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Abstract. In the course of designing an integrated system for locating the focus of expansion (FOE) from a
sequence of images taken while a camera is translating, a variety of direct motion vision algorithms based on image
brightness gradients have been studied (McQuirk, 1991, 1996b). The location of the FOE is the intersection of the
translation vector of the camera with the image plane, and hence gives the direction of camera motion. This paper
describes two approaches that appeared promising for analog very large scale integrated (VLSI) circuit implementa-
tion. In particular, two algorithms based on these approaches are compared with respect to bias, robustness to noise,
and suitability for realization in analog VLSI. From these results, one algorithm was chosen for implementation.
This paper also briefly discuss the real-time analog CMOS/CCD VLSI architecture realized in the FOE chip.
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1. Introduction

In recent years, some attention has been given to the
potential use of custom analog VLSI chips for early vi-
sion processing problems such as optical flow (Tanner
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and Mead, 1986), smoothing and segmentation (Yang
and Chiang, 1990; Keast and Sodini, 1993) orientation
(Standley, 1991), depth from stereo (Hakkarainen and
Lee, 1993), edge detection (Dron, 1993) and alignment
(Umminger and Sodini, 1995). The key features of
early vision tasks such as these are that they involve per-
forming simple, low-accuracy operations at each pixel
in an image or pair of images, typically resulting in a
low-level description of a scene useful for higher level
vision. This type of processing is often well suited to
implementation in analog VLSI, resulting in compact,
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high speed, and low power solutions. Through a close
coupling of processing circuitry with image sensors,
these chips can exploit the inherent parallelism often
exhibited by early vision algorithms, allowing for an
efficient match between form and function. This paper
details some of the algorithms as well as the analog
VLSI implementation developed in the application of
this focal-plane processing approach to the early vision
task of passive navigation.

An important goal of motion vision is to estimate
the 3D motion of a camera based only on the mea-
sured time-varying images. Traditionally, there have
been two basic approaches to this problem. In feature-
based methods, an estimate of motion and scene struc-
ture is found by establishing the correspondence of
prominent features such as edges, lines, etc., in an im-
age sequence (Jain, 1983; Dron, 1993). In motion field-
based methods, the optical flow (Horn and Schunk,
1981) is used to approximate the projection of the three-
dimensional motion vectors onto the image plane and
from this an estimate of camera motion and scene depth
can be found (Bruss and Horn, 1983). Both the opti-
cal flow calculation and the correspondence problem
have proven to be difficult in terms of reliability and,
more importantly, implementation. In keeping with
our paradigm of local, low-level, parallel computation,
we have explored methods which directly utilize image
brightness information to recover motion (Horn, 1990;
McQuirk, 1991).

The introduction of the focus of expansion (FOE)
for the case of pure translation simplifies the general
motion problem substantially. The FOE is the inter-
section of the translation vector of the camera with the
image plane. This is the image point towards which
the camera is moving, as shown pictorially in Fig. 1.
With a positive component of velocity along the optic
axis, image features will appear to move away from the
FOE and expand, with those closer to the FOE mov-
ing slowly and those further away moving more rapidly.
Through knowledge of the camera parameters, the FOE
gives the direction of 3D camera translation. Once the
location of the FOE has been ascertained, we can es-
timate distances to points in the scene being imaged.
While there is an ambiguity in scale, it is possible to
calculate the ratio of distance to speed. This allows
one to determine the time-to-impact between the cam-
era and objects in the scene. Applications for such a
device include the control of moving vehicles, systems
warning of imminent collision, obstacle avoidance in
mobile robotics, and aids for the blind.

Figure I . Illustration of the passive navigation scenario, showing
the definition of the focus of expansion as the intersection in the
camera frame of reference of the camera velocity vector with the
image plane.

A variety of direct methods for estimating the FOE
were explored for implementation in analog VLSI; two
of the more promising algorithms considered are pre-
sented in this paper. We chose one for actual realiza-
tion in an integrated system and the architecture used
for this FOE chip will also be described.

2. The Brightness-Change Constraint Equation

The brightness-change constraint equation (BCCE)
forms the foundation of various algorithms for rigid
body motion vision (Negahdaripour and Horn, 1987a;
Horn and Weldon, 1988) and is also the basis for
the variants that we have explored for potential im-
plementation in analog VLSI. This equation relates
the observed brightness gradients in the image with
the motion of the camera and the depth map of the
scene. It is derived from the three basic assumpt-
ions:

• A pin-hole model of image formation.
• Rigid body motion in a fixed environment.
• Instantaneously constant scene brightness.

We proceed by formalizing each assumption in turn.
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Figure 2. Viewer-centered coordinate system and perspective pro-
jection.

and rotational velocity us = (a^., a>y, &>;)7', the motion
of a world point R relative to the camera satisfies:

dK.
~dt

= -t - (w x R) (4)

Instantaneously Constant Scene Brightness

A common method used to relate the apparent motion
of image points to the measured brightness E ( x , y ) is
through the constant brightness assumption. We as-
sume that the brightness of a surface patch remains
constant as the camera moves, implying that the total
derivative of brightness is zero:

A Pin-Hole Model of Image Formation

Following (Bruss and Horn, 1983; Negahdaripour and
Horn, 1987a; Horn and Weldon, 1988), a viewer-based
coordinate system with a pin-hole model of image
formation is adopted as depicted in Fig. 2. A world
point

R = (X, Y, Z)7

is mapped to an image point

r ^ ( x . y , f ) T

(1)

(2)

dE
~dt

dr
~dt

(5)

\ •/'

= E, + V£

8E "()E ()E
, 9 x ' ().y

E,=—, V£=(£,,£,,,0)7 '
of

In practice, the constant brightness assumption has
been shown to be valid for a large class of image se-
quences (Horn and Schunk, 1981).

