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Abstract 
 

Advances in medical imaging technique make it 
possible to study shape variations of neuroanatomical 
structures in vivo, which has been proved useful in the 
study of neuropathology and neurodevelopment. In this 
paper, we propose the use of spherical wavelet 
transformation to extract shape features, as it can 
characterize the underlying functions in a local fashion 
in both space and frequency, in contrast to spherical 
harmonics that have a noncompact basis set. The 
extracted shape features can be used to statistically 
detect and visualize group shape differences from a 
coarse to fine resolution, and facilitate shape-based 
classification. A procedure is developed to apply this 
method to cortical surface models, and promising 
results are acquired on synthetic and real data.  
 

1. Introduction 
 

Evidence suggests that morphological changes 
of neuroanatomical structures may reflect abnormalities 
in neurodevelopment, or a variety of disorders. The 
morphological variations can be characterized by the 
change of volume and shape. Research in this field has 
been largely focused on the relationship between 
pathology and volumetric variations of various 
neuroanatomical structures. Recently, a considerable 
amount of work has been conducted to measure the 
changes in the 2D or 3D shape of brain structures, with 
the goals of more accurate diagnoses, better treatments, 
and an improved understanding of neuropathology and 
neurodevelopment.  

To accurately study inter-subject shape 
variations, one would like to find not only an effective 
shape representation but also a registration method to 

preserve individual variation while aligning 
anatomically important structures. Different techniques 
employed to address these two problems contribute to 
the merits and disadvantages of various shape analysis 
methods. One of the earliest methods developed in this 
field represented shape by points sampled on the 
boundary of the object being studied. The coordinates 
of the corresponding points on different subjects were 
directly used as shape features [1]. Cootes et al. 
extended this method by applying principle component 
analysis (PCA) on the point distribution model, which 
allows for a global scale shape analysis [2]. However, 
this method relies on the accuracy of the inter-subject 
registration for group comparison. Subsequently, 
parametric models were developed to decompose the 
boundary or surface using Fourier descriptors or 
spherical harmonics (SPHARM), and to use the 
decomposition coefficients as shape descriptors [3-5]. 
A drawback of these models is the inadequacy of 
spatial localization due to the global support of the 
basis functions. Another popular method warps a 
template to individual subjects and studies the 
deformation field for shape variations [6]. This method 
has shown promising results, but it is sensitive to the 
template selection and presents challenges in 
interpreting and comparing shape differences using the 
high-dimensional deformation field. The medial axis 
technique, originally proposed by Pizer et al. and 
Golland et al. in 3D and 2D respectively, has been 
applied as a powerful tool on the shape analysis of a 
variety of subcortical structures [7, 8]. This technique 
provides an intra-subject correspondence and allows 
for the separate studies of the local position and 
thickness of the object at both coarse and fine levels, 
due to the merits of its mathematical expression. 
However, the sensitivity to small perturbations in the 
boundary is a fundamental problem of this method. 



In order to accurately extract shape features 
and conduct statistical analysis, we developed a 
procedure to hierarchically study shape variations of 
cortical surfaces using spherical wavelet transformation, 
which can characterize the underlying functions in a 
local fashion in both space and frequency. The entire 
procedure is introduced in detail in section 2. In section 
3, we demonstrate the use of spherical wavelet 
transformation in detecting shape variation and 
compare it with SPHARM. We also present the results 
of applying this method in cortical shape discrimination 
and classification, using both synthetic and real 
neurodevelopment data. 
 

