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Cortical Surface Shape Analysis Based on Spherical
Wavelets
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Abstract—In vivo quantification of neuroanatomical shape vari-
ations is possible due to recent advances in medical imaging and
has proven useful in the study of neuropathology and neurodevel-
opment. In this paper, we apply a spherical wavelet transformation
to extract shape features of cortical surfaces reconstructed from
magnetic resonance images (MRIs) of a set of subjects. The spher-
ical wavelet transformation can characterize the underlying func-
tions in a local fashion in both space and frequency, in contrast
to spherical harmonics that have a global basis set. We perform
principal component analysis (PCA) on these wavelet shape fea-
tures to study patterns of shape variation within normal popula-
tion from coarse to fine resolution. In addition, we study the devel-
opment of cortical folding in newborns using the Gompertz model
in the wavelet domain, which allows us to characterize the order
of development of large-scale and finer folding patterns indepen-
dently. Given a limited amount of training data, we use a regu-
larization framework to estimate the parameters of the Gompertz
model to improve the prediction performance on new data. We de-
velop an efficient method to estimate this regularized Gompertz
model based on the Broyden–Fletcher–Goldfarb–Shannon (BFGS)
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approximation. Promising results are presented using both PCA
and the folding development model in the wavelet domain. The cor-
tical folding development model provides quantitative anatomic in-
formation regarding macroscopic cortical folding development and
may be of potential use as a biomarker for early diagnosis of neu-
rologic deficits in newborns.

Index Terms—Folding, MRI, multiscale, neurodevelopment.

I. INTRODUCTION

EVIDENCE suggests that morphological changes of neu-
roanatomical structures may reflect abnormalities in neu-

rodevelopment, or a variety of disorders, such as schizophrenia
and Alzheimer’s disease (AD). These morphological variations
can be characterized by the change of volume, thickness, sur-
face area and shape. Efforts were originally made to verify the
relationship between the pathology and the volumetric varia-
tion of various neuroanatomical subjects, such as the cerebral
cortex, hippocampus and corpus callosum. Recently, a consid-
erable amount of efforts has been focused on developing a tech-
nique to quantify the changes in the 2-D or 3-D shape of brain
structures, which could potentially lead to more accurate diag-
noses, better treatments, and an improved understanding of neu-
rodevelopment.

To accurately study intersubject shape variations, one would
like to find not only an effective shape representation but
also a registration method to preserve individual variation
while aligning anatomically important structures. Different
techniques employed in these two aspects confer merits and
disadvantages to various shape analysis methods. One of the
earliest techniques developed in this field represents shapes by
points sampled on the boundary of the object being studied,
and the coordinates of the corresponding points on different
subjects are directly used as shape features [1], [2]. Cootes
et al. extended this method by building the point distribution
model, which allows for global scale analysis of shape varia-
tion by applying principal component analysis (PCA) to the
positions of the boundary points [3]. However, this method
depends heavily on the accuracy of the intersubject registration
for group comparison. Subsequently, parametric models were
developed to decompose the boundary or surface using Fourier
or spherical harmonic descriptors, and to use the decomposition
coefficients as a shape descriptor [4]–[7]. A drawback of these
models is the lack of ability to concisely represent local shape
variation because of the global support of the basis functions.
Recently, a weighted spherical harmonic representation has
been developed and can be potentially used to conduct local
analysis by differential weighting of the SPHARM coefficients
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Fig. 1. The automated procedure for conducting shape analysis of neuroanatomical structures.

[8]. Another popular method warps a template to individual
subjects and studies the deformation field for shape variations
[9]–[12]. Although this method is sensitive to the template
selection and presents challenges in interpreting and comparing
shape differences using the high-dimensional deformation
field, a number of interesting shape analysis results have been
obtained and more advanced techniques based on this method
have been developed. Medial axis techniques, originally pro-
posed by Blum [13] and used by Pizer et al. [14] and Golland
et al. [15] in 3-D and 2-D, respectively, is a powerful tool for
the shape analysis of a variety of subcortical structures. This
technique allows for the separate study of the local position and
thickness of the object at both coarse and fine levels. Another
advantage of medial descriptions is due to an object intrinsic
coordinate system, which facilitates the construction of cor-
respondences between subjects and the subsequent statistical
analysis. However, a fundamental problem of any skeletoniza-
tion technique is sensitivity to perturbations in the boundary,
which presents a challenge to the further development and
application of medial representation in shape analysis.

The difficulties in finding both an accurate shape presenta-
tion and a robust registration method present a challenge to the
study of the complex shape of the cerebral cortex in human be-
ings, which is highly convoluted and greatly affected by neu-
rodevelopment and neuropathy. In order to accurately and ef-
ficiently extract shape features and conduct statistical analysis,
we develop a procedure to register and normalize cortical sur-
faces, and decompose them using spherical wavelets. The com-
puted wavelet coefficients are used as shape features to study the
folding pattern of cortical surfaces at different spatial scales and
locations, as the underlying wavelet basis functions have local
supports in both space and frequency.

Using this method, we studied the patterns of cortical shape
variation at different spatial-frequency levels by applying PCA
in the wavelet domain. A similar method was first proposed in
[16] to build hierarchical active shape models of 2-D objects
(such as the corpus callosum) using 1-D wavelets, which were
then used for shape based image segmentation. It was further
extended to learn a shape prior of 3-D objects (such as prostate
and caudate nucleus) by applying PCA to the clusters of cor-
related spherical wavelet coefficients [17], and to use this prior
for image segmentation based on the spherical wavelets presen-
tation [18]. In this work, we emphasize on the use of PCA to
study and visualize the major patterns of shape variation of cor-
tical surfaces and the correlation of these shape variations with
age and neuropsych measurements at different spatial scales by
using spherical wavelets.