By differentiating the perspective change equation
and substituting both the rigid body and constant
brightness assumptions, we find the general brightness-
change constraint equation (BCCE) for both translation
and rotation:

v • a; s • t
E, + —— + o— = 0

/ R z (6)

using a ray passing through the center of projection
placed at the origin of the coordinate system. The im-
age plane Z = f , where / is the principal distance, is
positioned in front of the center of projection for con-
venience. The optic axis is the perpendicular from the
center of projection to the image plane and is parallel
to the Z-axis. The x- and y-axes of the image plane are
also parallel to the X - and V-axes and emanate from
the principal point (0, 0, /) in the image plane.

The world point R and the image point r are geome-
trically related by the perspective projection equation
(Horn, 1986):

The s and v vectors are strictly properties of the image
brightness gradients along with the x and y position in
the image:

- f E ,
- f E ,

x E x + v£y
s =

^ + f 2 E , + y ( x £,+>•£„) '
- f 2 E , - x ( x E , + y E , )

f ( y E , - x E , )
(7)

R
(3)R z

Rigid Body Motion in a Fixed Environment

Assuming that the camera moves relative to a fixed
environment with translational velocity t = fc, ?y, r;)^

In order to investigate the case for translation only,
we set the camera rotation w to zero and define the
FOE, ro, as the intersection of the translational veloc-
ity vector t with the image plane. Using the perspec-
tive projection equation, we find:

_/1
t z

i-o = (xo, vo, /) = (8)
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Simplifying the constraint equation in this case re-
sults in:

£,+^(V£.( r - ro) )=0 (9)

and rewriting this gives our final result for the BCCE
under translation only:

r E , + ( x - xo) E, + (y - yo) E, =0 (10)

The time-to-impact T = Z/?; is the ratio of the depth to
the velocity parallel to the optic axis. This is a measure
of the time until the plane parallel to the image plane
and passing through the center of projection intersects
the corresponding world point. The time-to-collision
of the camera is the time-to-impact at the focus of ex-
pansion.

Examining Eq. (10), we note that the time-to-impact
r is a function of x and v, while the FOE is a
global parameter. Given a time-to-impact map or as-
suming a special form of scene geometry such as a
plane (Negahdaripour and Horn, 1986), the problem
is overdetermined and we can recover the FOE using
a least-squares minimization approach. However, we
were interested in the more general case where the time-
to-impact map and the motion are both unknown. In
this situation, the problem is underdetermined and a
more creative method must be found.

3. Two Algorithms Suitable for Analog VLSI

The paramount consideration that we used when ex-
amining algorithms for estimating the FOE was the
feasibility of implementing them in analog VLSI. Ad-
hering to the focal-plane processing approach in the
analog domain necessitates algorithms which use low-
level computations operating locally and in parallel on
image brightness. Furthermore, in order to enhance the
likelihood of actual implementation, any algorithm we
propose must be exceedingly simple. The BCCE gives
a useful low-level relationship between the location of
the focus of expansion in the image plane and the ob-
served variation of image brightness, and we would
like to exploit this to estimate the FOE. Unfortunately,
this relation also includes the unknown time-to-impact
T . In order to still use the BCCE without explicit knowl-
edge of T , two approaches were proposed. In the first
approach, image points where the time variation of
the brightness, Ei, is zero are identified. Ideally, the
FOE would be at the intersection of the tangents to the
iso-brightness contours at these so-called "stationary"

points. In the second approach, the observation is made
that when given an incorrect estimate of the location
of the FOE, solving the BCCE for r gives rise to depth
estimates with incorrect sign. However, depth is pos-
itive and thus an estimate for the FOE can be found
which minimizes the number of negative depth values.

3.1. The Stationary-Points Algorithm

Image points where E, = 0 provide important con-
straints on the direction of translation; they are referred
to as stationary points (Horn and Weldon, 1988). With
E, = 0, the first term of the BCCE drops out and the
constraint at the stationary points becomes one of or-
thogonality between the measured s and the translation
vector t:

s • t = 0

Previous approaches utilized these special constraints
to estimate t directly as opposed to finding the FOE.
A least-squares minimization sum over the stationary
points can be formed with an additional term utilizing
a Lagrange multiplier to insure that the magnitude oft
is normalized to unity. This normalization is necessary
in order to account for the inherent scale factor ambi-
guity in t. The solution to this minimization problem is
itself an eigenvector/eigenvalue problem: the estimate
for t which minimizes the sum is the eigenvector cor-
responding to the smallest eigenvalue (Negahdaripour
and Horn, 1987a; Horn and Weldon, 1988). Calcula-
tion of eigenvectors and eigenvalues in analog hard-
ware is possible, but difficult (Horn, 1990).

