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This is a primer on extended Caussian images. Extended Gauss/an
images are useful for representing the shapes of surfaces. They can
be computed easily from:

1. needle maps obtained using photometric stereo; or
2. depth maps generated by ranging devices or binocular stereo.

Importantly, they can also be determined simply from geometric
models of the objects. Extended Caussian images can be of use in
at least two of the tasks facing a machine vision system:

1. recognition, and
2. determining the attitude in space of an object.

Here, the extended Caussian image is defined and some of its
properties discussed. An elaboration for nonconvex objects is pre-
sented and several examples are shown.

I. INTRODUCTION

In order to recognize an object and to determine its
attitude in space, it is necessary to have a way of repre-
senting the shape of its surface. Giving the distance to the
surface along parallel rays on a regularly spaced grid pro-
vides one way of doing this. This simple representation is
called a depth map. A range finder produces surface de-
scriptions in this form, as does automated binocular stereo
[1]. Unfortunately, depth maps do not transform in a simple
way when the object rotates. (For one thing, interpolation
must be used to get a new depth map on a regularly spaced
grid.)

Alternatively, surface orientation might be given for points
on the surface on some regular sampling grid. This grid may
conveniently correspond to the picture cells in an image.
Such a simple representation is called a needle map (Fig. 1)
[2]. Photometric stereo is a method for recovering surface
orientation using multiple images taking with different
lighting conditions [3]-[8]. It produces surface descriptions
in this form. A needle map also is not directly helpful when
it comes to comparing surfaces of objects that may be
rotated relative to one another. (Both depth maps and
needle maps depend on the position of the object as well
as its attitude.)

The extended Gaussian image, on the other hand, does
make it easy to deal with the varying attitude of an object
in space as we shall see [2], [9]-[13]. For one thing, it is
insensitive to the position of the object. Some information
appears to be discarded in the formation of the extended
Gaussian image. Curiously, in the case of convex objects,
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Fig. 1. A needle map shows unit surface normals at points
on the surface on a regular grid. Normals which point
towards the viewer will be seen as dots, while tilted surface
patches give rise to normals which are shown as lines point-
ing in the direction of steepest descent.

the representation is nevertheless unique. That is, no two
convex objects have the same extended Gaussian image.

This representation of the shape of the surface of an
object allows one to match information obtained from
image or range sensors with that contained in computer
models of the objects and has proven most useful in work
on automatic bin picking [14]-[16], A recent report de-
scribes a system that picks one object out of a jumbled pile
of similar objects using this approach [17]. We start our
discussion with objects having planar faces. Later we con-
sider smoothly curved objects. Methods for computing dis-
crete approximations of extended Gaussian images, called
orientation histograms, are presented too. Orientation
histograms can be computed from experimental data or
mathematical descriptions of the objects. Sections marked
with an asterisk may be omitted on first reading or if your
interest in the mathematical details is limited.

II. DISCRETE CASE: CONVEX POLYHEDRA

Minkowski showed in 1897 that a convex polyhedron is
fully specified (up to translation) by the area and orienta-
tion of its faces [18]-[20]. We can represent area and orien-
tation of the faces conveniently by point masses on a
sphere. Imagine moving the unit surface normal of each
face so that its tail is at the center of a unit sphere. The
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head of the unit normal then lies on the surface of the unit
sphere. This sphere is called the Gaussian sphere and each
point on it corresponds to a particular surface orientation.
The extended Gaussian image of the polyhedron is ob-
tained by placing a mass at each point equal to the surface
area of the corresponding face (Fig. 2).

Fig. 2. The extended Gaussian image of polyhedron can be
thought of as a collection of point masses on the Gaussian
sphere. Each mass is proportional to the area of the corre-
sponding face. Point masses on the visible hemisphere are
shown as solid marks, the others as open marks. The center
of mass (shown as the symbol ®) must be at the center of
the sphere if the polyhedron is a closed subject.

It seems at first, as if some information is lost in this
mapping, since the position of the surface normals is dis-
carded. Viewed another way, no note is made of the shape
of the faces or their adjacency relationships. It can never-
theless be shown that (up to translation) the extended
Gaussian image uniquely defines a convex polyhedron [9].
An iterative algorithm has recently been invented for re-
covering a convex polyhedron from its extended Caussian
image [21].

A. Properties of the Extended Caussian Image

The extended Gaussian image is not affected by transla-
tion of the object. Rotation of the object induces an equal
rotation of the extended Gaussian image, since the unit
surface normals rotate with the object.

Mass distributions which lie entirely within one hemi-
sphere, that is, are zero in the complementary hemisphere,
do not correspond to closed objects. As we shall see, the
center of mass of an extended Gaussian image has to lie at
the origin. This is clearly not possible if a whole hemisphere
is empty. Also, a mass distribution which is nonzero only on
a great circle of the sphere corresponds to the limit of a
sequence of cylindrical objects of increasing length and
decreasing diameter (Fig. 3). We will exclude such patho-
logical cases and confine our attention to closed, bounded
objects [9], [20].

Some properties of the extended Gaussian image are
important: First, the total mass of the extended Gaussian
image is obviously just equal to the total surface area of the
polyhedron. If the polyhedron is closed, it will have the
same projected area when viewed from any pair of oppo-
site directions. This allows us to compute the location of
the center of mass of the extended Gaussian image.

Imagine viewing a convex polyhedron from a great dis-
tance. Let the direction from the object towards the viewer

Fig. 3. A mass distribution confined to a great circle corre-
sponds to the limit of a sequence of cylindrical objects of
increasing length and decreasing diameter. Such pathologi-
cal mass distributions can be avoided if we confine our
attention to bounded objects.

be given by the unit vector v. A face, with unit normal s,,
will be visible only if s,• • y> 0. Suppose that the surface
area of this face is 0;. Due to foreshortening it will appear
only as large as would a face of area

a ••oo
normal to v (Fig. 4). The total apparent area of the visible
surface is

A(v)- £ (S,-v)0,
{i\S,-f>0}

when viewed from the direction v. The total apparent area
of the visible surface when viewed from the opposite

Fig. 4. A surface element appears smaller because of fore-
shortening. The apparent area is the true area times the
cosine of the angle between the surface normal and the
vector pointing towards the viewer.

direction is

A(-f)- £ (S,-v)0,
{i\S,-fsiO}

This should be the same, that is, A(v) = A(—v). Conse-
quently,

v) 0,•= £ s,0, \- v = 0£0
all i

where the sum now is over all faces of the object. This
holds true for all view vectors, v, so we must have

£ s,o, = o.
all i

That is, the center of mass of the extended Gaussian image
is at the origin.

An equivalent representation, called a spike model, is a
collection of vectors each of which is parallel to one of the
surface normals and of length equal to the area of the
corresponding face. The result regarding the center of mass
is equivalent to the statement that these vectors must form
a closed chain when placed end to end (Fig. 5).
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Fig. 5. Vectors parallel to the normals of the faces of a
polyhedron, and of length equal to the areas of the corre-
sponding faces, form a closed chain when placed end to
end.