To model the cortical folding development of cortical surfaces
from infancy to early adolescence, we fit a growth model, more
exactly, the Gompertz function, to the spherical wavelet coeffi-
cients. Given a limited amount of training data, which includes

a set of given MRI scans of newborns and children, we employ a
regularization framework to improve prediction performance on
new MRI scans. We develop an efficient method to estimate this
regularized Gompertz model based on Broyden–Fletcher–Gold-
farb–Shannon (BFGS) approximation [19].

The entire procedure, including MR image preprocessing,
spherical wavelet transformation, statistical analysis using
PCA, and the cortical folding development model are intro-
duced in detail in Section II. Although the entire procedure
can be used to analyze both the gray matter (GM)/white matter
(WM) boundary and GM/cerebrospinal fluid (CSF) boundaries,
only the gray/white surface, which is a direct reflection of the
gyral folding, is used in this paper to exemplify the developed
methods. The results of using PCA in detecting the multires-
olutional patterns of shape variation in a nondemented aged
population are demonstrated in Section III. We also present the
use of the proposed folding development model in detecting
spatial scales and patterns of the cortical folding development
of the GM/WM boundary in newborns and children.

II. METHODS

The automated procedure for conducting shape analysis using
the spherical wavelets is shown in Fig. 1. The details of each
step are introduced in this section. The tools used for prepro-
cessing the cortical surfaces, and the procedures developed to
transform the reconstructed cortical surfaces using SPHARM
and spherical wavelets are first introduced. Then we describe the
procedure developed to study the pattern of shape variations in a
population based on the PCA technique. At last, the regularized
Gompertz model that is used to study the folding development
of cortical surface is presented.

A. Preprocessing

To decompose a cortical surface using basis functions defined
in a spherical coordinate system, such as spherical wavelets, the
surface is first mapped onto a parameterized sphere. We then use
a registration procedure to establish the correspondence across
subjects in order to carry out the statistical analysis. A set of
automated tools distributed as part of the FreeSurfer package1

are used to preprocess the data, which includes cortical surface
reconstruction, spherical transformation, and spherical registra-
tion based on the folding patterns of cortical surfaces.

To reconstruct the cortical surfaces, which include the
GM/WM boundaries (hereinafter referred as WM surfaces)
and gray matter (GM)/CSF boundaries (hereinafter referred as
pial surfaces) of the left and right hemispheres, the MR images
are first registered to a prebuilt template in the Talairach space.
The image intensity is normalized to remove spatial variations
induced by inhomogeneities in the RF field, and used to guide

1http://www.surfer.nmr.mgh.harvard.edu.
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Fig. 2. Reconstructed cortical surfaces using SPHARM coefficients truncated at degree 1, 2, 5, 10, 20, and 40 and the original surface (from left to right). This
figure demonstrates SPHARM’s effectiveness for multi-resoluational representation of cortical surfaces. Note that by using a higher degree, one can always rep-
resent the surface more accurately. However, since SPHARM bases are global, SPHARM coefficients cannot represent local shape changes concisely.

skull stripping and WM labeling. This WM segmentation is
further refined and cut to generate a single connected mass of
each hemisphere. A surface tessellation is then constructed for
each WM volume by representing each square face separating
the WM voxels from other classes with two triangles as detailed
in [20]. To generate a more accurate and smoother hemisphere,
this tessellation is refined and deformed in the normalized
image volume under smoothness and boundary intensity con-
straints. Furthermore, the WM surface is deformed outwards to
the location in the volume that has the largest intensity contrast
between the GM and CSF, and refined to generate the pial
surface. Finally, topological defects are automatically detected
and corrected for both surfaces to guarantee spherical topology.

Next, the reconstructed WM surface is mapped onto a sphere
in two steps. First, the WM surface is inflated and projected ra-
dially to a sphere. Then, the large folds and metric distortion
introduced by the projection process are removed by the min-
imization of folded area and the preservation of the local and
long range distances between vertices [21]. With this spherical
representation, surfaces of different subjects are then registered
in the spherical coordinate system by minimizing an energy
functional that is a combination of a topology preserving term,
a folding alignment term and a metric preservation term. The
alignment of gyral and sucal patterns enables us to find anatomi-
cally corresponding points on the reconstructed cortical surfaces
across subjects, and the metric preservation (including area and
distance) allows the preservation of individual variations. The
effectiveness of this spherical registration technique in finding
correspondence across subjects is proven in [22].

B. Spherical Harmonics (SPHARM)

The common spherical coordinate system established by this
procedure allows us to extract shape features using SPHARM
and spherical wavelets. As a natural extension of Fourier trans-
formation on the sphere, SPHARM has been demonstrated to
be a powerful tool in describing the boundary of objects of
spherical topology. In this method, the coordinates

, , , of a parameterized surface
are expressed as the weighted summation of a set of spher-
ical harmonic basis functions of degree and order ,

(1)

where the coefficients contain hierarchical shape infor-
mation. Truncating the spherical harmonic series at different
degrees results in object representations at different levels of
details, as shown in Fig. 2. However, SPHARM coefficients

cannot concisely indicate the location of shape differences
because of the global support of the basis functions. Most
recently, a weighted SPHARM technique has been developed
and applied to cortical thickness analysis and voxel-based
morphometry [8]. This new technique provides a framework
for weighting the SPHARM coefficients differently and can
be potentially used to improve the localization property of
SPHARM representation.

In this paper, both SPHARM and wavelets methods are im-
plemented to compare their abilities in capturing local shape
variations as shown in Section III. SPHARM coefficients are
estimated by solving for the least square solution of the linear
equation (1). Therefore, the SPHARM coefficients estimation
highest order of a typical cortical surface (12 000 ver-

tices) constructed using methods detailed above requires about
one hour of computation time on a standard PC architecture.
The spherical wavelet transformation is more efficient (about
one minute for typical cortical surface) because it has a com-
putational time linear to the number of vertices. However, com-
putational cost of SPHARM can be greatly minimized with ad-
vanced numerical implementation, such as the iterative residual
fitting method proposed in [23].