To find a solution more amenable to implementation,
we can instead perform a similar minimization now in
terms of the FOE, and this leads to a simple linear prob-
lem. The constraint at each stationary point becomes
a line:

V£ . (r - ro) = (x - ,to)£, + (v - yo)E,. = 0

Figure 3 demonstrates the simple geometry of a sta-
tionary point. For illustrative purposes, we have con-
structed a Mondrian image consisting of a dark circular
disk on a white background. As such, the image bright-
ness gradient V£ points everywhere outward from the
disk. A stationary point occurs on the disk when the
brightness gradient is perpendicular to the vector em-
anating from the FOE. The focus is located at the in-
tersection of the tangents to the brightness gradient at
these points.
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Figure 3. An illustration of the simple geometry in the image plane
associated with stationary points using a Mondrian image consisting
of a dark disk. The FOE is located at the intersection of the tangents
at the stationary points.

Of course, in a real image these tangent lines will
not precisely intersect. In such a case, we can then
find a solution by minimizing the sum of the squares of
the perpendicular distances from i-o to these constraint
lines, weighted by the norm of the brightness gradient
||V£||:

min^W(£',)(V£.(r-ro))2 (12)
" re/

Here the sum is over the entire image / and a weighting
function W(E,) is used to allow only the contributions
of those constraints that are considered to correspond to
stationary points. Clearly, W(-) is constructed to weigh
information more heavily at image points where E, %
0. The additional weighting by the brightness gradient
magnitude is useful, because both noise and distortion
reduce our confidence in the direction of V£ when
[|V£|| is small.

The solution ro to this quadratic minimization prob-
lem satisfies the matrix equation:

^W(£,)(V£V£7') ro
re/

= ̂  W^KVfVf^r (13)
re/

Note that if the direction of the brightness gradient
at the stationary points is uniformly distributed, then
the condition number of the matrix premultiplying ro

is near unity and hence the solution of the matrix equa-
tion well-behaved.

It is important to observe that the actual functional
form of the weighting with E, is not essential, as long as
the weight is small for large E, and large for small E,.
Thus, in practice we are able to use a simple function
such as a cutoff on the absolute value of E,:

if|£,| < i]
otherwiseW ( E , , I ] ) = (14)

where the width of the function is set by the parame-
ter f ] .

Posing the problem in terms of the FOE leads to
a simple linear equation and it is this which is quite
appealing for realization in analog VLSI. However, a
drawback to this approach is that our estimate of the
FOE relies on information garnered from the station-
ary points, and these points usually form a small subset
of the overall image. The small number of points con-
tributing to the solution as well as the selection of these
points via the weighting function raises the question of
noise immunity.

It is also important to note that the algorithm can fail
if the range of r is too large. The conflict here is in dif-
ferentiating between stationary points which constrain
the location of the FOE and stationary points due to
distant backgrounds which do not. For example, all
points along a horizon in the image have Z -^ oo re-
sulting in E, w 0 even though they need not satisfy
V£ • (r - ro) = 0. In such a situation, the solution will
be strongly biased by these points, all of which will be
selected by the weighting function to contribute to the
solution. This difficulty, which is characteristic of all
methods utilizing information obtained from stationary
points, can certainly be alleviated using more sophis-
ticated processing. However, this kind of higher-level
understanding is outside our single-chip analog VLSI
framework, and hence was eliminated from considera-
tion.

3.2. The Depth-is-Positive Algorithm

The depth-is-positive approach was formulated in an
attempt to address the problems associated with the
stationary-points algorithm. This method for estimat-
ing the FOE is based on the idea that the depth cal-
culated from the BCCE with the correct location of
the FOE should be positive (Negahdaripour and Horn,
1987b). Since the BCCE only involves the ratio of
depth to forward velocity, there is an overall sign
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Figure 4. An illustration of the constraint provided by imposing
positive depth at an image point. The tangent to the image brightness
divides the image plane into permissible and forbidden half-planes.

ambiguity since this velocity can be either positive
or negative and in the latter case the focus of expan-
sion would become a focus of constriction. However,
if we assume a priori that we have forward motion then
we can require that the estimated T found by solving
the BCCE be positive:

sign(r) = sign(£',V£' • (ro - r)) > 0

Returning to our simple Mondrian image. Fig. 4 il-
lustrates the constraint line found by imposing positive
depth. For each image point, the tangent to the bright-
ness gradient can be drawn. If the FOE estimate is
placed on one side of this line, T will evaluate positive,
while on the other side it will evaluate negative. Hence,
each image point constrains the FOE to lie in a permis-
sible half-plane and the true FOE must therefore lie in
the region formed by the intersection of all the permis-
sible half-planes of the points in the image. Each con-
straint provided by imposing positive depth is weaker
than that provided by a stationary point. However, the
depth-is-positive constraint applies at all image points
with nonzero brightness gradient V£, not just a se-
lect few where E, = 0, and this observation holds out
the possibility that our solution can potentially rely on
substantially more points and may be more robust as a
consequence.

