application’s runtime and available on a per-tile
granularity can drive such decisions as thermal con-
straint selection and sensor placement, as well as offer

0278-0070/$31.00 c© 2012 IEEE

REN et al.: HORNET: A CYCLE-LEVEL MULTICORE SIMULATOR 891

Fig. 1. Multicore system simulated by HORNET. The gray tiles (top) can
be trace-driven packet injectors or cycle-level MIPS core models; the blue
tiles (bottom) are cycle-level models of a flit-based virtual-channel wormhole
router. While the illustration shows a 2-D mesh, HORNET can construct a
system with any interconnect geometry.

Fig. 2. Basic datapath of a NoC router modeled by HORNET. Packets arrive
flit-by-flit on ingress ports and are buffered in ingress virtual channel (VC)
buffers until they have been assigned a next-hop node and VC; they then
compete for the crossbar and, after crossing, depart from the egress ports.

opportunities for power/thermal-aware routing algorithm
design.

In the remainder of this paper, we first outline the design
and features of HORNET and describe its parallelization and
correctness in Section II. Next, in Section IV, we review
the capabilities of HORNET and discuss speed versus accuracy
tradeoffs using complete runs of selected Splash-2 applica-
tions [5] as well as simulations using synthetic traffic patterns.
Finally, we review related research in Section V and offer
concluding remarks in Section VI.

II. Design and Features

In this section, we outline the range of systems that can
be simulated by HORNET, and discuss the techniques used to
parallelize simulations.

A. Network Model

Fig. 2 illustrates the basic datapath of a NoC router modeled
by HORNET. There is one ingress port and one egress port for
each neighboring node, as well as for each injector (or CPU
core) connected to the switch; each ingress port contains any
number of virtual channel buffers (VCs), which buffer flits
until they can traverse the crossbar into the next-hop node.

Fig. 3. Example routes for a flow between a source (node 6) and a
destination (node 2) for three oblivious routing algorithms. A single path
is highlighted in dark gray while other possible paths are shown in light gray.
(a) XY. (b) O1TURN. (c) Two-phase ROMM.

Fig. 4. Planar view of three example multilayer mesh interconnect geome-
tries which can be directly configured in HORNET. (a) 3-D mesh–x1. (b) 3-D
mesh–x1y1. (c) 3-D mesh–xcube.

As in any ingress-buffered wormhole router, packets arrive
at the ingress ports flit-by-flit, and are stored in the appro-
priate virtual channel buffers. When the first flit of a packet
arrives at the head of a VC buffer, the packet enters the
route computation (RC) stage and the next-hop egress port
is determined according to the routing algorithm. Next, the
packet waits in the VC allocation (VA) stage until granted a
next-hop virtual channel according to the chosen VC allocation
scheme. Finally, in the switch arbitration (SA) stage, each flit
of the packet competes for access to the crossbar and transits
to the next node in the switch traversal (ST) stage. The RC and
VA steps are active once per packet (to the head flit), while
the SA and ST stages are applied per-flit.

1) Interconnect Geometry: The nodes in a system modeled
by HORNET can be configured with pairwise connections to
form any geometry, including rings, multilayer meshes (see
Fig. 4), and tori. Each node may have as many ports as desired:
for example, most nodes in the 2-D mesh shown in Fig. 1
have five ports (four facing the neighboring nodes and one
facing the CPU); the number and size of virtual channels
can be controlled independently for each port, allowing the
CPU↔switch ports to have different VC configuration from
the switch↔switch ports.

2) Routing: HORNET supports oblivious, static, and
adaptive routing. A wide range of oblivious and static
routing schemes is possible by configuring per-node
routing tables. These are addressed by the flow ID
and the incoming direction 〈prev node id ,flow id〉,
and each entry is a set of weighted next-hop results{〈next node id ,next flow id ,weight〉, · · · }. If the set
contains more than one next-hop option, one is selected at
random with propensity proportionate to the relevant weight
field, and the packet is forwarded to next node id with its
flow ID renamed to next flow id .

892 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 6, JUNE 2012

For example, in the case of simple XY routing, shown
in Fig. 3(a), the routing tables for nodes 2, 5, 6, 7, and 8
would contain one entry for the relevant flow, addressed by
the previous node ID (or 6 for the starting node 6) and the
flow ID; the lookup result would direct the packet to the next
node along the red path (or 2 for the terminal node 2) with the
same flow ID and weight of 1.0. Static routing [6] is handled
similarly. For O1TURN routing [7], illustrated in Fig. 3(b), the
table at the start node (6) would contain two next-hop entries
(one with next-hop node 3 and the other with next-hop node
7) weighted equally at 0.5, and the destination node (2) would
have two entries (one arriving from node 1, and the other from
node 5); the remaining tables do not differ from XY.

HORNET’s table-driven routing directly supports probabilistic
oblivious routing algorithms such as PROM [8], as well as
probabilistic routing algorithms which first route the packet
to a random intermediate node (say via XY routing) and only
then to the final destination (e.g., Valiant [9] and its minimum-
rectangle variant ROMM [10]). For example, the red path in
Fig. 3(c) shows one possible route from node 6 to node 2
in a two-phase ROMM scheme: the packet is first routed to
node 4 and then to its final destination. To fill the routing
tables, we must solve two problems: 1) remember whether
the intermediate hop has been passed; and 2) express several
routes with different intermediate destinations but the same
next hop as one table entry. The first problem is solved by
changing the flow ID at the intermediate node, and renaming
the flow back to its original ID once at the destination node;
the second problem corresponds to sending the flow to one of
two possible next-hop nodes weighted by the ratio of possible
flows going each way regardless of their intermediate nodes.
Consider, as an example, the routing entries at node 4 for a
flow from node 6 to node 2. A packet arriving from node
3 must have passed its intermediate hop at node 4 (because
otherwise XY routing to the intermediate node would have
restricted it to arriving from node 7) and can only continue
on to node 5 without renaming the flow. A packet arriving
at node 4 from node 7 must not have passed its intermediate
node (because otherwise it would be out of turns in its second
XY phase and it could not get to its destination at node 2);
the intermediate node can be either node 1 (with one path)
or node 4 itself (also with one path), and so the table entry
would direct the packet to node 1 (without flow renaming) or
to node 5 (with flow renaming) with equal probability.

3) Virtual Channel Allocation: Like routing, virtual
channel allocation (VCA) is table-driven. The VCA table
lookup uses the next-hop node and flow ID computed in the
route computation step, and is addressed by the four-tuple
〈prev node id ,flow id ,next node id ,next flow id〉.
As with table-driven routing, each lookup may result in a
set of possible next-hop VCs

{〈next vc id ,weight〉, · · · },
and the VCA step randomly selects one VC among the
possibilities according to the weights.