B. Reconstruction of a Tetrahedron^

Faces that share a common edge are said to be adjacent.
The masses on the Gaussian sphere corresponding to two
adjacent faces need not be each others closest neighbors.
Recovering a polyhedron from its extended Gaussian image
is not easy in the general case because it is hard to de-
termine which faces are adjacent [21]. Finding the actual
offsets of each of the faces from the center of mass of the
polyhedron is not as hard.

The structure of a tetrahedron, however, is very simple:
Every face is adjacent to the other three. The shape of the
tetrahedron is completely determined by the surface nor-
mals of the four faces, only the size of the tetrahedron
remaining to be determined. In other words: There is only
one degree of freedom left. Another way to look at it is to
note that the four faces must have areas that place the
center of mass of the extended Gaussian image at the
origin, as we have just seen. This condition places three
constraints on the four parameters.

Let the given unit surface normals be a, b, c, and d, and
the areas of the corresponding faces. A, B, C, and D (Fig.
6). We have to determine the distances, a, b, c, and d, of

tetrahedron, the distance from the center of mass to a
particular face is equal to one quarter of the distance of the
vertex opposite that face. We start by finding a formula for
the distance of the face with area D, say, from the opposite
vertex d. The desired distance, d, will be just a quarter of
the result obtained in this fashion. The remaining three
distances, a, b, and c, can then be computed using for-
mulas obtained by cyclical permutation of the variables.

The position of the reconstructed tetrahedron is arbitrary,
since the extended Gaussian image is insensitive to transla-
tion. To make the result unique, we might place the center
of mass at the origin. To reduce the size of the expressions
to be manipulated here, however, it is convenient to move
the tetrahedron so that one vertex, D, say, is at the origin.
The distances of the faces from the center of mass are
obviously not affected by this.

Suppose for now that we know the locations of the
vertices A, B, and C relative to D. We can then compute
the directions of the six edges of the tetrahedron, by taking
all of the distinct pairwise differences of the four vertex
positions. Four surface normals can then be found by taking
cross-products of these edge-direction vectors. We actually
need only four of the edge vectors forming a closed circuit
to do this. The results can then be normalized to obtain
unit surface normals

CX A
a=

B X C
IBXCI c= AX B

\AX B\\CXA\

and
A X B + B X C + C X A

\ A X B + B X C + C X A \
d= (A- C) X(B- A)

|(/1-C)X(B-/1)|

Now the perpendicular distance of the plane with area D
from the origin can be found by taking the dot-product of
any of the three vertices. A, B, and C with the unit normal
d. Thus

[ABC]
4 c / = < / - A = < / B = d C = \A X B+ BX C+ CX A\'

Fig. 6. A tetrahedron with vertices A, B, C, and 0. We are
to find the distances of the faces from the center of mass,
given the areas and surface normals of the faces.

these faces from the center of mass of the tetrahedron.
From these distances we can, if desired, compute the posi-
tions of the vertices A, B, C, and 0, simply by intersecting
three of the planes at a time. The notation here is that the
face opposite vertex A has area A and unit surface normal
a, and so on.

The perpendicular distance of the center of area of a
triangle from one of the sides is one third the perpendicular
distance of the vertex opposite that side. Similarly, in a

The area of the facet opposite the origin is also easy to
compute

D=^\(A C) X(B- A)\=-\AX B+ BX C+ CX A\.

Our task is to express the offset d in terms of the area D
and the given unit surface normals. The two formulas above
do not allow us to do that directly, because we do not
know what the value of [ABC] is. This quantity, by the
way, is six times the volume, V, of the tetrahedron, or

V=^(4d)D=^[ABC}.

We proceed by considering the four distinct triple products
of the four unit surface normals. First of all

[ABC}2

[abc}=-
\A X B\\BX C[|CX A\

since [(x X y)(y X z)(z X x)] = [xyz]2. Then, by similar rea-
soning,

[ a b d } - Î JL
|BX q|CX A\\A X B + B X C + C X A |
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since [xy(x + y + z)]= [xyz]. Formulas for [bed] and [cad]
can be found by cyclical permutation of the variables.

Multiplying the three formulas found this way together
we get

[abd}[bcd\[cad}

^____________[ABCf_____________

(A X B)\BX C)\CX A)^A X B + B X C + C X A \ 3

and so

[abd}[bcd][cad] ^ [ABC]2

t a b £ ] 2 [ A X B + B X C+Cx A\

= (4^(20).

So that finally

^2D)[abd}[bcd][cad]

-[abc]
4(/=

and the Gaussian sphere are rotated in the same fashion. A
rotation of the object thus corresponds to an equal rotation
of the Gaussian sphere.

B. Caussian Curvature

Consider a small patch 80 on the object. Each point in
this patch corresponds to a particular point on the Gaussian
sphere. The patch 50 on the object maps into a patch, 65
say, on the Gaussian sphere (Fig. 8). If the surface is strongly

The other distances, a, b, and c, can be computed using
similar formulas obtained by cyclical permutation of the
variables.

III. CONTINUOUS CASE: SMOOTHLY CURVED OBJECTS

The ideas presented in the previous section can be ex-
tended to apply to smoothly curved surfaces.

A. Caussian Image

One can associate a point on the Gaussian sphere with a
given point on a surface by finding the point on the sphere
which has the same surface normal (Fig. 7) [20], [22], [25].
Thus it is possible to map information associated with

Fig. 8. A patch on the object maps into a patch on the
Gaussian sphere. The Gaussian curvature is the limit of the
ratio of the area of the patch on the Gaussian sphere to
the area of the patch on the subject as these become smaller
and smaller.

curved, the normals of points in the patch will point into a
wide fan of directions. The corresponding points on the
Gaussian sphere will be spread out. Conversely, if the
surface is planar, the surface normals are parallel and map
into a single point.

These considerations suggest a suitable definition of
curvature. The Gaussian curvature is defined to be equal to
the limit of the ratio of the two areas as they tend to zero.
That is,

Fig. 7. The Gaussian image of an object is obtained by
associating with each point on its surface the point on the
Gaussian sphere which has the same surface orientation. The
mapping is invertible if the object has positive Gaussian
curvature everywhere.

K= lim "
ao-»o °0

dS
d0-

From this differential relationship we can obtain two useful
integrals. Consider first integrating K over a finite patch 0
on the object:

U^0-!.!^-5

where 5 is the area of the corresponding patch on the
Gaussian sphere. The expression on the left is called the
integral curvature. This relationship allows one to deal with
surfaces which have discontinuities in surface normal.

Now consider instead integrating 1//C over a patch 5 on
the Gaussian sphere

points on the surface onto points on the Gaussian sphere.
In the case of a convex object with positive Gaussian
curvature everywhere, no two points have the same surface
normal. The mapping from the object to the Gaussian
sphere in this case is invertible: Corresponding to each
point on the Gaussian sphere there is a unique point on the
surface. (If the convex surface has patches with zero Gauss-
ian curvature, curves or even areas on it may correspond to
a single point on the Gaussian sphere.)

