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The curve which has the smallest integral of the square of curvature while passing through two given
points with given orientation is searched for. This is the true shape of a spline used in lofting. In
computer-aided design, curves have been sought which maximize “smoothness.” The curve discussed
is the one arising in this way from a commonly used measure of smoothness. The human visual system
may use such a curve when it constructs a subjective contour.

Categories and Subject Descriptors: G.1.1 [Numerical Analysis]: Interpolation—spline and piece-
wise polynomial interpolation; G.1.2 [Numerical Analysis]: Approximation-—spline and piecewise
polynomial approximation; G.1.6 [Numerical Analysis]: Optimization—constrained optimization;
1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—curve, surface, solid,
and object representations

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Splines, least energy, smooth curves, curve fitting, optimal shape,
interpolation, true spline, best fit

INTRODUCTION

The curve which passes through two specified points with specified orientation
while minimizing
&= J’ xZds,

where « is the curvature and s the arc distance, has a number of interesting
applications.

In a thin beam, curvature at a point is proportional to the bending moment [6,
p. 80]. The total elastic energy stored in a thin beam is therefore proportional to
the integral of the square of the curvature [6, p. 163]. The shape taken on by a
thin beam is the one which minimizes its internal strain energy. This is why we
call the curve sought here the minimum energy curve. A thin metal or wooden
strip used by a draftsman to smoothly connect a number of points is called a
spline [7, p. 156]. Such splines are used in creating lofted surfaces from plane
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parallel cross sections of ship hulls and aircraft fuselages [7, p. 228]. The shape of
a spline constrained to pass through two specified points with specified orientation
is what we are after here.

In computer graphics and computer-aided design there is a search for curves
which are particularly “smooth” [5, p. 49; 7, p. 156; 9, p. 119; 15, p. 43; 16, p. 309].
One measure of smoothness is the inverse of the integral given above. Typically,
cubic polynomial approximations are used instead of the optimal curve [5, p. 66;
7, p- 162; 9, p. 129; 16, p. 315]. (Unfortunately, these approximations are called
splines, too.)

It has been suggested that the human visual system uses a curve of low energy
when completing a contour. Ullman [18, p. 1] proposes that a subjective contour
consists of two circular arcs tangent at their point of contact. Out of the one-
parameter family of solutions of this form he picks the one which minimizes the
integral of the square of curvature [18, p. 2]. He notes that the curve so
constructed may have near-minimal energy. (This does not mean that it neces-
sarily lies close to the curve of minimum energy, as we shall see.) Brady et al.
used cubic polynomial approximations instead [3].

PREVIEW

We first consider a special case. Here the curve must pass through the points
(—1, 0) and (+1, 0) in the xy plane with vertical orientation at both points. We
first determine the optimum curve as the limit of a series of approximations. This
approach helps suggest algorithms for computing approximations to the ideal
curve. Later we solve the variational problem directly. We then discuss how this
curve can be translated, rotated, and scaled to produce a four-parameter family
of curves which contains the general solution. For the sake of brevity some of the
details have been omitted here, but may be found in an internal report [12].

A SEMICIRCLE

One curve which connects the two points (~1, 0) and (+1, 0), and has the desired
orientation at these points, is a semicircle of radius one with the center at the
origin. The curvature equals one at all points and so the relevant integral for the
section in the right-hand quadrant becomes

/2 -
(§=Jo 1ds=§.

The arc length happens to have the same value,

/2 T
$=j ds=—,
0 2

while the maximum height of the curve above the x axis is # = 1. Can we do
better, that is, find a curve with a smaller value of &7 We use the above values of
& %, and X as reference points in our discussion.

TWO CIRCULAR ARCS

We can try a combination of two circular arcs for the portion of the curve in the
first quadrant. (The other half of the curve is obtained by reflection about the y
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axis.) Let the first arc have radius R and angular extend 6, while the remaining
portion has radius r and angular extend (7/2 — 6). Note that the parameters r, R,
and @ are not independent, namely,

(R—r)cosf@=(R-1).

It is possible to show that [12] for minimum energy

0( 7 )(1+sec6‘)=1.
2—-6

Solving this numerically we obtain
8 =0.412868765 . . ..
The corresponding values for the height, energy, and arc length are
H= 12849161 ...,

and

&= 14789649 ... = 0.94153834 * g,

while

£ =1.8230795 ... = 1.1606084 * %T

The energy in this curve is only 94.15 percent of that in the semicircle, so we can
do better.