This directly supports dynamic VCA (all VCs are listed
in the result with equal probabilities) as well as static set
VCA [11] (the VC is a function of the flow ID). Most
other VCA schemes used to avoid deadlock, such as that
of O1TURN (where the XY and YX subroutes must be

Fig. 5. Cross-thread synchronization of node-to-node data transfers in HOR-
NET. (a) Dequeue operation: only front end locked. (b) Enqueue operation:
only back end locked. (c) Negative-edge synchronization: both ends locked.

on different VCs), Valiant/ROMM (where each phase has a
separate VC set), as well as various adaptive VCA schemes
like the turn model [12], are easily implemented as a function
of the current and next-hop flow IDs.

Finally, HORNET supports VCA schemes where the next-hop
VC choice depends on the contents of the possible next-hop
VCs, such as EDVCA [13] or FAA [14].

4) Bidirectional Links: HORNET allows inter-node connec-
tions to be bidirectional: links can optionally change direction
as often as every cycle based on local traffic conditions, ef-
fectively trading off bandwidth in one direction for bandwidth
in the opposite direction [15]. To achieve this, each link is
associated with a modeled hardware arbiter which collects
information from the two ports facing each other across the
link (for example, number of packets ready to traverse the link
in each direction and the available destination buffer space)
and suitably sets the allowed bandwidth in each direction.

The performance of routing and VC allocation algorithms
can be heavily affected by the regular nature of the synthetic
traffic patterns often used for evaluation: for example, a
simple round-robin VCA scheme can exhibit throughput
unfairness and cause otherwise equivalent flows to experience
widely different delays if the traffic pattern injects flits in
sync with the round-robin period. Worse yet, a similarly
biased crossbar arbitration scheme can potentially block
traffic arriving from one neighbor by always selecting another
ingress port for crossbar traversal.

While relatively sophisticated arbitration algorithms have
been developed (e.g., iSLIP [16]), the limited area and power
in an NoC, together with the requirement for fast line-rate
decisions, restricts the complexity of arbitration schemes and,
consequently, their robustness to adversarial traffic patterns.

REN et al.: HORNET: A CYCLE-LEVEL MULTICORE SIMULATOR 893

TABLE I

HORNET Can Construct Many Routers From Basic Building

Blocks List in the Table

Components Architecture Parameters Statistic Parameter
Virtual buffers Ip: ingresses from neighbor

Ic: ingresses from cores
Vp: neighbor ingress VCs nbr : flits read operation

Vc: core ingress VCs for each virtual buffer
B: buffer size in flits

F : flit size in bits nbw: flits write operation
Pr : virtual buffer read ports for each virtual buffer
Pw: virtual buffer write ports

Crossbar XC: input ports from core
XP : input ports from neighbor nx: number of flits go

BP : output ports to the crossbar
W : port width in bits

Allocator A1: stage1 arbiter size nr1: stage1 require flits
N1: num of stage1 arbiters na1: stage1 active arbiters

A2: stage2 arbiter size nr2: stage2 require flits
N2: num of stage2 arbiters na2: stage2 active arbiters
L : package length in flits

LinkPower Link: links for each direction nl: flits transmit on the link
W : bandwidth for each link la: number of active links

Ll: link length for each direction
Pipeline-reg N: stages of router pipeline nr : switching register data

Accurate statistic parameters are generated during simulation.

Instead of selecting one such algorithm, therefore, HORNET

employs randomness to break arbitration ties: for example,
the order in which next-in-line packets are considered for VC
allocation, and the order in which waiting next-in-line flits are
considered for crossbar traversal, are both randomized. While
the pseudorandom number generators are by default initialized
from an OS randomness source, the random seeds can be set
by the user when exact reproducibility is required.

B. Power and Thermal Modeling

Power dissipation has become a prominent constraint for
architects, and is an important factor in routing algorithm
selection for large-scale high-throughput on-chip networks.
To enable power and thermal analysis, HORNET combines
a dynamic power model based on Orion 2.0 [17] with
a leakage power model; an accurate thermal model uses
HotSpot 5.0 [18]. At runtime, various system configuration
parameters (buffer sizes, port counts, and so on) and statistics
(buffer reads/writes, crossbar transits) are passed to the Orion

library for on-the-fly power estimation as shown in Table I and
to HotSpot for thermal modeling: this enables not only the
usual average and peak power and thermal analysis for the
entire chip but also per-tile and per-time-period reporting.

C. Concurrency, Synchronization, and Correctness

One aspect of correctness is the faithful modeling of the
parallelism inherent in synchronous hardware, and applies
even for single-threaded simulation. HORNET handles this by
having a “positive-edge” stage (when computations and writes
occur throughout the entire simulated device, but are not yet
visible anywhere when read) and a separate “negative-edge”
stage (when the written data are made visible) for every
clock cycle; this correctly models the behavior of registered

hardware where all data are captured in one fell swoop at the
rising clock edge.

HORNET takes advantage of modern multicore processors by
automatically distributing simulation work among the available
cores; as we show in Section IV, this results in significant
speedup of the simulations. The simulated system is divided
into tiles comprising a single virtual channel router and any
traffic generators connected to it (see Fig. 1), as well as a
private pseudorandom number generator and any data struc-
tures required for collecting statistics. One execution thread is
spawned for each available processor core (and restricted to
run only on that core), and each tile is mapped to a thread;
thus, some threads may be responsible for multiple tiles but a
tile is never split across threads.

In a multithreaded simulation, therefore, functional correct-
ness requires that inter-tile communication be lossless, and, in
the context of a pair of tiles, in-order: this way, all flits along
the same path are eventually delivered in the correct order.
Because in HORNET a tile is never divided across threads, inter-
thread communication is limited to flits crossing from one
node to another, and some fundamentally sequential but rarely
used features (such as writing VCD dumps). Timing accuracy
additionally requires that the effects of events in a given tile
on its neighbors occur promptly and in the correct order: in
other words, that clock cycles be globally synchronized.

In the HORNET implementation, virtual channel queues
(VCs, see Fig. 2) constitute the sole interface where two tiles
(and therefore two threads) interact. These structures consist
of a fixed-length buffer together with a head pointer and a tail
pointer. Since modeling the synchronous clock-driven updates
requires that flits freshly enqueued at the tail (as well as free
entries caused by dequeues at the head) are not visible at the
opposite end until the next clock cycle, both pointers have
“shadow” copies. As shown in Fig. 5, the head reads from a
shadow (and possibly stale) copy of the tail pointer to deter-
mine the queue length, and the tail reads from a shadow copy
of the head pointer to determine the available free space; at the
“negative” clock edge the shadow pointers are reconciled with
their originals, which makes any changes visible at the next
“positive” edge. The decoupled implementation also makes
it straightforward to employ separate head and tail locks to
preserve correctness while maximizing parallelism: dequeues
only lock the head lock [Fig. 5(a)] and enqueues only lock
the tail lock [Fig. 5(b)], making it possible to enqueue flits (in
one thread) and dequeue flits (in another thread) concurrently;
the shadow copy synchronization at the negative edge updates
both shadow pointers, and must hold both locks [Fig. 5(c)].