To cast the depth-is-positive constraint in terms of a
minimization problem, we can formulate an error sum

(15)

using only the sign of the calculated depth.

min^M(-T(ro))
r" r^

=min^M(£ ,V£ . ( r - ro ) )= mm
ro re/

where u(t) is the unit step function. The solution to
this problem attempts to find the location of the FOE
that minimizes the number of image points which give
negative depth values. This is a difficult problem to
solve since the sum is not convex. To ameliorate this
difficulty, we can attempt to include some convexity
in addition to the sign information in the minimization
sum. To motivate the form of this sum, we can make
the following observation. If we use an incorrect value
for the FOE of i-y and solve for the resulting T' given
by the BCCE, we find that:

T_^ V£ • (r - r;,)
T - V £ - (r-ro)'

(16)

Hence, not only can we get negative depth values for
an incorrect FOE location, but they can also be large in
magnitude. Thus it seems reasonable to augment the
error sum ofEq. (15) to:

nmy^f^ro))2^-'!-^)))
rl) reT

mm

= min V(V£ . (r - i-o))2 u (£,V£ . (r - ro)),
r" ~~1

re/
(17)

where not only do we attempt to minimize the number
of negative depth values, but we also attempt to mini-
mize their magnitudes as well. The explicit weighting
with E, in the left-hand side of Eq. (17) is intended
to enhance noise robustness, since we naturally have a
higher confidence in our measurements if E, is large.
However, for the case of a distant background, non-
idealities such as camera noise will give small nonzero
values of E, for many pixels where in principle E, = 0
and a substantial fraction of these will introduce erro-
neous terms into the right-hand side of Eq. (17). The
conflict here is that in the low-noise case we especially
value constraints from points where E, = 0 as is evi-
denced by the stationary-points algorithm itself, but in
the high-noise case small values of measured E, may
come from the distant background and give negative
depth values inappropriately.

Note the partial similarity in form between the
stationary points Eq. (12) and the depth-is-positive
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Eq. (17). Clearly, any even power in this sum would
suffice to give the desired convexity. Hence, the choice
of a quadratic is rather arbitrary and in fact is motivated
solely by its simplicity, a necessary feature from our
implementation standpoint.

To see that the sum in Eq. (17) is convex, recall that
the sum of convex functions is itself a convex func-
tion (Fleming, 1965). Each term in (17) consists of the
product of a rank-1 quadratic form on the plane and a
function which takes the two values zero and unity, with
the transition between zero and unity occurring along
the line where the quadratic form vanishes. Thus, the
graph of each term vanishes on the half-plane (or ev-
erywhere for the special case E, = 0) and is quadratic
on the other half-plane. Each term is therefore con-
vex (though not strictly convex) and thus the sum must
be as well. Note that each term is also continuously
differentiable, and thus the sum is also continuously
differentiable.

Though each term is not strictly convex, the sum usu-
ally is. To see this note that the sum of a set of scalar
functions with positive semidefinite Hessian matrices is
a function with a Hessian matrix which is positive def-
inite everywhere except at points where some nonzero

vectors lie in the null space of the Hessian matrix of
every term in the sum, generally a sparse or empty set
of points.

Since the minimization sum is convex, any local
minimum is a global minimum. Of course, the final
estimate for the location of the FOE must be found it-
eratively, as there is no closed-form solution. This is
not necessarily a drawback since a system implement-
ing this minimization can utilize an iterative feedback
loop to find the solution.

3.3. Algorithm Performance

In order to compare the performance of our two ap-
proaches, we took raw image data during a motion tran-
sient and processed it with each algorithm. Figure 5
shows a sample series of images taken from the 64 x 64
embedded imager on the FOE chip during a motion
transient. A simple scene consisting of a grid of black
disks on a white background was constructed, result-
ing in Mondrian-like images such as the ones that we
have described. Camera motion was always forward
towards the target with the orientation of the camera

Figure 5. A sample motion sequence with the FOE placed in the upper-left hand comer as indicated by the cross. Starting at the top-left, the
sequence in the figure proceeds from left to right.
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viewing direction relative to the motion set precisely
via rotation stages. This allowed the placement of the
FOE anywhere inside the field of view.

Of course, the mapping from the 3D motion pro-
duced in the lab and the resulting location of the FOE
requires explicit knowledge of the camera parame-
ters, most notably the location of the principal point
in the image plane as well as the principal distance.
These were obtained using an internal camera calibra-
tion technique based on rotation (Stein, 1993). Under
pure rotation, the position of a point in the image after
rotation depends only on the camera parameters and the
location of the point in the image before rotation. In
order to estimate these parameters, a series of images
for various rotations of the camera about two indepen-
dent axes were taken. Feature detection to locate the
centers of the disks in the images was performed and
the resulting correspondences from unrotated to rotated
images noted. This correspondence information was
then fed to the nonlinear optimization code of (Stein,
1993) which estimates the principal distance /, the lo-
cation of the optic axis (cy, c\), as well as the radial

Table 1. Summary of FOE chip cam-
era calibration parameters.

Imaging parameter Calibrated value

79.86 pixels
31.33 pixels
33.39 pixels

5.96E-5/pixel2

1.03E-8/pixel4

0.86'

K^
Ki

distortion parameters (A'| , K^) and the axes of rotation
used. Table 1 shows typical calibration parameters for
the FOE chip found using this method.

With these parameters, we can predict the location
of the FOE in the image plane. A series of experiments
was performed wherein the FOE was placed in a grid
across the image plane and 24 frames of raw image
data were acquired during each of the associated mo-
tion transients. Figure 6 shows the results of both the
stationary-points algorithm and the depth-is-positive
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Figure 6. Algorithmic results using real image data. The actual FOE was strobed over the image plane; its position is indicated by 'x'. The
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algorithm. First centered differencing was used to es-
timate the brightness gradients E^, E y , and E,. Of
course, because we have Mondrian images the regions
where the brightness gradient V£ is nonzero naturally
occur only on the boundary of the disks in the image. In
fact, the majority of the image has gradients near zero,
and in order to prevent these from strongly biasing the
solution, a threshold on the image brightness gradient
E^ + E2 was used in practice to segment these out of
the computation.