THE BEST ELLIPSE

The two-arc solution suggests that the optimum curve is elongated and has radius
of curvature smaller than one at its peak, and larger than one near the x axis. Is
it an ellipse? The equation of the ellipse [14, p. 72; 17, p. 411] shown in Figure 1

“ ORON

The eccentricity e is defined by the equation e? = 1 — (a/b)? for a < b. The
eccentricity of the optimum ellipse [12] satisfies

E(e)[4e* — 5e* + 3] = K(e)[2¢* — 5e* + 3].

where K(e) and E(e) are the complete elliptic integrals of the first and second
kind, respectively. Solving this equation numerically leads to e = 0.6530018 . . .,
with

.7f=a=—————= 1.3203823 . ..,

&= 14674751 . .. ~ 0.93422368 * %’

$=1.8311202 ...~ 1.1657273 * g
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Fig. 1. An ellipse with major axis b oriented vertically and minor axis a oriented horizon-
tally. The eccentricity for which the energy is minimal can be found by differentiation.

The maximum and minimum radii of curvature are
b? a?
Fmax = " = 1.7434096 . .. and Fmin = 5 = (.75735636 . ...

This curve has an energy which is only 93.42 percent of that of the semicircle. We
have found a curve which has a smaller value of & than our two-arc solution. Can
we do better still?

MULTIARC APPROXIMATION

Consider a smooth curve constructed out of n circular arcs (see Figure 2). Let the
radius of curvature of the piece turning through the angle from a; to a4+ be r;.

We note that the total arc length ¥’ and the integral of the square of the
curvature &’ are given by

n—1 n-1

K=Y (1= ai)ri =Tnaan + Y, (rie1 = riai,
i=0 =

n—1 . — . n-1
& = Z (az+1 a;)___ Qn _ Z [l—-l—:lai,

i=0 ri rn—1 i=1 | T

where ap = 0 and a, = 7/2. We also have to compute the width #”’ and height
H,

n—1 n-1

W' = Y ri(cosa; — cosa;+1) = rocosag — Y, (ri-1 — r;)cosai,
=0 i=1
n—1 n—1

H' =Y ri(sinai+1 — sinoy) = rpgsina, + Y, (ri-1 — ri)sina;.
i=0 i=1
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T

=
g,

Fig. 2. A curve constructed out of n circular arcs. Each arc contributes to the total arc length and
the total energy.

To solve our original problem we need to scale whatever curve we obtain so
that its overall width equals 2 instead of 2 %', The scaled values are as follows:
H &’
_# = —— = ’ 4 = —,
o 6=¢&W, ad  ¥=_%

Note that the integral of the square of the curvature is decreased when we make
the curve larger.

OPTIMUM MULTIARC APPROXIMATION

Our task now is clear: We have to minimize &’#"’ by suitable choice of the
parameters r;(fori =0,1,...,n— 1) and a;(for i = 1,2,...,n — 1). Actually, we
can pick one of the radii arbitrarily, r,, for example, since the whole curve will
simply be scaled accordingly. The minimization looks difficult at first when one
considers the complexity of the product &’#”’ and its derivatives. It appears

necessary to resort to numerical techniques to solve for the 2(n — 1) parameters.
Fortunately, this is not the case, for if

0
—(&'W') =0,
ax
then, by the rule for the differentiation of a product,
oW Je& W
ax x &’

for arbitrary x (i.e., r; and a;). Since the right-hand side is independent of y, it
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must equal a (positive) constant, ¢, say. Thus we find that

_BW’ & f 19 1
P aa,-_c or 1=1,2...,n ,
aw’ | a&’ ) .

- —= for i=0,1,...,n—1.
or; or;

We need the following derivatives now,

a8’ 1 1
_~=—[—————} for i=1,2,...,n"'1,
o ri ri-
&’ i+1 — O .
_=~—«ﬁ:1—2'i) for "=0’11---:n—1’
or; ri
aw”’ ) .
—— = (ri—1 — ri)sina; for i=1,2,...,n—-1,
do;
W’ .
o = (cosa; — COSQ;+1) for =0, L,...,n-1

Using these derivatives in the equations above we obtain
ririoising;=¢2  for i=1,2,...,n—1,

2

COSQ;+1 — COSQ; .
e = for 1=0,1,...,n—1.

