
 

 

 

Abstract 
 

Shape analysis of neuroanatomical structures has 
proven useful in the study of neuropathology and 
neurodevelopment. Advances in medical imaging have 
made it possible to study this shape variation in vivo. In this 
paper, we propose the use of a spherical wavelet 
transformation to extract cortical surface shape features, 
as wavelets can characterize the underlying functions in a 
local fashion in both space and frequency. Our results 
demonstrate the utility of the wavelet approach in both 
detecting the spatial scale and pattern of shape variation in 
synthetic data, and for quantifying and visualizing shape 
variations of cortical surface models in subject 
populations. 
 

1. Introduction 
Evidence suggests that morphological changes of 

neuroanatomical structures may reflect abnormalities in 
neurodevelopment, or a variety of disorders, such as 
schizophrenia and Alzheimer's Disease (AD). These 
morphological variations can be characterized by the 
change of volume and shape. Efforts have originally been 
made to verify the relationship between the pathology and 
the volumetric variation of various neuroanatomical 
subjects, such as the cerebral cortex, hippocampus and 
corpus callosum. Recently, a considerable amount of effort 
has been focused on developing a technique to quantify the 
changes in the 2D or 3D shape of brain structures, which 
could potentially lead to more accurate diagnoses, better 
treatments, and an improved understanding of 
neurodevelopment. 

To accurately study inter-subject shape variations, one 
would like to find not only an effective shape representation 

but also a registration method to preserve individual 
variation while aligning anatomically important structures. 
Different techniques employed in these two aspects confer 
merits and disadvantages to various shape analysis methods. 
One of the earliest techniques developed in this field 
represented shape by points sampled on the boundary of the 
object being studied, and the coordinates of the 
corresponding points on different subjects were directly 
used as shape features [1, 2]. Cootes et al. extended this 
method by building the point distribution model, which 
allows for global scale analysis of shape variation by 
applying principal component analysis (PCA) to the 
positions of the boundary points [3]. However, this method 
depends heavily on the accuracy of the inter-subject 
registration for group comparison. Subsequently, 
parametric models were developed to decompose the 
boundary or surface using Fourier descriptor and spherical 
harmonics descriptor, and to use the decomposition 
coefficients as shape descriptor [4-7]. A drawback of these 
models is the lack of ability to study local shape variation 
because of the global support of the basis functions. 
Another popular method warps a template to individual 
subjects and studies the deformation field for shape 
variations [8-11]. Although this method is sensitive to the 
template selection and presents challenges in interpreting 
and comparing shape differences using the 
high-dimensional deformation field, a number of interesting 
shape analysis results have been obtained and more 
advanced techniques based on it have been developed. 
Medial axis technique, originally proposed by Pizer et al. 
and Golland et al. in 3D and 2D, respectively, has been 
applied as a powerful tool for the shape analysis of a variety 
of subcortical structures [12, 13]. This technique allows for 
the separate study of the local position and thickness of the 
object at both coarse and fine levels. Another advantage of 
medial descriptions is due to the object intrinsic coordinate 
system, which facilitates the construction of 
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correspondences between surfaces and further statistical 
study. However, a fundamental problem of any 
skeletonization technique is sensitivity to perturbations in 
the boundary, which presents a challenge to the further 
development and application of medial representation.  

In order to accurately and efficiently extract shape 
features and conduct statistical analysis, we developed a 
procedure to decompose a surface using spherical wavelets, 
which can characterize the underlying functions in a local 
fashion in both space and frequency. Principal component 
analysis was further applied to the wavelet coefficients to 
build shape models and study the main modes of shape 
variation within a group of subjects in separate 
spatial-frequency domains. The entire procedure and 
various steps involved in this study are introduced in detail 
in the Methods section. The results of using this procedure 
in detecting the spatial scale and pattern of shape variation 
in a set of synthetic data are demonstrated in the Results 
section. The use of PCA in studying multi-resolutional 
cortical shape variations in healthy aged population and 
neonates is also presented. 

2. Methods 
In this section, the tools used for preprocessing the 

cortical surfaces are introduced, and the procedures 
developed for conducting wavelet transformation and 
further statistical analysis using PCA are also presented. 

2.1. Preprocessing 

For decomposing a surface using basis functions defined 
in the spherical coordinate system, such as spherical 
wavelets, the surface has to be mapped onto a parameterized 
sphere. In order to carry out any statistical analysis on the 
corresponding points across subjects, surfaces need to be 
registered properly. A set of largely automated tools 
developed by FreeSurfer group are used to pre-process the 
data, which includes cortical surface reconstruction, 
spherical transformation and inter-subject registration in the 
spherical coordinates based on the folding pattern of 
cortical surfaces [14, 15].  

