
Relative Orientation Revisited

Berthold K.P. Horn

15 March 1990

Abstract: Relative Orientation is the recovery of the position and orien-
tation of one imaging system relative to another from correspondences
between five or more ray pairs. It is one of four core problems in pho-
togrammetry and is of central importance in binocular stereo, as well as
in long range motion vision. While five ray correspondences are sufficient
to yield a finite number of solutions, more than five correspondences
are used in practice to ensure an accurate solution using least squares
methods. Most iterative schemes for minimizing the sum of squares of
weighted errors require a good guess as a starting value. The author has
previously published amethod that finds the best solution without requir-
ing an initial guess. In this paper an even simpler method is presented
that utilizes the representation of rotations by unit quaternions.

1. Introduction

Relative orientation is one of the central problems in photogrammetry
and has attracted attention for more than a hundred years [Hauck 1883]
[Finsterwalder 1899]. We briefly review the problem here. For additional
background material and list of references see [Horn 90].

The coordinates of corresponding points in two images can be used
to determine the positions of points in the environment, provided that
the position and orientation of one of the cameras with respect to the
other is known. Given the internal geometry of the cameras, including
its principal distance and the location of the principal point, rays can be
constructed by connecting the points in the images to their corresponding
projection centers. These rays, when extended, intersect at the point in
the scene that gave rise to the image points. This is how binocular stereo
data is used to determine the positions of points in the environment after
the correspondence problem has been solved.

In both binocular stereo and large displacement motion vision analy-
sis, it is necessary to first determine the relative orientation of one camera
with respect to the other. The relative orientation can be found if a suffi-
ciently large set of pairs of corresponding rays have been identified.

Let us use the terms left and right to identify the two cameras (in
the case of the application to long range motion vision these will be the
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camera positions and orientations corresponding to the earlier and the
later frames respectively). The ray from the center of projection of the
left camera to the center of projection of the right camera is called the
baseline. A coordinate system can be erected at each projection center,
with one axis along the optical axis, that is, perpendicular to the image
plane. The other two axes are in each case parallel to two convenient
orthogonal directions in the image plane (such as the edges of the image,
or lines connecting pairs of fiducial marks). The rotation of the left camera
coordinate system with respect to the right is called the orientation.

Note that we cannot determine the length of the baseline without
knowledge about the length of a line in the scene, since the ray directions
are unchanged if we scale all of the distances in the scene and the baseline
by the same positive scale-factor. This means that we should treat the
baseline as a unit vector, and that there are really only five unknowns—
three for the rotation and two for the direction of the baseline1.

It has long been known that five sets of ray pairs are required to obtain
a finite number of solutions of the relative orientation problem [Finster-
walder 1899]. In practice one measures more than five pairs of rays so
that least squares methods can be used to obtain more accurate results.
Several iterative schemes are in use to find solutions. Most require a good
initial guess, and some do not work well unless the surface being viewed
is approximately planar and perpendicular to the viewing direction.

The author has previously given an iterative scheme for solving the
least-squares relative-orientation problem that does not require a good
initial guess, and that works well even when the surface is not approxi-
mately planar [Horn 87b, 90]. Here a new formulation of the coplanarity
condition is given using unit quaternion notation to represent rotation. A
new iterative scheme based on this representation has been implemented
and found to be both fast and reliable. The new formulation of the copla-
narity condition also suggests better continuation methods for solving
the special case when there are only five ray pairs, and leads to a short
proof that there can be at most twenty solutions in this case.

1.1 New Expression for the Coplanarity Condition

The volume of the parallelipiped formed by three vectors is equal to their
triple product, so three non-zero vectors are coplanar if and only if their
triple product is zero, For the ray �� from the left center of projection

1If we treat the baseline as a unit vector, its actual length becomes the unit of
length for all other quantities.
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and the ray r from the right center of projection to be coplanar with the
baseline b, we must have [Horn 87b, 90]

[b ��′ r] = 0
(1)

where ��′ is the left ray rotated into the right imaging system’s coordi-
nates2. Using the unit quaternion q̊ to represent this rotation, we can
write

�̊′ = q̊�̊q̊∗, (2)
where �̊ and �̊′ are unit quaternions with zero scalar part and vector part
equal to �� and ��′ respectively, that is,

�̊ = (0, ��) and �̊′ = (0, ��′). (3)
(For use of unit quaternion notation in a related photogrammetric prob-
lem, including a discussion of numerically stable methods for converting
between orthonormal matrix notation and unit quaternion notation, see
[Horn 87a]. See also Appendix A and [McCarthy 90].) We can write the
triple product in the form

t = (r× b) · ��′, (4)
or, letting b̊ = (0,b) and r̊ = (0, r),

t = r̊b̊ · q̊�̊q̊∗, (5)
where we have used the fact that �̊′ = q̊�̊q̊∗ has zero scalar part and

r̊b̊ = (−r · b, r× b), (6)
since both r̊ and b̊ have zero scalar parts. The triple product can now be
further transformed to yield

t = r̊b̊q̊ · q̊�̊, (7)
or finally3.

t = r̊d̊ · q̊�̊
(8)

where d̊ = b̊q̊. Note that d̊ is orthogonal to q̊, since

d̊ · q̊ = b̊q̊ · q̊ = b̊ · q̊q̊∗ = b̊ · e̊ = 0, (9)
where e̊ is the identity with respect to quaternion multiplication4.