Ai+1 — QG

Note that, if ¢ is known, a simple procedure will give us all of the parameters. Let
ro = 1, say, then the second equation can be used to find «;. (This nonlinear
equation has to be solved numerically.) The first equation then allows one to
solve for r,. Knowing ri, the second equation allows one to find a3, and so on. If
the value of c¢ is correct, the process will terminate with «, = #/2. The correct
solution can be found by searching for the appropriate value of ¢. This is very
much simpler than a direct search on the 2(n — 1) parameters.

SOME HELPFUL RELATIONSHIPS

A number of interesting observations can be made now about the multiare
solution. First of all, the “energy” £’ in an individual arc is directly proportional
to the projection 8% of this arc on the x axis, since

88 = (iv1 — i) ’
r;
and
W' = ri(cosa; — COSQi+1).
So we have
88 1
sw’ ¢
and we already know, of course, that
& 1
W
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Next, notice that the projection 6#” of the (i + 1)th arc on the y axis equals
, - . o 1 1
O =ri(sinaj+; —sina;) = ¢ —— — |.
riv1 Tli-1

The height at the tip of the ith arc is then

1 1 1 .
Jf§=cz[——+———] for i=1,2,...,n—1,
r; ri—i ro
since
2
K = resina; = —.
r
Also
1 1
.7fl=6‘2[ "_]"'rn—l-
1 Tn-1 ro

THREE, FOUR, AND FIVE ARCS
The optimum solution for three arcs gives

&= 1456879 ... ~ 0.9274780 %’

and shows us that the ellipse is not optimal after all. For four arcs we find

&= 1448212 ... =~ 0.9219604 * g

and for five arcs we get
&= 1443930 ... = 0.9192345 * g

While & is dropping more and more slowly, #is growing, as is 5# [12]. Looking at
the numerical values obtained suggests that the arcs tend to have approximately
the same length, while curvature increases approximately linearly along the curve
[12]. This, in turn, suggests another function as a candidate for the curve of least
energy.

THE CORNU SPIRAL

The curve which has curvature varying linearly with arc length is called the
Cornu spiral (or Euler’s spiral) [7, p. 190; 14, p. 190]. It can be defined using the
two Fresnel integrals [1, p. 300; 10, p. 930; 13, p. 820].

C(s) =j cos(z t2) dt,
S 2

S(s) = J sin<1’ t2)dt.
| 2

_S(S) an ==£(_S_).
50) T
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+— i X

-1 +1

Fig. 3. A curve constructed from part of the Cornu spiral. Here the curvature varies linearly
with arc length along the curve.

where C(1) = 0.7798934 ... and S(1) = 0.4382591 . ... (The rest of the curve is
obtained by reflection about the y axis.) The result is shown in Figure 3. It can be
shown then [12] that

]f=99= 1.779525 . . .,
S

2
T

£="08(1) = 1441814 ... = 09178877 + g

1 7
F= S_(_ﬁ = 2281755 ... = 1.452610 = 5

The curve constructed out of a portion of the Cornu spiral only has 91.78 percent
of the energy of the semicircle, and is thus the best curve so far. But, can we do
better still?

SIX ARCS AND MORE

Unfortunately, the Cornu spiral is not optimal either, as one sees by considering
the best six-arc solution for which

&= 1.441508 ... ~ 0.9176931 * .”25
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(b)

(c) (d)

Fig. 4. Optimum multiarc solutions: (a) 8 arcs; (b) 16 arcs; (c) 32 arcs; (d) 64 arcs.

For eight arcs,

&5 ~ 0.916097 * -72-’

for sixteen arcs,

&16 = 0.914532 + g

for thirty-two arcs,

B3z ~ 0.914285 g

and for sixty-four
&o1 = 0.913953 + g

These solutions are shown in Figure 4. It seems that the total energy is approach-
ing some limit, near 91.39 percent of that in the semicircle. (For tables of other
numerical values, see the cited internal report [12]). It also should be apparent
that the fact that a curve has near minimal energy does not imply that this curve
will necessarily lie very close to the curve of minimal energy.