One useful property of the Gaussian image is that it
rotates with the object. Consider two parallel surface nor-
mals, one on the object and the other on the Gaussian
sphere. The two normals will remain parallel if the object

s^/Kds=udo=o
where 0 is the area of the corresponding patch on the
object. This relationship suggests the use of the inverse of
the Gaussian curvature in the definition of the extended
Gaussian image of a smoothly curved object, as we shall
see. It also shows, by the way, that the integral of 1//C over
the whole Gaussian sphere equals the total area of the
object.

C Alternate Definition of Gaussian Curvature

Consider a plane which includes the surface normal at
some point on a smooth surface. The surface cuts this plane
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Fig. 9. Normal sections of the surface are made with planes
which include the surface normal. The planes corresponding
to the largest and smallest values of curvature are referred to
as the principal planes. The Gaussian curvature is equal to
the product of the largest and smallest values of curvature.

along a curve called a normal section (Fig. 9) [19], [22]-[25].
Let the curvature of the normal section be denoted by K^.
Consider the one-parameter family of planes containing the
surface normal. Suppose that 6 is the angle between a
particular plane and a given reference plane. Then K^ varies
with 0 in a periodic fashion. In fact, if we measure 0 from
the plane that gives maximum curvature, then it can be
shown that

K^(6) = lc.lCOS2^-^ ic^sin^
where K-] is the maximum and K^ is the minimum curvature.
These two values of K are called the principal curvatures.
The corresponding planes are called the principal planes.
The two principal planes are orthogonal, provided that the
principal curvatures are distinct (Fig. 9).

It turns out that

K = K^K^,
is equal to the Gaussian curvature introduced earlier. This is
clearly zero for a plane. It is equal to 1//?2 for a spherical
surface of radius R, since the curvature of any normal
section is 1//?.

A ruledsurface is one which can be generated by sweep-
ing a line through space. A hyperboloid provides one exam-
ple of such a surface. Developable surfaces are special cases
of ruled surfaces [22], [23], [25]. Cylindrical and conical
surfaces are examples of developable surfaces (Fig. 10). On
a developable surface at least one of the two principal

Fig. 10. A conical surface is an example of a developable
surface. On it the Gaussian curvature is everywhere zero,
because (at least) one of the principal curvatures is zero.

curvatures is zero at all points. Consequently, the Gaussian
curvature is zero everywhere too.

D. The Extended Gaussian Image

We can define a mapping which associates the inverse of
the Gaussian curvature at a point on the surface of the
object with the corresponding point on the Gaussian sphere.
Let u and v be parameters used to identify points on the
original surface. Similarly, let ^ and i) be parameters used to
identify points on the Gaussian sphere. (These could be
longitude and latitude, for example.) Then we define the
extended Gaussian image as

cal')=^

where ($,•>}) is the point on the Gaussian sphere which has
the same normal as the point (u, v) on the original surface.
It can be shown that this mapping is unique (up to transla-
tion) for convex objects. That is, there is only one convex
object corresponding to a particular extended Gaussian
image [9], [19], [26]. The proof is unfortunately nonconstruc-
tive and no direct method for recovering the object is
known.

E. Properties of the Extended Gauss/an Image

The center of mass of the extended Gaussian image of a
smoothly curved object is at the origin. We show this in a
way similar to that used earlier for extended Gaussian
images of polyhedral objects. Consider viewing a convex
object from a great distance. Let the direction from the
object towards the viewer be given by the unit vector v. A
surface patch with unit normal s will be visible only if
s - v> 0. Suppose its surface area is SO (Fig. 4). Due to
foreshortening it will appear only as large as would a patch
of area

( s - v)SO

normal to v. Let H(v) be the unit hemisphere for which
s • v > 0. Then the apparent area of the visible surface is

A(v)={ f c ( S ) ( S - v ) d S
•'H( v)"

when viewed from the direction v. The apparent area of the
visible surface when viewed from the opposite direction is

A(-v)=f f c ( S ) ( S - - v ) d S .
•'H(-v)-'

This should be the same, that is, A(v)=A(-v). Conse-
quently,

fJc(S)(S- v) dS= (fJc(S)SdS\ - v = 0

where the integral now is over the whole sphere S. This
holds true for all view vectors, v, so we must have

j fc(s)SdS=0.

That is, the center of mass of the extended Gaussian image
is at the origin. (This, by the way, is not a very helpful
constraint in practice, since one usually only sees one side
of the object.)

Another property of the extended Gaussian image is also
easily demonstrated. The total mass of the extended Gauss-
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ian image equals the total surface area of the object. If one
wishes to deal with objects of the same shape but differing
size one may normalize the extended Gaussian image by
dividing by the total mass.

We can think of the extended Gaussian image in terms of
mass density on the Gaussian sphere. It is possible then to
deal in a consistent way with places on the surface where
the Gaussian curvature is zero, using the integral of 1//C
shown earlier. A planar region, for example, corresponds to
a point mass. This in turn corresponds to an impulse func-
tion on the Gaussian sphere with magnitude proportional
to the area of the planar region.

A mass distribution has inertia about an axis passing
through its center of mass that depends on the direction of
the axis. This inertia takes on three stationary values, for
three particular orthogonal directions, called the principal
axes of the object. It is tempting to imagine that one can
find the attitude of an object by lining up the principal axes
of inertia of the observed extended Gaussian image and the
one computed from the geometric model [9]. This would be
rather straightforward, requiring only the calculation of the
eigenvectors of a three by three inertia matrix. In practice,
one typically has information only about the visible hemi-
sphere and thus cannot compute the required first and
second moments over the whole sphere.

F. Objects that are not Convex

Three things happen when the surface is nonconvex:
1. The Gaussian curvature for some points will be nega-

tive.
2. More than one point on the object will contribute to a

given point on the Gaussian sphere.
3. Parts of the object may be obscured by other parts.
We chose to extend the definition of the extended

Gaussian image in this case to be the sum of the absolute
values of the inverses of the Gaussian curvature at all points
having the same surface orientation

C(^)==I:"vl'•' / , i/c(u,,vor
This definition is motivated by the method used to com-
pute the extended Gaussian image in the discrete case, as
we will see later.

The above extension makes sense if there are a finite, or
at most a countable, number of points on the surface with
the same orientation. At times, however, all points on a
curve or even an area on the surface have parallel surface
normals. In this case we may use

C ( n ) = f { s ( f t - S ) f { 8 ( 6 - s ) d O d S

where ri is a unit vector on the Gaussian sphere, while s is
a unit vector on the surface of the object. The integration is
over the whole surface of the object 0 and 8 is the unit
impulse function defined on a sphere.

We can be more specific, if we let r(u,v) be a vector
giving the point on the surface corresponding to the param-
eters u and v, then

C(i,r,) cosr, = f f s ( ^ - 9(u, i/),i» - <f-(u, v))

•|<, X r^dudv

where 9(u, v) and <j>(u, v) are the latitude and longitude of

the point on the Gaussian sphere which has the same
orientation as the surface does at the point (u, v). A planar
region of area A will thus contribute an impulse of weight
A to the extended Gaussian image, while a cylindrical
region will give rise to an impulse wall along a great circle
at right angles to the axis of the cylinder. The integral of the
impulse wall will be equal to the area of the cylindrical
region.