For estimating the location of the FOE using the
stationary-points algorithm, the solution of Eq. (13)
obtained by matrix inversion was utilized and for es-
timation using the depth-is-positive algorithm, an iter-
ative Newton's method was employed. The locations
predicted by the calibration are denoted by ' x' , while
the mean locations of the FOE estimate over the image
sequences found using the stationary-points algorithm
are shown as 'o' and the depth-is-positive algorithm are
shown as '+'. Both techniques produce good results
near the optic axis. However, as the location of the FOE
nears the image boundary, the error in the estimation
increases dramatically. A variety of effects come into
play when the FOE is near the image boundary, typ-
ically resulting in a deviation of the estimate towards
center.

In the stationary-points algorithm, the simple con-
stant threshold of the weighting function biases the so-
lution to favor constraint lines due to stationary points
near the FOE. The purpose of this function is to select
pixels about each stationary point to contribute to the
solution and hence these pixels form bands about the
stationary points in the image. In general, the overall
range of the time derivative E/ increases the further
away from the FOE a feature is. However, E, is still

zero when V£ • (r — i-o) = 0. Thus, E, must go
through zero more rapidly for the more distant station-
ary points. This effect is further exacerbated by the
forshortening of image features away from the FOE.
As a result, the cutoff function selects fewer points for
inclusion in a band the further away from the FOE its
corresponding stationary point is. Hence, bands nearby
the FOE have more pixels contributing to the error sum
than bands further away, and thus are effectively given
more weight.

Noise will alter the directions of the measured im-
age gradient and this angular error results in a rotation
of the constraint line. For a given angular error in the
gradient, the further away from the FOE the stationary
point is, the larger the resulting distance between the
FOE and the constraint line. Hence, the constraint in-
formation provided by distant stationary points is more
noise sensitive than that given by nearby ones, and so
the increased weighting of constraints from nearby sta-
tionary points is in fact a desirable effect.

The most significant contribution to the observed
bias in the stationary-points algorithm is due to these
bands. Each stationary point by itself should only pro-
vide a 1 D constraint. However, inclusion of points in a
band about a stationary point augments this constraint.
Figure 7 shows the simple geometry of a band about
the stationary point.

Overall, we would ideally like each band to behave
as a single constraint line given by its stationary point;
only distance perpendicular to this line would con-
tribute to the error sum. However, each point in the
band provides a constraint line and clearly the least-
squares solution, when we neglect the contributions of
the other bands in the image, falls inside the region
bounded by the band itself and the constraint lines

Band around
Stationary

Point

Figure 7. Simple geometry of a band about a stationary point.
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provided by the points at the band edges. In effect,
each band not only penalizes perpendicular distance
to the effective constraint line as desired, but also
the distance away from the stationary point along the
constraint line. In practice, the image data had bands
placed evenly about the center of the image, and so
the attraction of the bands tended to cancel when the
FOE was near the center. When the FOE is placed away
from the center, the bands are no longer evenly placed
around the FOE due to the finite extent of the image
and their combined attraction draws the solution to-
wards the center.

The depth-is-positive algorithm also displays band-
like structure. The original conception of this approach
was to rely on data away from the stationary points to
form a solution in order to enhance robustness with
respect to noise and distant backgrounds. This turns
out to not be the case, as stationary points are indeed
crucial to the depth-is-positive algorithm as well. If we
use a test location rj, for the FOE which is different
than the true location and observe for what r negative
depth values actually occur, we find that they cluster
about the stationary points in bands as shown in Fig. 8.
As the test location approaches that of the actual FOE,
the widths of these bands shrink about the stationary
points. In practice, as the noise power in the image
increases, so does the effective size of the bands and
hence the overall bias.

We would like to make a quantitative comparison
of the performance of the two approaches in order to
choose one for implementation. From a circuit design
standpoint and given the architecture chosen for the

Stationary
Point

Negative ̂
Depth

Region

Figure 8. When a test FOE differing from the true FOE is used to
calculate T, the resulting negative depth values are clustered around
the stationary points.

FOE chip, the complexity in terms of transistor count
for the two methods turned out to be roughly the same,
and thus was insufficient to choose one or the other
for realization in hardware. Comparing the two algo-
rithms solely using the data of Fig. 6 can be misleading.
For the stationary-points algorithm, larger widths in
the weighting function lead to more data contributing
to the overall solution and hence increased robustness.
On the other hand, we have seen that the bands selected
around the stationary points by the weighting function
with larger widths lead to more bias. Thus the selec-
tion of the width of the function embodies a tradeoff
between robustness and accuracy. In order to examine
this tradeoff more quantitatively, synthetic images were
generated which closely match the measured ones so
that we could explicitly corrupt the images E with ad-
ditive white Gaussian noise n to get the resulting noisy
images E':

E ' = E + n (18)

We define the signal-to-noise ratio SNR as

( 2\

SNR=101ogn, ^ (19)
ff'2/

where we have used the sample variance. The perfor-
mance metric we constructed for purposes of com-
parison penalizes both bias in the solution as well as
degradation due to noise. In practice, we summed the
squared error between the predicted location found by
the calibration technique and the mean location found
by each algorithm along with the noise variance in the
solution. Since the bias is spatially dependent, we av-
eraged the results over the 81 locations in the image
plane of the FOE used in our experiments, resulting
in an overall metric 8 intended to quantify algorithm
performance:

5- gTEDi'-o-'oii'+O (20)
V I1'!))