2Here the baseline b is also expressed in the right imaging system’s coordinates.
The coplanarity conditions can, of course, be equally well expressed in the
coordinates of the left imaging system.

3In the above a number of quaternion identities, such as åq̊ · b̊ = å · b̊q̊∗, have
been used that can be easily checked by using the rule for quaternion multi-
plication in terms of the scalar and vector parts of the quaternions given in
Appendix A.

4The identity e̊ has unit scalar part and zero vector part.
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The baseline can be recovered from d̊ using

d̊q̊∗ = b̊q̊q̊∗ = b̊e̊ = b̊, (10)

so one may as well work with the parameters q̊ and d̊, rather than q̊ and
b̊, if this is convenient. Note that the resulting expression is bilinear in
the unknowns, being separately linear in the components of q̊ and in the
components of d̊.

1.2 Symmetry in the Coplanarity Condition

We can rewrite the triple product using

t = r̊d̊ · q̊�̊ = r̊ · q̊�̊d̊∗ = q̊∗r̊ · �̊d̊∗, (11)

and

t = q̊∗r̊ · �̊d̊∗ = (q̊∗r̊)∗ · (�̊d̊∗)∗ = r̊∗q̊ · d̊�̊∗. (12)
Finally, noting that �̊∗ = −�̊ and r̊∗ = −r̊, since r̊ and �̊ are quaternions
with zero scalar parts, we obtain

t = r̊q̊ · d̊�̊
(13)

The symmetry can be seen in more detail if the dot-product for t is ex-
panded out in terms of the scalar and vector components of q̊ = (q,q)
and d̊ = (d,d):

(d ·r) (q·��)+(q·r) (d ·��)+(dq−d ·q) (�� ·r)+d[r q ��]+q [r d ��]. (14)

Certain other symmetries now become apparent. If the parameters {q̊, d̊}
satisfy the coplanarity condition for corresponding sets of rays {��i} and
{ri}, then:

• The set of parameters {−q̊, d̊} satisfy the coplanarity condition also.
This has no physical significance, however, since −q̊ represents the
same rotation as q̊.

• The set of parameters {q̊,−d̊} satisfy the coplanarity condition also.
This corresponds to a reversal of the baseline b.

• The set of parameters {d̊, q̊} satisfy the coplanarity condition also.
This corresponds to the “twisted sister dual” obtained by an addi-
tional rotation of π about the baseline [Horn 87b, 90] [Krames 40].

That is, the solutions come in groups of eight related solutions.

Also note that, perhaps somewhat surprisingly, we obtain the same
set of solutions if we interchange the left and right rays, since the expres-
sion for t is symmetric in �� and r.
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2. The New Iterative Scheme

Given two corresponding sets of rays {��i} and {ri} (for i = 1, 2, . . . n)
from the left and the right imaging systems respectively, the task is to
find q̊ and d̊ that minimize

n∑
i=1

wie2
i , where ei = (̊rid̊ · q̊�̊i). (15)

subject to
q̊ · q̊ = 1, d̊ · d̊ = 1, and q̊ · d̊ = 0. (16)

The weight factor is chosen according to the reliability of a particular
measurement, but also depends on the ray direction. That is, the error
contributions one wishes to minimize are distances in the image plane,
not in the three-dimensional world [Horn 87b, 90] It can be shown that
the appropriate weighting factor is

wi = ‖ci‖2 σ 2
o

[ci b ri]2
∥∥∥��′i

∥∥∥2
σ 2
li + [ci b ��

′
i]2 ‖ri‖2 σ 2

ri

, (17)

where ci = ��′i × ri and σ 2
li and σ 2

ri are the estimated variances of the
measurement errors of the directions of rays in the left and right images
respectively, while σ 2

o is arbitrary. Proper weighting is particularly im-
portant when the fields of view is narrow, since the relative orientation
problem then is often not well conditioned. Note that the weighting fac-
tor depends on the (unknown) baseline and rotation. One way of dealing
with this is to treat the weights as constant during any particular step
of the iteration. One may start off with unit weights and then use the
current estimate of the baseline and rotation as the iteration progresses
[Horn 87b].

Exact solutions are possible when there are only five pairs of rays, so
the weight factors can be omitted in this case, since they do not affect the
solutions (see section 3).