Usually we think of the extended Gaussian image as a
fixed entity associated with an object. In the case of non-
convex objects we might want to alter the definition to
include only those parts of the surface visible from a par-
ticular direction. This would make the (modified) Gaussian
image dependent on the viewpoint. We avoid this potential
complication here.

C. Examples of Extended Gaussian Images^

The extended Gaussian image of a sphere of radius R is

C(^)°/?2

as discussed already.
Perhaps slightly more interesting is the case of an el-

lipsoid with semi-axes a, b, and c lined up with the

Fig. 11. Ellipsoid with contours obtained by cutting the
surface with three orthogonal planes passing through pairs
of points where the Gaussian curvature has stationary values.

coordinate axes (Fig. 11). An equation for its surface can be
written

(^m2^)2^.
\al \bl \cl

More useful for our purposes here is a parametric form

x = a cost? cos <f)

y = bsin(?cos<j>

z = csin<(>.

A normal at the point

r= ( a cos (? cos <(>, bsin(?cos<(>,csin<(>)

on the surface is given by

n = ( be cos 0 cos <j>, casing cos <fi,ab sin <j>)

as will be shown later. The Gaussian curvature turns out to
be equal to

abc r
K =

(bccos<?cos<(>) +(casino cos <)>) +(absin<^)

abcV
~ [ n ^ \

where n2 •= n • n.
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If we let ^ be the longitude and i) be the latitude on the
Caussian sphere, then a unit normal at the point (̂ ,1;) on
the sphere is given by (Fig. 12)

A = (cos I; cos i ] , sin t; cos i), sin ii)1^.

Fig. 12. Latitude and longitude can be used to identify
points on the Gaussian sphere. Each point on the Gaussian
sphere corresponds to a unique surface orientation.

Now n = nft. Identifying terms in the two expressions for
surface normals at corresponding points on the ellipsoid
and the Gaussian sphere we get

faccosffcos<(> == ncos^cosi;
ca sin 9 cos <f> == n sin ̂  cos f\

absin<j> = nsini)

so that

n2 [(a cos $ cos^)2 +(fccos^sini})2 +(csinT)) j = (abc)2

and finally, substituting for n2 in the equation for K, we get
1
KC(i.r))

abc

[ ( a cos i cos if)2 +(6sinfcosi})2 +(csini})2

The extended Gaussian image, in this case, varies smoothly
and has the stationary values

ab>
hc]a l

Sf
~b)

and
. c I

at the points where r is equal to (±1,0,0)7, (0, ±1,0)7, and
(0,0, ±1)^, respectively. These results can be easily checked
by sectioning the ellipsoid using the xy, yz, and zx planes.
The Gaussian curvature, in this case, equals the product of
the curvatures of the resulting ellipses. One then uses the
fact that the maximum and minimum curvatures of an
ellipse with semi-axes a and b are a/b2 and b/a2.

Later we will derive the extended Gaussian image of a
torus, an object that is not convex.

IV. DISCRETE APPROXIMATION: NEEDLE MAPS

Consider the surface broken up into small patches of
equal area. Let there be p patches per unit area. Erect a
surface normal on each patch. Consider the polyhedral
object formed by the intersection of the tangent planes
perpendicular to these surface normals. It approximates the
original surface. The smaller the patches, the better the
approximation.

The extended Gaussian image of the original (smoothly
curved) convex object is approximated by impulses corre-
sponding to the small patches. The magnitude of each
impulse is about 1/p, corresponding to the area of the
patch it rests on (Fig. 13). Strongly curved areas will distrib-
ute their impulses over a large region on the Gaussian
sphere, while areas which are nearly planar will have them
concentrated in a small region. In fact, the number of
impulses per unit area on the Gaussian sphere approaches p
times the absolute value of the Gaussian curvature as we
make p larger and larger. This can be shown using the
integral of 1//C given earlier.

Fig. 13. Mapping of discrete patches on an object onto the
Gaussian sphere. The patches in this case correspond to a
regular tesselation of the image plane. Since the patches lie
on a conical surface they contribute to the extended Gauss-
ian image along a small circle.

The tesselation of the surface can be based on an arbi-
trary division into triangular patches as long as the magni-
tude of each impulse on the Gaussian sphere is made
proportional to the area of the corresponding patch on the
surface. Alternatively, one can divide the surface up accord-
ing to the division of the image into picture cells. In this
case one has to take into account that the area occupied in
the image by a given patch is affected by foreshortening.
The actual surface area is proportional to 1/(s; • v), where
s, is the normal of the patch, while v is the vector pointing
towards the viewer (Fig. 4).

Measurements of surface orientation from images will
not be perfect, since they are affected by the noise in
brightness measurements. Similarly, surface orientations ob-
tained from range data will be somewhat inaccurate. Con-
sequently, the impulses on the Gaussian sphere will be
displaced a little from their true positions. The expected
density on the Gaussian sphere will nevertheless tend to be
equal to the inverse of the Gaussian curvature. One cannot,
however, expect the impulses corresponding to a planar
surface to be coincident. Instead, they will tend to form a
small cluster. To be precise, the effect of noise is to smear
out the information on the sphere. The extended Gaussian
image is convolved with a smoothing function of width
proportional to the magnitude of the noise.

A. Using Object Models
Extended Caussian images also have to be computed for

surfaces of prototypical object models. In this case it is best
to find a convenient way to parameterize the surface and
break it up into many small patches. Suppose the surface is
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given in terms of two parameters u and i/as r(u, v). Then at
the point (u, v) we see that r^ and ^ are two tangents (Fig.
14). The cross product of these tangents is normal to the
surface. The unit normal

r, x r,
ri=

\r,, X r,,|

Fig. 14. A surface normal can be computed by taking the
cross product of two tangent vectors. The tangent vectors
can be obtained by differentiation of the parametric form of
the equation of the surface.

allows us to determine to which point on the Gaussian
sphere this patch corresponds. Suppose that we divided the
range of u into segments of size 8u and the range of v into
segments of size Sv. Then the area of the patch

8A = \r^ X r^SuSv

can be used to determine what contribution it makes to the
corresponding place on the Gaussian sphere. Note that we
do not have to explicitly compute the Gaussian curvature or
take second partial derivatives.

V. TESSELATION OF THE GAUSSIAN SPHERE: ORIENTATION
HISTOGRAMS

It is useful to divide the sphere up into cells in order to
represent the information on the Gaussian sphere in a
computer. Ideally the cells should satisfy the following
criteria:

1. all cells should have the same area;
2. all cells should have the same shape;
3. the cells should have regular shapes that are compact;
4. the division should be fine enough to provide good

angular resolution;
5. for some rotations, the cells should be brought into

coincidence with themselves.