To reconstruct the cortical surfaces, which include the 
gray/white matter boundaries and gray-matter/CSF 

boundaries of the left and right hemispheres, the MR images 
are first registered to a pre-built template in the Talairach 
space. The image intensity is then normalized and used to 
guide skull stripping and white matter labeling. This white 
matter segmentation is further refined and cut to generate a 
single connected mass of each hemisphere. The surface of 
the labeled white matter of each hemisphere is then 
tessellated by using eight triangles to represent each square 
face of the voxel in the interface between white matter and 
differently labeled voxels. For generating a more accurate 
and smoother white matter surface, this tessellation is 
refined and deformed in the normalized image volume 
under smoothness and pre-calculated boundary intensity 
constraints. Furthermore, the white matter surface is 
deformed outwards to the location in the volume that has the 
biggest intensity contrast between the gray matter and CSF, 
and refined to generate the pial surface. Finally, topological 
defects are automatically detected and corrected for both 
surfaces to guarantee the topology of a sphere.  
 Each reconstructed cortical surface of each subject is first 
mapped onto a sphere with minimal metric distortion, and 
then registered in the spherical coordinate system with a 
balance of the exactness of the folding pattern’s alignment 
and the introduced distortion, using a combination of a 
topology preserving term, a folding alignment term and a 
metric preserving term. This alignment enables us to find 
anatomically corresponding points on the reconstructed 
cortical surfaces across subjects. 

2.2. Spherical wavelets 

Broadly speaking, a wavelet representation of a function 
consists of a coarse overall approximation together with 
more detailed coefficients that influence the function at 
various resolutions and locations. The classical form of 
wavelet analysis decomposes signals using a set of basis 
functions, called wavelets, in which every wavelet is just a 
scaled and translated copy of a single unique function, 
called the mother wavelet. However, this shift-invariant 
theory breaks down when representing data sets on a 
bounded surface. The newly developed biorthogonal 
spherical wavelet basis functions are based on recursive 
subdivision starting with an icosahedron and a lifting 
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scheme. The fast wavelet transformation algorithm 
developed allows for the efficient and accurate 
decomposition of any function on the sphere [16]. The 
coordinates vector Tzyxv ),,(= ，  where x, y, z are 

coordinates on the original surface, for example, is such a 
function and can be expanded by a set of spherical wavelet 
functions as  

∑=
kj kjkjv

, ,, ψγ                                  (1) 

where 
kj ,γ  are the 3-dimensional coefficients at level j，

lj ,...0,1−=  and location k, )( jMk ∈ . These coefficients 

can be used as shape features because each provides some 
limited information about both the position and the 
frequency of the decomposed surface (Figure 1).  

However, in order to make these shape features invariant 
to rotation, translation and scaling, the coordinate functions 
have to be normalized with respect to a reference coordinate 
frame. This normalization is initialized first by transforming 
each surface using the transformation matrix calculated 
previously for volume Talairach registration during surface 
reconstruction. The roughly normalized coordinates of 
corresponding points on all the surfaces, where the 
correspondence is found by the spherical registration, are 
averaged to create a new template surface for the second 
round normalization. Then, each surface is normalized by 
finding an optimal linear transformation that minimizes the 
mean square error of the transformed individual surface and 
the template. 

These normalized wavelet coefficients provide a way to 
study shape variations hierarchically. To test this ability, 
five synthetic cortical surfaces were generated by making a 
bump on a template surface at the same location, but with 
increasing height. PCA was applied to the separate 
frequency levels to detect pattern of shape variations caused 
by this synthetic deformation, as described in the following 
sections. 

2.3. Principal Component Analysis 

Principal Component Analysis is a useful tool in finding 
patterns in data of high dimension. It has been extensively 
used in the fields of computer vision and image recognition. 
Based on this technique, methods have been developed to 
build generative models of shape variation within a single 
population and used to segment 2D or 3D medical images 
[17-19]. The basic idea of these approaches is to identify 
and visualize the first few principal modes of the variation 
of the positions of points on the boundary or surface of the 
dataset.  

For example, if ),1( Nixi L= is a vector containing 

shape features, such as the coordinates of the points on the 
surface calculated for a group of subjects, then any 
individual shape can be decomposed as: 
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where x is the mean of ),1( Nixi L= , Nee ,,1 L are the 