We can get better and better approximations to the optimum curve, provided
we also carry out computations with more and more significant digits. &, by the
way, varies little once n is reasonably large, while % and # continue to show
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appreciable changes. This is a reflection of the fact that some distortions of the
optimum curve produce only small changes in the total energy.

SOME OBSERVATIONS ABOUT THE OPTIMUM CURVE

The multiarc approximation tends to the optimum curve in the limit as n tends
to infinity. So we can learn some properties of the optimum curve from what we
have so far. First of all, from

riri_1sing; = ¢?

we get
¢*? = cosy,

where « is the curvature and v is the angle which the curve makes with the x axis.
The constant ¢ only affects the size of the curve, not its shape. We cannot
determine it at this point.

From

2 COS o;+1 — COS (i _ .2

i c,
41— Q

we get
2 Sin[(ai+1 - (x,-)/2]
" (e — @)/2

which in the limit again leads to

sin[(a+1 + a:;)/2] = c?,

c%?=cosy
We also obtain

dé 1

dx ¢’
from

8¢ 1

W' c?
Now

2
€=fx2ds= K? 1+<§Z) dx,
dx

S0

Further, since,

we again obtain,
c’? = cosy.
ACM Transactions on Mathematical Software, Vol. 9, No. 4, December 1983.
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Each of these approaches leads us to the same simple differential equation for
the curve.
Finally, from

we get in the limit

That is, the curvature varies linearly along the axis of symmetry of the optimal
curve. This is an important property. Substituting for k we also derive

cosy = <%> .

Note that since the optimal curve bends downward, its second derivative is
negative. This is why, by the usual sign conventions, curvature too is negative.
Thus we will use the equation

— ck = Vcosy

between ¢ = + 7/2 at the left end and ¢ = — #/2 at the right end of the curve.

DIFFERENTIAL EQUATION OF THE CURVE
The curvature is the rate of turning as one goes along the curve, that is,

-
T as’
S0
-c % = Vcosy,
and consequently,
ay
=—c .
vcos Y

Various trigonometric substitutions lead to denominators which contain roots
of cubic or quartic polynomials [12]. This means that the answer can be expressed
as an elliptic integral [1, p. 589; 2, p. 16; 10, p. 904; 10, p. 833]). We can actually
just look up the result directly (using [10, p. 154]; also see [12, Appendix] and find
the solution

s= «/écF(c:os“1 Vcos ,-l—) ,
V2

where F is the incomplete elliptic integral of the first kind. The constant of
integration has been chosen so that ¢ = 0 corresponds to s = 0. The result came
out positive because the integration goes from y = 0 to negative values of 4. For
the half of the optimal curve in the negative quadrant, a minus sign must be
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attached. Some readers may notice the similarity of the solution found above, to
the equation for a pendulum [2, p. 28], swinging from —7/2 to + 7/2 (where { is
the angle from the vertical, while s corresponds to the time).

We now have the equation of the curve sought after in Whewell form [14, p. 4],
namely, arc length as a function of tangential angle. We can immediately also
rewrite it in Cesaro form {14, p. 4], namely, as a relation between arc length and
curvature:

=2 F<cos'1(—- ),L>.
s c cK %

Both of the forms given above are intrinsic equations for the curve [7, p. 40]. We
can easily compute the length of the curve from an initial point at the top, where
¢ = 0, to the point on the x axis, where Y = — 7/2, since

o5 5) (%)

where K is the complete elliptic integral of the first kind. Now [10, p. 909],

1
1 .7 dt I'(})?
K| — =Ksm——))=\/§f = ,
(‘/é) < <4 b V1—tt (4 ‘/7—73
where T is the gamma function [1, p. 255; 10, p. 933; 13, p. 821]. There is an

infinite product [10, p. 938; 12] for I" () * which gives us the numerical value I"(3)
= 3.6256099082 . . . . The arc length is finally,

cT(P?
P=-—A
2 2r

CARTESIAN FORM OF THE SOLUTION

For many purposes it is more convenient to express the solution as a relationship
between the x and y coordinates. We note that

Y - sin ¥,

= cos Y and Is

and remember that

and
Q= dy/ds _- csiny
dy dy/ds  Jeosy

ACM Transactions on Mathematical Software, Vol. 9, No. 4, December 1983.
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The latter equation is easy to integrate using the substitution z = cos .
d,
=c J’ 22 2 Vz,
vz

Y _
%= cosy,

where the constant of integration was chosen so that y = 0 when ¢ = —#/2. The
reader may also recall that in the previous section this result was found directly
as the limit of height of the multiarc approximation.