Cells which are compact combine information only from
surface patches which have nearly the same orientation.
Elongated cells of the same area combine information from
surface patches which have more widely differing orienta-
tions. The area of a regular polygon with n sides inscribed
in a circle of radius r is

Jsin(2g/n)1
T^l-(2Vn^j•

So the area of a hexagon inscribed in a circle is (3/3/2)r2,
twice that of a triangle inscribed in the same circle. Tessela-
tions with near-triangular cells will thus combine informa-
tion from orientations which are -fl times as far from the
average as do tesselations using near-hexagonal cells.

If cells occur in a regular pattern, the relationship of a cell
to its neighbors will be the same for all cells. Such arrange-

ments are to be preferred. Unfortunately, it is not possible
to simultaneously satisfy the criteria listed above.

A simple tesselation consists of a division into latitude
bands, each of which is then further divided along longitu-
dinal strips (Fig. 15). The cells could be made more nearly
equal in area by having fewer at higher latitudes, or by
making the latitude bands wider there, or both. One ad-
vantage of this scheme is that it makes it easy to compute
to which cell a particular surface normal should be as-
signed. Still, this arrangement does not come close to
satisfying the criteria stated above. In particular, the cells

Fig. 15. The Gaussian sphere can be divided into cells
along meridians and lines of longitude. The resulting cells do
not have the same areas, however, and only align with each
other for certain rotations about the axis through the poles.

are brought into alignment only for a few rotations about
the axis of the globe. Rotations about any other axis cannot
bring the cells into alignment.

A. Tesselations Based on Regular Polyhedra

Better tesselations may be found by projecting regular
polyhedra onto the unit sphere after bringing their center
to the center of the sphere [27]. Regular polyhedra are
uniform and have faces which are all of one kind of regular
polygon. (They are also called the Platonic solids) [19], [20],
[28]-[32]. The vertices of a regular polyhedron are con-
gruent. A division obtained by projecting a regular poly-
hedron has the desirable property that the resulting cells all
have the same shape and area. Also, all cells have the same
geometric relationship to their neighbors. In the case of the
dodecahedron, the cells are even fairly well rounded. The
dodecahedron, however, has only twelve cells (Fig. 16(a)).
Even the icosahedron, with twenty triangular cells, provides
too coarse a sampling of orientations (Fig. 16(b)). Further-
more, its cells are not well rounded. Unfortunately, there

Fig. 16. Tesselation of the Gaussian sphere using (a) the
regular dodecahedron and (b) the regular icosahedron.
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are only five regular solids (tetrahedron, hexahedron, oc-
tahedron, dodecahedron, and icosahedron).

One can go a little further by considering semi-regular
polyhedra. A semi-regular polyhedron has regular polygons
as faces, but the faces are not all of the same kind [19], [20],
[28H32]. (They are also called the Archimedean polyhedra.)
As for regular polyhedra, the vertices are congruent. There
can be either two or three different types of faces and these
have different areas. An illustration of a tesselation using a
semi-regular polyhedron is provided by a soccer ball (Fig.
17(a)). It is based on the truncated icosahedron, a semi-reg-
ular polyhedron which has 12 pentagonal faces and 20
hexagonal faces.

Fig. 17. Tesselation of the Gaussian sphere using (a) the
truncated icosahedron and (b) the pentakis dodecahedron.

Unfortunately there are only 13 semi-regular polyhedra.
(The five truncated regular polyhedra, cuboctahedron,
icosidodecahedron, snub cuboctahedron, snub icosido-
decahedron, truncated cuboctahedron, rhombicubocta-
hedron, truncated icosidodecahedron, and the rhombico-
sidodecahedron.) Overall, these objects do not provide us
with fine enough tesselations. The snub icosidodecahedron
has the largest number of faces, but each of its 80 triangles
is much smaller than each of its 12 pentagons.

The edges of a semi-regular polyhedron are all the same
length. One consequence of this is that the different types
of faces have different areas. The area of a regular polygon
of n sides and edge-length e equals

ne2

4tan(w/n)

so it is very roughly proportional to n2. This is a problem
generally with semi-regular polyhedra. It is sometimes pos-
sible to derive a new polyhedron which has the same
adjacency relationships between faces as a given semi-regu-
lar polyhedron but also has faces of equal area. The shapes
of some of these faces then are no longer regular, however.

If we desire a finer subdivision still, we can consider
splitting each face of a given tesselation further into trian-
gular facets. If, for example, we split each pentagonal face
of a dodecahedron into five equal triangles we obtain a
pentakis dodecahedron with 60 faces (Fig. 17(b)). This hap-
pens to be the dual of the truncated icosahedron, discussed
above. If we apply this method instead to the truncated
icosahedron we construct an object with 180 faces. This
object, as well as the pentakis dodecahedron, form suitable
bases for further subdivision, as we shall show later.

To see how fine a division we might need, let us calcu-
late the angular spread of surface normals which map into a
particular cell. If there are n equal cells, then each one will

have area

A = (47r)/n

since the total area of the unit sphere is 4w. (This area
equals the solid angle of the cone formed by the cell when
connected to the center of the sphere.) The shape which
minimizes the angular spread for given surface area is the
circular disc. The area of a circular disc on the unit sphere is

A = 27r(l - cosO)

where 0 is the half-angle of the cone formed by the disc
when connected to the center of the sphere. If 9 is small,
the area can be approximated by

A » vO2.
Thus if there are many cells and if they could be made
circular, the angular spread would be

6 ^ 1/{n .

The best we can hope for, however, are near-hexagonal
cells. The area of a hexagon inscribed in a circle of radius r
is (Sy^/^)/'2, as already mentioned. The area of the circle,
Tf2, is about 20 percent more. So a hexagonal shape has a
spread which is

= 1.0996

as large as that of a circular shape of equal area. A lower
bound on the angular spread for a tesselation with n cells
then is

2.1993 • •

For n = 60, for example, the spread is at greater than 16.2°.
One should also remember that the spread for triangular
cells is even more, namely -fl times that for hexagonal
cells.

B. Geodesic Domes

To proceed further, we can divide the triangular cells into
four smaller triangles according to the well known geodesic
dome constructions [27], [30], [33]. We attain high resolution
by relenting on several of the criteria given above (Fig. 18).
Specifically, the cells of a geodesic tesselation do not all
have the same area and shape. The cells are also not
compact, being shaped like (irregular) triangles. The duals
of geodesic domes are better in this respect, since they
have facets that are mostly (irregular) hexagons, with a

Fig. 18. Tesselation of the Gaussian sphere using a fre-
quoncy-four geodesic tesselation based on the isosahedron.
(There are 16 X 20 = 320 faces.)
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dozen (regular) pentagons thrown in. Tesselations of arbi-
trary fineness can be constructed in this fashion. The penta-
kis dodecahedron is a good starting point for a geodesic
division, as is the object constructed earlier from the trun-
cated icosahedron by dividing the faces into triangles.