C. Spherical Wavelets

Broadly speaking, a wavelet representation of a function con-
sists of a coarse overall approximation together with detail co-
efficients that influence the function at various spatial scales
and locations. The classical form of wavelet analysis decom-
poses signals onto a set of basis functions, called wavelets, in
which every wavelet is a scaled and translated copy of a single
unique function, called the mother wavelet [24]. However, this
shift-invariant theory breaks down when representing functions
defined on a bounded surface, such as a sphere. No longer re-
lying on the adaptive constructions based on traditional dilation
and shifting, the spherical wavelets employed in this work be-
long to the second generation wavelets, which maintain the no-
tion that a basis function can be written as a linear combination
of basis functions at a finer, more subdivided level.

The construction of these spherical wavelets relies on a recur-
sive subdivision of an icosahedron (subdivision level 0) (e.g.,
[25]). Denoting the set of all vertices on the mesh before the th
subdivision as , a set of new vertices can be obtained
by adding vertices at the midpoint of edges and connecting them
with geodesics. Therefore, the complete set of vertices at the

th level is given by . As a
result, the number of vertices at level is , e.g., 12
vertices at level 0, 42 at level 1, 162 at level 2, etc. Next, an in-
terpolating subdivision scheme is used to construct the scaling
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functions defined at level and node such that a
scaling function at level is a linear combination of the scaling
functions at a finer level . Using these scaling functions, the
wavelet at level and node can be constructed
by the lifting scheme, the basic idea of which is to start with a
simple construction of wavelet, and then update it to a new, more
complete one. Specifically, we first define the wavelet function
as the scaling function at a higher level, and then “lift” it so that
it has a vanishing integral. Using the scaling function at level 0
and wavelets at level 0 and higher, a basis for the function space

, where is the usual area measure, is then
constructed so that any functions with finite energy can be de-
composed as a linear combination of these basis functions.

Spherical wavelets constructed in this way have local support
in both space and frequency. As detailed in Appendix A, the
transformation is easy to carry out without explicit construc-
tion of the wavelet and scaling functions and has a computation
time linear to the vertices number [25]. Note that these spher-
ical wavelets are only biorthogonal [26] (wavelets at the same
level and between different levels are not orthogonal to each
other such that they are correlated) because currently there are
no wavelet bases on the sphere that consist of functions that are
orthogonal, compactly supported, symmetric, and smooth [27].
To assess the correlation between a pair of wavelet basis func-
tions, we calculate their correlation coefficients as

(2)

where , for a pair of wavelet
functions at the same level, and , ,

, for a pair of wavelet
functions across the consecutive levels. The averaged corre-
lation coefficients over all the pairs are 0.0225 at the same
level and 0.106 across the adjacent levels, indicating fairly
weak correlations between wavelet basis functions. Therefore,
an approximately orthogonal decomposition can be expected
using this spherical wavelet bases. Note that it is possible to
apply PCA to completely orthogonalize the wavelet functions.
However, the orthogonal PCA bases do not enjoy the locality
property of biorthogonal wavelets in the spatial-frequency
domain and this locality property is key to our subsequent
analyses.

This biorthogonal spherical wavelets are used to transform
cortical surfaces reconstructed using the previously described
procedure. Because the reconstructed cortical surfaces are
mapped onto a sphere and registered in a spherical coordinate
system, the original spatial coordinates of points on a cortical
surface can be considered as functions defined on the sphere.
To transform them into the wavelets domain, the spatial coor-
dinates of each subject’s cortical surface are first interpolated
onto the mesh of an icosahedron
based on their corresponding spherical coordinates established
by the spherical registration. We choose an icosahedron at
subdivision level 7 to represent a parameterized sphere because
it has a total number of 163 842 vertices and is thus sufficient to
represent the spherical map of a cortical surface reconstructed

from 1 mm isotropic MRI, which typically has about 120 000
vertices. An icosahedron subdivided 6 levels has only 40 962
vertices and may lead to loss of useful surface details if it
is used to represent the finest level sphere parameterization.
Conversely, further increasing the resolution of the spherical
parameterization will unnecessarily and significantly increase
the computation time (an icosahedron at subdivision level 8 has
655 362 vertices).

Unlike other intrinsic shape features such as curvatures,
spatial coordinates of a surface depend on a rather arbitrary
coordinate system that each individual subject is originally
represented in. In order to make the coordinate functions in-
variant to rotation, translation and scaling and thus to be used
as valid shape features, they have to be normalized with respect
to a common reference coordinate frame. This normalization
is initialized by first transforming each spatial coordinate
function using the transformation matrix calculated previ-
ously for volume registration during surface reconstruction.
Then the roughly normalized coordinate functions of all the
surfaces are averaged to create a new template surface in the
spatial domain for the second round normalization. Finally,
each coordinate function is normalized by finding an optimal
affine transformation that minimizes the mean square error
between the transformed individual surface and the template.
The normalization process simply aims to bring each subject
into the same coordinate system and remove the arbitrary
affine components in their coordinate functions; intersubject
shape variations are still preserved after the normalization. In
addition, since the surface correspondence is already found by
the spherical registration, the affine normalization is robust to
compute.

The normalized coordinate vector is then ex-
panded by the scaling function at the ground level and a set of
spherical wavelet functions as

(3)

where is the 3-D wavelet coefficient corresponding to the
, , and coordinates at level , and location ,

. To facilitate notation we define for the coarsest
level , and so
that the wavelet coefficients at level 1 is actually the scaling
coefficients at the ground level.

Fig. 3 illustrates the decomposition of a cortical surface
starting from the finest level. At each level, the cortical surface
is split into a low-resolution part and a detail part (wavelet
coefficients). As shown in the rightmost figure in Fig. 3, there
are 12 wavelet coefficients at level 1, each of which represents
the overall shape of the cortical surface in the region around
a vertex on the icosahedron. At subsequent levels, wavelet
coefficients provide descriptions of the spatial variations of the
surface at increasingly finer resolutions. Moreover, the larger
a wavelet coefficient is, the deeper the corresponding surface
folding is at that specific location and resolution.