In concurrent simulation, timing inaccuracies can arise from
when a simulated tile instantaneously (in one clock cycle)
observes a set of changes effected by another tile over several
clock cycles. This has two consequences: one is that the
“local” clocks in each tile may be out of sync and any
values computed using both may be inaccurate; the other
is that a tile may observe the effects of too many (or too
few) flit arrivals and different relative flit arrivals, leading to
altered local congestion conditions and therefore different flit
delivery times. HORNET avoids the first problem by keeping
most collected statistics with the flits being transferred and

894 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 6, JUNE 2012

updating them on the fly: for example, a flit’s latency is
updated incrementally at each node as the flit makes progress
through the system, and is therefore immune to variation in
the relative clock rates of different tiles.

The remaining inaccuracy is controlled by periodically
synchronizing all threads on a barrier. 100% timing accuracy
demands that threads be synchronized twice per clock cycle
(once on the positive edge and once on the negative edge),
and, indeed, simulation results in that mode precisely match
those obtained from sequential simulation. Less frequent syn-
chronizations are also possible: the synchronizing barriers then
occur every few cycle instead of twice every cycle, and, as
discussed in Section IV, result in significant speed benefits.
Even with loose synchronization the functional correctness
is conserved, since flits along the same route will arrive in
the correct order; the only cost is some degradation in timing
accuracy, which, as discussed in Section IV, turns out to be
fairly minor.

D. Processor Core Integration

Fig. 1 shows the system simulated by HORNET. Each tile
contains a flit-based NoC router, connected to other routers via
point-to-point links with any desired interconnect geometry,
and, optionally, one of several possible traffic generators.
These can be either trace-driven injectors or cycle-level MIPS
simulators. A common bridge abstraction presents a simple
packet-based interface to the injectors and cores, hiding the
details of DMA transfers and dividing the packets into flits
and facilitating the development of new core types.

1) Trace-Driven Injector: The simple trace-driven injector
reads a text-format trace of the injection events: each event
contains a timestamp, the flow ID, packet size, and possibly
a repeat frequency (for periodic flows). The injector offers
packets to the network at the appropriate times, buffering
packets in an injector queue if the network cannot accept them
and attempting retransmission until the packets are injected.
When packets reach their destinations they are immediately
discarded.

2) MIPS Simulator: Each tile can be configured to simulate
a built-in single-cycle in-order MIPS core; the core can be
loaded with statically linked binaries compiled with a MIPS
cross-compiler such as GCC.

The MIPS core is connected to a configurable memory
hierarchy which supports an arbitrary number of private or
shared cache levels backed by a shared main memory. Mem-
ory coherence among the caches is ensured either by an
implementation of the MSI cache coherence protocol or via
a NUCA-style distributed shared memory with remote-access
reads and stores; either option uses the configured on-chip
network to communicate with main memories, directories, and
other caches.

To directly support MPI-style applications, the network can
also be directly exposed to the processor core via a system
call interface: the program can send packets on specific flows,
poll for packets waiting at the processor ingress, and receive
packets from specific queues. The sending and receiving pro-
cess models a DMA, freeing the processor while the packets
are being sent and received.

TABLE II

System Configurations Used in Simulation

Characteristic Configuration
Topology 32×32 2-D mesh, 16×16 2-D mesh,

8×8 2-D mesh;
Routing XY, O1TURN, ROMM, Valiant
VC allocation Dynamic, EDVCA
Link bandwidth 1 flit/cycle
VCs per port 4, 8
VC buffer size 4, 8 flits
Avg. packet size 8 flits
Traffic workloads Transpose, bit-complement,

shuffle, H.264 decoder profile;
Splash-2 traces: fft, RADIX,

swaptions, water;
natively executed Parsec
applications: blackscholes

Warmup cycles 200 000 for synthetic traffic,
0 for applications

Analyzed cycles 2 000 000 for synthetic traffic,
full running time for applications

Server CPUs used 2× Intel Xeon X5680 6-core with HT,
Intel Core i7 4-core with HT

HT cores used for simulation 1. . .24
Sync period clock-accurate, multiple cycles

III. Methods

To support our claims with concrete examples, we ran
HORNET simulations with various system configurations. The
salient configuration features used in various combinations in
our experiments are listed in Table II.

PARSEC benchmarks were scaled for 1024 cores and run
directly on the integrated MIPS model. Splash-2 traces were
obtained by running the benchmarks [5] in the distributed
x86 multicore simulator Graphite [19] with 64 application
threads; all network transmissions were logged and the traces
were then replayed in HORNET. To obtain significant network
congestion, the x86 core was assumed to run on a clock ten
times faster than the network. This was necessary because
the Splash benchmarks were written for a multiprocessor
environment where the cost of inter-processor communication
was much higher, and thus particular attention was paid to
frugal communication; the plentiful bandwidth and relatively
short latencies available in NoC-based multicores make this
kind of optimization less critical today.

Although each simulation collects a wide variety of statis-
tics, most reports below focus on average in-network latency
of delivered traffic—that is, the number of cycles elapsed
from the time a flit was injected into a network router
ingress port to the time it departed the last network egress
port for the destination CPU—as most relevant to current
and future cache-coherent shared-memory NoC multicores.
For speedups, we measured elapsed wall-clock times with
HORNET as the only significant application running on the
relevant server. Finally, to quantify the accuracy of the loosely
synchronized simulations, we first ran HORNET with full clock-
accurate synchronization to obtain a baseline; we then re-
peated the experiment with different synchronization periods
(but the same random number seed, and so on) and com-
pared the reported average latencies as an accuracy measure-
ment.

REN et al.: HORNET: A CYCLE-LEVEL MULTICORE SIMULATOR 895

Fig. 6. Link usage for synthetic BITCOMP and Transpose traffic using the
XY routing algorithm. For clarity, a 64-node 8×8 2-D mesh is shown, and the
most encumbered link in each case is shared by 8 and 7 flows, respectively;
for a 1024-node 32 × 32 mesh, these figures grow to 32 and 31. Even in the
8 × 8 case there are some effects on the latency for many of these flows (see
Fig. 2), but in the 32×32 case the effects are so severe that many flows cannot
deliver any packets in reasonable time. (a) Bitcomplement. (b) Transpose.

To enable power and thermal analysis, we integrated HOR-

NET with a power model based on Orion 2.0 [17] and a
thermal model uses HotSpot 5.0 [18].

IV. Discussion

A. Simulation Challenges for Large-Scale Multicores

Scaling multicores and their on-chip networks to thousand-
core levels presents challenges that do not arise in existing
systems with fewer than one hundred cores. On the one hand,
there is the simple challenge of significantly more traffic
concentrated on few nodes: the off-chip bandwidth grows
much more slowly than on-chip transistor counts [20], and the
resulting higher core-to-memory ratio will raise traffic centered
around the memory controller to unprecedented levels.