2. Method 
 
2.1. Overall Procedure 
 

The automated procedure for conducting 
shape analysis, using spherical wavelet transformation, 
is shown in Fig. 1. For decomposing a surface using 
basis functions defined in the spherical coordinates 
system, such as SPHARM or spherical wavelets, the 
surface must be mapped onto a parameterized sphere. 
Tools developed by the FreeSurfer group are used for 
pre-processing, which includes cortical surface 
segmentation, cortical surface reconstruction, spherical 
mapping and registration based on this spherical 
representation [9, 10]. Spherical wavelet transformation 
is then applied to the normalized surface and the 
decomposition coefficients are used as shape features. 
For group comparison, Hotelling’s T2 test is applied to 
determine the discriminative power of each coefficient. 
The coefficients with statistic values larger than a 
prespecified threshold are selected for discrimination 
analysis and classification. To visualize the shape 
difference between two groups, we gradually add the 
differences of the mean values of selected coefficients 
between Group 1 and Group 2 to the mean wavelet 
coefficients of Group 1, and inversely transform the 
resulting new sets of coefficients into surfaces. 
Visualizing this difference allows us observe the shape 
variations from a coarse to fine resolution. Finally, 
leave-one-out classification accuracy is calculated as 
the percentage of subjects correctly classified by 
selecting features and training a classifier using the 

remaining subjects. The details of each step are 
introduced in the following subsections. 
 
2.2 Spherical Harmonic Descriptors 
 

As a natural extension of Fourier 
transformation on the sphere, SPHARM has been 
demonstrated to be a powerful tool in describing the 
boundary of objects of spherical topology.  In this 
method, the coordinates ),( ϕθv , )2,0[],,0[ πφπθ ∈∈ , 

of a parameterized surface are expressed as the 
weighted summation of a set of spherical harmonic 
basis functions of degree l and order m  
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where the coefficients m
lc  contain hierarchical shape 

information. However, SPHARM coefficients cannot 
indicate the type and location of shape differences due 
to the global support property of the basis functions. 
 
2.3 Spherical Wavelets 
 

In contrast to the SPHARM coefficients, a 
wavelet representation of a function consists of a 
coarse overall approximation and coefficients that 
influence the function at various details and locations. 
The classical form of wavelet analysis decomposes 
signals onto a set of basis functions, called wavelets, in 
which every wavelet is a scaled and translated copy of 
a single unique function, called the mother wavelet. 
However, this shift-invariant theory breaks down when 
representing data sets defined on bounded surfaces. 
The newly developed biorthogonal spherical wavelet 
basis functions are based on recursive subdivision 
starting with an icosahedron and a lifting scheme [11]. 
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Fig. 1 The automated procedure for conducting shape analysis of neuroanatomical structures 
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Fig. 2 Wavelet decomposition of cortical surface 



(a) (b) (c) (d)
Fig. 3 Comparison of SPHARM and Wavelets 

Table 1 Reconstruction 
error (%) using varying 
number of coefficients 

# of Coef 10 100 200
SPHARM 96.7 79.3 67.2
Wavelets 57.2 3.55 5e-4

Similar to the SPHARM method, the coordinates 
function Tzyxv ),,(= (x, y, z are coordinates on the 

original surface) can be considered a function defined 
on the sphere and expanded by a set of spherical 
wavelet functions as:  

∑=
kj kjkjv
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where 
kj ,γ  are the 3-dimensional coefficients at level 

ljj ,...0,1, −=  and location )(, jMkk ∈ . A fast wavelet 

transformation algorithm [11] is employed for efficient 
and accurate calculation of the coefficients, each of 
which provides some limited information about both 
the position and frequency of the decomposed function. 
Wavelet transformation can capture shape changes with 
fewer coefficients, as the coefficients in the lowest 
level provide an overall approximation, and localized 
morphological variations are captured hierarchically by 
the higher-level coefficients (Fig.2).  
 
2.4 Feature Selection 
 

In the group comparison study, we need to 
select the coefficients that best separate the groups. In 
this study we employed Hotelling’s T2 test, which is a 
multivariate analog to student’s t test and can be used 
to test the equivalence of a coefficient vector calculated 
for two groups. If the value of this statistic is greater 
than the tabulated distribution for a chosen significance 
level α, then the coefficients are considered to be 
significantly different between the two groups [12]. In 
shape analysis, it has been a concern that the large 
number of features, and therefore the large number of 
statistical tests involved, increases the chance of 
incorrect detection. The biorthogonality of the 
spherical wavelets allows us to select features at each 
level separately and adjust for multiple comparisons. 
 