For the stationary-points algorithm, S is obviously
a function of both the signal-to-noise ratio and the
weighting function width r f . However, S shows a
marked minimum with respect to i], and hence we can
find the optimal width to use in practice. Figure 9 shows
8 for the depth-is-positive algorithm and the optimal 8
for the stationary-points algorithm, both as a function
of SNR.
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Figure 9. Algorithmic results using synthetic image data comparing the performance of the stationary-points algorithm ( x ) versus the depth-
is-positive algorithm (+).

One important feature that one should note from
these two curves is that S does not go to zero even
in the limit of noise-free image data. The reason
for this is two-fold. Bias always remains, especially
with the FOE near the image edge, even in the ab-
sence of noise. Furthermore, the imaging and finite-
differencing process itself results in a variation in the
estimated image gradient directions during a motion
transient. The contribution due to this variation is al-
ways present, and can be thought of as an equivalent
"noise" source.

For large signal-to-noise ratios, the optimal
stationary-point behavior is slightly better than depth-
is-positive, while for small signal-to-noise ratios the
converse is true. Overall, the curves appear markedly
similar, and do not in and of themselves provide a
definitive means for choosing one algorithm over the
other for implementation. However, due to the flexi-
bility in explicitly setting the accuracy versus noise ro-
bustness tradeoff and because typical SNRs observed
from the FOE chip were in the 40 dB range, the
stationary-points algorithm was chosen for implem-
entation.

4. The FOE Chip

Having chosen the stationary-points algorithm for im-
plementation, one could design a system to calculate
the individual elements of the 2 x 2 linear system of
Eq. (13) and solve for the location of the FOE off-chip
by matrix inversion. This would require the on-chip
calculation of five complex quantities over the entire
image and this makes such an approach prohibitively
expensive. Instead, we can design a system to estimate
the location of the FOE using a feedback technique such
as gradient descent. By using this kind of approach, we
can trade off the complexity of the required circuitry
with the time required to perform the computation.

Given a convex error function f ( a ) of a parameter
vector a = ( a y , . . . , a^-})7, we can minimize / via
the set of differential equations:

^ = -^/(a),dt
where f t is a positive definite matrix. This system of
differential equations will relax to a local minimum of
f ( a ) if one exists.

(21)
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The stationary-points minimization sum ofEq. (12)
is convex. In fact, unless all the V£ terms with nonva-
nishing W are exactly parallel, then the sum is strictly
convex and hence cannot have any local minimum other
than the global minimum. Applying gradient descent
to our particular problem results in:

-ro=|3^W(E,,^1)VEVET(r-ro) (22)
dt re/

To implement this system, one could use the ap-
proach of (Tanner and Mead, 1986) and design a pixel-
parallel chip consisting of an n x n array of analog
processors. With a photo-transistor as the imaging de-
vice, each processor would estimate the brightness gra-
dient in time using a differentiator, and the brightness
gradient in space using finite differencing with adja-
cent pixel processors. Based on these measured image
gradients, the processor at position (x , y ) in the array
would calculate two currents proportional to the term
inside the summation of Eq. (22). Each processor then
injects these currents into global busses for the volt-
ages xo and yo, respectively, thereby accomplishing
the required summation over the entire image. For a
capacitor, the derivative of the voltage is proportional
to the injected current, so if we terminate the busses
with capacitances Cy and C\, we naturally implement
Eq.(22).

The major difficulty with this elegant solution is that
of area. The output currents that the processors cal-
culate require four multiplies in addition to the cut-
off weighting function. Including all of this circuitry
in addition to the photo-transistor creates a very large
pixel processor size and, given the constraints of lim-
ited silicon area, the number of pixels that we would
be able to put on a single chip would be quite small
as a result. The actual number of pixels contributing
to our computation is already small to begin with be-
cause the number of stationary points in the image is
typically only a fraction of the total number of pixels
in the image. A large number of pixels is clearly de-
sirable to enhance the robustness of the computation.
Additionally, a fully parallel implementation would be
inefficient, again because only a small number of pro-
cessors would be contributing at any one time, with the
rest idle.

To increase the number of pixels and make more effi-
cient use of area, the solution that was decided upon was
to multiplex the system using a column-parallel pro-
cessing scheme. Instead of computing the full frame

of terms in our summation in parallel, we calculate a
column of them at a time, and process the column sums
sequentially. Of course, we can no longer use the sim-
ple time derivative in the right-hand side of Eq. (22).
We can instead use a forward difference approximation,
resulting in a simple proportional feedback system:

i-o'̂  = i-o" + h ̂  W(E,, ̂ VEVZ^r - r,',0),
re/

where h is the feedback gain. This system is now
a discrete-time analog system as opposed to the
continuous-time analog system discussed earlier. This
implementation method will allow us to put more pixels
on the chip at the expense of taking longer for the itera-
tion to converge to the desired solution. It is interesting
to note that if we had implemented the depth-is-positive
algorithm instead of the stationary-points algorithm,
then the expression in the sum would merely replace
W ( E , , T]} with u(E,VET(r - i-o)).