On the other hand, various congestion effects present but
not significantly detrimental in smaller networks are radically
amplified in on-chip interconnects on a 1000-core scale. For
example, while a single one-way link in an 8 × 8 mesh
with dimension-ordered routing (DOR) might at worst be the
bottleneck for 128 distinct flows (assuming all-to-all traffic
and one flow per source/destination node pair), the most
encumbered link in a 1024-core 32 × 32 mesh could be
on the critical path of as many as 8192 flows.1 Worse yet,
local congestion can cause long-distance flows to experience
exponentially long latencies (see Fig. 8): indeed, in long-
running high-traffic simulations of a 1024-core, 32 × 32 mesh
network, we observed that some flows delivered very few or
even no packets precisely because of this effect, whereas in a
64-core, 8 × 8 network this was never a problem.

Fig. 6 shows the number of flows on each link for the
bitcomp and transpose benchmarks using XY routing. For
clarity, the figure shows a 8 × 8 mesh, where the most
encumbered link (darkest) is shared by eight flows; in a 1024-
node 32 × 32 mesh, the most encumbered link would be
shared by 32 flows. This means that, in each clock cycle,
packets contending for those links have a 1 : 32 chance on the
average to traverse the next link, which for flows with many
links to traverse grows exponentially and quickly amounts

1The number of flows on the most encumbered link for DOR on a n × n

mesh is n3

4 .

Fig. 7. In large meshes, the XY routing algorithm (shown in black) fails to
scale because per-hop fairness leads to (a) decreasing packet delivery rates and
(b) exponentially increasing delays for longer flows (see Fig. 8); indeed, after
the number of hops that must be traversed exceeds about 32, there only tens of
flits received, when distance up to 48, some delays exceed the simulation time
and some flows never receive any packets. Routing algorithms like EDVCA
(shown in gray) mitigate this effect and are more appropriate for large-scale
NoCs. To observe this effect, accurate simulation of NoC router buffers and
contention is necessary. (2 000 000 cycles on a 32 × 32 2-D mesh using the
synthetic bit-complement benchmark). (a) Packet delivery rate in flows as a
function of the distance packets must travel. (b) Average packet latency in
flows as a function of the distance packets must travel.

Fig. 8. In a heavily loaded network, traffic on long-path routes can suffer
significantly more latency than those on short routes. In this case, flow A

must compete for the link with a short flow (B, C, and D) at every step of
its route; assuming locally fair arbitration between any two flows, this effect
can result in delays for A that are exponential in its path length.

to a significant delay. Fig. 7 shows how this affects packet
delivery rate and the latency the packets actually delivered:
because average latencies grow exponentially with the number
of hops a flow must travel, the number of packets delivered
during the 2 000 000 simulated cycles drops off rapidly, and
at some point some flows receive no packets at all before
simulation ends. The same figures show that a different virtual

896 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 6, JUNE 2012

channel allocation scheme (EDVCA [13]), which combines
the benefits of dynamic and static virtual channel allocation
schemes, ameliorates head-of-line blocking, significantly im-
proving throughput compared with equivalent baseline, and
show its great advantage for large-scale networks.

Clearly, extrapolating architectural decisions for large-scale
on-chip networks from small-scale simulations runs severe
risks of missing significant performance bottlenecks, and ac-
curate simulation of large networks is a necessary step in the
design process.

B. Parallelization and Performance

Since large-scale designs must be simulated directly, scala-
bility is a key consideration in simulator design. One possibil-
ity is to abstract away detail and give up cycle-level simulation,
but as discussed is Section IV-C below, this is undesirable for
on-chip network design. Another is to implement the system
on an FPGA directly or via a time-multiplexing system like
HaSIM [21]; while those approaches offer excellent perfor-
mance, they require a very low-level, time-consuming design
and verification process. In HORNET, we instead take advantage
of today’s commodity processors featuring several cores on a
single die: a single simulation can be split into multiple threads
running in parallel on as many cores as are available.

Efficient parallel simulation requires designing the simulator
for concurrency from ground up. The key factor limiting
performance is inter-thread communication, which can be
divided into: 1) communication within the simulated network
itself; 2) synchronization barriers for clock-accurate results;
and 3) any shared data structures. As discussed in Section II-C,
HORNET threads share no structures other than the synchro-
nized queues that carry traffic among the simulated routers,
so communication only involves 1) and 2).

Clock synchronization (twice per cycle in cycle-accurate
mode) incurs the most performance cost because all threads
must wait on the same barrier. While this is inexpensive and
allows linear scaling when all cores are on the same die,
barrier communication across separate processor dies becomes
time-consuming and limits performance (see Fig. 9), especially
when systems with few cores are being simulated and thread
workload per simulated cycle is relatively light. To allow
further speedup, HORNET allows barrier synchronization to be
performed periodically instead. From a functional correctness
standpoint, this makes no difference, since all traffic will still
arrive subject to the original ordering constraints and any
deterministic algorithm running on the CPU cores will have the
same results. The loose synchronization does imply some loss
of fidelity in reported timing, but there HORNET ensures high
accuracy by accumulating statistics separately in each thread,
carrying measurements within each transmitted packet, and
never basing measurements on relative values from two cores.
As a result, timing measurements retain near very high fidelity
even when scaling across separate dies and hyperthreaded
cores (Fig. 9).

While communication due to simulated network traffic is
unavoidable, HORNET employs fine-grained locking to ensure
maximum parallelism. The virtual channel buffers—the only
communication points between any two tiles—have front and

back locks which can be separately held by different threads:
this allows HORNET to ensure that results from cycle-accurate
parallel simulations are identical to those from an equivalent
single-thread simulation (given the same randomness seeds),
and that intertile communication does not limit performance
(see Fig. 9).

To further improve performance in the network-only and
application trace configurations, HORNET can fast-forward the
clocks in each tile when there are no flits buffered in the
network and no flits about to be injected for some period of
time. Because in that situation no useful work can possibly
result, HORNET advances the clocks to the next injection
event and continues cycle-by-cycle simulation from that point
without altering simulation results. Clearly, heavy traffic loads
will not benefit from fast-forwarding because the network
buffers are never drained and HORNET never advances the clock
by more than one cycle. Fig. 10 shows that the benefit on
low-volume traffic depends intimately on the traffic pattern:
an application which, like blackscholes and fft, has long
pauses between traffic bursts, will benefit significantly; an ap-
plication which spreads the small amount of traffic it generates
evenly over time like the H.264 profile will rarely allow the
network to fully drain and therefore will benefit little from
fast-forwarding.