2.1 Iterative Adjustment

Since no closed form solution is at hand, let us see how small changes in
q̊ and d̊ affect the total error. First of all, by ignoring second order terms
in

(q̊+δq̊)·(q̊+δq̊) = 1, (d̊+δd̊)·(d̊+δd̊) = 1, and (q̊+δq̊)·(d̊+δd̊) = 0
(18)

we obtain the following constraints on the increments

q̊ · δq̊ = 0, d̊ · δd̊ = 0, and q̊ · δd̊+ d̊ · δq̊ = 0. (19)
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We have to find increments δq̊ and δd̊ that minimize
n∑
i=1

wi

(
r̊i(d̊+ δd̊) · (q̊ + δq̊)�̊i

)2
, (20)

subject to the three constraints noted. Ignoring the second order term in
the dot-product (containing both δq̊ and δd̊), and introducing Lagrange
multipliers, we find that we have to minimize

n∑
i=1

wi

(
r̊id̊ · q̊�̊i + r̊i δd̊ · q̊�̊i + r̊id̊ · δq̊ �̊i

)2

+ λ(q̊ · δq̊)+ µ(d̊ · δd̊)+ ν(q̊ · δd̊+ d̊ · δq̊). (21)

Differentiating with respect to δq̊ and δd̊ and setting the results equal to
zero, we obtain

n∑
i=1

wi

(
r̊id̊ · q̊�̊i + r̊i δd̊ · q̊�̊i + r̊id̊ · δq̊ �̊i

)
r̊id̊�̊∗i + λq̊ + νd̊ = 0,

n∑
i=1

wi

(
r̊id̊ · q̊�̊i + r̊i δd̊ · q̊�̊i + r̊id̊ · δq̊ �̊i

)
r̊∗i q̊�̊i + µd̊+ νq̊ = 0,

(22)

where we may wish to note that r̊i∗ = −r̊i and �̊∗i = −�̊i. Differentiating
with respect to the Lagrangian multipliers just gives us back the original
constraints

q̊ · δq̊ = 0, d̊ · δd̊ = 0, and q̊ · δd̊+ d̊ · δq̊ = 0. (23)

Isolating the unknowns δq̊ and δd̊, we obtain

A δq̊ + B δd̊+ λq̊ + νd̊ = −s̊,

BTδq̊ + C δd̊+ µd̊+ νq̊ = −t̊,
(24)

where

A =
n∑
i=1

wi(̊rid̊�̊∗i )(̊rid̊�̊
∗
i )

T , B =
n∑
i=1

wi(̊rid̊�̊∗i )(̊r
∗
i q̊�̊i)T ,

and C =
n∑
i=1

wi(̊r∗i q̊�̊i)(̊r∗i q̊�̊i)T , (25)

while

s̊ =
n∑
i=1

wiei (̊rid̊�̊∗i ) and t̊ =
n∑
i=1

wiei (̊r∗i q̊�̊i). (26)

We also still have the three equations

q̊ · δq̊ = 0, d̊ · δd̊ = 0, and q̊ · δd̊+ d̊ · δq̊ = 0, (27)
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all of which we can write in the matrix form


A B q̊ 0 q̊
BT C 0 d̊ d̊
q̊T 0T 0 0 0
0T d̊T 0 0 0
d̊T q̊T 0 0 0







δd̊
δq̊
λ
µ
ν



= −




s̊
t̊
0
0
0



, (28)

So we have a system of 11 equations in 11 unknowns, four of which are the
components of q̊, four are the components of d̊, and three are Lagrangian
multipliers.

Since we are usually not really interested in the values of the Lagrange
multipliers, we may eliminate them using the conditions

q̊ · δq̊ = 0, d̊ · δd̊ = 0, and q̊ · δd̊+ d̊ · δq̊ = 0. (29)
leaving us with 8 equations in 8 unknowns. But this takes some effort,
while spoiling the symmetry of the normal matrix, and so may not be
desirable.

Note that the upper left 8×8 sub-matrix is the weighted sum of dyadic
products

n∑
i=1

wi�ci�ciT , (30)

where the eight component vector �ci is given by

�ci =
(

r̊id̊�̊∗i
r̊∗i q̊�̊i

)
= −

(
r̊iq̊�̊i
r̊id̊�̊i

)
. (31)

Also note that the eight non-zero components of the right-hand side vec-
tor are given by the weighted sum

n∑
i=1

wiei �ci where ei = (̊rid̊ · q̊�̊i). (32)

For computational purposes it may be further helpful to note that

ei = r̊∗i q̊�̊i · d̊ = r̊id̊�̊∗i · q̊. (33)
A step in the iterative algorithm consist of computing the coefficient ma-
trix above, as well as the right hand side vector, solving for δd̊ and δq̊,
and then updating d̊ and q̊ accordingly.

2.2 Keeping the Quaternions Orthogonal

In practice, the updated quaternions

q̊′ = q̊ + δq̊ and d̊′ = d̊+ δd̊ (34)
will not be exactly orthogonal, even if d̊ and q̊ where, because of the finite
step size of the increment. It is therefore important to adjust the new
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values to make them more nearly orthogonal. The smallest adjustment
that will achieve this is obtained by finding k such that q̊′′ · d̊′′ = 0, where

q̊′′ = q̊′ + k d̊′ and d̊′′ = d̊′ + k q̊′. (35)

This leads to a quadratic equation for k. The solution for k has the term
(q̊′ · d̊′) in the denominator, and so is numerically unstable when q̊′ and
d̊′ are already nearly orthogonal. If instead we ignore the term in k2, we
obtain

k ≈ − q̊′ · d̊′

q̊′ · q̊′ + d̊′ · d̊′
≈ −1

2
(q̊′ · d̊′). (36)

While an adjustment based on this value of kwill not make the two quater-
nions exactly orthogonal, it will insure that they converge to orthogonal
values after a number of steps of the iteration. It is, of course, a simple
matter to adjust the quaternions to have unit magnitude. This should be
done after the adjustment to obtain more nearly orthogonal vectors.