Each of the edges of the triangular cells of the original
polyhedron are divided into f sections, where / is called
the frequency of the geodesic division. The result is that
each face is divided into f 2 (irregular) triangles. Tessela-
tions where the frequency is a power of two are particularly
well suited to the method suggested here, as we see next.

One has to be able to efficiently compute to which cell a
particular surface normal belongs. In the case of the tessela-
tions derived from regular polyhedra, one first computes
the dot-product of the given unit vector and the vector to
the center of each cell. (These reference vectors correspond
to the vertices of the dual of the original regular poly-
hedron.) This gives one the cosine of the angle betwen the
two. The closest reference vector is the one which gives the
largest dot-product. The given vector is then assigned to
the cell corresponding to that reference vector.

In the case of a geodesic dome, it is possible to proceed
hierarchically, particularly if the frequency is a power of
two. The geodesic dome is based on some regular poly-
hedron. The appropriate facet of this polyhedron is found
as above. Next, one determines into which of the triangles
of the first division of this facet the given unit normal falls.
This can be done by considering which dot-product has the
second largest value. No new dot-products need to be
computed. The process is then repeated with the four
triangles into which this facet is divided, and so on. In
practice, lookup table methods can be used, which, while
not exact, are very quick.

Let the area occupied by one of the cells on the Gaussian
sphere be u (in the case of the icosahedron i>> = 4ir/20).
The expected number of surface normals mapped into a
cell equals

pw\G\

for a convex object, where C is the average of G(^,T)) over
the cell.

It is clear that the extended Gaussian image can be
computed locally. One simply counts the number of surface
normals that belong in each cell. The expression for the
Gaussian curvature, on the other hand, includes first and
second partial derivatives of the surface function. In prac-
tice, estimates of derivatives are unreliable, because of
noise. It is important therefore that the extended Gaussian
image can be computed without estimating the derivatives.

The values in the cells can be thought of as an orienta-
tion histogram. It has recently been brought to my attention
that this is analogous to a scheme used for histograming
directions of dendrites on neurons [34].

The result can be displayed graphically using normal
vectors on each of the cells to represent the weight of the
accumulated surface normals. A frequency-two subdivision
of the pentakis dodecahedron provides 240 cells, enough
for most practical purposes (Fig. 19). The angular spread in
this case is about 11.5°. An alternative way to present the
extended Caussian image graphically is by means of a
grey-level image where brightness in each cell is propor-
tional to the count. The surface of the Gaussian sphere may
be projected stereographically instead of orthographically
in order to preserve the shapes of the cells. Their areas will
be scaled unequally however.

Fig. 19. Orientation histogram collected on a geodesic
dome derived from the pentakis dodecahedron. (There are
1 2 X 5 X 4 = 240 faces.) This is a discrete approximation of
the extended Gaussian image. The length of the vector
attached to the center of a cell is proportional to the number
of surface normals on the surface of the original object
which have orientations falling within the range of direc-
tions spanned by that cell.

A further refinement of the orientation histogram has us
store the sum of the vectors, scaled according to the area of
the corresponding patch, rather than just the sum of the
areas of the patches. This requires three times as much
memory space, but provides more accuracy. In fact, in the
case of polyhedra, this representation is exact.

VI. SOLIDS OF REVOLUTION

In the case of the surface of a solid of revolution, the
Gaussian curvature is rather easy to determine. The solid of
revolution can be produced by rotating a (planar) gener-
ating curve about an axis (Fig. 20). Let the generating, curve
be specified by the perpendicular distance from the axis,
r(s), given as a function of arc length 5 along the curve. Let
0 be the angle of rotation around the axis. Now consider

Fig. 20. A solid of revolution can be generated by rotating
a curve around an axis. The curve can be specified by giving
the distance from the axis as a function of the arc length
along the curve.
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the Gaussian sphere positioned so that its axis is aligned
with the axis of the solid of revolution. Let !, be the
longitude and i) be the latitude on the Gaussian sphere.

We can let ^ correspond to 6. That is, a point on the
object produced when the generating curve has rotated
through an angle 0 has a surface normal that lies on the
Gaussian sphere at a point with longitude ^ = 0.

A. Gaussian Curvature of Solid of Revolution

Consider a small patch on the Gaussian sphere lying
between ^ and ^ + 8^ in longitude and between T) and
T) + ST) in latitude. Its area is

COSII^ST),

We need only determine the area of the corresponding
patch on the object. It is

r808s
where 8s is the change in arc distance along the generating
curve corresponding to the change S-q in surface orienta-
tion. The Gaussian curvature is the limit of the ratio of the
two areas as they tend to zero. That is,

COST) 8ij ST) _ ^. COST) ST) _ COST) C/T)__ .̂  _ -^K= lim
Si)->0
St-O

lim
«i)->080 8s Ss

r as a function of the distance along the axis, rather than as
a function of arc length along the curve. Let the distance
along the axis be denoted by z. It is easy to see that (Fig.
21) tanr) = — r ^ , and so, differentiating with respect to s,

dz2 (A) d , „
sec--T)—=—(-r,)

ds ds' z' lz ds

where, from the figure, we see that COST) = z;, so that

A,
-r^cos-T)COST)K^COST) ds

and finally

K'=
-r(l+d)2

since

sec''T) = 1 + r^.

B. Alternate Derivation of Caussian Curvature of a Solid of
Revolution^

We first need to review Meusnier's theorem [22]-[24].
Consider a normal section of a surface at a particular point.
It is obtained by cutting the surface with one of the planes
including the local normal (Fig. 22). Suppose that the curva-

since &€ = SO. The curvature of the generating curve, K^, is
just the rate of change of direction with arc length along it
[22]-[24]. So

^-cds c

and hence
KG COST)

rK

It is easy to see that (Fig. 21), sini) = — /;, where r, is the

Fig. 22. The curvature of the curve obtained by cutting a
surface using an inclined plane is greater than that obtained
by cutting it using a plane which includes the surface nor-
mal. Meusnier's theorem tells us that the ratio of the two
curvatures is equal to the cosine of the angle between the
two planes.

Fig. 21. The figure shows the relationships between the
infinitesimal increments in arc length along the curve, dis-
tance from the axis of rotation, and distance along the axis of
rotation.

partial derivative of r with respect to s. Differentiating with
respect to s we get

eh) d , .
co^~ds=~ds(~'rs)=~rss

and so we obtain the simple formula
r^
r

In the case of a sphere of radius R, for example, we have
r= Rcos(s/R) for -(w/2)/?< s < +(v/l)R. Thus r,, =
- ( r / R 2 ) and K = 1//?2.

For some purposes it is more useful to express the radius

ture of the curve in which the surface cuts this plane is K^.
Now imagine tilting the plane away from the normal by an
angle T) (using the local tangent as an axis to rotate about).
The new plane will cut the surface in a curve with higher
curvature. In fact, it can be shown that the new curve has
curvature

K^/COSTI.

It is easy to see this in the case of a sphere, since a plane
including the center cuts the sphere in a great circle, while
an inclined plane cuts it in a small circle of radius propor-
tional to the cosine of the angle of inclination.