C. Congestion and Cycle-Level Simulation

High-level architectural simulators tend to assume an ide-
alized interconnect network and generally either do not con-
sider congestion or approximate it with an analytical model.
For interconnect network design itself, however, congestion
effects are of prime importance, as they dictate, for example,
what routing algorithms should be employed. To estimate the
effect of congestion, we performed simulations of the Splash

benchmark suite in the congestion-accurate configuration and
in a congestion-oblivious configuration where injection band-
width was limited as in the accurate model but the transit
latencies were simple hop-counts. As Fig. 12 shows, ignoring
congestion effects can cause the simulation to significantly
underestimate simulation-time measurements: depending on
the amount of network traffic generated by the benchmark,
the effect ranged from 2× to negligible.

When congestion must be modeled accurately, cycle-
accurate simulation is indispensable. For example, network
congestion can have significant effects on how the net-
work configuration—say the number and size of the virtual
channels—affects in-network latency (i.e., the latency incurred
after the relevant flit is seen by the processor as successfully
sent). Intuitively, adding more virtual channels should gener-
ally allow more packets from different flows to compete for
transmission across the crossbar, increase crossbar efficiency,
and therefore reduce observed packet latency. While this holds
when traffic is light, it may have an opposite effect in a
relatively congested network: as Fig. 13 illustrates on five
Splash-2 applications, doubling the number of VCs while
holding the size of each VC constant causes the observed in-
network latency in a relatively congested network to actually
increase. This is because the total amount of buffer space in the
network also doubled, and, when traffic is heavy and delivery

REN et al.: HORNET: A CYCLE-LEVEL MULTICORE SIMULATOR 897

Fig. 9. Parallelization speedup for cycle-accurate and loosely-synchronized simulations of 64-core and 1024-core trace simulations of the Parsec blacksc-

holes benchmark and the splash-2 banchmarks fft, radix, and water-spatial on a system with 24 hyperthreaded cores. The figures show that simulation
speeds scale linearly up to the six physical cores on the same die (4–5 × speedup depending on benchmark and synchronization level); the overheads of
pairing up threads using hyperthreading (7–12 threads) and communication between two separate dies (13+ threads) result in slightly slower speedup gains.
Because each thread has more work to do between synchronizations for the 1024-core simulations, speedups are high even for cycle-accurate simulations
(sync 0); for 64-core simulations, increased synchronization periods help speed up simulations significantly, especially when the simulation uses many threads.
At the same time, simulation fidelity (as measured by average packet latency deviation from cycle-accurate simulation) is high even for loosely synchronized
simulations. (For all the simulations, we used a 12× Intel Xeon X5680 at 3.33 GHz, on two 6-core dies, each hyperthreaded 2-way for a total of 24 cores
(cores 1–12 on core 0, with 7–12 virtual; cores 13–24 on core 1 with 19–24 virtual). (a) blackscholes 64-core speedup. (b) fft 64-core speedup. (c)
radix 64-core speedup. (d) water-spatial 64 core speedup. (e) SPLASH-2 1024-core speedup. (f) blackscholes 1024-core accuracy. (g) fft 1024-core
accuracy. (h) radix 1024-core accuracy. (i) water-spatial 1024-core accuracy.

rates are limited by the network bandwidth, the flits at the
tails of the VC queues must compete with flits from more
VCs and thus experience longer delays. Indeed, when the VC
queue sizes are halved to keep the total amount of buffer space
the same, the 4-VC setup exhibits shorter latencies than the
2-VC equivalent as originally expected.

While in a lightly loaded network almost any routing and
VC allocation algorithm will perform well, heavier loads
lead to different congestion under different routing and VC
algorithms and performance is significantly affected; again,
accurately evaluating such effects calls for a cycle-level simu-
lator and real applications. Fig. 11 shows the effect of routing
and VC allocation scheme on performance of the Splash-2

benchmarks in a relatively congested network. While the al-
gorithms with more path diversity (O1TURN and ROMM) do
lower observed in-network latency, the performance increase is
not as much as might be expected by considering the increased
bandwidth available to each flow.

Modern multicore designs can reduce on-chip network
congestion by placing several independent memory controllers
in different parts of the network. Since in a cache-coherent

system a memory controller generally communicates with all
processor cores, modeling congestion is critical in evaluating
the tradeoff between adding memory controllers and control-
ling chip area and pin usage. For example, Fig. 11 shows
in-network latency for two cache-coherent systems: one with
one memory controller (MC) and the other with five. While the
5-MC configuration improves performance across the board,
the improvement varies across applications, from an order of
magnitude (e.g., fft, swaptions) to negligible (e.g., in the
case of blackscholes, which has relatively little memory
traffic). Such detailed simulations enable the chip architect
to consider the exact tradeoff between the increased area and
performance improvement. More significantly, the two choices
impose different constraints on selecting the routing and VC
allocation logic: while the congestion around a central memory
controller makes controlling congestion via routing and VC
allocation, the average latency in a system with five memory
controllers does not vary significantly under different routing
algorithms and EDVCA, and the designer might choose to save
area and reduce implementation complexity in the network
switch.

898 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 6, JUNE 2012

Fig. 10. Performance benefits from fast-forwarding. Unlike blackscholes, fft, radix, swaptions, and h.264 see significant speedups when the network
is idle, the low-traffic H.264 profile gains little because packets are sent with relatively constant frequency and the network is rarely fully drained.
(a) Blackscholes. (b) FFT. (c) Radix. (d) Swaptions. (e) Water-spatial. (f) H.264.

D. Processor Model Integration
Much of the research in network-on-chip microarchitecture

relies on synthetic traffic patterns or application traces col-
lected under the assumption of an ideal interconnect network.
This approach generally ignores the interdependencies among
the various flows and the delays caused by instructions that
must wait until network packets are delivered (for example,
memory accesses that miss the per-core cache hierarchy). For
these reasons, a precise evaluation of the performance of NoC-
based multicores in running real applications requires that the
CPU core and the network be simulated together.

To quantify the differences between trace-driven and real
application traffic, we implemented Cannon’s algorithm for
matrix multiplication [22] in C using message-passing and
targeting the MIPS core simulator that ships with HORNET. We
ran the simulation on 64 cores and applied it to a 128 × 128
matrix; to stress the network, cores were mapped randomly,
per-cell data sizes were assumed to be large, and computations
were taken to be relatively fast. For the trace version, we
assumed an ideal single-cycle network, logged each network
transmission event, and later replayed the traces in HORNET;
for the combined core+network version, we ran the benchmark
with the MIPS cores simulated by HORNET directly interacting
with the on-chip network.

The results, shown in Fig. 14, illustrate that the processor
cores may have to spend significant amounts of time waiting
for the network. On the one hand, a destination node waiting
for a packet may block until the packet arrives. On the other
hand, the sending node may have to wait for the destination
core to make progress: when the destination is nearby (e.g.,
adjacent), even a relatively short packet can exceed the total
buffer space available in the network, and the sending core
may have to stall before starting the following packet until
the current packet has been at least somewhat processed by
the destination core and network buffers have freed up.