Sometimes when the starting values are far from a minimum, a large
adjustment suggested by the above algorithm may make matters worse
rather than better. As an added refinement, one can compare the error
after the adjustment with that before, and take only half the step if the
error has increased. If the error with the smaller step is also larger than
the initial error, the step size can again be halved. Repeated halving of
the step size in this fashion will normally only occur when one is very
close to the solution and the algorithm is unable to reduce the error due
to limitations of computer arithmetic. This condition may be used as a
termination test for the iteration.

Typically a solution is found to single precision after fewer than ten
iterations. In some cases convergence is slow, however, particularly when
the initial guess is near a saddle point. To avoid wasting time in this case,
one may wish to insist that the error after the adjustment not merely be
smaller, but that it be smaller by a reasonable fraction, say 1% of the old
error. The iteration is abandoned if it is not improving the solution at
least this much. The minimum that might have been reached after a long
computation will almost certainly be reached from some other starting
value, so nothing is lost by abandoning a particular solution path.

2.3 Starting Values

To find all local minima, and so be in a position to determine the global
minimum, a number of different starting values for the orientation q̊ are
needed. These can be generated:
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• using the elements of a finite rotation group [Horn 87b, 90].

• by some other systematic sampling of a unit hemisphere, or

• at random.

Points on the unit hemisphere (in four dimensions) may be generated sys-
tematically using

q̊ = (cosα cosβ cosγ, cosα cosβ sinγ, cosα sinβ, sinα).
If the proper ranges of α, β, and γ are divided evenly, an uneven sam-
pling of the hemisphere results, which is wasteful, in that in order to
achieve a given minimum sampling rate in some areas, other areas need
to be sampled much more finely. To obtain roughly even sampling of the
hemispherical surface, discrete sampling in each of the three variables
can be made dependent on the other variables. While sampling evenly in
α, one should sample β at a rate proportional to cosα, and sample γ at
a rate proportional to cosα cosβ. This is analogous to sampling the unit
sphere using longitude and latitude, where, to avoid oversampling near
the poles, one should sample along parallels at a rate that is proportional
to the cosine of the latitude.

The number of starting values needed is greatly reduced if it is noted
that each solution {q̊, d̊} that is found belongs to a set of eight related
solutions obtained by changing the signs of q̊ and d̊, and by interchanging
q̊ and d̊, as discussed earlier. Typically all solutions are found after trying
a few dozen initial guesses. If a particular solution has a small basin of
attraction in parameter space, it will typically still be found, since it is
very unlikely that all seven of the solutions related to it also have small
basins of attraction.

While it might be expected that random sampling should be less ef-
ficient, in that a larger number of samples are needed to ensure that the
largest gaps between samples are as small as they are between samples
generated by some systematic method, it typically appears not to take a
larger number of starting values to find all the solutions from random
starting points. This simplifies the algorithm. Typically all solutions are
found from fewer than thirty or so random starting values. Occasionally
one solution will be missed. But in this case the number of solutions
found is an odd an multiple of four, and the search can be extended when
this is noted.

2.4 Finding d̊ given q̊ (and vice versa)

If either of the unit quaternions q̊ or d̊ is known, it is possible to find a
best fit value for the other. This is useful when setting up starting values,
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since it means that one only need explore the unit sphere in four space for
one of the two sets of parameters. Since the total error term is completely
symmetric in q̊ and d̊, we need only explore one of the two cases. Suppose
for concreteness that q̊ is known and we are to find the best fit value for
d̊.

We can look for the d̊ that minimizes
n∑
i=1

wi(̊rid̊ · q̊�̊i)2, (37)

subject to

d̊ · d̊ = 1 and q̊ · d̊ = 0. (38)
Reversing our argument at the beginning regarding the form of the error
term, we write the above in the form

n∑
i=1

wi(�̊′ir̊i · b̊)2, (39)

where b̊ = d̊q̊∗ and �̊′i = q̊�̊iq̊∗. We know that �̊′i and r̊i have zero scalar
part. But b̊ also has zero scalar part since

b̊ · e̊ = d̊q̊∗ · e̊ = d̊ · q̊ = 0. (40)

So the above can be written
n∑
i=1

wi[b��
′
i ri]2, (41)

where b̊ = (0,b), and �̊′i = (0, ��′i). Now

b · b = b̊ · b̊ = (d̊q̊∗)T d̊q̊∗ = d̊ · d̊ q̊∗q̊ = d̊ · d̊ = 1. (42)

So the condition that d̊ be a unit quaternion is equivalent to the condition
that b is a unit vector. So we are trying to minimize

bT


 n∑
i=1

wicic
T
i


b (43)

where ci = ��′i × ri, subject to b · b = 1. The solution is the eigenvector
of the 3× 3 matrix associated with its smallest eigenvalue [Horn 87b, 90]
(see also the discussion of Raleigh’s quotient in [Korn & Korn 68]). From
b we can recover d̊ using d̊ = b̊q̊, where b̊ = (0,b).