The integral for x is a little harder,

e f Jeosidy.

This can be expressed as the difference of two incomplete elliptic integrals (using
[10, p. 156]; also see [12, Appendix]),

x=~/§c|:2E<cos‘1~/EO—S—JJ,%) (cos «/Eas_, )],

so that

where the constant of integration was chosen so that x = 0 when ¢ = 0. Finally

then,
1
= 2c[2E<cos l—y—c ?> F(cos‘lé,ﬁ>].

An alternate way to obtain the same result is to note that x and y are related
by the differential equation

dy V1 = (y/2¢)*

dx (y/2¢)*
since
y V1 — cos? y
—=tan ¢y = ————.
d cos ¢

In any case, fory =0,

x=~/'2—c<2E—j—§—-K—j—§->,

where K and E are the complete elliptic integrals of the first and second kind,
respectively.
Using Legendre’s identity [1, p. 591; 2, p. 25; 10, p. 907; 12; 13, p. 836], we get

1) (/2
<2E 2 J‘) T K1/V2)

So the width of the curve is
(2'”_) 3/2
ré)?®’

ACM Transactions on Mathematical Software, Vol. 9, No. 4, December 1983.
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and, if we want # = 1, we must have

r'}?

e

The height of the curve then comes to # = 2¢ = 1.669253683 ... (compare
with the two-arc approximation!). The minimum radius of curvature, the inverse
of the maximum curvature, is

1 —
(#72¢%)
Thus a circle tangent to the curve at the top is also tangent to the x axis.
The arc length comes to

= 0.8346268416 . . ..

c = 0.8346268416 . . . .

I'min =

1T
T2 (2n)’
or
P= 2188439615 . . . ~ 1.393203929 + g
Finally, from
dé¢ 1
dx ¢*’
we get
1
&=,
02
and so
s=2m° _ | 435540022 . .. ~ 09138931623 + 7
T ... =0 5

Note that & ¥ = 7. The curve for least energy is shown in Figure 5.

EXTENSION OF THE CURVE

So far we have considered a finite segment of the optimum curve, extending from
a point of zero curvature (where ¢ = —7/2) through a point of maximum curvature
(where ¥ = 0) to a second point of zero curvature (where ¢ = +7/2). Can the
curve be extended beyond these points?

It is clear that iy must remain in the range [— #/2, + /2] so that the square
root of its cosine remains real. To continue the curve, then, the sign of the
curvature must change; we must choose the other sign for the square root. The
new segment we obtain has the same shape, of course, as the segment we have
found already, just inverted.

In Figure 6 we see several curves which correspond to stationary values of the
integral and pass through the specified points with the desired orientation. The
one on the left is the one which corresponds to a global minimum of the energy.

ACM Transactions on Mathematical Software, Vol. 9, No. 4, December 1983.
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+ + + + + + * + +—t + + + + X
-1 +1

Fig. 5. The curve of least energy. Here the curvature varies linearly with distance along the axis of
symmetry. A circle tangent at the top is also tangent to the x axis.

The curves containing n half-cycles have an energy n® as large as the one
containing a single half-cycle.

The curve of least energy passing through two given points with specified
orientation is just a portion of the general curve, suitably translated, rotated, and
scaled. The rotated, translated, and scaled curves form a four-parameter family.
VARIATIONAL APPROACH

We are trying to find the curve for which

&= J. k2ds

is minimal. This integral can also be written in the form
o= f KL+ ()72,

or, since

”

-
1+ )T7”

as

f[1+ Y dx.
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(L

(b)
(a)

f\Uﬁ \U aWfatial

(© (d)

Fig. 6. Curves corresponding to stationary values of the integral of the square of
the curvature: (a) 1/2 cycle; (b) 3/2 cycles, (¢) 5/2 cycles; (d) 7/2 cycles.

This is of the form
f Fx,5Y,y") dx,

and the calculus of variation [4, p. 190; 8, p. 119; 11, p. 198] teaches us that for a
stationary value of the integral,

d d?