E. Power Analysis

As on-chip network complexity and size increases, concerns
about cooling, thermal budgets, and battery lifetime are at
the forefront of NoC design [23]. Achieving good power
performance requires not only optimizing specific system
components using techniques such as clock and voltage gating,
but also choosing the right routing algorithms, virtual channel
configuration, and other network parameters as appropriate for
the expected traffic patterns. In this section, we briefly discuss
how HORNET helps evaluate power and thermal as part of the
design process.

1) Power Efficiency and Routing/VC Allocation Algorithm
Choice: While common wisdom approximates power dissi-
pation in high-bandwidth networks as directly related to the
amount of traffic, in reality routing algorithms and architec-
tural considerations are key. Fig. 15(a) shows that the choice of
routing algorithm can have significantly more effect on power
efficiency than the amount of traffic sent: the overall energy-
delay product per flit (EDPPF) for less power-efficient routing
schemes can be many times greater than for the most efficient
one, BSOR static routing.

2) Power Efficiency and Router Microarchitecture Choice:
Power-efficiency effects of microarchitectural decisions also
depend on the traffic pattern and routing algorithm choice,
and must be carefully evaluated via simulation at design time.
For example, intuition suggests that a router with more virtual
channels will burn more power; on the other hand, however,
adding more VCs might make routing more efficient and cut
the total time required to deliver all of the packets, resulting in
overall power savings. As Fig. 15(b) shows, the most efficient
configuration depends on the traffic pattern and the routing
algorithm used: for most combinations we tested, a 4-VC
router was most power-efficient, but for a significant fraction
a 2-VC setup was the best choice. Similarly, given the same
number of VCs, a design can use a full crossbar connecting all

REN et al.: HORNET: A CYCLE-LEVEL MULTICORE SIMULATOR 899

Fig. 11. Effect of routing, VC configuration, and varying the number of memory controllers on in-network latency (and therefore memory system performance)
in a 64-core system running traces from blackscholes, fft, radix, swaptions, and water-spatial benchmarks. Multiple memory controllers significantly
reduce congestion, and the resulting improvements vary depending on the memory traffic patterns of each application. (a) Blackscholes. (b) FFT. (c) Radix.
(d) Swaptions. (e) water-spatial.

Fig. 12. Effect of congestion on flit latency for five Splash applications:
for radix and water-spatial, which both generate a lot of network traffic,
not modeling congestion results in nearly 2× and 1.5× network latency
underestimate; for blackscholes, fft and swaptions, which both have
much less traffic, the difference, although present, is not significant. The
results for the remaining Splash applications were similar: the congestion
effect for high-traffic applications was similar to radix and for low-traffic
applications resembled swaptions. (64-core system with 4 VCs, buffer depth
is 4 flits).

ingress VCs to all next-hop VCs, or can use per-port muxes to
select one candidate among the VCs before entering a much
smaller crossbar (see Fig. 2); as Fig. 15(c) illustrates, smaller
crossbars tend to be more power-efficient for most routing
schemes, but for some algorithms (e.g., O1turn) enlarging the
crossbar results in shorter run times and net power savings.

F. Thermal Effects

While processor core and cache thermal effects have been
extensively studied, available interconnect network models

Fig. 13. In-network latency for different VC buffer configurations. Counter-
intuitively, for heavy traffic loads like radix and water-spatial, increasing
the number of VCs from 2 to 4 while keeping the VC sizes constant at 8
flits actually increases in-network latency because packets can be buffered
inside the network. When total VC memory size is held constant, doubling
the number of VCs to 4 (and correspondingly halving their capacities to 4
flits) decreases latency as expected. for light traffic loads like the others, there
are not so much congestion requirement for more virtual channels.

report only steady-state averages for the entire chip. Fig. 16
shows that choosing thermal constraints based merely on
average or peak temperature data can be misleading: for
applications in which network load varies significantly over
time, basing interconnect design decisions on the mean values
runs the risk of thermal runaways when the application enters
a heavy-traffic phase, while using worst-case peak values
may result in over-provisioned, expensive thermal packaging.

900 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 6, JUNE 2012

Fig. 14. Trace-based simulation lacks the feedback loop from the network
to the sending (or receiving) core; this allows cores to inject packets unrealis-
tically fast and permits the application to finish much earlier than realistically
possible.

Instead, the designer might choose a design point based on
the temperature profiles of the target applications, and ensure
that application execution—and hence network traffic—are
throttled when temperature rises above some maximum.

Such throttling requires attaching thermal sensors to the die
itself; although placing more sensors on the die would provide
a more accurate thermal picture, the sensors themselves are
relatively expensive and power-hungry, and generally very few
are present on a chip. We reasoned that, since our Splash

runs were done with one memory controller in one corner
of the mesh, the switches bordering might become a thermal
hotspot and the memory controller would be a good place for a
sensor. As illustrated in Fig. 17, however, the thermal hotspot
in our simulations varied in magnitude but remained in the
center of the chip regardless of the benchmark and routing
algorithm: this is because the XY routing algorithm we used
(and, indeed, nearly all available algorithms) route a greater
proportion of the traffic via the central region of the mesh.
This result suggests that placing a sensor in the central area
of the die should suffice.

The availability of time-resolved and space-resolved thermal
measurements within HORNET allows us to investigate routing
algorithms which can reroute traffic on possibly longer paths
(e.g., near the edges of the mesh) instead of throttling down
performance when temperature rises; the development of such
power-adaptive routing schemes remains an interesting topic
of future research.

V. Related work

One NoC simulator that stands out among the many simple,
limited-purpose software NoC simulators is Garnet [24]. Like
HORNET, Garnet models an NoC interconnection network at
the cycle-accurate level: the model allows either a standard
ingress-queued virtual channel router with a rigid five-stage
pipeline or a flexible egress-queued router. Integration with
GEMS provides a full-system simulation framework and a

Fig. 15. (a) Routing algorithm choice has significantly more effect on power
efficiency than the amount of traffic (100 000 flits were sent and delivered
in each case) or architectural choices such as amount of (b) buffering, or
(c) crossbar size. Nevertheless, the most power-efficient architectural choices
depend on the combination of (b) traffic patterns and routing: for some loads
a 2-VC configuration is the most power-efficient, while for others a 4-VC
setup is best. The effects of crossbar size also depend on the (c) traffic
pattern and routing scheme: while generally a smaller crossbar is more power-
efficient, in some cases (e.g., H.264-O1turn) the extra VCs significantly cut
the total time required to deliver the traffic and outweigh the additional per-
cycle cost of a larger crossbar. (8 × 8 2-D mesh under synthetic traffic
patterns: bitcomp, transpose, shuffle, and parallel H.264 traffic profile,
virtual channel buffer size is 8 flits). (a) EDPPF for different routing algorithm
with same configuration. (b) EDPPF for different number of VCs. (c) EDPPF
for different crossbar sizes, all using 4 VCs.