2.5 Classification 
 

The classification method we employed is the 
support vector machine (SVM) method, which was 
originally introduced by Vapnik in 1979. This method 
has only received extensive attention recently for its 
application in pattern recognition [13]. Classification 
using SVM does not require assumptions on the 
distributions of the input data or a large number of 
classifier parameters with an increase of data 
complexity. Therefore, SVM can be applied to 
classification problems with high-dimensional data and 
small sample size, as is the case for our data in which 
we have hundreds of thousands of potential features, 
and only dozens of subjects. 
 

3. Results 
 
3.1 Comparison of Wavelets with SPHARM 
 

To compare the abilities of SPHARM and 
spherical wavelets to detect local shape variation, both 
methods were applied to decompose an inflated cortical 
surface model with a synthesized shape deformation. 
The deformed surface was reconstructed using the 
original surface’s coefficients as well as the 
coefficients calculated from the deformed surface with 
the most variations, using both SPHARM and spherical 
wavelets. The coefficient variation is calculated 
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coordinates of the ith vertex on the reconstructed and 
deformed surfaces, and N is the number of vertices on 
the surface. Fig. 3(a) is the original surface and 3(b) 
shows the set of wavelet coefficients with variation 
values larger than a prespecified threshold are located 
around the deformation (indicated by red dots). On the 
other hand, most of the SPHARM coefficients do have 
variations larger than the threshold. The synthetic 
bump is barely reconstructed (Fig. 3(c)), with 200 most 
varied SPHARM coefficients, while this deformation is 
well reconstructed using the same amount of spherical 
wavelet coefficients 
(Fig. 3(d)). A 
quantitative 
comparison of the 
reconstruction error 
is given in Table 1.  

 
3.2 Shape Discrimination on Synthetic Data 
 

The statistical shape analysis procedure is 
tested on 84 normal brain scans, with half of them 
having a synthetic 4mm by 2mm bump around a point 
selected on the bank of central sulcus. Hotelling’s T2 
test shows that only coefficients located around the 
synthetic deformation have a calculated p value lower 



than 0.0002 (Fig. 4). Using 
these coefficients, the 
synthetic deformation can be 
visualized with accurate 
location and extension using 
the method described in 
section 2.1. With the same 
threshold, the leave-one-out 
classification accuracy is 
95.24%. This accuracy 
decreases to 85.71% with a 
threshold of 0.01, which we 
believe is due to an increased 

false detection rate caused by a lack of multiple 
comparisons correction.  
 
3.3 Children/Adults Brain Comparison Study 

 

The brain undergoes dynamic changes through 
adolescence. However, the specific pattern of 
development and the relationship of structural 
change to functional development are still poorly 
understood. In this experiment, we conduct a pilot 
study on the developmental differences between 
children and young adults using our statistical shape 
analysis method. In particular, shape differences of the 
gray/white boundary between a set of children (11 
controls, 4 female, right-handed, average age 11.83) 
and young adults (12 controls, 7 female, right-handed, 
average age 22.17) are analyzed and visualized (left 
and right hemispheres studied separately). Contrary to 
the fine-scale deformation we synthesized in section 
3.2, most significant variations are observed at a low 
spatial-frequency level in this study. Specifically, there 
are distinct variations in the frontal and temporal lobes 
in the left hemisphere, and dispersed variations in the 
parietal lobe in right hemisphere (Fig. 5). Furthermore, 
leave-one-out classification using low frequency 
coefficients selected with threshold=0.01, gives an 
accuracy of 73.91% in the left hemisphere, and 60.87% 
in the right hemisphere. These results provide further 
characterization of the anatomic changes that occur in 
the normally developing brain. 
 

4. Conclusion 
 

Spherical wavelet transformation was 
demonstrated to be able to accurately and efficiently 
detect the locations and spatial scales of shape 
variations. The use of wavelet coefficients in statistical 
shape analysis has provided a novel way to detect and 
visualize group differences. Currently improvements 
are made by using better feature selection and multiple 

comparisons 
correction to 
fully utilize 
the multi-
resolution 
property of 
this method. 
Future work 
includes 
employing 
advanced 
statistical tools 
and extending 
this method to 
other neuroanatomical structures. 
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Fig. 5 Statistical maps of 
shape differences between 
children and young adults 
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