In the following sections, we use wavelet decompositions to
study the shape of cortical surfaces locally and hierarchically.
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Fig. 3. Spherical wavelet decomposition of cortical surface from level 7 (the leftmost image). At each level, the surface is further decomposed into lower resolution
approximation and wavelet coefficients. Wavelet coefficients at level�1 quantify the overall shape of the cortical surface. Wavelet coefficients at subsequent levels
encode the surface spatial variations at finer resolutions.

D. Principal Component Analysis (PCA)

PCA is a useful tool for finding patterns in high-dimensional
data and has been extensively used in computer vision and
image recognition. For example, PCA has been applied to build
generative models of shape variations within a single popu-
lation and to segment 2-D or 3-D medical images [28]–[30].
The basic idea of these PCA-based approaches is to identify
and visualize the first few principal modes of variation of the
geometry of a particular structure across a group of subjects.

For example, let denote a set of vectors con-
taining shape features such as the coordinates of surface points
for a group of subjects, then any individual shape can be decom-
posed as

(4)

where is the mean of , and are
the eigenvectors corresponding to eigenvalues
of the covariance matrix of , in decreasing order. This is es-
sentially equivalent to linearly transforming a dataset into a new
coordinate system such that the variance of the projection of the
dataset on the first axis is the greatest, and the variance of pro-
jection on the second axis is the second greatest, and so on. The
fact that the variance explained by each eigenvector is equal to
the corresponding eigenvalue enables us to study the most sig-
nificant modes of variation in the dataset. Usually, most of the
variations can be sufficiently represented by a small number of
modes, , so that the sum of the first variances represents a
sufficiently large proportion of total variance of all the variables
used to derive the covariance matrix. By limiting the number of
terms in (4), PCA can decrease the data dimension and remove
data noise in the subspace spanned by the eigenvectors corre-
sponding to relatively small shape variations. However, it has
been argued that omitting these eigenvectors leads to the failure
of characterizing subtle, yet important shape features because
coordinates of all the points on the surface are collected in the
shape feature vector and consequently all the eigenvectors con-
tain useful shape information [31].

To avoid losing localized shape information of cortical sur-
faces, we conduct PCA on the wavelet coefficients at different
frequency levels separately, as the coefficients in the lowest level
provide an overall approximation and localized morphological
variations are captured hierarchically by the higher-level coeffi-
cients. Instead of using coordinates of all the points on the sur-
face as shape features in (4), each time we take only as input

, the subset of the wavelet coeffi-
cients at the th frequency level. Once the set of eigenvectors

that characterize the majority
of the variance of the wavelet coefficients at the th frequency
level is found, the corresponding shape variations can be visual-
ized by inversely transforming the principal components to gen-
erate the principal surfaces. This visualization technique pro-
vides an intuitive way to analyze and understand the most dis-
tinct patterns of shape variations within a group of subjects from
coarse to fine resolution.

E. Cortical Folding Development Model

The human cortex is highly convoluted, in contrast to the
smooth cortex found in other animals such as mice and rats.
In human beings, cortical development begins prenatally, and
the majority of neurons are generated before birth. The devel-
opment of cortical folding starts at about 9 weeks in gestation,
changes dramatically until birth, but continues into late adoles-
cence. The mechanism involved in the regulated formation of
folding pattern remains unclear. It is hypothesized that folding
pattern formation is caused by neuron differentiation, migration
and the growth of neutrite. Another theory suggests that dif-
ferential growth of the outer layers relative to inner layers of
the cortex results in cortical buckling [32]. A third theory pro-
posed that the mechanical tension generated during the “long-
distance” connections of different regions of the brain leads to
the formation of folding [33]. Like many growth phenomena in
nature, the folding of the human cortex starts slowly, and accel-
erates before slowing down to approach a limit. In this paper,
we model the folding development of the gray/white boundary
at different spatial scales using a growth model, more exactly,
the Gompertz model [34], in the wavelet domain. Unlike PCA,
which is a linear data model, the Gompertz model is a nonlinear
one that captures both the fast growth and saturation phases of
cortical folding development. Specifically, if is one of the
spherical wavelet features extracted from a subject at age , we
use the Gompertz curve [34] to model the change of this feature
at different ages as follows:

(5)
where is the maximum value at mature, is the growth rate
that quantifies the speed of the folding development, is at
the inflexion point and indicates the age of the fastest folding
development, and represents additive noise with mean zero.

Due to the limited number of subjects available in this paper,
we apply a regularization framework for parameter estimation
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to avoid overfitting. In such a framework, we minimize a cost
function over variables , , and

(6)

where the first term on the right-hand side of (6) models the
empirical error of model fitting, and the second term is a scaled

-norm regularizer with the scaling factor controlling the
trade-off between the empirical error and the degree of regu-
larization. Having the weighted sum of the squared parameters
in the cost function, in addition to the empirical mean square
error, constrains the model space and avoids overfitting to data
noise. This method is a special form of regularization, which is
known as weight decay in statistical learning theory [35].

To minimize the cost function , we first compute its gra-
dient, which has the closed form

(7)

Since a simple gradient method suffers from slow conver-
gence, we adopt a quasi-Newton method based on the BFGS
approximation [19] of the Hessian matrix. The BFGS method
enables us to efficiently minimize over the parameters

. We tune the regularization parameter based on
the leave-one-out cross-validation. Specifically, we compute
the mean square error of our predictions on the held-out data
point using the model parameters optimized from the rest of
the training data. From a collection of prespecified values, we
select the parameter that minimizes the leave-one-out error.

Furthermore, we estimate the Bayesian confidence in-
tervals of our estimated parameters . Note
that using the regularized cost function (6) is equivalent to
using a Bayesian model; if we scale (6) by the observation
noise variance (assuming it is known), then the log likelihood
function , , ,

in the Bayesian model corresponds to the
first term on the right-hand side of (6) up to a normalization
constant, and the Gaussian prior distribution corresponds
to the second term on the right-hand side of (6) up to a normal-
ization constant. Therefore, minimizing (6) amounts to finding
the maximal value of the posterior distribution .