— %+ =% =0
dx Y dxz Y ’
where %, %, and %, are the partial derivatives of # with respect to y, ', and
y”, respectively:

ga;,_

Z =0,

5yr(y//)2
0-, R —— 7
‘/3' [1 + (yl)2]7/2’

”

2y
Frm—— .
T+ ()7

Since %, = 0,

d d
—_ | % - F, | =
dx[‘/y dx/y] 0,
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and integrating, we get

where A is an arbitrary constant. In the above we have closely followed the
approach taken by Mehlum [7, pp. 157 and 189; 15, p. 43]. Also

i'g-; o 2y/” _ 10 y/(y”)i

de” 7 [+ (T L+ ()T

SO we get
2yw 3 5yl(yll)2 _ A
[1 + (yr)2]5/2 [1 + (y/)2]7/2 *
Now
dy” _ dyll/dx_yl”
dy’ dy'/dx y"’
S0
” ” dy”
y =Yy dy/

In addition

d 1 ”me __ //dy”
"'1'}75(}’) =) dy’

and
d 1 5y’
&' T+ )T o+ 00T
Using these results in the equation above,
d )
dy'[1+ (y)*]*

= A,

and integrating, we get
( y il) 2
[1+ ()7
where B is a second arbitrary constant.
Returning for a moment to the integral of the square of curvature, we see that

fx2d3=f[Ay’+B]dx=J'Ady+dex

= A(y — yo) + B(x1 — x0)

= Ay’ + B,

for a curve which starts at (xo, y0) and ends at (x1, y1).
Now
(y")?

=2 n2
T+ G~ e
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S0
k2 V1+ (y)>=Ay + B.
Also,
dy dy/ds _y
dx dx/ds x’
SO
9 o 2 y
k 1+<9':) A3+ B
x
or
k?= Ay + Bx,
since
2+yi=1
Now if
dy
tan ¢ = a—; s
then

X = cosy and y = siny.
Remembering that

ay
K ==

ds’
we finally see that

% =+ VAsiny + Bcosy.
Letting
A=l2cos<p and B= ——1—2sin<p
c c
we get

c% =+ Vsin(y ~ ).

The scale of the curve is dependent on the parameter ¢, while the rotation in the
xy plane is dependent on the parameter g.

Altogether we have a four-parameter family of curves, since we can also choose
an initial point and a direction for the curve. Conversely, we can find a single
curve out of this family which passes through any two points with orientation
specified at both points.

By the way, if we let the line from the initial point (xo, ) to the final point
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(x1, y1) have length r and direction 8, then
J’ kids = {—2 sin(6 — o).

SUMMARY

We have found the simple equation * ck = vcos (¥ — @), and solved it to find the
equation of the curve of least energy in Whewell form

s=+ V2 cF(cos‘1 veos(y — (p),—‘}_—) )
2

We also developed a differential equation for the curve in Cartesian coordinates
aligned with the axis of symmetry,

&y i= (20"
dx (y/2¢)®

The solution of this equation, for given initial conditions, led to

- 2y 1Y _ Y 1
x—\/éc[2E<cos %,—J—é) F<cos 20,\@)].

We considered the curve of least energy connecting the point (—1, 0) to the
point (+1, 0) with vertical initial and final orientations. This curve has minimum
radius of curvature

r@)*

‘Ten
rises to a height
H= 2c,
has arc length

and energy

or about 91.39 percent of that of the simple semicircle approximation. We have
also given a method for finding approximations, consisting of circular arcs, to the
curve of least energy.

Note that the curve found here is extensible [18] in the sense that if the least
energy curve with orientation « at A and orientation 8 at B passes through the
point C with orientation y, then the segments from A to C and from C to B are
themselves least energy curves. (This is not true of the two-arc approximation
[3].) As a result, such a curve can be computed by a simple, locally connected
network.
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We have not shown how to find the particular member of the four-parameter
family of curves which passes through a specified pair of points with specified
orientation. Presumably, determining the axis of symmetry of the curve would be
a helpful first step in this direction. In practical applications the multiarc
approximation method may be suitable in dealing with this problem. We have
not discussed how one might compute the curve of least energy passing through
three or more points. Here there is no constraint on the direction, but the
curvature must be continuous. Nor have we touched upon the extension to curves
and surfaces in three dimensions, a topic which Mehlum addresses [15, p. 62].
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