REN et al.: HORNET: A CYCLE-LEVEL MULTICORE SIMULATOR 901

Fig. 16. Temperature traces over the runtime of different Splash applications. While for ocean a peak (or, indeed, mean) temperature estimate might be
used to choose thermal constraints, the activity-dependent temperature variation in radix radix means that neither the mean nor the peak provides the best
architectural tradeoff. (a) ocean. (b) radix.

Fig. 17. Steady-state temperature distribution over a 8 × 8 mesh NoC for two Splash applications. While the overall magnitude varies significantly (in
this case by over 5 °C), the overall distribution remains the same: even though the memory controller is located in the lower-left corner, the central nodes
suffer the highest temperatures (the remaining Splash benchmarks and routing algorithms other than XY show similar temperature profiles). (a) radix. (b)
water-spatial.

memory model, while integration with ORION [25] provides
power estimation. Table III compares Hornet with Garnet.
RSIM [26] simulates shared-memory multiprocessors and
uniprocessors designed for high instruction-level parallelism;
it includes a multiprocessor coherence protocol and intercon-
nect, and models contention at all resources. SICOSYS [27]
is a general-purpose interconnection network simulator that
captures essential details of low-level simulation, and has been
integrated in RSIM. Noxim [28] models a mesh NoC and, like
HORNET, allows the user to customize a variety of parameters
like network size, VC sizes, packet size distribution, routing
scheme, and so on; unlike HORNET, however, it is limited to 2-
D mesh interconnects and is traffic-pattern-driven rather than
integrated with a processor frontend. Booksim [29] allows
for more network geometries but is also driven by synthetic
traffic patterns. None of these simulators significantly exploits
available multicore parallelism.

Highly configurable, parallelized architectural modeling is
not a new idea. The Simplescalar toolset [30] can model a
variety of processor architectures and memory hierarchies, and
enjoys considerable popularity among computer architecture

TABLE III

Comparison of Hornet and Garnet

Features GARNET HORNET

Simulation Model Integrated With GEMS With Built-in MIPS
Traffic Traces Traffic Traces

Graphite Based Traces

Cycle-level accuracy Yes Yes

Scalability via paralellization No Yes

Configurable microarchitecture Yes Yes

Configurable routing Yes Yes

Power model Yes Yes

Thermal model No Yes

researchers. Graphite [19] is a Pin-based multicore simulator
that stands out for its ability to model thousands of cores
by dividing the work among not just multiple cores on the
same die but multiple networked computers; it does not,
however, interface with a cycle-level network model and its
latency and congestion models are probabilistic. Finally, the
growth in complexity and the need for ever-increasing amounts
of verification has led to the development of FPGA-based

902 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 6, JUNE 2012

simulators like HaSIM [21] and FPGA-level emulator plat-
forms like RAMP [31], which, though far more difficult to
configure, are much faster than software solutions.

VI. Conclusion

We introduced HORNET, a highly configurable, cycle-
accurate network-on-chip simulator that can be driven by
network traces, or with a built-in MIPS simulator. HORNET’s
parallelized simulation engine can scale nearly linearly with
the number of physical cores in the processor while preserving
cycle-accurate behavior, and allows the user to obtain even
more speed via loose synchronization, which preserves cor-
rectness but can introduce some inaccuracy in performance
measurements.

References

[1] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, R. Varada, M. Ratta,
and S. Vora, “A 45 nm 8-core enterprise Xeon® processor,” in Proc.
IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 9–12.

[2] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J.
MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C. Miao, C. Ramey,
D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan, F.
Montenegro, J. Stickney, and J. Zook, “TILE64-processor: A 64-core
SoC with mesh interconnect,” in Proc. IEEE Int. Solid-State Circuits
Conf., Feb. 2008, pp. 88–598.

[3] S. Borkar, “Thousand core chips: A technology perspective,” in Proc.
Des. Automat. Conf., 2007, pp. 746–749.

[4] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. C. Miao, J. Brown, and A. Agarwal, “On-chip intercon-
nection architecture of the tile processor,” IEEE Micro, vol. 27, no. 5,
pp. 15–31, Sep.–Oct. 2007.

[5] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2
programs: Characterization and methodological considerations,” in Proc.
Int. Symp. Comput. Architect., 1995, pp. 24–36.

[6] M. A. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van Dijk, and S. Devadas,
“Application-aware deadlock-free oblivious routing,” in Proc. Int. Symp.
Comput. Architect., 2009, pp. 208–219.

[7] D. Seo, A. Ali, W. Lim, and N. Rafique, “Near-optimal worst-case
throughput routing for two-dimensional mesh networks,” in Proc. Int.
Symp. Comput. Architect., 2005, pp. 432–443.

[8] M. H. Cho, M. Lis, K. S. Shim, M. A. Kinsy, and S. Devadas, “Path-
based, randomized, oblivious, minimal routing,” in Proc. Int. Workshop
Netw. Chip Architect., 2009, pp. 23–28.

[9] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel com-
munication,” in Proc. ACM Symp. Theory Comput., 1981, pp. 263–277.

[10] T. Nesson and S. L. Johnsson, “ROMM routing: A class of efficient
minimal routing algorithms,” in Proc. Int. Workshop Parallel Comput.
Routing Commun., 1994, pp. 185–199.

[11] K. S. Shim, M. H. Cho, M. A. Kinsy, T. Wen, M. Lis, E. Suh, and
S. Devadas, “Static virtual channel allocation in oblivious routing,” in
Proc. Int. Symp. Netw. Chip, 2009, pp. 38–43.

[12] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” in
Proc. Int. Symp. Comput. Architect., 1992, pp. 278–287.

[13] M. Lis, K. S. Shim, M. H. Cho, and S. Devadas, “Guaranteed in-order
packet delivery using exclusive dynamic virtual channel allocation,”
Comput. Sci. Artif. Intell. Lab., Massachusetts Inst. Technol.,
Cambridge, MA, Tech. Rep. MIT-CSAIL-TR-2009-036, 2009.

[14] A. Banerjee and S. Moore, “Flow-aware allocation for on-chip
networks,” in Proc. Int. Symp. Netw. Chip, 2009, pp. 183–192.

[15] M. H. Cho, M. Lis, K. S. Shim, M. A. Kinsy, T. Wen, and S. Devadas,
“Oblivious routing in on-chip bandwidth-adaptive networks,” in Proc.
Int. Conf. Parallel Architect. Compilation Tech., 2009, pp. 181–190.

[16] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, Apr.
1999.

[17] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion2.0: A fast and
accurate NoC power and area model for early-stage design space
exploration,” in Proc. Des. Automat. Test Eur. Conf. Exhibit., 2009, pp.
1530–1591.

[18] K. Skandron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” in Proc. Int.
Symp. Comput. Architect., 2003, pp. 2–13.

[19] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C.
Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed parallel
simulator for multicores,” in Proc. Int. Symp. High Performance
Comput. Architect., 2010, pp. 1–12.

[20] Assembly and Packaging, International Technology Roadmap for
Semiconductors, 2007.