It has been found experimentally, perhaps somewhat surprisingly,
that one can actually just pick a random initial value for d̊. Convergence
to machine precision is on average delayed by less than one step compared
to the number of steps needed when the method described here is used
to find an optimal initial value for d̊. This simplifies the algorithm.
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3. Five Ray Pairs

The minimum number of ray pairs that yield a finite number of solutions
is five, since each pairing of rays yields one constraint, and there are five
unknowns. There are five degrees of freedom, because there are three con-
straints on the eight components of q̊ and d̊—the two quaternions have
to be orthogonal and of unit magnitude. With five rays pairs exact solu-
tions are possible, that is, solutions that satisfy the coplanarity condition
exactly. In practice, if at all possible, one uses more than five ray pairs in
order to achieve higher accuracy and avoid ambiguity. Nevertheless, this
minimal case has attracted some attention and is worth discussing.

The question of how many solutions there may be when five ray pairs
are given has been long debated. Since each ray pair yields a homogeneous
second-degree polynomial in the unknown components of q̊ and d̊, we see
right away by Bézout’s theorem that there can be at most 25 = 32 solutions
(ignoring sign changes of q̊ and d̊). Kruppa showed long ago, however,
that there can actually be no more than 22 solutions [Kruppa 13]. More
recently, it has been observed experimentally that there appear to never be
more than twenty solutions, that these solutions generally come in groups
of four, and that sets of ray pairs can be found that yield no solutions, or
as many as twenty [Horn 87a, 90]. Proofs that there can be no more than
twenty solutions have recently been given by [Demazure 88] [Faugeras &
Maybank 89] [Netravali et al. 89]. But these proofs are very complex and
use advanced concepts from projective geometry and algebraic geometry.

We can show more simply that there can be no more than twenty solu-
tions by noting that the equations are bi-linear, that is, separately linear in
the components of q̊ and the components of d̊. This means that the equa-
tions derived from the coplanarity conditions are actually 2-homogeneous
(see Appendix B). The number of solutions of a system ofm-homogeneous
equations is less than that of a general homogeneous system of equations
of the same degree. In our case, we have five equations that are linear and
homogeneous in each of two sets of four variables, so the maximum pos-
sible number of solutions is given by(

(8− 2)
(4− 1)

)
= 6!

3! 3!
= 20.

Methods have been developed for tracking the paths of roots as one
system of polynomials is continuously transformed into another [Mor-
gan 87]. These methods can be used here to track the roots from a special
system of equations with the same degree that can be solved explicitly,
as it is transformed into the system of equations equations arising from
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the given ray pairs (see Appendix C). One can even exploit the symmetry
of the equations in q̊ and d̊ so that one only needs to track 10 roots, not
20.

Preliminary experiments with this method suggest, however, that the
iterative method described earlier, designed for the more general least
squares problem when more than five ray pairs are given, is much faster
and also more reliable. One problem with continuation methods is that,
while in theory paths of roots should never cross, in practice they often
come close enough to allow “path jumping,” unless the path is followed
with impractically tight tolerances.

4. Conclusions

An elegant new iterative method for solving the least squares problem of
relative orientation has been described. The utilitity of unit quaternions
for representing rotations in three-dimnesional space has once again been
demonstrated. A new short proof has been given that there can be at
most twenty solutions of the relative orientation problem when only five
ray pairs are given. In this special case continuation methods can (at least
theoretically) find all of the solutions.
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A. Quaternion Products and Rotation in 3-D

It is often convenient to consider quaternions as composed of a scalar
and a vector part:

å = (a,a). (44)
The conjugate of a quaternion is the quaternion with the vector part
negated:

å∗ = (a,−a). (45)
The dot-product of two quaternions is a scalar given by

å · b̊ = (a,a) · (b,b) = ab + a · b. (46)
The norm of a quaternion is just the square root of the dot-product of the
quaternion with itself:

‖å‖ =
√

å · å. (47)
A unit quaternion is a quaternion of unit norm.