Although we can efficiently compute the parameters that
maximize the posterior distribution, it is computationally in-
tractable to calculate the exact distribution because
the likelihood function is non-Gaussian in . Therefore, we use
Laplace’s approximation [36] to efficiently approximate the
exact posterior distribution as a Gaussian

(8)

where the Hessian matrix is calculated by

(9)

Once we have computed the Hessian matrix, the variance matrix
of the posterior distribution can be approximated as

. Thus the 90% Bayesian confidence intervals of the esti-
mated parameters are obtained by , where

are the diagonal components of the approximate
variance matrix.

The regularized Gompertz model is applied to study the de-
velopment of cortical folding in newborns based on spherical
wavelets. To measure the goodness-of-fit of the model, we cal-
culate the statistic, the ratio of the sum of squares explained
by the model and the total sum of squares around the mean

(10)

We report the estimated parameters with 90% confidence in-
terval and the statistics of the wavelet coefficients fitting at
different frequency levels in Section III. Fig. 7 shows the fitted
Gompertz curve at different frequency overlaid on the original
data. These results demonstrate the effectiveness of the regular-
ized Gompertz model for cortical folding development.

F. Data

Two sets of high-resolution structural MR scans were an-
alyzed in this paper. The first dataset was obtained from a
total of 84 nondemented older participants (42 women: 67–95,

, ; 42 men: 71–94,
, ). These data

have been reported previously in several publications asso-
ciated with the Washington University Alzheimer’s Disease
Research Center (ADRC). None of the participants had any
history of neurologic, psychiatric, or medical illness that could
contribute to dementia or a serious medical condition. Two to
four high-resolution MP-RAGE scans were motion corrected
and averaged per participant (four volumes were averaged
for all except five participants; Siemens 1.5T Vision System,
resolution , , ,

, , ) to create a single high
contrast-to-noise image volume. These acquisition parameters
were empirically optimized to increase GM/WM and GM/CSF
contrast. Cortical surfaces were reconstructed and registered as
described in the previous section. This dataset was mainly used
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to study normal variations and aging-related shape changes of
WM surface in a healthy older population.

The second dataset was from eight normal neonates with cor-
rected gestational ages (cGA) of 30.57, 31.1, 34, 37.71, 38.1,
38.4, 39.72, and 40.43 weeks, and three children who were ap-
proximately 2, 3, and 7 years old at the time of scanning. T1
weighted 3-D SPGR images were collected on a 1.5T scanner,
with , ,

, or 200 150 mm and slice
thickness 1.2 to 1.4 mm. The images of newborns were man-
ually segmented into WM and cortical regions due to inverted
gray/white contrast and low contrast of the GM/WM boundary.
Based on the manual segmentation, the cortical surfaces are
reconstructed using Freesurfer tools. The children dataset was
processed and registered with newborns using the automated
tools described above. Wavelet transformation and regularized
Gompertz model are then applied to the reconstructed WM sur-
faces to study the folding development of cortical surface. To be
compared with neonates, children’s ages were converted to 167,
235, and 451 weeks by assuming a 40 week gestation period.

III. RESULTS

A. Comparison of Spherical Wavelets With SPHARM

To compare the abilities of SPHARM and spherical wavelets
to detect local shape variation, both methods were applied to de-
compose an inflated cortical surface model with a synthesized
shape deformation. The cortical surface model is made by inter-
polating an inflated cortical surface onto an icosahedron at sub-
division level 4 (2562 vertices). The deformation is simulated
by moving the first- and second-order neighbors of a vertex, de-
noted as , outwards in their normal direction for 4 mm. After
spherical wavelet transformation, the total number of wavelet
coefficients is , because each of the , , and

components in the coefficients vector and [as in
(1) and (3)] is evaluated individually in this comparison. The
highest order of SPHARM decomposition is chosen to be 60 to
achieve a comparable accuracy in shape representation, which
results in a total number of SPHARM
coefficients.

With two sets of coefficients computed for both the orig-
inal and deformed surfaces, a new set of coefficients is made
by replacing a certain number of the original surface’s coef-
ficients with deformed surface’s coefficients that are affected
the most by this deformation, using both SPHARM and spher-
ical wavelets methods. The coefficient variation is calculated
by , where and are the corresponding co-
efficients calculated from the deformed and original surfaces
respectively. We then reconstruct the deformed surface using
this new coefficients set and measure the reconstruction error
by , where and are
the coordinates of the th vertex on the reconstructed and de-
formed surfaces respectively, and denote the first
and second neighbors of the vertex , and is the total number
of vertices in the deformed region.

Fig. 4(a) is the original surface and Fig. 4(b) shows the set of
wavelet coefficients with variation values larger than 0.1, with
red dots indicating the centers of their support regions. Fig. 4(b)

Fig. 4. The comparison of SPHARM and spherical wavelets in representing
local shape variation (a) original inflated cortical surface. (b) The deformed sur-
face with red dots indicating the location of the wavelet coefficients that are
most affected by the simulated deformation. (c) Surface reconstructed with a
new set of SPHARM coefficients made by replacing 100 of the original sur-
face’s coefficients with deformed surface’s coefficients that are most affected
by the deformation. (d) Surface reconstructed with 100 most varied spherical
wavelet coefficients.

illustrates the conciseness of the wavelet representation as only
the coefficients of wavelet functions in the neighborhood of the
deformation region are affected. Conversely, the majority of the
SPHARM coefficients have variations larger than 0.1. A quanti-
tative comparison of the number of most varied coefficients used
to have the same reconstruction error is given in Table I. With the
top 100 most varied SPHARM coefficients, the reconstruction
error is 2.5 mm (shown in Table I) and the synthetic bump is not
well reconstructed, as shown in Fig. 4(c). On the contrary, the
deformation is well recovered using 100 most varied spherical
wavelet coefficients as shown in Fig. 4(d). With the use of all
the 11163 SPHARM coefficients, the reconstruction error de-
creases to 0.0013 mm. This result verifies that SPHARM can be
used to accurately represent cortical surface, but just not as con-
cisely because local shape variation can cause changes of a large
amount of coefficients. The compactness and the data compres-
sion nature of the wavelet transformation are particularly impor-
tant to avoid multiple comparison problems that often plague the
statistical analysis of neuroimaging data.