[21] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer, “A-port
networks: Preserving the timed behavior of synchronous systems for
modeling on FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol.
2, no. 3, pp. 1–26, 2009.

[22] L. E. Cannon, “A cellular computer to implement the Kalman filter
algorithm,” Ph.D. dissertation, Dept. Electric. Eng. Comput. Sci.,
Montana State Univ., Bozman, 1969.

[23] R. Marculescu, U. Y. Ogras, L. S. Peh, N. E. Jerger, and Y.
Hoskote, “Outstanding research problems in NoC design: System,
microarchitecture, and circuit perspectives,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 28, no. 1, pp. 3–21, Jan. 2009.

[24] N. Agarwal, T. Krishna, L. Peh, and N. Jha, “GARNET: A detailed
onchip network model inside a full-system simulator,” in Proc. Int.
Symp. Performance Anal. Syst. Softw., 2009, pp. 33–42.

[25] H. Wang, X. Zhu, L. Peh, and S. Malik, “Orion: A power-
performance simulator for interconnection networks,” in Proc.
Int. Symp. Microarchitect., 2002, pp. 294–305.

[26] V. S. Pai, P. Ranganathan, and S. V. Adve, “RSIM: Rice simulator for
ILP multiprocessors,” SIGARCH Comput. Archit. News, vol. 25, no. 5,
p. 1, 1997.

[27] V. Puente, J. Gregorio, and R. Beivide, “Sicosys: An integrated
framework for studying interconnection network performance in
multiprocessor systems,” in Proc. Euromicro Conf. Parallel, Distrib.
Netw.-Based Process., vol. 0. 2002, p. 0015.

[28] Noxim. (2010). The NoC Simulator [Online]. Available:
http://noxim.sourceforge.net

[29] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and W. J. Dally,
Booksim 2.0 User’s Guide. Palo Alto, CA: Stanford University, Mar.
2010.

[30] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure
for computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67,
2002.

[31] Arvind, K. Asanovic, D. Chiou, J. C. Hoe, C. Kozyrakis, S.-L. Lu, M.
Oskin, D. Patterson, J. Rabaey, and J. Wawrzynek, “RAMP: Research
accelerator for multiple processors—a community vision for a shared
experimental parallel HW/SW platform,” Dept. Electric. Eng. Comput.
Sci., Univ. California, Berkeley, CA, Tech. Rep. UCB/CSD-05-1412,
Sep. 2005.

Pengju Ren received the B.S. degree in electrical
engineering from Xi’an Jiaotong University, Xi’an,
China, in 2004. He is currently pursuing the Ph.D.
degree with the School of Electronic and Informa-
tion Engineering, Xi’an Jiaotong University.

He was a Visiting Scholar with the Computer
Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, from
October 2009 to January 2011. His current research
interests include on-chip networks, scalable many-
core designs, and very large scale integration archi-

tectures for digital video processing.

Mieszko Lis is currently pursuing the Ph.D. de-
gree with the Massachusetts Institute of Technol-
ogy (MIT), Cambridge. Before coming to MIT for
doctoral studies in computer architecture and com-
putational biology, he received the Bachelors and
Masters degrees from MIT.

He accumulated extensive industry experience as a
cofounder of a fabless semiconductor company and
a high-level hardware synthesis startup. His current
research interests include massive-scale multicores
and the advanced coherent memory hierarchies re-

quired to support them.

REN et al.: HORNET: A CYCLE-LEVEL MULTICORE SIMULATOR 903

Myong Hyon Cho received the Bachelors degree
from Seoul National University, Seoul, Korea, and
the Masters degree from the Massachusetts Institute
of Technology, Cambridge. He is currently pursuing
the Ph.D. degree with the Department of Electrical
Engineering and Computer Science, Massachusetts
Institute of Technology.

His current research interests include many-core
computer architectures, memory subsystems, and
on-chip networks.

Keun Sup Shim received the B.S. degree in electri-
cal engineering from the Korea Advanced Institute
of Science and Technology, Daejeon, Korea, in 2006,
and the M.S. degree in electrical engineering and
computer science from the Massachusetts Institute
of Technology (MIT), Cambridge, in 2010. He is
currently pursuing the Ph.D. degree in electrical
engineering and computer science with MIT.

His current research interests include high-
performance computer architectures, scalable many-
core designs, and on-chip networks.

Christopher W. Fletcher received the B.S. de-
gree in electrical engineering and computer science
from the University of California, Berkeley. He is
currently a second-year Graduate Student studying
computer science with the Massachusetts Institute
of Technology, Cambridge.

His current research interests include energy ef-
ficiency, performance, and scalability concerns in
multicore systems.

Omer Khan (M’09) received the Bachelors de-
gree from Michigan State University, East Lansing,
in 2000, and the Ph.D. degree in electrical and
computer engineering from the University of Mas-
sachusetts, Amherst, in 2009.

He is currently an Assistant Professor of electri-
cal and computer engineering with the University
of Connecticut (UConn), Storrs. Prior to joining
UConn, he was a Post-Doctoral Fellow with the
Massachusetts Institute of Technology, Cambridge.
His current research interests include computer ar-

chitecture. He has co-authored numerous papers in this area.

Nanning Zheng (SM’93–F’06) graduated from the
Department of Electrical Engineering, Xi’an Jiao-
tong University, Xi’an, China, in 1975, and received
the M.S. degree in information and control engi-
neering from Xi’an Jiaotong University in 1981 and
the Ph.D. degree in electrical engineering from Keio
University, Yokohama, Japan, in 1985.

He joined Xi’an Jiaotong University in 1975, and
is currently a Professor and the Director of the In-
stitute of Artificial Intelligence and Robotics, Xi’an
Jiaotong University. His current research interests

include computer vision, pattern recognition, machine vision and image
processing, neural networks, and hardware implementation of intelligent
systems.

Dr. Zheng became a member of the Chinese Academy of Engineering in
1999, and has been the Chief Scientist and the Director of the Information
Technology Committee of the China National High Technology Research
and Development Program since 2001. He was the General Chair of the
International Symposium on Information Theory and Its Applications and the
General Co-Chair of the International Symposium on Nonlinear Theory and
Its Applications, both in 2002. He is a member of the Board of Governors
of the IEEE ITS Society and the Chinese Representative on the Governing
Board of the International Association for Pattern Recognition. He also serves
as an Executive Deputy Editor of the Chinese Science Bulletin.

Srinivas Devadas (F’98) is currently a Professor
of electrical engineering and computer science with
the Massachusetts Institute of Technology (MIT),
Cambridge, and has been on the faculty of MIT
since 1988. He served as the Associate Head with
responsibility for computer science from 2005 to
2011. He has worked on the areas of computer-
aided design, testing, formal verification, compilers
for embedded processors, computer architectures,
computer security, and computational biology, and
has co-authored numerous papers and books in these

areas.