Now, let us return to the surface of revolution. It is not
hard to show that one of the principal curvatures at a point
on the surface will correspond to a cut through the surface
by a plane which includes the axis of revolution. The curve
obtained in this way is just the generating curve of the solid
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of revolution. So one of the two principal curvatures is
equal to the curvature K^ of the generating curve at the
corresponding point.

Now consider a plane perpendicular to the axis of revolu-
tion through the same surface point (Fig. 23). It cuts the
surface in a circle. The curvature in this plane equals (1/0,

points on the Gaussian sphere. Suppose that we introduce a
polar angle 8 such that

x ^ r c o s f f and y=^c,\n9.

Then a unit normal to the surface is given by

(cos0,s'in0, -r^Y

^+rl

Equating this to the unit normal on the Gaussian sphere

(cos ̂  cos i\, sin ̂  cos i), sin -q)

we get

i = 0 and tani) = —r,.

C Extended Gauss/an Image of a Torus

As an illustration we will now determine the extended
Gaussian image of a torus. Let the torus have major axis R
and minor axis p (Fig. 24). A point on the surface can be

Fig. 23. If the solid of revolution is cut by a plane per-
pendicular to the axis of rotation, a circle is obtained. The
curvature in this plane is just the inverse of the distance of
the surface from the axis. The curvature of the corresponding
normal section can be obtained using Meusnier's theorem.

where r is the radius of the solid of revolution at that point.
This horizontal plane, however, is not a normal section.
Suppose that the normal makes an angle •>) relative to this
plane. (The local tangent plane also makes an angle i]
relative to the axis of revolution.) Now construct the plane
including the local normal which intersects the horizontal
plane in a line perpendicular to the axis. This plane will be
inclined i) relative to the one we have just studied. It also
produces the second principal normal section sought after.
By Meusnier's theorem we see that the curvature of the
curve found in this normal section is K^ = (1/r)cos^. Fi-
nally, the Gaussian curvature is found by multiplication to
be

KG cos^K =

In the case of a sphere of radius R, for example, we have
r = RCOSI] and K^ = 1//?, so that K = 1//?2, as expected.

To make this result more usable, erect a coordinate
system with the z-axis aligned with the axis of revolution.
The generating curve is given as r(z). Let the first and
second derivatives of r with respect to z be denoted by r,
and r,^, respectively. It is easy to see that (Fig. 21), tani) = r,,
so that

cos i) =

Furthermore

3/2

(1 + ̂ )

so that finally

K= -
.(1 + ̂

In order to use this result in deriving extended Gaussian
images it is necessary to identify points on the surface with

Fig. 24. A torus obtained by spinning a circle around an
axis. The resulting object is not convex. Its extended Gauss-
ian image can be computed nevertheless.

identified by 0 and s, where 0 is the angle around the axis
of the torus, while s is the arc length along the surface
measured from the plane of symmetry. Then

r = R + pcos(s/p)

and

^= -(1/p)cos(..,/p)

so that

^ _ r,, ̂  1 cos(s/p)
r p R + pcos(s/p) '

Two points, Pand P' (Fig. 24), separated by v in 0, have the
same surface orientation on the torus. The surface normal at
one of these places points away from the axis of rotation,
while it points towards the axis at the other place. Accord-
ingly, two points on the object,

((?,s)=(^,p7,) and ((?,s)=(^-Hr,p(^-T)))

correspond to the point (^,i)) on the Gaussian sphere. The
curvatures at these two points have opposite signs

/^+1___-L- and /<-=-1——os^-.
p R + p cos r; p R - p cos i)

The torus is not a convex object, so more than one point on
its surface contributes to a given point on the extended
Gaussian image. If we add the absolute values of the
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inverses of the curvature we get

„/ ^ 1 1

Now
d_
dzC(^)= 2/?pseci).

/<".. (1 + d)
3/2

If we had added the inverses algebraically instead we would
have obtained

and

+ • =2p2
d_r_

dz 4
so that

which is twice the result for a sphere of radius p.
The same results could have been found using

KCCOST)
K=

—1/p and r = R ± PCOST), so that

+ COST)

since K,

K=
p(R ± pcosi))

The extended Gaussian image of a torus has singularities at
the poles. These correspond to the two rings on which the
torus would rest if it were dropped onto a plane. All of the
points on one of these rings have the same surface orienta-
tion.

We can think of the Gaussian sphere as covered by two
sheets of a Riemann surface, one corresponding to the
inner half of the torus, closer to its axis of symmetry, the
other corresponding to the outer half. The two sheets are
connected to one another at the poles, branch points corre-
sponding to the two rings mentioned above. There the
Gaussian curvature changes sign.

We may also note at this point that all tori with the same
surface area, (4w2p/?), have the same extended Gaussian
image.

D. The Unique Convex Object with G(^,i;) = 2secl}(*)

While all tori with surface area 47r2 have the same ex-
tended Gaussian image

C(^,i})=2sec^

there is only one convex object which has that extended
Gaussian image. It is a solid of revolution since G(^,i)) is
independent of ^. So we have on the one hand

^=1/2 cos •»}

and on the other hand
KGCOSIK=

so that

"G = r/1.

_d_
dz

A-c!
dz 4

or

r 2 + c 2

/1+,2 4

where c2 is a constant of integration. We now have reduced
the problem to a nonlinear first-order differential equation
for r in terms of z. If the object is to be convex and smooth
at its poles, we expect r, -> oo as r -> 0. Thus c = 0. Next
note that the term on the left equals COST). So we also have

cos T)=^

or, using an earlier expression for K(;,

This is an implicit equation for the curve of least energy
[35]! The curve of least energy is the curve which minimizes
the integral of the square of the curvature KQ. It can be
solved for z in terms of r to yield

z= v^[2f( cos-1 (r/2),1/72) -/-(cos-1 (r/2),1/^/2)]

where E and F are incomplete elliptic integrals. If we let 5
be the arc length along the curve we can also write the
solution in Whewell form

5 = /^(cos-t^cosit.l/v^)

or Cesaro form

^^/-(cos-^-Kc),!/^).

The length of the curve from the pole to the equator is

V^(1/^2) = /2^(sin(^/4)) = r——^

where K is the complete elliptic integral of the first kind,
and r is the gamma function [24]. The height from equator
to the pole is

The equation states that the curvature of the generating
curves varies linearly with the distance from the axis of
rotation. This deceptively simple equation represents a non-
linear second-order differential equation for r in terms of z
since

(1 - ̂ /1

so that

r^-^^^r-

3/2(2^)
W-

r(i/4/
while the maximum radius is

H= 2.

The minimum radius of curvature equals one, so that a
circle tangent at the outermost point is also tangent at the
origin [35]. This circle, when rotated about the vertical axis,
produces a torus with the same extended Gaussian image
(Fig. 25). Both objects have total surface area 4w2.
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Fig. 25. The unique convex object with the same extended Gaussian image as a torus has
an interesting shape. It is a solid of revolution whose generating curve is the curve of least
energy. This is the shape which a uniform bar constrained to pass through two points in
space with given orientation will adopt.