eigenvectors corresponding to eigenvalues Nλλλ ,,, 21 L  

of the covariance matrix of x , in decreasing order. This is 
essentially equivalent to linearly transforming a dataset into 
a new coordinate system such that the variance of the 
projection of the dataset on the first axis (first principal 
component) is greatest, and the variance of projection on the 
second axis is the second greatest, and so on. The fact that 
the variance explained by each eigenvector is equal to the 
corresponding eigenvalue enables us to study the most 
significant modes of variation in the dataset. Usually, most 
of the variations can sufficiently be represented by a small 
number of modes, k, so that the sum of the first k variances 
represents a sufficiently large proportion of total variance of 
all the variables used to derive the covariance matrix. Thus 
by limiting the number of terms in equation 2, the statistical 
analysis can be greatly simplified. However, it has been 
argued that omitting the eigenvectors corresponding to 
relatively small shape variations leads to the failure of 
characterizing subtle, yet important shape features because 
coordinates of all the points on the surface are collected in 
the shape feature vector [20]. For the same reason, the 
application of PCA in the shape study of neuroanatomical 
structures (i.e. the cortical surface) has also been largely 
limited.  
 In this work, we propose to conduct PCA on wavelet 
coefficients at different frequency levels separately, as the 
coefficients in the lowest level provide an overall 
approximation and localized morphological variations are 
captured hierarchically by the higher-level coefficients. 
Instead of using positions of all the points on the surface as 
shape feature in equation 2, each time we take only 

T
lNilNiil ccx ),( )(,1)1(, K+−= , the subset of the wavelet 

coefficients  in one frequency level as input, where )(lN  is 

the number of coefficients up to level 7,0 K=l . Once the 

set of principal components ),1( Nkjelj ≤= L  that 

characterizes the majority of the variance of the wavelet 
coefficients in the thl  frequency level is found, the 
corresponding shape variations can be visualized by 
inversely transforming the principal components to generate 
the principal surfaces. This visualization technique provides 
an intuitive way to analyze and understand the most distinct 
patterns of shape variations within a group of subjects from 
coarse to fine resolution. 

2.4. Data 

Two sets of high-resolution structural MR scans were 
analyzed in this paper. The first dataset was obtained from a 



 

 

total of 84 nondemented older participants (OP; 42 women: 
67–95, mean age = 80, standard derivation = 7.25; 42 men: 
71-94, mean age = 79, standard derivation = 7.17). These 
data have been reported previously in several publications 
associated with the Washington University Alzheimer’s 
Disease Research Center (ADRC). None of the participants 
had any history of neurologic, psychiatric, or medical illness 
that could contribute to dementia or a serious medical 
condition. Two to four high-resolution MP-RAGE scans 
were motion corrected and averaged per participant (four 
volumes were averaged for all except five participants; 
Siemens 1.5T Vision System, resolution 1 × 1 × 1.25 mm, 
TR = 9.7 ms, TE = 4 ms, FA = 10°, TI = 20 ms, TD = 200 
ms) to create a single high contrast-to-noise image volume. 
These acquisition parameters were empirically optimized to 
increase gray/white and gray/cerebrospinal fluid contrast. 
Cortical surfaces were reconstructed and registered as 
described in previous section. This dataset was mainly used 
to study normal variations and aging-related shape changes 
of gray/white matter boundaries in a healthy older 
population. Five female participants, all around 71, were 
selected, and the average of their cortical surfaces was used 
as the template for generating synthetic data. 

The second dataset was from five normal neonates with 
corrected gestational ages (cGA) of 31.1, 34, 38.1, 38.4, 
and 39.72 weeks. T1 weighted 3D SPGR images were 
collected on a 1.5T scanner, with TR/TE = 30/8, flip angle = 
25 to 30 degrees, matrix = 256×192, FOV = 220×165 mm 
or 200 × 150 mm and slice thickness 1.2 to 1.4 mm. 
Resultant DICOMS were manually segmented into white 
matter and cortical regions. Wavelet transformation and 
PCA are then applied to the reconstructed gray/white matter 
boundary to study the shape changes of cortical surface in 
neurodevelopment. 

3. Results 

3.1. Shape Pattern Recognition in Synthetic Data 

The top row in Figure 2 shows the five synthetic cortical 
surfaces, each with a bump located in the same region 
around the anterior tip of the temporal lobe. The 
deformation was made by moving each vertex in the 
deformation region outward along its normal direction by a 
certain distance, which increases from 0 mm for the first 
surface to 2 mm for the last surface. These five synthetic 
surfaces were registered and transformed into the wavelet 
domain as described in the Methods section. The PCA study 
of the wavelets coefficients shows that about 98% of the 
shape variations were accounted for by the first principle 
component at all the frequency levels. To visualize the 
shape changes captured by the first principle component at 
each level, we first construct a subset of projected wavelet 

coefficients for each surface as: 

)(11 lil
T
lll

projected
il xxeexx −+=     (3) 

where ilx  is the subset of  wavelet coefficients of the ith 

surface at lth level, lx is the averaged wavelet coefficients of 

all the surfaces at lth  level, and 1le  is the first eigenvector 

calculated at lth level. Then the whole set of projected 
wavelet coefficients is constructed by filling in the other 
levels with the first surface’s wavelet coefficients. Figure 2 
illustrates the surfaces that result from taking inverse 
wavelet transformation of these projected wavelet 
coefficients from low to high levels, with color indicating 
the magnitude and spatial coverage of each wavelet 
coefficient in )( 111 lil

T
ll xxee − . It is shown that the overall 

shape change of the temporal lobe caused by the synthetic 
deformation is captured exclusively at the low frequency 
level (2nd row in Figure 2). The smaller scale shape change 
of the secondary folds on the temporal lobe is characterized 
by the middle frequency level (3rd row in Figure 2). And the 
shape variation on the sharp edge of the bump is identified 
at the high frequency level (bottom row in Figure 2). 