B. Detection of Shape Variation Using PCA

The PCA study of the wavelet coefficients in the non-
demented older population demonstrated a wide range of
differences of cortical surface geometry, in both the overall
shape of the cortex and the hierarchically finer local details.
Most of the shape variance (98%) was represented by the
first 10 to 20 eigenvectors and the variance explained by the
first principal component ranges from 8% to 13% of the total
variance at the lower spatial-frequency levels. Shape variances
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TABLE I
COMPARISON OF THE NUMBER OF MOST VARIED COEFFICIENTS USED TO

ACHIEVE THE SAME RECONSTRUCTION ERROR (mm) USING SPHARM AND

SPHERICAL WAVELETS METHODS. SURFACE IS RECONSTRUCTED WITH A

NEW SET OF COEFFICIENTS MADE BY REPLACING A CERTAIN NUMBER

OF THE ORIGINAL SURFACE’S COEFFICIENTS WITH DEFORMED SURFACE’S

COEFFICIENTS THAT ARE MOST AFFECTED BY THE SYNTHETIC DEFORMATION.
RECONSTRUCTION ERROR IS MEASURED AS THE ROOT MEAN SQUARE

DIFFERENCE BETWEEN THE RECONSTRUCTED SURFACE AND DEFORMED

SURFACE IN THE DEFORMED REGION

of higher spatial scales were spread out more evenly over 50 to
80 eigen-components.

The shape variation represented by the th principal compo-
nent at the th frequency level is illustrated by generating two
sets of new wavelet coefficients

(11)

where is the mean wavelet coefficients of all the subjects at
the th level, and is the th eigenvalue of the covariance ma-
trix of the wavelet coefficients at level . Then, a new coefficient
set consisting of wavelet coefficients at all levels is generated
by filling the other levels with the mean wavelet coefficients.
At last, two synthetic surfaces are generated by inversely
transforming these two sets of wavelet coefficients. The differ-
ence between the two surfaces represents the shape variations
characterized by the corresponding eigen-mode at different fre-
quency levels.

As an example, Fig. 5 shows the surfaces generated at levels
1 to 1 with the color indicating the norm, location and sup-

port region of each coefficient in the first eigenvector . Since
the magnitude of wavelet coefficient quantifies the amount of
shape variations, the lighter the color is, the more folded the
surface is in the localized region. Note that one cannot directly
compare the colors at different levels, since the wavelet func-
tions are not normalized across levels in these results. This is be-
cause the normalization would lead to a wild difference between
the wavelet coefficients across levels, masking the fine details in
visualization. Because the support regions of neighbor wavelet
basis functions overlap with each other, the color of each point
on the cortical surface is assigned by the norm of the coef-
ficient whose center of support is the closest. A set of arrows
are used to point to the regions that vary the most across sub-
jects at each level. The real surfaces (hereinafter referred as real

surfaces) that have the largest positive and negative pro-
jections on the first eigen-component are also shown in Fig. 5
for comparison. The shape difference between the syn-
thetic surfaces (first row and second row) is clearly visible in
the real surfaces as well (third and four rows), which verifies
the detected shape variations by the PCA method.

Finally, a preliminary study of cortical shape (GM/WM
boundary) variations due to healthy aging was carried out by
observing the change with age of the surfaces projected in the
space spanned by the first a few principal components at each
level. Specifically, the projected surface of the th subject at

the th level is reconstructed by inversely transforming a new
set of wavelet coefficients containing the projected wavelet
coefficients on the set of eigen-components that represent 98%
of the total variation at the th level, and the mean wavelet
coefficients at other levels.

Shape changes consistent with age were observed in the low-
frequency domain as well. Fig. 6 shows the projected cortical
surfaces in three age ranges of female and male subjects at level
1. The colormap encodes the norm, location and support re-
gion of the projected coefficients of each subject on the set of
eigenvectors representing 98% of the total variance. An arrow is
pointed to a region of decreasing intensities with age on the pre-
central sulcus, indicating a decreased folding of this area. An-
ther arrow is pointed to a region of increasing intensities with
age on the occipital lobe, indicating an increased folding in this
area. Visual inspection of the whole population confirms the
corresponding shape variations are the narrowing of the cen-
tral sulcus and the elongation of the occipital lobe, which may
characterize and correlate with WM atrophy. However, these
changes were not salient in male groups as the color intensities
in these two regions do not vary much as shown in the second
row of Fig. 6. Similarly, although some regions in the insula, or-
bito-frontal cortex and medial frontal lobes have high intensity
values, indicating large folding in these areas, they do not vary
with age.

These results were verified by regressing the projections of all
the subjects on the first principal component with age, gender,
and five other neuropsych measurements including Mini Mental
State Examination (MMSE), Wechsler Memory Scale (WMS)
Long Memory, WMS Digit Span, WMS Associates Recall Easy,
and WMS Associates Recall Hard. The shape variations de-
tected using PCA are significantly correlated with age at level

1, 1, 3, and 4 by regressing out all the other factors. WMS
Assoc Recall Easy is significantly correlated with shape varia-
tions at level 1 and 0 by regressing out all the other factors.
More rigorous study will be carried out to investigate the rela-
tionship between neuropsych measurements and cortical shape
variations.

Although only results at the lower frequency levels are shown
in Figs. 5 and 6, the visualization methods introduced can be
used to examine the most distinguished shape variations at all
levels. However, caution should be used in interpreting these
results because the shape changes are not entirely uncorrelated
within neighbor regions, as discussed in Section II.

C. The Folding Development Study of GM/WM Boundary

In this section, we describe the results of the regularized
Gompertz model to detect and characterize the development
of the folds of the GM/WM boundary in the neonate and child
population.