VII. GAUSSIAN CURVATURE IN THE GENERAL CASE

When the object is not a solid of revolution we need to
work a little harder to obtain the Gaussian curvature. Let
x == x(u, v), y = y(u, v), and z = z(u, v) be parametric equa-
tions for points on a given surface. Let r= (x,y,z)7 be a
vector to a point on the surface. Then

3r . Br
TU = "a- ^d ''„ = -T-" 9u • 9v

are two tangents to the surface, as already noted earlier.
The cross-product of these two vectors

n= r^x fy

will be perpendicular to the local tangent plane (Fig. 14).
The length of this normal vector squared equals

n2 = n • n = (r^ • /J(r^ • rj -(r^ • rj2

since (a X b) • (c X d) = (a • c)(b • d) - (a • d)(b • c). A
unit vector ft = n/n can be computed using this result.

A. Caussian Curvature from Variation in Normals^

The Gaussian curvature is the limit of the ratio of the area
of a patch on the Caussian sphere to the area of the
corresponding patch on the surface, as the area shrinks to
zero. Consider an infinitesimal triangle formed by the three
points on the surface corresponding to (u, v), (u + Su, v),
and (u, v + 8v). The lengths of two sides of this triangle are

|rj5u and |rJ8i/

while the sine of the angle between these sides equals
\r,. X r,,|

ft, f t + f t J S u , and ft + ft^Sv

if we ignore terms of higher order in 8u and 8v. Here ft^
and fty are the partial derivatives of ft with respect to u and
v. Note that ft^ and riy are perpendicular to ft. The area of
the patch on the Caussian sphere equals the magnitude of

^(ft,X^)8u8v

by reasoning similar to that used in determining the area of
the original patch on the given surface. We need to find ft^
and ft^ to compute this area. Now

9 n ̂  nn^- nn^
" 9u n n2 '

From n2 = n • n we get
nn,, = n • n,,

so that

(n- n)n^ -(n- njn (nxn jxn
ft,,=

and
( n • n) f»y -(n • njn _ (n X r»y) X n

3 ~ ~3n" n

since (a X b) X c = (a • c)b - (b • c)a. Then

^ X ̂  = ".[(" • ")("o X "J +(" • "u)("v X ")n"

+(n-0(nxnj]

or

so that an outward normal with size equal to the area of the
triangle is given by since

'^'^—["'vJ"

^Xr^SuSv. -n8u8v.

To determine the area of the corresponding triangular patch
on the Gaussian sphere we need to find the unit surface
normals at the three points. The unit surface normals will
be

[abc]p = (a • p)(b X c ) + ( b - p)(c X a)
+ ( c - p ) ( a x b )

where [abc] = (a X b) • c.
This shows that the patch on the Gaussian sphere has the

same orientation as the patch on the surface, as it should.
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An outward pointing normal of size equal to the area is
given by

-^[nn^nJnSuSv.

The ratio of the two areas, the Gaussian curvature, is then
just

., [""u"JK=

and

or

N = r, • n^

L u v uu\L =•

M =

/ E C - F2

L u v uvl

Now and

N= [ Wvv]

so that

so that [24]

and
K =

L N - A/)2

E C - F 2

Now using

(a x b) x(c x d) = [abd}c ~[abc]d
or

(a X b) x(c X d) = [ acd} b - [ bed] a
we get

"„ X "v = - [ ̂ u'v'vv] 'V + [ ̂ u^y] 'u - [ ̂ d Iv

L u uv v\ uv I u uv vv\ u

so that

[nn^nj = n •(n^ X /»„) = [r,,r^J[^r^J -[r^r^]2

and finally

[^UlWvJ -k^U2

K x ll4
/C==

This result can be used to derive the expression for curva-
ture of a solid of revolution in a more rigorous fashion.

8. Fundamental Forms of a Surface^

Let, as before,
. r ^ X r ,
n = "———"

be the unit surface normal vector. The first fundamental
form of a surface gives the square of the element of
distance as [24]

ds1 = |c/r|2 = E( u, v) du1 + 2f( u, v) du dv + C( u, v) dv2.

The second fundamental form of a surface gives the normal
curvature using the equation [24]

- d r - dft= L(u,v)du2 + 2M(u, v)dudv + N(u, v) dv1.

The coefficients can be expressed in terms of derivatives of
r as follows:

f = ̂  • ^

F = fu • 1'v

and

C = r, • r

and

Finally, if the surface is given as z(x,y), the above reduces
to the familiar

/<•=
(1 + ̂  + ̂  '

C. Application of the General Formula to the Ellipsoid^

In the case of the ellipsoid we have, as discussed before

r= (acos0cos^,bsin6cos4>,csin<f>)

ry = ( — a sin 0 cos <j>, b cos 6 cos ip, 0)

r^, = (-acos(?sin<(), -bsin(?sin<(>,ccos<(>)

and

fss = (-acos6cos<(>, -bsinffcos^.O)7

r^ = (asinffsin<(>, -bcosffs in^.O)7^

,̂4, = (—acos^cos<f>, —bsin^cos<(>, —csin<^) .

A surface normal can be found by taking cross-products

n = ry X r^ = ( be cos ff cos <j>, casino cos <j>,abs\n^>) cos<f>

and the coefficients of the first fundamental form are

f= r « - ie= (a^in2^ + b2 cos2 0) cos2 <t>

F = fff • r^ = (a2 + b2) sin0cos(?sin<f>cos<()

c = ̂  • ^ = (a2 cos2 9 + b2sin2(?)sin2(() + c2cos2(f>.

Hence

EC- F2 = [(bccos^cos<?>)2

+( casino cos <f>)2 -(-(absinif))2] cos2^.

To compute the coefficients of the second fundamental
form we need

{^^99} = " • '99= -abccos3^

k^J = "• r^=0

[^^r^} = " • ^o, = -abccos^

L = 'u • ̂
M = r, • < = r, • rt,

and so

['•e^} -k^]2 = (abccos2^)2.
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Finally then

^-^(afoccos^)2

fC- ^

and

LN- M2

EC- F2
K

abc
(bccosffcos<j>)1 +( cas\n0 cos <j>)2 +(absin<j>)2

This result was used earlier in the discussion of the ex-
tended Gaussian image of the ellipsoid.

VIII. SUMMARY AND CONCLUSIONS

We have defined the extended Gaussian image, dis-
cussed its properties, and given examples. Methods for
determining the extended Caussian images of polyhedra,
solids of revolution, and smoothly curved objects in general
were shown. The orientation histogram, a discrete ap-
proximation of the extended Gaussian image, was described
along with a variety of ways of tesselating the sphere.
Machine vision methods for obtaining the surface orienta-
tion information required to build an orientation histogram
are discussed elsewhere [1], [3]-[8]. Extended Gaussian
images based on object models can be matched with those
derived from experimental data. The application of ex-
tended Gaussian images to object recognition and, more
importantly, to finding the attitude in space of an object,
are discussed in a recent article [17].
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