For the stationary-points algorithm, the equation that
our system should solve is the 2 x 2 matrix problem:

Ai-o = b (23)

where we have defined

A=^W(E,,r1)VEVET, (24)
re/

b=^W(E,,r1)\'EVETr. (25)
re/

We can rewrite our solution method into the following
form:

r^^+^-Ar^. (26)

This is the Richardson method, the simplest iterative
technique for solving a matrix equation (Varga, 1962).
The transient solution to this equation is:

r;," = A~-lh+(! -hA)' e,, (27)

where A~^b is the desired solution and Co is the initial
error. Clearly, in order for this system to be stable, we
require that the error iterates go to zero. We must there-
fore guarantee that the spectral radius of the iteration
matrix is less than unity. Examining the eigenvalues X'
of the iteration matrix we find that they are related to
the eigenvalues X of the matrix A by

).' = 1 - h X . (28)
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Since A is symmetric and positive semidefinite (typi-
cally definite in practice), we know that the eigenvalues
of A are real and positive. Requiring the spectral radius
of the iteration matrix to be less than unity results in
the following requirement on h for stability

0<h < (29)

Additionally, we can choose the optimal h to mini-
mize the convergence time of the iteration. This hopi
solves:

hopt = argmin(max(|l - h^mu 1-^maxD)h

^min+^max ~ Ere/ W(E" ̂  II v£ II2

At a minimum, we therefore require our system to
calculate three quantities: the matrix residual b — Ai-p",
the weighted squared image gradient ^re/ ^(Ei, r])
||V£||2, and a fourth quantity, ^re/ ^'1' useful in
practice for setting the width n] of the weighting func-
tion (McQuirk, 1991).

The approach that was decided upon to implement
the discrete time system we have described uses charge-
coupled devices (CCDs) as image sensors. If we ex-
pose a CCD to light over a short period of time, it stores
up a charge packet which is linearly proportional to the
incident light during this integration time. Arrays of
CCDs can be manipulated as analog shift registers as
well as imaging devices. This allows us to easily mul-
tiplex a system which uses CCDs. Since we intend to
process image data in the voltage/current domain, we
must convert the image charge to voltage and this can
be done nondestructively through a floating gate am-
plifier. Thus, we can shift our image data out of a CCD
array column-serial and perform our calculations one
column at a time. Instead of n2 computational elements
corresponding to the parallelism of a continuous-time
system, we now only have n. Clearly, we can increase
our pixel resolution significantly and design more ro-
bust circuitry to perform the computations as a result.

The system architecture used in the FOE chip is
shown in Fig. 10. (More explicit circuit data can be
found in (McQuirk, 1997), and a complete discussion
of FOE circuit and system performance can be found in
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(McQuirk, 1996b) which is also available as (McQuirk,
1996a).) It is composed of four main sections: the
CCD imager with storage and an input/output serial
shift register, the array of floating gate amplifiers for
transducing image charge to voltage, the CMOS array
of analog signal processors for computing the required
column sums, and the position encoder providing (x, y )
encoding in voltage to the CMOS array as data is pro-
cessed.

The input/output CCD shift register at the left side of
the block diagram allows us to disable the imager, and
insert off-chip data into the computation. This shift reg-
ister can also clock data out of the CCD imager, letting
us see the images that the system is computing with.
Thus we have four basic testing modes: (i) computer
simulated algorithm on synthetic data, (ii) computer
simulated algorithm on raw image data taken from the
imager, (iii) chip processing of synthetic data input
from off-chip, and (iv) chip processing of raw image
data acquired in the on-chip imager. With these four
testing modes, we can separately evaluate algorithm
performance and system performance.

The function of the interline CCD imager with stor-
age is to acquire the two images in time necessary to
estimate the brightness gradients. The imager is an in-
terline structure which uses exposed photogates to in-
tegrate image charge and covered shift registers to both
store the resulting images and shift them out. Once two
images have been acquired successively in time, we
shift them to the right one column at a time to an array

of floating gate amplifiers. The floating gate amplifiers
transduce the image charges into voltages which are
then applied to the analog signal processors. As in-
put, these processors also require the current estimate
in voltage of the location of the FOE driven in from

(') (0off-chip, r^ ), and the present r = (x, y )(x,
position of the data, provided in voltages by the posi-
tion encoder at the far right of the diagram.

The encoder uses the voltage on a resistive chain to
encode the y position up the array. A CMOS digital
shift register is utilized to select the appropriate x value
over time as columns are processed. A logic 1 is suc-
cessively shifted up the shift register as each column
is processed, enabling a pass transistor which sets x to
the value of voltage on the resistor chain at that stage.
In this manner, x increases in the stair-step fashion nec-
essary as the columns of data are shifted through the
system.

From the image data, the pixel position, and the FOE
estimate, the processors in the array compute the four
desired output currents which are summed up the col-
umn in current and sent off-chip. The block diagram
for the analog processors is shown in Fig. 1 1 .