3.2. Shape Variation in Aged Normal Population 

The PCA study of the wavelet coefficients in the 
nondemented older sample demonstrated a wide range of 
differences of cortical surface geometry, in both the overall 
shape of the cortex and the hierarchically finer local details.  
Most of the shape variance (98%) is represented by the first 
10 to 20 eigenvectors and the variance explained by the first 
principal component ranges from 8% to 13% of the total 
variance at the lower spatial-frequency levels. Variances in 
higher frequency scales spread out more evenly over 50 to 
80 eigenvectors. The shape variation represented by the jth 
principal component at lth frequency level is illustrated by 
generating two sets of new wavelet coefficients: 

ljljllj exx σ3±=± ,            (4) 

where lx is the mean wavelet coefficients of all the subjects 

at lth level, 2
ljσ  is the jth eigenvalue of the covariance matrix 

of the wavelet coefficients at level l. Mean wavelet 
coefficients were used in the other levels to generate the 
whole set of wavelet coefficients. By inversely transforming 
these two sets of wavelet coefficients, two synthetic surfaces 
can be generated, and the difference between them 
represents the shape variations characterized by the 
corresponding eigenvector at different frequency levels. 
Figure 3 shows the generated surfaces for level 0 to 5 with 
color indicating the magnitude, location and spatial scale of 
each coefficient in vector

lje .  

Moreover, a preliminary study of cortical shape 
(gray/white matter boundary) variations due to healthy 



 

 

aging was carried out by observing the change with age of 
the projected surfaces on the set of eigenvectors 
representing 98% of the variances at each level. The 
projected surface of the ith subject at lth level is 
reconstructed by inversely transforming the projected 
wavelet coefficients calculated using equation 3, but with 
other levels filled with the mean wavelet coefficients. 

Shape changes consistent with age were observed in the 
low-frequency domain as well. Figure 4 shows the projected 
cortical surfaces in three age ranges of female and male 
subjects using second level wavelet coefficients. The 
narrowing of the central sulcus and the elongation of the 
occipital lobe with aging were both observed in female and 
male groups, which may characterize and correlate with 
white matter atrophy. More rigorous study needs to be 
carried out to verify this result. 

3.3. Shape Variation in Neonates 

Using the wavelet decomposition technique, the major 

cortical surface variations related to neurodevelopment in a 
small population of nenoates are identified to be in the 
middle spatial-frequency domain. PCA is used to study the 
specific modes of shape variations correlated with corrected 
gestational age. PCA of the wavelet coefficients shows that 
more than 98% of the shape variations are represented by 
the first three principal components at every frequency level. 
Projected surfaces are reconstructed to study the shape 
variations represented by each of the first three principal 
components at each frequency level separately, using 
equation 3. The set of coefficients of the youngest subject 
(31.1 weeks gestational age) is used to fill in the other levels 
to build the whole set of projected coefficients at each level. 
As shown in Figure 5, the reconstructed surfaces (using 
wavelet coefficients projected on the first principal 
component) with age demonstrate the increasing folding of 
the gray/white matter boundary of the left hemisphere at 
level 4. Shape variations presented at the lower spatial 
resolution, which are not correlated with age, are believed 

Figure 2: Shape pattern recognition in synthetic data: The synthetic surfaces are in first row; The reconstructed 
surfaces using projected wavelet coefficients at level 1, 4 and 6 are in 2nd, 3rd and bottom rows respectively 
(Colormap indicating the magnitude and spatial scale of shape variation detected by PCA). 
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Figure 3: The principal surfaces representing the σ3m variations (ordered in top-down direction) of the first principal 
component at level 0 to 5: color showing the spatial scale and magnitude of each wavelet coefficients in the first principle 
component.  
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to reflect normal brain variation. 

4．Discussion and future work 
Spherical wavelet transformations are demonstrated to 

accurately and efficiently detect the locations and spatial 
scales of shape variations. The use of principal component 
analysis on wavelet coefficients provides a novel way to 
detect and visualize modes of shape variation in a set of 
subjects. Application of this method in the cortical shape 
study shows promising results regarding the specific 
patterns and spatial scales of variations correlated with 
nondemented aging and neurodevelopment. Future work 
includes employing advanced statistical tools and extending 
the wavelet analysis to other neuroanatomical structures. 
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