The quaternion product is defined by the relation

åb̊ = (a,a) (b,b) = (ab − a · b, ab+ b a + a × b). (48)
The appearance of the cross product in the result alerts us to the fact that
quaternion multiplication is not commutative. Quaternion multiplication
is associative, however. It is easy to see that the identity with respect to
multiplication is

e̊ = (1,0), (49)
where 0 is the vector whose components are all zero. Note that

åå∗ = (a,a) (a,−a) = (a2 + a · a, 0) = (å · å) e̊, (50)
so that a quaternion with non-zero norm has an inverse,

å−1 = å∗/‖å‖2, (51)
and the inverse of a unit quaternion is just its conjugate.
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Using the definition given above of the quaternion product, it is easy
to show that

(åq̊) · (b̊q̊) = (å · b̊) (q̊ · q̊). (52)
We conclude that the operation of multiplying by a unit quaternion pre-
serves dot-products. We also obtain as a special case

(åb̊) · (åb̊) = (å · å) (b̊ · b̊), (53)
thus the norm of a product is the product of the norms. Using these
results, we can also see that

(åq̊) · b̊ = å · (b̊q̊∗). (54)

Scalars can be represented by quaternions with zero vector part, while
vectors can be represented by quaternions with zero scalar part. If r̊ is a
quaternion with zero scalar part, then

r̊∗ = −r̊. (55)
If r̊ and s̊ are quaternions with zero scalar part then

r̊ · s̊ = r · s, (56)
and

r̊s̊ = (−r · s, r× s) = (s̊̊r)∗. (57)
Finally, if r̊, s̊ and t̊ are quaternions with zero scalar part, then

(̊rs̊) · t̊ = r̊ · (s̊̊t) = [r s t], (58)

To represent rotations in three-dimensional space, we need an oper-
ation that maps quaternions with zero scalar part into quaternions with
zero scalar part. The operation

r̊′ = q̊r̊q̊∗ (59)
multiplies the scalar part by (q̊ · q̊), that is

r ′ = (q2 + q · q) r , (60)
so that if r̊ has zero scalar part, so will r̊′. As for the vector part, we can
write

r′ = (q2 + q · q) r+ 2q (q× r)+ 2q× (q× r). (61)
If q̊ is a unit quaternion, then the above simplifies further, and r̊′ actually
has the same magnitude as r̊, that is, (̊r′ · r̊′) = (̊r · r̊).

If s̊ is a second quaternion with zero scalar part, then

r̊′ · s̊′ = (q̊r̊q̊∗) · (q̊s̊q̊∗) = r̊ · s̊. (62)
Thus dot-products are preserved by the operation. The signs of triple
products are also preserved, since

(̊r′s̊′) · t̊′ = (̊rs̊) · t̊. (63)
Since length of vectors, angles between them, and the handedness of tri-
ads are preserved, we conclude that r̊′ = q̊r̊q̊∗ corresponds to a proper
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rotation of the vector r into the vector r′. We next determine what this
rotation is.

From

(q,q) (0,q) (q,−q) = (q2 + q · q) (0,q) = (0,q) (64)
we conclude that q is parallel to the axis of rotation. Now suppose that
r is a unit vector perpendicular to the axis of rotation, that is, r · r = 1
and r · q = 0. The cosine of the angle of rotation is then given by the
dot-product of r and r′. Then, if r̊′ = q̊r̊q̊∗, we have

r′ · r = r̊′ · r̊ = (q̊r̊) · (̊rq̊) (65)
or

cosθ = q2 − q · q, (66)
where θ is the angle of rotation. The sine of the angle of rotation is given
by the triple product of r′, r and a unit vector in the direction of the axis
of rotation. Now

[r′ r q] = (̊r′r̊) · (0,q) = 2q (q · q), (67)
so

sinθ = 2q‖q‖. (68)
Finally, using q2+q·q = 1, and some trigonometric identities for multiple
angles, we obtain q2 = (cosθ + 1)/2 or

q = cos(θ/2) and q = ω̂ω sin(θ/2), (69)
where ω̂ω is a unit vector parallel to the axis of rotation.

Thus a rotation about an axis through the origin parallel to the unit
vector ω̂ω can be represented by the unit quaternion

q̊ =
(

cos
θ
2
, ω̂ω sin

θ
2

)
. (70)

Note, however, that −q̊ represents the same rotation, since

(−q̊)̊r(−q̊)∗ = q̊r̊q̊∗. (71)
Thus the space of proper rotations in three dimensional space is isomor-
phic to the unit sphere in four dimensions, SO3, with anti-podal points
identified. Alternatively, we can identify it with the projective space P3.

B. Systems of m-Homogeneous Equations

A polynomial is homogeneous in a set of variables if, and only if, it is
the sum of terms of the same degree in these variables. Any non-zero
multiple of a solution of a homogeneous system of equations is clearly
also a solution, since each term in the polynomial is multiplied by the
same power of the constant multiplier. To obtain a unique solution we
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have to impose an additional (linear, non-homogeneous) constraint. Given
this extra degree of freedom, a homogeneous system of equations in n
variables need typically consist of only (n−1) equations in order to yield
a finite number of solutions (up to a constant multiplier). In general, the
maximum number of solutions that a system of homogeneous equations
can have is equal to the product of the degrees of the equations (Bézout’s
theorem). Most systems of equations actually attain this maximal number
of (possibly complex) solutions.