Specifically, we first fit the regularized Gompertz function
[see (5)] to the mean squared values of all the wavelet coeffi-
cients at different frequency level. Since the -norm of
each wavelet coefficient quant-ifies the amount of spatial vari-
ations at a certain resolution and location, the wavelet power
quantifies the degree of folding at that spatial resolution across
the whole brain. Therefore, by modeling the change of the
wavelet power with age using a regularized Gompertz function,
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Fig. 5. Principal surfaces at level �1 to 1 and real cortical surfaces. Top 2 rows: the synthetic surfaces representing the �3� variations (ordered in top-down
direction) of the first principal component at level�1, 0 and 1; Colormap shows the spatial coverage and l norm of each wavelet coefficients in the first principal
component; The color of each point on the cortical surface is assigned by the l norm of the coefficient whose center of support is the closest; At the same level,
the higher the intensity is, the larger the shape variation is across the entire dataset. Note that one cannot directly compare the colors at different levels, since the
wavelet functions are not normalized across levels. (This normalization would lead to a wild difference between the wavelet coefficients across levels, masking the
fine details in visualization.) Bottom 2 rows: Corresponding real surfaces that have the largest positive and negative projections on the first eigenvector (real�3�
surfaces). A set of arrows are used to point to the regions that vary the most across subjects at each level.

we are able to study the development of cortical folding at dif-
ferent spatial scales. Especially, the fitted Gompertz curves of
wavelet power at lower levels demonstrate the development of
primary folds since the lower level wavelet coefficients encode

the shape variations of the low-resolution approximations of
cortical surfaces (as shown in Fig. 3), and the curves at higher
levels demonstrate the development of secondary and tertiary
folds as they quantify shape variations at smaller spatial scales.
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Fig. 6. Reconstructed surfaces for female (top row) and male (bottom row) subjects of different ages using projected wavelet coefficients on the set of principal
components that represent 98% of the total variance at level 1. Colormap encodes the l norm, location and support region of the projected coefficients of each
subject. An arrow is pointed to a region of decreasing intensities with age on the precentral sulcus in the female group; another arrow is pointed to a region of
increasing intensities with age on the occipital lobe; visual inspection identifies the narrowing of central sulcus and elongation of occipital lobe; neither these
intensity changes nor shape changes are salient in the male group.

For the purpose of comparing wavelet powers across levels,
they are normalized so that the -norm of wavelet basis func-
tion is unity at all levels. As a result, the estimated parameters

(the amount of folding), (speed of folding development),
and (age of maximum folding development) can be used to
quantitatively compare the folding developments across levels.

The results of this study are shown in Fig. 7 and Table II.
First of all, Table II shows that the values are higher than
0.7 at most of the frequency levels in both hemispheres, indi-
cating good model fitting results. As an example, the fitted Gom-
pertz curves overlaid on the original data at level 0 in both hemi-
spheres are shown in Fig. 7(a) and (b), with the vertical red line
indicating the estimated age of maximum folding development
(a logarithmic scale (base 10) is used for the horizontal axis).
Secondly, Table II shows the estimated parameter , whose
value at different level encodes the amount of shape variations
at the corresponding resolution. A similar value of within the
90% confidence intervals of the left and right hemisphere shows
that the amounts of folds are equivalent on the left and right
WM surfaces. Furthermore, Table II shows that the estimated
speed of folding development increases from low– to high-fre-
quency levels (levels 0–3) on both left- and right-hand sides, and
the estimated age of estimated folding development increases
monotonously with frequency level from approximately 29–33
weeks. The calculated 90% confidence intervals show that the
estimated fastest development ages and speeds are significantly

different across frequency levels. These results indicate that the
lower frequency folding such as the primary folds develop ear-
lier and slower than the higher frequency folding such as the
secondary and tertiary folds. At last, the comparison of left and
right hemispheres shows that the speed of folding development
is higher, but the age of fastest development is the same in the
right hemisphere at levels 0–4, suggesting that folds develop si-
multaneously but faster on the right-hand side. To demonstrate
these results, part of the fitted Gompertz curves including only
the 8 newborns at different levels are plotted together in Fig. 7(c)
and (d), where the red vertical lines indicate the maximum de-
velopment ages estimated for folds of large and smaller scales.
Although the data of three older children were not shown in
Fig. 7(c) and (d), all 11 data points are used in the actual model
fitting. A logarithmic scale (base 10) is used for the vertical axis
for better visualization.

The cortical folding development model was then fitted to
each one of the wavelet coefficients across 11 subjects. Unlike
the study of wavelet power, this approach allows us to discover
not only when, but also where the folding of the cortical surface
occurs at different spatial scales. Although each of the , and
components of a wavelet coefficient was fitted to the model, only
the estimated parameters of the component with the
largest value are used to demonstrate the development of
folding in the support region of this wavelet function. The esti-
mated folding development speed and age of the set of wavelet
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Fig. 7. Predicted cortical folding development curves using wavelets power of the left and right hemispheres. (a) The predicted curves at level 0 only of left and
right hemispheres (a logarithmic scale (base 10) is used for the horizontal from 0 to 450 weeks to include all the 11 data points used in the model fitting; vertical
is the wavelet power normalized with regard to the wavelet basis function). (b) The predictive curves from frequency levels 0–4 of the left hemisphere (horizontal
is the actual age from 20–45 weeks; vertical is the wavelet power with logarithmic (base 10) scale). (c) The predictive curves from frequency levels 0 to 4 of the
right hemisphere.

coefficients with are plotted on the youngest newborn
WM surface with a colormap showing the estimated parame-

ters, and the location and support regions of their corresponding
wavelet basis functions. The figures of maximum development
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TABLE II
GOMPERTZ CURVE FITTING RESULTS OF WAVELET POWER AT DIFFERENT

FREQUENCY LEVELS OF BOTH HEMISPHERES

ages also show an earlier development of large-scale folds in
both left and right hemispheres. The comparison of the age and
speed figures of the same region at the same level shows that in
general the earlier a region develops (darker blue in the max-
imum development age colormap), the slower the development
speed is (more red and less yellow in the speed colormap).