To estimate the three brightness gradients, eight in-
put voltages representing the 2 x 2 x 2 cube of pixels
needed for the centered differencing are input to the
processor. Four MOS source-coupled pairs are used
to transduce these voltages into differential currents
which are then added and subtracted using current mir-
roring to form the brightness gradients. An absolute
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value circuit computes | E, | and a copy of this signal is
then summed up in current along with all the contribu-
tions of the other processors in the array. The resulting
overall current forms the first main output of the chip,
E.l^l.

Another copy of | E, \ is subtracted from a reference
current /, and injected into a single-ended latch. The
result of this latch is the weighting function decision.
In-line with the brightness gradient currents £,., Ey
are pass-gate switches whose state is controlled by the
weighting decision. If the processor is not to contribute
to the error sum because | E, > i], these gates are turned
off by the output of the latch preventing signal flow to
the rest of the processor and thus enforcing the weight-
ing decision. The weighted brightness gradients are
copied using current mirrors three times—the first is
used for the pair of current-mode squarers needed to
compute the squared gradient magnitude. This signal is
summed up in current along with all the contributions
of the other processors in the array and the resulting
overall current forms the second main output of the
chip,E,,W(£,,^)||V£||2.

The second gradient copy is used by the first layer
of multipliers to compute W(E,, r?)V£ • (r — i-o). The
multipliers used on the FOE chip are all simple MOS
versions of the standard four-quadrant Gilbert bipo-
lar multipliers (Gilbert, 1968). These multipliers have
as input both a differential voltage and a differential
current. The output is a differential current which ap-
proximates a multiplication of the two inputs. The dot
product resulting from the first layer of multipliers is
transduced from differential current to differential volt-
age using an MOS circuit with devices operating in the
triode region. This signal is then used as the voltage
input to a second layer of multipliers whose other in-
put is the third gradient copy. The resulting two final
differential currents are the contribution to the matrix
equation residual for that processor. They are summed
in current along with the contributions from the other
processors in the array, and form the final two outputs
from the chip.

To complete the iterative feedback loop, we sum the
output currents from the column of analog processors
as the image data is shifted out a column at a time
from the imager. Once a whole frame of data has been
accumulated, we use the residual to update the FOE
estimate using the proportional feedback loop. While
this certainly could be done on the chip, this was done
off-chip in DSP for testing flexibility. Due to the dif-
ficulty in re-circulating image data on-chip, we further

acquire new image pairs for each successive iteration of
the feedback loop. Since the locations of the stationary
points in the image move as the camera translates, us-
ing new image pairs at each iteration can be viewed as
producing additional noise for the algorithm to handle.
We could alleviate this problem by moving the imager
off-chip and adding a frame buffer, but the original
architectural goal was a single-chip system.

A series of experiments were performed in which
the FOE was placed in a grid across the image plane.
For testing purposes, image data corresponding to real
motion was generated using a flexible fiber-optic image
guide. One end of the image guide was held fixed over
the chip, while the other end was attached to a carrier
whose position and velocity on a linear track was con-
trolled through a DC motor system. The orientation of
the viewing direction of the image guide relative to the
motion direction of the carrier was precisely set using
two rotation stages, allowing for the positioning of the
FOE anywhere in the image plane. Figure 12 shows
the final results from the FOE chip comparing the mean
output of the proportional feedback loop enclosing the
chip (shown as '*') with the results of the algorithm on
the raw image data (shown as 'o').

5. Summary

This paper discussed the application of integrated ana-
log focal plane processing to realize a real-time system
for estimating the direction of camera motion. The fo-
cus of expansion is the intersection of the camera trans-
lation vector with the image plane and captures this
motion information. Knowing the direction of camera
translation clearly has obvious import for the control of
autonomous vehicles, or in any situation where the rela-
tive motion is unknown. The mathematical framework
for our approach, resulting in a simplified brightness
change constraint equation, was developed. Several
promising algorithms for estimating the FOE based on
this constraint and suitable for analog VLSI were dis-
cussed, including the one chosen for final implementa-
tion. A special-purpose VLSI chip with an embedded
CCD imager and column-parallel analog signal pro-
cessing was constructed to realize the desired algo-
rithm. The difference between the output of the FOE
chip enclosed in a simple proportional feedback loop
and the location predicted by the stationary-points al-
gorithm operating on raw image data was less than
3% full scale. Table 2 summarizes the performance
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Table 2. Summary of FOE chip and system performance parameters.

Process

Chip dimensions

Imager topology

Technology

Illumination

Image sensor

Charge packet size

Acquisition time

Quantum efficiency

Dark current

Transfer inefficiency

FGA output sensitivity

System frame rate

Peak on-chip power dissipation

System settling time
FOE location inaccuracy

Orbit n-well 2 /xm CCD/BiCMOS

9200 (im x 7900 ̂ m

64 x 64 interline CCD

Double-poly buried channel CCD

Front-face

CCD gate

600,000 e-

Tested to 1 ms

30% @ 637 nm

<10nA/cm2 @ 30°C

<7 x 10 ' 500 kHz

2^(V/e-

30 frames/s

170mW

20-30 iterations typical
<.3% full scale over 80% of the field of view
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Figure 12. Comparison of the results from the stationary-points algorithm using raw image data (shown as 'o') and the output from the FOE
chip (shown as '*').
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achieved by the FOE chip in conjunction with the test
system. A detailed discussion of FOE circuit and sys-
tem performance can be found in (McQuirk, 1996b)
which is also available as (McQuirk, 1996a).
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