B.1 Homogeneous Equations with Special Structure

When the system of equations has some special structure, however, the
maximum possible number of solutions may be lower than indicated above.
Consider, for example, the pair of homogeneous second-degree equations

axu+ bxv + c yu+ dyv = 0,

e xu+ f xv + gyu+ hyv = 0,
(72)

in the variables x, y , and u, v . We can easily eliminate the term in xu
and so obtain

(eb − af)xv + (ec − ag)yu+ (ed− ah)yv = 0. (73)
Using this to substitute for u in the first equation leads to

(eb − af)x2 + ((bg − fc)+ (ed− ah))xy + (gd− ch)y2 = 0. (74)
This is a homogeneous quadratic equation and so has only two solutions
(up to a constant multiplier). Thus the original pair of equations has fewer
solutions than the four predicted by multiplication of the degrees.

What is special about this particular system of equations is that the
polynomials are separately homogeneous in the two variables x and y ,
and in the two variables u and v . That is, if we treat u and v as constants,
then we have a pair of equations that is homogeneous in x andy (and vice
versa). This means, amongst other things, that we can multiply x and y
in a solution by one non-zero constant and u and v by another non-zero
constant and still have a solution. That is, to obtain a unique solution we
would have to introduce two additional (linear, non-homogeneous) con-
straints. It is because of these two degrees of freedom that we require
only two equations, instead of the expected three, in order to constrain
the problem enough to obtain a finite number of solutions (up to constant
multipliers).

The above set of equations is said to be 2-homogeneous. An equation
is m-homogeneous if we can partition the set of variables into m subsets,
such that the equation is homogeneous in each of these subsets separately
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(when the other variables are treated as constants). The largest possible
number of roots of a system of m-homogeneous equations is less than
the largest possible number of roots of a general system of homogeneous
equations of the same degree.

B.2 Linear 2-Homogeneous Equations

Consider, for example, a system E of equations of (n+m− 2) equations
that is linear in two sets of variables {xi} and {yj}, where i = 0, 1 . . .
(n− 1) and j = 0, 1 . . . (m− 1). For a start, let us focus on a very special
case of this, where each of the equations happens to have the simple form

(a0,kx0 + a1,kx1 + . . .+ an−1,kxn−1)

× (b0,ky0 + b1,ky1 + . . .+ bm−1,kym−1) = 0, (75)
for k = 0, 1 . . . (n+m− 3), or

(ak · x)(bk · y) = 0 (76)
for short, where the variables in the two subsets are the components of
the vectors x and y, and the two sets of coefficients are the components
of the vectors ak and bk.

Clearly for x and y to be a solution of this special system of equations
S, we must have either (ak · x) = 0 or (bk · y) = 0 for each k = 0, 1 . . .
(n+m− 3). Suppose that we partition the system of equations into two
subsets, one of size (n − 1) and the other of size (m − 1). Consider
the (n − 1) equations (ak · x) = 0 in the first subset. This is a set of
linear homogeneous equations with one fewer equations than there are
variables. Generally this subset of equations will have a unique solution
for x (up to a constant multiplier). Similarly, the (m− 1) equations (bk ·
y) = 0 in the second subset will have a unique solution for y (up to a
constant multiplier). The resulting values of x and y are clearly solutions
of the original system of equations, and there are no other solutions of
the original system of equations.

We conclude that the special system of equations has a number of
solutions equal to the number of ways of partitioning the set of variables
in the indicated manner, namely(

n+m− 2
n− 1

)
=
(
n+m− 2
m− 1

)
= (n+m− 2)!
(n− 1)! (m− 1)!

(77)

This typically is much less than the number of solutions of a general ho-
mogeneous system of second degree equations.

Now suppose that we have a system of equations E that, while linear
in two sets of variables, does not have the special form above. We can
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always write these equations in the form

xTMk y = 0, (78)
for (n +m − 2) matrices Mk, each with n rows and m columns. What
is the largest number of solutions that such a system of equations can
have? We can form linear combinations of this system of equations and a
system of equations that do have the special form given above. The result
can be written

xT
(
λMk + c (1− λ)akbTk

)
y = 0. (79)

where c is an arbitrary (complex) number. Now this system has the roots
of the special set of equations S when λ = 0, while it has the roots of the
more general system of equations E when λ = 1.

We can follow the roots of the combined system as we continuously
vary the parameter λ. Perhaps somewhat surprisingly, the paths con-
nect the roots of one system with the roots of the other system. None of
the paths can “curve back,” or merge, or diverge to infinity. So, in gen-
eral, the number of roots of the more general system of equations is the
same as that of the special systems of equations. The proof requires ad-
vanced concepts from modern algebraic geometry and will not be given
here [Morgan 87, 89] [Morgan & Sommese 87a, 87b, 89] [Wampler, Morgan
& Sommese 88]

B.3 Linear m-Homogeneous Equations

The above analysis can be easily extended to systems of equations that are
linear in m sets of variables rather than just 2. A special set of equation
can be set up, much as above, where each polynomial is the product of
terms linear in each of the subsets of variables. This special set of (n0 +
n1 + . . . + nm−1 −m) equations may be partitioned into subsets of size
(n0 − 1), (n1 − 1) . . . (nm−1 − 1). The first subset is used to solve for
the n0 variables of the first subset of variables, the second subset for
the n1 variables of the second subset of variables and so on. Since each
subset of equations is linear in one subset of the variables (and does not
contain any of the others), one obtains exactly one solution (up to constant
multipliers). The number of solutions of the special set of equations is
equal to the number of possible ways of partitioning the set of variables
in the indicated manner, namely

(n0 +n1 + . . .+nm−1)!
(n0 − 1)! (n1 − 1)! . . . (nm−1 − 1)!