Furthermore, we can determine where and how fast the
folding occurs on the WM surface at different ages. For this
purpose, we first cluster wavelet coefficients into three age
intervals (0, 33), (33, 38), and (38, ) weeks by using their
estimated maximum development ages. Then the estimated
development speed of the wavelet coefficients in each age
interval is plotted as colormap in the support regions of the
corresponding wavelet basis functions on a representative brain
(30, 34, and 40 weeks old newborns for the three age intervals
respectively), as shown in Fig. 9. The colormap on each surface
encodes the estimated speed of the regions that develop the
fastest within the specific age interval. Visual inspection shows
that most regions that develop at younger ages are of larger
scales, and regions that develop at older ages are of smaller
scales. This observation further demonstrates the earlier devel-
opment of larger primary folds followed by the development of
secondary and tertiary folds at successively higher scales.

Modeling the cortical folding in the wavelet domain allows us
to evaluate the primary folds and smaller scale folds separately
in the brain development. Studies of both wavelet power and in-
dividual coefficients show larger scales of folding development
at younger ages with slower speeds. Moreover, the individual
wavelet study quantifies the localized folding developments in
different cortical regions and age ranges, and further demon-
strates the positive correlation between estimated maximum de-
velopment age and speed at the same level.

However, the correlation between wavelet coefficients at dif-
ferent levels should be taken into account when assessing the
results. In this paper, most of the detected brain regions of fast
folding development do not overlap with each other across levels,
as shown in Figs. 8 and 9. In the overlapped regions, the corre-
lations between overlapping wavelet bases are fairly small. For
example, a smaller scale foldon the temporal lobe,corresponding
to a wavelet coefficient at level 2, is detected to be in the region of
a larger scale fold, corresponding to a wavelet coefficient at level
0, as seen in the upper left image in Fig. 9. The correlation coef-
ficient of the two corresponding wavelet basis functions is calcu-

lated as 0.031, showing a weak correlation of the folding devel-
opment detected in these two regions. Therefore, the biorthogo-
nalityproperty of the waveletbases hasminor effectson our study
of cortical folding development by using wavelet coefficients at
different levels separately.

Another limitation is the observation that many regions on the
WM surface do not fit well to the Gompertz model. Other models
are currently being explored to account for these regions.

IV. CONCLUSION

The spherical wavelet transformation was demonstrated to be
able to accurately and efficiently detect the locations and spa-
tial scales of shape variations. The use of wavelet coefficients in
detecting and visualizing patterns of cortical surface variation
shows promising results in a nondemented aged population. The
study of cortical surface folding development in newborns also
demonstrated the power of wavelets in analyzing the underlying
function locally in both the space and the frequency domain. The
regularized Gompertz function applied to this population was
shown to provide a powerful model for the observed folding de-
velopment as characterized by the wavelet coefficients, and al-
lowed the generation of maps revealing the temporal ordering
of the development of large scale and progressively finer scale
folds. Future work includes employing more sophisticated sta-
tistical tools and extending the wavelet analysis to other neu-
roanatomical structures.

APPENDIX

A. Fast Spherical Wavelets Transformation

In this paper, we used the interpolation scaling function de-
fined as

(A-1)

where denotes the th vertex at subdivision level
. The same notation is used here as in the main text so

that and denote all vertices on the mesh before and
after the th subdivision. As a result, the scaling coefficients at
level of a function interpolated on the order icosahedron
are the values of this function at each vertex, i.e.,

(A-2)

A butterfly subdivision scheme is used such that the value of a
scaling coefficient at level can be found as

(A-3)

where , , and are local neighbors of
vertex as shown in Fig. (A-1). The butterfly procedure
is used to generate smooth wavelet functions.

Next, a lifting algorithm is used to construct wavelet function
as

(A-4)
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Fig. 8. The predicted folding development speed and maximum development ages for the left and right hemispheres using individual wavelets at level 0–4 with
colormaps encoding the magnitude of the estimated development speed (1/week) and age of maximum development (weeks) of wavelet coefficients in the support
regions of their corresponding wavelet basis functions. For points in the overlapped regions of two or more wavelet basis functions, the estimated age and speed
of the closest wavelet function is assigned. Column 1: predicted folding development speed in the left hemisphere from level 0–4 (top-down); column 2: predicted
age of maximum folding development in the left hemisphere from level 0–4 (top-down); column 3: folding development speed in the right hemisphere from level
0–4; column 4: age of maximum folding development in the right hemisphere from level 0–4.

where with . This en-
sures that the constructed wavelet function has a vanishing in-
tegral, i.e. one vanishing moment. The wavelet function con-

structed in this way has a local support in frequency because its
value is vanishing in both the high-frequency due to the smooth-
ness and low frequency due to the vanishing integral.
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Fig. 9. Estimated folding development speed of the regions that develop the fastest during age 0–33 weeks (first row), 33–38 weeks (second row), and 38 weeks
and older (third row). Colormap encodes the magnitude of the estimated development speed (1/week) in the support regions of their corresponding wavelet basis
functions. For points in the overlapped regions of two or more wavelet basis functions, the estimated speed of the highest level or closest wavelet function is
assigned.

In this paper, the coordinate function is interpolated onto the
seventh-order icosahedron. The resulting scaling coefficients

at the highest level are therefore the values of the interpo-
lated coordinate function at each vertex on the icosahedron
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Fig. 10. Local neighborhoods for the Butterfly scheme, where vertex sets A,
B, and C are used in determining the new value at the center edge midpoint.

at . The wavelet coefficients can be
calculated in two steps (Analysis step I and II) recursively as
shown below.

Analysis Step I: Calculate the as follows:

Analysis Step II: Calculate the using the from
step I:

The inverse transformation can be implemented in two steps
(Synthesis step I and II) as well.

Synthesis Step I: Calculate the :

Synthesis Step II: Calculate using the from
step I:
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