. (80)

which is much less than the number of solutions of a general homoge-
neous system of m-th degree equations.
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Again, it turns out that the number of solutions of the more general
set of equations is equal to the number of solutions of the special set
of equations (and that the solutions of the general set may be found by
following the solutions as one system of equations is deformed into the
other).

The above analysis can be extended also to deal with systems of m-
homogeneous equations that are of higher degree in the various subsets of
variables. The same trick is used to partition the equations of the special
system, but now the resulting sets of equations are no longer linear, so
there will be more than one solution. Let us suppose, first of all, that all
the equations have the same degrees in each of the subsets of variables.
Suppose that each equation has degree lk in the k-th set of variables. Then
each partitioning leads to

ln0−1
0 ln1−1

1 . . . lnm−1−1
m−1 (81)

solutions (by Bézout’s theorem). So the total number of solutions is just
the product of this quantity and the expression given above for the linear
case.

Counting the total number of solutions becomes a bit harder when
the equations are not all of the same degree in a particular subset of the
variables, for then the number of solutions obtained for different parti-
tions is different. The reader is here referred to [Morgan 87, 89] [Morgan
& Sommese 87a, 87b, 89] [Wampler, Morgan & Sommese 88] for details.

C. Continuation Methods

The results discussed above can be used to determine the maximum num-
ber of solutions of anm-homogeneous system of equations. They can also
be used to find these solutions using continuation methods. Let us write
the system of equations we wish to solve in the form f(x) = 0. There
typically is no closed-form method for finding the solution of this sys-
tem. But suppose that by changing some parameters we can simplify the
system of equations to the point were its solutions can be found directly.
Of course, these will be solutions of the ‘deformed’ system, not the one
we originally desired to solve. The idea now is to track these solutions of
the ‘deformed’ system as it is incrementally changed back into the origi-
nal form. If the incremental changes are small enough, then it is possible
to get good estimates of the solutions of the next version of the system
by starting with the solutions of the present one. If we are fortunate,
then none of the solutions lead to ‘dead-ends’ where the new system has
no solutions near solutions of the present system, and no new solutions
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can appear that are not near solutions of the present system. This is the
intuitive motivation for the process to be described in more detail now.

We construct a system g(x) = 0 of equations of the same degree in
the same set of variables x, in the special form indicated in the previous
sections (The coefficients occurring in these equations should be chosen at
random, in order to reduce the possibility of this system having a special
structure that may lead to a reduced number of solutions). Determine all
of the ways of partitioning this set of equations into subsets of size one
less than the number of variables in each of the m groups. Find the roots
of each subset of equations extracted. This yields all of the solutions of
the system g(x) = 0.

Note that to obtain unique solutions (without the constant multiplier
ambiguity) we have to adjoin to the given system of equations m linear
non-homogeneous equations, one in each subset of the variables (The co-
efficients occurring in these equations should also be chosen at random,
in order to reduce the possibility of the resulting system of equations hav-
ing a solution at infinity). The added linear equations can be used to solve
for one of the variables in terms of the others, thus allowing this variable
to be eliminated from the other equations. The result is a system of non-
homogeneous equations of the same degree as the original equations, but
with one fewer unknowns.

Now trace these solutions as λ is varied from 0 to 1 in

λf(x)+ c (1− λ)g(x) = 0,
or h(x;λ) = 0 for short. This can be done by taking a small step δλ in
lambda and solving for the increment δx in

dh
dλ

δλ+ dh
dx

δx = 0, (82)

where J = (dh/dx) is the Jacobian of h with respect to x. The updated
solutions x′ = x + δx will not be exact if we are taking finite steps, so
one needs to use Newton’s method to improve their accuracy. That is, we
need to find an adjustment δx such that h(x+ δx) = 0, or

h(x)+ dh
dx

δx = 0, (83)

where again the Jacobian J = (dh/dx) appears.

We repeat the above process as λ is varied from 0 to 1 in small steps.
The step size δλ can be adjusted to keep the departure from the desired
path smaller than some chosen threshold.

Perhaps the most awkward practical problem of continuation approach
is “jumping” of a solution being traced from its correct path to a path that
passes close to it. Path jumping can be detected when two paths end at
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the same solution and when that solution can be shown not to be a multi-
ple root of the system of equations. Path jumping can also sometimes be
detected by tracking solutions in reverse (that is as λ is decreased towards
zero), and noting whether one returns to the starting solution. Something
has gone awry when this does not happen. The probability of path jump-
ing can be reduced by taking smaller steps, but this, of course, slows the
computation.


